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Abstract
We derive the extension of the classical d’Alembert formula for the wave equation, which
provides the analytical solution for the direct scattering problem for a medium with constant
refractive index. Analogous formulae exist already in the literature, but in the current work
this is derived in a natural way for general incident field, by employing results obtained
via the Fokas method. This methodology is further extended to a medium with piecewise
constant refractive index, providing the apparatus for the solution of the associated inverse
scattering problem. Hence, we provide an exact reconstruction method which is also valid
for phaseless data.

Keywords Wave equation · D’Alembert formula · Fokas method · Inverse scattering ·
Reconstruction
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1 Introduction

We consider the scattering problem of a wave by a layered medium in the positive half line.
The medium is supported in (0, L), where L > 0 describes its length. We examine both the
direct and the inverse problems. The direct problem is to compute the solution of the wave
equation at a detector position x = L + D, with D > 0, given the optical properties of the
medium (refractive index ν and length of every layer) and the initial wave, to be supported
at (L,∞).
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The much more interesting, but difficult to solve, problem is the corresponding inverse
problemwherewe aim to reconstruct the optical properties of themedium from the knowledge
of the back-reflected data, meaning the wave at x = L+D, for some time interval t ∈ (0, T ).

The study of the inverse problem for the wave equation in layered media plays a cru-
cial role in understanding and modelling complex wave propagation phenomena. It enables
the estimation of important material parameters in various practical applications such as
seismology, geophysics, acoustics, and medical imaging [1–8].

In such cases, the media are commonly assumed to have a structure composed of multiple
layers with different physical properties. For example, the Earth’s subsurface consists of
seismic layers but also the human skin is made up of tissue layers. The wave propagation
becomes more complex due to the presence of discontinuities and variations in material
properties across the different layers.

The Fresnel equations are often relevant in the study of inverse problems for the wave
equation. These equations describe the reflection and transmission of waves (acoustic and
electromagnetic) at the interface between two media with different refractive indices [9, 10].

For instance, in optical coherence tomography, the measured intensity is the interference
of a backscattered light (coming from the sample) with a back-reflected light (from a fixed
mirror). For a layeredmedium, the backscattered signal can be described by a (infinite) sumof
waves back-reflected by the discontinuities of the medium (layer interfaces) with coefficients
given by the Fresnel equations. A layer stripping algorithm is usually applied for solving the
inverse problem, see for example [11–15].

The above approach is based on an analytical representation which involves infinite series
of transforms of the initial and boundary conditions. This is reflected also on the numerical
simulations where one has to truncate the summation, depending on the number of mul-
tiple reflections to be considered. In the current work, we bypass this issue by deriving a
d’Alembert-type representation of the solution for the wave equation, on a layered medium,
which involves only finite sums of known functions on the physical domain. The formu-
lated expression for a single-layered structure, as presented in Proposition 2, coincides with
previously documented equations for the case that the incident field has the form of short
pulses, see for example [16, Section 3]. Enhancing the later analysis to more general incident
fields is rather straightforward. However, we find worth mentioning that our analysis yields
Proposition 2 in a natural way for general incident field, based on the results obtained by the
Fokas method in [17] and avoiding using their Fourier transforms. This is to be contrasted
to the approach of [16] where the crucial assumption that the incident field is given in the
form of pulses allows for exploiting the specific structure of their Fourier transform in order
to derive the solution of the direct problem. Therefore, the significance and novelty of the
current research reside in the methodologies employed to derive the form of the reflectance,
which can be seen as a slight generalization of established results to diverse incident field
profiles.

The derivation of this solution representation is based on the Fokas method for solving
linear initial-boundary value problems (IBVPs). This method, which is also known as the
unified transform, was introduced in 1997 by Fokas [18], for solving IBVPs for nonlinear
integrable partial differential equations (PDEs). Later, itwas realised that it produced effective
analytical and numerical solutions for linear PDEs [19]; for an overview of the method we
refer to [20, 21]. The last two decades hundreds of works have been published, using and
extending the Fokas method to substantially different directions, including fluid dynamics
[22–24], control theory [25, 26], regularity results [27–29]. In general, the Fokas method
yields solutions of the IBVPs as integral representations involving the Fourier (spectral)
transforms of the initial and boundary conditions. Starting from these representations, one
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can also obtain representations in the physical space, in terms of the associated Green’s
functions, which involve integrals in the spectral space. For the case of the wave equation,
these integrals can be easily computed explicitly, yielding, in a natural way, d’Alembert type
representations.

The current work is based on the formulae obtained in [17] where the classical d’Alembert
solution of the wave equation was extended to the half-line and the finite interval problem.
Employing the fact that the solutions of the IBVPs derived by the Fokas method converge
uniformly to the assigned initial and boundary conditions, we extend the classical d’Alembert
solution to the layeredmedium, by coupling the relevant conditions on the boundaries between
the layers. This concept reduces the solution of the problem to a system of algebraic or
functional equations, which is to be contrasted to the initial problem involving a system of
partial differential equations. This reduction is a feature induced by the Fokas method to
interface problems for a variety of PDEs, for example the heat equation [30–33] and the
Schrödinger equation [34, 35].

Organisation of the paper

In Sect. 2, we present the characterisation of IBVP for the wave equation for the single
and double-layered medium. Furthermore, we derive the extension of the d’Alembert-type
solution for the single-layered medium, as well as the analogue formula for the measurement
at the detector for the case that the initial condition displays a delta-like pulse distribution,
both for the single and double-layered medium. Based on the above results, in Sect. 3, we
present in detail the solution for the inverse scattering problem for the multi-layered medium,
both for the full and phaseless data/measurements. We note that although the latter is an ill-
posed problem, we provide evidence that one could find the unique solution if the total length
of the medium is known. The numerical illustration of both the direct and inverse problem
is provided in Sect. 4.

2 The direct scattering problem

We consider the scattering problem in the half line x > 0. The support of the medium is
in the interval (0, L) with boundaries placed at x = 0 and x = L. We assume illumination
from the right, meaning for x > L with a wave having support (short pulse) in the interval
(L,∞). We define

c j = c

ν j
, j = 0, 1, . . . (1)

the wave speed in the j th layer of the medium.Without loss of generality, we assume c0 ≡ 1,
describing the speed in free space; then 0 < c j < 1, j = 1, 2, . . . .

The direct problem then reads: Given the initial wave and the properties of the medium
(wave speed and length), find the back-scattered wave at some position x > L.

2.1 Single-layeredmedium

For a single-layered medium, we have only one wave speed c1, for 0 < x < L, and the
scattering problem can be decomposed into two sub-problems in the intervals (0, L) and
(L, +∞) as follows:
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IBVP I (half line)

utt − uxx = 0, x > L, t > 0, (2a)

u(x, 0) = U0(x), ut (x, 0) = 0, x > L, (2b)

u(L, t) = G(t), ux (L, t) = F(t), t > 0, (2c)

where U0 : [L, +∞) → R.

IBVP II (finite interval)

vt t − c21vxx = 0, 0 < x < L, t > 0, (3a)

v(x, 0) = vt (x, 0) = 0, 0 < x < L, (3b)

v(0, t) = 0, t > 0, (3c)

v(L, t) = H(t), vx (L, t) = Q(t), t > 0. (3d)

In addition, we impose the compatibility condition

U0(L) = G(0) = H(0) = 0. (4)

The problems (2) and (3) are coupled through the boundary conditions (2c) and (3d) to be
seen as continuity equations in the sense:

G(t) = u(x, t) |x=L= v(x, t) |x=L= H(t), t > 0, (5a)

F(t) = ux (x, t) |x=L= vx (x, t) |x=L= Q(t), t > 0. (5b)

In order to obtain the solution of (2) we employ [17, Eq. (25)] using the change of variables
x = x̃ + L :

u(x, t) = 1

2
u0(x − L + t) +

{
1
2u0(x − L − t), x > L + t,

g(t − x + L) − 1
2u0(t − x + L), L < x < L + t .

(6)

This function satisfies the initial conditions

u(x, 0) = u0(x − L), ut (x, 0) = 0, x > L, (7)

as well as the condition u(L, t) = g(t), t > 0.
Hence, it suffices to set g(t) = G(t) and u0(x − L) = U0(x) which modifies (6) into

u(x, t) = 1

2
U0(x + t) +

{
1
2U0(x − t), x > L + t,

G(t − x + L) − 1
2U0(t − x + 2L), L < x < L + t,

(8)

which satisfies the boundary condition

u(L, t) = G(t), t > 0. (9)

Thus, the function defined in (8) is the solution of (2). The spatial derivative of (8), evaluated
at x = L, gives

ux (L, t) = U ′
0(L + t) − G ′(t) =: F(t), t > 0. (10)

Similarly, from [17, Eq. (63)] setting t = t̃/c1 we get

v(x, t) =

[ c1t+x−L
2L

]
∑
n=0

h(c1t + x − (2n + 1)L) −

[ c1t−x−L
2L

]
∑
n=0

h(c1t − x − (2n + 1)L), (11)
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where [a] denotes the integer part of the real number a. The solution provided by the Fokas
method converges uniformly to the initial and boundary conditions. Indeed, it is straightfor-
ward to observe that the initial conditions (3b) and the boundary condition (3c) are satisfied.
Also, for x = L, we obtain

v(L, t) =

[ c1t
2L

]
∑
n=0

h (c1t − 2nL) −

[ c1t
2L

]
−1∑

n=0

h (c1t − 2(n + 1)L)

=

[ c1t
2L

]
∑
n=0

h (c1t − 2nL) −

[ c1t
2L

]
∑
n=1

h (c1t − 2nL)

= h(c1t),

(12)

where we have set n + 1 = ñ in the second sum. We set h(c1t) = H(t) and we derive the
solution of (3) as

v(x, t) =

[ c1t+x−L
2L

]
∑
n=0

H
(
t + x−(2n+1)L

c1

)
−

[ c1t−x−L
2L

]
∑
n=0

H
(
t − x+(2n+1)L

c1

)
, (13)

satisfying
v(L, t) = H(t), t > 0. (14)

By taking the spatial derivative of (11) at x = L, we obtain

vx (L, t) = 1

c1

[ c1t
2L

]
∑
n=0

H ′ (t − 2nL
c1

)
+ 1

c1

[ c1t
2L

]
−1∑

n=0

H ′ (t − 2(n+1)L
c1

)

= 1

c1
H ′(t) + 2

c1

[ c1t
2L

]
∑
n=1

H ′ (t − 2nL
c1

)
=: Q(t).

(15)

Then, the continuity equations (5) using (9), (10), (14) and (15) result in the system

G(t) = H(t), t > 0, (16a)

U ′
0(L + t) − G ′(t) = 1

c1
H ′(t) + 2

c1

[ c1t
2L

]
∑
n=1

H ′ (t − 2nL
c1

)
, t > 0, (16b)

which by integrating and using (4) takes the compact form

G(t) = c1
c1 + 1

U0(L + t) − 2

c1 + 1

[ c1t
2L

]
∑
n=1

G
(
t − 2nL

c1

)
, t ≥ 0, (17)

under the convention that if 0 ≤ t < 2L/c1, then the sum yields no terms, thus vanishes.
The solution of the above system of equations gives the boundary function G in terms of

the known initial conditionU0. Then, the wave is given by (13) (by replacing H with G) for
0 ≤ x ≤ L , and by (8) for x > L.

123



5 Page 6 of 25 Partial Differential Equations and Applications (2024) 5 :5

Equation (17) is also used for deriving the backscatteredwave at some position x = L+D,

with D > 0. Thus, by determining the solution G(t) from the above equation, we will be
able to compute the function

m(t) := u(L + D, t), t > 0. (18)

Theorem 1 Let U0 be supported in (L, ∞), then the solution of (17) is given by

G(t) = c1
c1 + 1

U0(L + t)

− 2c1
(c1 + 1)2

[ c1t
2L −1

]
∑
n=0

(c1 − 1)n

(c1 + 1)n
U0

(
L + t − 2(n+1)L

c1

)
, t ≥ 0,

(19)

under the convention that if 0 ≤ t < 2L/c1, then the above sum yields no terms, thus
vanishes.

Proof The proof is done by induction. By definition, if t ∈ [0, 2 L/c1), then (17) and (19)
coincide. Let (19) be true for t ∈ [0, T ), we will employ (17) to show that it is also valid for
t ∈ [0, T + 2 L/c1).

We consider (17) for t ∈ [0, T + 2L/c1), and as in (12), we rewrite it as

G(t) = c1
c1 + 1

U0(L + t) − 2

c1 + 1

[ c1t
2L −1

]
∑
n=0

G
(
t − 2(n+1)L

c1

)
. (20)

Since t − 2(n+1)L
c1

< T + 2L
c1

− 2(n+1)L
c1

< T + 2L
c1

− 2L
c1

= T , the term in the summation
can now by computed using (19), thus

G
(
t − 2(n+1)L

c1

)
= c1

c1 + 1
U0

(
L + t − 2(n+1)L

c1

)

− 2c1
(c1 + 1)2

[ c1t
2L −n−2

]
∑
k=0

(c1 − 1)k

(c1 + 1)k
U0

(
L + t − 2(n+k+2)L

c1

)
.

(21)

Substituting (21) into (20), results in

G(t) = c1
1 + c1

U0(L + t) − 2c1
(c1 + 1)2

[ c1t
2L −1

]
∑
n=0

U0

(
L + t − 2(n+1)L

c1

)

+ 4c1
(c1 + 1)3

[ c1t
2L −1

]
∑
n=0

[ c1t
2L −n−2

]
∑
k=0

(c1 − 1)k

(c1 + 1)k
U0

(
L + t − 2(n+k+2)L

c1

)
.

(22)

We can simplify the double summation into a single summation, by defining λ = n+k+1,
and adding “diagonally" the double sum on λ, meaning, by collecting all terms involving
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U0

(
L + t − 2(λ+1)L

c1

)
. In more detail, the double sum in (22) is rewritten in the form

[ c1t
2L −1

]
∑
n=0

[ c1t
2L −1

]
∑

λ=n+1

(
c1 − 1

c1 + 1

)λ−n−1

U0

(
L + t − 2(λ+1)L

c1

)

=

[ c1t
2L −1

]
∑
λ=1

λ−1∑
n=0

(
c1 − 1

c1 + 1

)λ−n−1

U0

(
L + t − 2(λ+1)L

c1

)

=

[ c1t
2L −1

]
∑
λ=1

⎛
⎝λ−1∑

μ=0

(
c1 − 1

c1 + 1

)μ
⎞
⎠U0

(
L + t − 2(λ+1)L

c1

)

= −c1 + 1

2

[ c1t
2L −1

]
∑
λ=0

[(
c1 − 1

c1 + 1

)λ

− 1

]
U0

(
L + t − 2(λ+1)L

c1

)
. (23)

Substituting the double sum in (22) by the expression at the RHS of (23), with the change
of notation λ = n, results in (19) for t ∈ [0, T + 2L/c1), completing the induction. 	

Remark 1 An alternative way for obtaining G(t) follows by the observation that the function
Q(t), appearing in the right-hand side of (15), can be analysed as

Q(t) = 1
c1
H ′(t), t ∈

(
0, 2L

c1

)
, (24a)

Q(t) = 1
c1
H ′(t) + 2

c1
H ′ (t − 2L

c1

)
, t ∈

(
2L
c1

, 4L
c1

)
, (24b)

...

Q(t) = 1
c1
H ′(t) + 2

c1

N∑
n=1

H ′ (t − 2nL
c1

)
, t ∈

(
2NL
c1

,
2(N+1)L

c1

)
, (24c)

for N ∈ N0, and with N = 0, we mean that no summation is performed.
Thus, we could also compute the solution of (16) by dividing time in appropriate intervals,

as in (24), and compute the boundary functions sectionally. This approach is presented in
Appendix A.

By substituting (19) in (8) we obtain the measured data (18) in a d’Alembert form; this
reads as the following proposition.

Proposition 2 LetU0 be supported in (L, ∞), then the measurements at the detector is given
by

m(t) = 1

2
U0(L + D + t) + 1

2
U0(L + D − t), 0 ≤ t ≤ D, (25)

and for t > D, we get

m(t) = 1

2
U0(L + D + t) + 1

2

c1 − 1

c1 + 1
U0(L − D + t)

− 2c1

[
c1(t−D)

2L −1

]
∑
n=0

(c1 − 1)n

(c1 + 1)n+2U0

(
L − D − 2(n + 1)L

c1
+ t

)
.

(26)
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2.1.1 Delta-like short pulse

In the ideal case of an initial function of the form

U0(x) =
{
1, for x = x0,
0, for x �= x0,

(27)

with x0 > L, the previous result allows us to represent G, (and consequently m) at specific
time points, as a function of c1 only.

Without loss of generality, we place the source at the detector position, meaning x0 =
L + D. Defining G(k) := G(D + k 2L

c1
), k ∈ N and evaluating (17) at t = D + k 2L

c1
, k ∈ N,

we obtain

G(0) = c1
c1 + 1

, G(1) = − 2c1
(c1 + 1)2

, (28)

G(k) = − 2

c1 + 1

[ c1D
2L +k

]
∑
n=1

G(k−n), k ≥ 2. (29)

Then, the subtraction of the kth term from the (k − 1)th term of (29) yields

G(k) = c1 − 1

c1 + 1
G(k−1), k ≥ 2. (30)

Thus, (28) and (30) yield

G(k) =

⎧⎪⎨
⎪⎩

c1
c1+1 , for k = 0,

− 2c1(c1−1)k−1

(c1+1)k+1 , for k = 1, 2, . . .
(31)

Setting t = 0 in (25), we get m(0) = 1, as expected. We define m(k) := m(2D + k 2L
c1

),

and from (26) we get

m(k) =

⎧⎪⎨
⎪⎩

1
2
c1−1
c1+1 , for k = 0,

G(k), for k = 1, 2, . . .
(32)

2.2 Double-layeredmedium

We consider the same scattering problem but now the medium consists of two layers, again
supported in (0, L). Let the j th layer have wave speed c j , and length l j , for j = 1, 2, such
that l1 + l2 = L.

This scattering problem can be decomposed into three sub-problems in the intervals
(0, l2), (l2, L), and (L,+∞) as follows:

IBVP I (half line)

utt − uxx = 0, x > L, t > 0, (33a)

u(x, 0) = U0(x), ut (x, 0) = 0, x > L, (33b)

u(L, t) = G0(t), ux (L, t) = F0(t), t > 0, (33c)

where U0 : [L, +∞) → R.
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IBVP II (finite interval)

vt t − c21vxx = 0, l2 < x < L, t > 0, (34a)

v(x, 0) = vt (x, 0) = 0, l2 < x < L, (34b)

v(l2, t) = G1(t), vx (l2, t) = F1(t), t > 0, (34c)

v(L, t) = H1(t), vx (L, t) = Q1(t), t > 0. (34d)

IBVP III (finite interval)

wt t − c22wxx = 0, 0 < x < l2, t > 0, (35a)

w(x, 0) = wt (x, 0) = 0, 0 < x < l2, (35b)

w(0, t) = 0, t > 0, (35c)

w(l2, t) = H2(t), wx (l2, t) = Q2(t), t > 0. (35d)

The compatibility condition now reads

U0(L) = G0(0) = G1(0) = H1(0) = H2(0) = 0. (36)

The problems (33), (34), and (35) are coupled through the boundary—continuity condi-
tions:

G0(t) = u(x, t) |x=L= v(x, t) |x=L= H1(t), t > 0, (37a)

F0(t) = ux (x, t) |x=L= vx (x, t) |x=L= Q1(t), t > 0, (37b)

G1(t) = v(x, t) |x=l2= w(x, t) |x=l2= H2(t), t > 0, (37c)

F1(t) = vx (x, t) |x=l2= wx (x, t) |x=l2= Q2(t), t > 0. (37d)

The solution of (33) is given by (8) by replacing G with G0. Similarly, the solution of (35)
is given by

w(x, t) =

[ c2t+x−l2
2l2

]
∑
n=0

H2

(
t + x−(2n+1)l2

c2

)
−

[ c2t−x−l2
2l2

]
∑
n=0

H2

(
t − x+(2n+1)l2

c2

)
, (38)

using (13) in this problem.
Using [17, Eq. (63)] for t = t̃/c1, and x = x̃ + l2, we get

v(x, t) =

[ c1t+x−l2−l1
2l1

]
∑
n=0

H1

(
t + x−l2−(2n+1)l1

c1

)
−

[ c1t−x+l2−l1
2l1

]
∑
n=0

H1

(
t − x−l2+(2n+1)l1

c1

)

−

[ c1t+x−l2−2l1
2l1

]
∑
n=0

G1

(
t + x−l2−2(n+1)l1

c1

)
+

[ c1t−x+l2
2l1

]
∑
n=0

G1

(
t − x−l2+2nl1

c1

)
,

(39)
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where we have set h1(c1t) = H1(t), and g1(c1t) = G1(t). The initial conditions (34b) are
clearly satisfied and at the right boundary x = L = l1 + l2, we get

v(L, t) =

[ c1t
2l1

]
∑
n=0

H1

(
t − 2nl1

c1

)
−

[ c1t
2l1

]
−1∑

n=0

H1

(
t − 2(n+1)l1

c1

)

−

[ c1t−l1
2l1

]
∑
n=0

G1

(
t − (2n+1)l1

c1

)
+

[ c1t−l1
2l1

]
∑
n=0

G1

(
t − (2n+1)l1

c1

)
= H1(t), (40)

and

vx (L, t) = 1

c1

[ c1t
2l1

]
∑
n=0

H ′
1

(
t − 2nl1

c1

)
+ 1

c1

[ c1t
2l1

]
−1∑

n=0

H ′
1

(
t − 2(n+1)l1

c1

)

− 1

c1

[ c1t−l1
2l1

]
∑
n=0

G ′
1

(
t − (2n+1)l1

c1

)
− 1

c1

[ c1t−l1
2l1

]
∑
n=0

G ′
1

(
t − (2n+1)l1

c1

)

= 1

c1
H ′
1(t) + 2

c1

[ c1t
2l1

]
∑
n=1

H ′
1

(
t − 2nl1

c1

)
− 2

c1

[ c1t−l1
2l1

]
∑
n=0

G ′
1

(
t − (2n+1)l1

c1

)
=: Q1(t). (41)

At the left boundary x = l2, we obtain

v(l2, t) =

[ c1t−l1
2l1

]
∑
n=0

H1

(
t − (2n+1)l1

c1

)
−

[ c1t−l1
2l1

]
∑
n=0

H1

(
t − (2n+1)l1

c1

)

−

[ c1t
2l1

]
−1∑

n=0

G1

(
t − 2(n+1)l1

c1

)
+

[ c1t
2l1

]
∑
n=0

G1

(
t − 2nl1

c1

)
= G1(t), (42)

and

vx (l2, t) = 1

c1

[ c1t−l1
2l1

]
∑
n=0

H ′
1

(
t − (2n+1)l1

c1

)
+ 1

c1

[ c1t−l1
2l1

]
∑
n=0

H ′
1

(
t − (2n+1)l1

c1

)

− 1

c1

[ c1t
2l1

]
−1∑

n=0

G ′
1

(
t − 2(n+1)l1

c1

)
− 1

c1

[ c1t
2l1

]
∑
n=0

G ′
1

(
t − 2nl1

c1

)

= − 1

c1
G ′

1(t) − 2

c1

[ c1t
2l1

]
∑
n=1

G ′
1

(
t − 2nl1

c1

)
+ 2

c1

[ c1t−l1
2l1

]
∑
n=0

H ′
1

(
t − (2n+1)l1

c1

)
=: F1(t). (43)
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The function F1 is similar to Q1 with the roles of H1 and G1 interchanged.
Finally, we substitute (9) and (10) (for G0 and F0) and (40)–(43) in (37) to derive

G0(t) = H1(t), t > 0, (44a)

U ′
0(L + t) − G ′

0(t) = Q1(t), t > 0, (44b)

G1(t) = H2(t), t > 0, (44c)

F1(t) = Q2(t), t > 0. (44d)

We consider the condition (36) and we write the above system of equations only for the two
unknown functions G0 and G1

G0(t) = c1
c1 + 1

U0(L + t) − 2

c1 + 1

[ c1t
2l1

]
∑
n=1

G0

(
t − 2nl1

c1

)

+ 2

c1 + 1

[ c1t−l1
2l1

]
∑
n=0

G1

(
t − (2n+1)l1

c1

)
, (45a)

G1(t) = 2c2
c2 + c1

[ c1t−l1
2l1

]
∑
n=0

G0

(
t − (2n+1)l1

c1

)
− 2c2

c2 + c1

[ c1t
2l1

]
∑
n=1

G1

(
t − 2nl1

c1

)

− 2c1
c2 + c1

[ c2t
2l2

]
∑
n=1

G1

(
t − 2nl2

c2

)
. (45b)

The systemof equations (45) is the analogue to (17) for the double-layeredmedium.However,
the two unknown functions are not only coupled but also evaluated at different time intervals.

Remark 2 In order to derive a formula for the measurements, it is sufficient to obtain G0.
This is doable using the methodology described in Remark 1 to solve (45), which yields the
solution in the form

G0(t) =

[ c1t
2l1

]
∑
k1=0

[ c2t
2l2

]
∑
k2=0

A(2k1,2k2)U0

(
L + t − k1

2l1
c1

− k2
2l2
c2

)
, (46)

where A(2k1,2k2) are real constants depending on c1 and c2.
In this work we omit the elaborate analysis that should be followed in order to determine

all the coefficients A(2k1,2k2) in the different physical setups. Instead, we present

A(0,0) = c1
1 + c1

A(2,0) = 2c1(c2 − c1)

(1 + c1)2(c1 + c2)

A(2,2) = − 8c21c2
(1 + c1)2(c1 + c2)2

,

which correspond to the information obtained by the three principle reflections, at x = L, l2,
and 0, respectively.

In fact, for the inverse problem, only the first two coefficients are needed, since these two
constraints are enough for obtaining the two unknowns c1 and c2. The third coefficient serves
as an assurance that the boundary at x = 0 is indeed totally reflecting the wave, namely that
the Dirichlet condition vanishes at x = 0.
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In what follows we present the treatment of the above problem for the case of a delta-like
initial function as in Sect. 2.1.1 in order to simplify the upcoming calculations.

Let U0 be of the form (27) with x0 = L + D. Following the above remark, we are
interested in computingG0 at the time steps t = D, D+ 2l1

c1
, corresponding to the reflections

by the boundaries at the positions x = L, and l2, respectively. Multiple reflections can
also be computed but are not necessary for the inverse problem. We define G(k1,k2)

j :=
G j (D + k1

l1
c1

+ k2
l2
c2

), for j = 0, 1 and k j ∈ Z.

We evaluate (45a) at the time steps t = D and t = D+ 2l1
c1

, meaning for (k1, k2) = (0, 0)
and (k1, k2) = (2, 0), respectively, and we subtract the two formulas. Then, we obtain

G(2,0)
0 − G(0,0)

0 = − c1
c1 + 1

− 2

c1 + 1
G(0,0)

0 + 2

c1 + 1
G(1,0)

1 . (47)

Given that G0 and G1 refer to boundary functions, we recall from (33) and (34) that

G0(t) = 0, for t < D,

G1(t) = 0, for t < D + l1
c1

,
(48)

meaning
G(k1,k2)

0 = 0, for k1 < 0 and k2 < 0,

G(k1,k2)
1 = 0, for k1 < 1 and k2 < 0.

(49)

We set t = D in (45a)–(45b) and using (27) and (48) we get

G(0,0)
0 = c1

c1 + 1
, and G(0,0)

1 = 0. (50)

In addition, setting t = D+ l1
c1

in (45b), we see that only the first sum contributes a non-zero
term and precisely

G(1,0)
1 = 2c2

c2 + c1
G(0,0)

0 . (51)

Then, employing (50) and (51) in (47), we obtain

G(2,0)
0 = 2c1(c2 − c1)

(c1 + 1)2(c2 + c1)
. (52)

The above procedure can be continued in order to compute the terms describing multiple
reflections. For example, starting from

G(4,0)
0 − G(2,0)

0 = − 2

c1 + 1
G(2,0)

0 + 2

c1 + 1
G(3,0)

1 , (53)

after some straightforward calculations we compute

G(4,0)
0 = − (c1 − 1)(c2 − c1)

(c1 + 1)(c2 + c1)
G(2,0)

0 . (54)

In general, we get

G(2k+2,0)
0 = − (c1 − 1)(c2 − c1)

(c1 + 1)(c2 + c1)
G(2k,0)

0 , k = 1, 2, . . . , (55)

which, together with (52), yields

G(2k,0)
0 = 2c1

(−1)k+1(c1 − 1)k−1(c2 − c1)k

(c1 + 1)k+1(c2 + c1)k
, k = 1, 2, . . . (56)
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Remark 3 Recalling the discussion in Remark 2, we note that the major peak induced by the
reflection at x = 0 is given by evaluating G0 at t = D + 2l1

c1
+ 2l2

c2
, namely

G(2,2)
0 = − 8c21c2

(c2 + c1)2(c1 + 1)2
. (57)

The derivation of this formula is given in Appendix B.

The terms in (50) (first equation), (52) and (57) summarize the single reflections from the
boundary interfaces for delta-like pulse of the form (27) and describe the major terms in the
representation of the back-reflected wave.

We have derived all the ingredients needed for the following proposition considering the
measurements at x = L + D:

Proposition 3 Let m(n) := m
(
2D + ∑n

j=1
2� j
c j

)
. Then, the three major peaks are given by

m(n) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2
c1−1
c1+1 , for n = 0,

G(2,0)
0 , for n = 1,

G(2,2)
0 , for n = 2.

(58)

where G(2,0)
0 and G(2,2)

0 are given by (52) and (57), respectively.

Proof The proof is straightforward by employing (8) in (18), and evaluating the resulting
expression at t = 2D + ∑n

j=1
2� j
c j

, n = 0, 1, 2. 	


3 The inverse scattering problem

In this section we examine the numerical solution of the inverse problem, to recover the
properties of the medium from the knowledge of the initial function and the measured data.
We consider the setup as described in Sect. 2.1.1 for a delta-like U0 and back-reflected data
either full (as defined in (32)) or phaseless, meaning m(t) = |u(L + D, t)|.

3.1 Single-layeredmedium

The data consists of peaks with varying heights at specific time steps. We ignore the one
corresponding to the non-reflected initial wave (see for example the most left peak in Fig. 4).
Let us denote by hk, the height of the kth peak appearing at time tk, for k = 1, 2, . . . .Wehave
more than enough information to reconstruct just two unknowns: the wave speed 0 < c1 < 1
and the length L > 0.

The peaks appear at the following time steps

t1 = 2D,

t2 = 2D + 2L

c1
,

...

tk = 2D + (k − 1)
2L

c1
, k = 1, 2, . . .

(59)
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Thus, the difference of the first two equations gives us the ratio

L

c1
= t2 − t1

2
. (60)

The wave speed will be recovered from the equations of the heights and it will be substituted
in the above equation, in order to recover also the length. In what follows, we consider both
the cases of full and phaseless data.

3.1.1 Full-data

The solution of the inverse problem in this case is trivial. The information of the first peak,
namely m(0) = h1, is sufficient. Hence, we obtain the unique solution:

c1 = 1 + 2h1
1 − 2h1

. (61)

3.1.2 Phaseless-data

In this case, we have to solve |m(0)| = |h1|which admits two solutions, in general. Recalling
that c1 < 1, then the peak corresponding to the reflected wave from the first boundary will
have negative sign, namely h1 < 0 (see the second peak in Fig. 4). Thus, in view of (32) the
equation to be solved takes the form:

1

2

c1 − 1

c1 + 1
= −|h1|,

which yields the unique solution

c1 = 1 − 2|h1|
1 + 2|h1| ,

which is identical to (61).
As we will see later, excluding one solution even for the double-layered medium is not

possible and additional information is needed.

3.2 Double-layeredmedium

We are interested in reconstructing the wave speeds 0 < c j < 1 and the lengths � j > 0, for
j = 1, 2.

The main peaks appear at the following time steps

t1 = 2D,

t2 = 2D + 2�1
c1

,

t3 = 2D + 2�1
c1

+ 2�2
c2

.

(62)

As in the single-layered case, the combination of the above equations gives

� j

c j
= t j+1 − t j

2
, j = 1, 2. (63)
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3.2.1 Full-data

Equating the amplitudes, we obtain

c1 − 1

2(c1 + 1)
= h1, (64a)

2c1(c2 − c1)

(c1 + 1)2(c2 + c1)
= h2, (64b)

which admits the unique solution

c1 = 1 + 2h1
1 − 2h1

, (65a)

c2 = (1 + 2h1)
(
4h21 − 2h2 − 1

)
(1 − 2h1)

(
4h21 + 2h2 − 1

) . (65b)

3.2.2 Phaseless-data

Weobserve that h1 < 0 but the sign of h2 is determined by the term c2−c1 which is unknown.
Hence, c1 is uniquely recovered by (65a), and c2 is satisfying

2c1(c2 − c1)

(c1 + 1)2(c2 + c1)
= ±|h2|, (66)

which admits two solutions, depending on the sign of h2, namely

c2 = (1 + 2h1)
(
4h21 ∓ 2|h2| − 1

)
(1 − 2h1)

(
4h21 ± 2|h2| − 1

) . (67)

Remark 4 One idea to eliminate one of the above two solutions is to check them against the
third measurement, m(2), namely to substitute (65a) and (67) in

− 8c21c2
(c2 + c1)2(c1 + 1)2

= h3, (68)

producing an additional constraint in order to determine the sign of h2. However, this proce-
dure results in

h3 = 2h22
1 − 4h21

− 1 − 4h21
2

, (69)

which yields no extra information, since the RHS of (69) is independent of the sign of h2.

The extra information comes from the nature of the scattering problem. Recall that

2∑
j=1

� j = L, (70)

where the right-hand side can be found from the first equation of (62), since both source and
detector positions (same here) are known, meaning that the sum L + D = L + t1/2 is given.
The last equation, considering (63), leads to the equation

2∑
j=1

(t j+1 − t j )c j = 2L. (71)
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Thus, the correct c2 is the one that solves (66) and satisfies (71). Of course, in the double-layer
case, one can solve directly (71) since c1 is already reconstructed. However, this is not true
for more layers as we are going to see later.

3.3 Multi-layeredmedium

As in the previous cases, we aim to reconstruct the wave speeds 0 < c j < 1 and the lengths
� j > 0, for j = 1, . . . , N of a N -layered medium. The data consists of N + 1 peaks with
amplitudes h j at points t j , for j = 1, . . . , N + 1.

The equations (63), (70) and (71) still hold by simply replacing the index 2 with N .
The system of equations to be solved for the wave speeds admit the general form

ρ1(c1) := c1 − 1

2(c1 + 1)
= h1,

ρ2(c1, c2) := 2c1(c2 − c1)

(c1 + 1)2(c2 + c1)
= h2,

ρ3(c1, c2, c3) = h3,

...

ρN (c1, . . . , cN ) = hN ,

The form of the functions ρ j , for j = 3, . . . , N can be found by considering the corre-
sponding direct problem for a N -layered medium. We omit the explicit formulas above for
the sake of presentation. As discussed in the previous section, the last measurement yields
the equation ρN+1(c1, . . . , cN ) = hN+1 which does not provide any additional information,
thus it is neglected in the formation of the above system of equations.

3.3.1 Full-data

Following the same procedure as in the double-layered medium, we solve the first equation
of the above system, obtaining a unique value for c1. Then, we substitute c1 in the second
equation and solve for c2, obtaining a unique solution. This simple procedure yields the
unique values of the wave speeds

{
c j

}N
j=1.

3.3.2 Phaseless-data

In this case, we know that h1 < 0 and hN+1 < 0. Thus, we have to solve

ρ1(c1) = h1,

|ρ2(c1, c2)| = |h2|,
|ρ3(c1, c2, c3)| = |h3|,

...

|ρN (c1, . . . , cN )| = |hN |.

(72)

We propose the following iterative scheme:

Step 1: Solve ρ1(c1) = h1, for c1.

123



Partial Differential Equations and Applications (2024) 5 :5 Page 17 of 25 5

Step 2: Substitute c1 in |ρ2(c1, c2)| = |h2|, and solve it for c2, obtaining two solutions
c2,1 and c2,2.

Step 3: For the values c2, j2 ∈ (0, 1), j2 = 1, 2, solve the equations

|ρ3(c1, c2, j2 , c3)| = |h3|,
to obtain c3, namely maximum four solutions c3, j3 , for j3 = 1, 2, 3, 4.

...

Step N: Substitute the values cN−1, jN−1 ∈ (0, 1), jN−1 = 1, 2, . . . , 2N−2, in the last
equation of (72) and solve the (at most) 2N−2 equations

|ρN (c1, c2, j2 , c3, j3 , . . . , cN )| = |hN |,
for cN , to obtain maximum 2N−1 possible solutions.

Step N + 1: The set of possible solutions consists of the sequences
{
c1, c2, j2 , . . . , cN , jN

}
,

with jn = 1, 2, . . . , 2n−1. The solution of the inverse problem is the sequence
that satisfies (71); see Fig. 1 for an illustration.

4 Numerical examples

In the first part, we implement the presented formulas of the solution of the direct problems
for single- and double-layered media. Then, we solve the inverse problem to reconstruct the
material parameters of a 4-layered medium using the iterative scheme presented in Sect. 3.3.

4.1 The direct scattering problem

We consider the formulas of Sect. 2 for different coefficients and initial functions U0. In
addition, the numerical solutions are compared with the ones obtained from the classical
finite difference scheme for piecewise constant wave speed.

4.1.1 Single-layered medium

The solution W (x, t) of the direct problem is given in the following analytical form which
provides an extension of the d’Alembert formula for the single-layered medium:

W (x, t) =
{

v(x, t), 0 < x ≤ L, t > 0,

u(x, t), x > L, t > 0,
(73)

where v(x, t) is given by (13) (replace H by G) for 0 < x ≤ L and u(x, t) is given by (8)
for x > L. The function G is given by (19).

In the first example, we set L = 3, and c1 = 1/2. We consider an initial function of the
form

U0(x) = e−10(x−x0)2 , (74)

for x0 = 6, and we plot the function W for x ∈ [0, 10] and t ∈ [0, 30], in Fig. 2.
In the second example, we set L = 2, and c1 = 3/8. We consider the continuous but

non-differentiable initial condition

U0(x) =
{
0, x ≤ 3π/2,
cos(x)
x−3 , x > 3π/2.
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Step 1 Step 2 Step 3

Solve
ρ1(x) = h1

c1
Solve

|ρ2(c1, x)| =
|h2|

Solve
|ρ3(c1, c2,2, x)| =

|h3|

{c1, c2,2, c3,4}
c3,4

{c1, c2,2, c3,3}c3,3
c2,2

Solve
|ρ3(c1, c2,1, x)| =

|h3|

{c1, c2,1, c3,2}
c3,2

{c1, c2,1, c3,1}c3,1

c2,1

Fig. 1 The iterative scheme for a 3-layered medium with length L . If all solutions are in the (0, 1)-interval,
we obtain 4 sequences of possible wave speeds. In Step 4, the output of the algorithm is the sequence whose
elements satisfy

∑3
j=1(t j+1 − t j )c j = 2L

Fig. 2 The function W given by (73) for the first example (left) and its projection in the x − t plane (right).
The plane (in red) identifies the boundary at x = 3

The function W , for x ∈ [0, 10] and t ∈ [0, 40], is plotted in Fig. 3.
In Fig. 4, we present the cross-section of u at x = L+D,meaning the data functionm(t),

for the first example (left) and the second example (right). The position x = L + D = 8, is
identified with a black dotted line in Figs. 2 and 3. In addition, we plot the numerical solution
of the initial boundary value problem using the finite difference method (FDM) for piecewise
constant wave speed. The two solutions are matched perfectly. In the second example, the
lack of differentiability of the initial condition prevent us from using the typical FDM. This
is another advantage of the proposed scheme since no special discretization is needed.

It is helpful for the corresponding inverse problem (to be addressed later) to discuss the
form of the measured data. In the left picture of Fig. 4, the first peak located at t = 2 refers
to the right-going wave (x → ∞) originated from x = 6 and measured at x = 8, at the
exterior region with c0 = 1. The second and the third peak are the ones of interest, showing
the back-reflected waves from the first (at x = 3) and the second boundary (at x = 0) of the
medium, respectively.
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Fig. 3 The functionW given by (73) for the second example (left) and its projection in the x − t plane (right).
The plane (in red) identifies the boundary at x = 2

Fig. 4 The cross-section of u at x = 8, corresponding to the data m (solid blue line), compared with its
numerical solution using FDM (red dotted line) of the first example (left) and of the second example (right)

4.1.2 Double-layered medium

In the third example, we consider a double-layeredmediumwith �1 = 1 and �2 = 2, resulting
in L = 3. The initial function is given by (74) for x0 = 5. We present u(5, t) for t ∈ [0, 30]
for two different sets of wave speeds in Fig. 5. We choose once (c1, c2) = (1/2, 1/5) and
then (c1, c2) = (1/5, 1/2). In the first case, the condition (B9) is satisfied. We mark with
a red arrow the peaks corresponding to multiple reflected waves (minor peaks). In the first
case, all major peaks appear before the minor ones whereas in the second case we observe
minor peaks before the last reflection from the boundary at x = 0.

4.2 The inverse scattering problem

In the fourth example, we consider a 4-layered medium with total length L = 7 and its
parameters are described in Table 1. The initial wave is of the form (27) with x0 = 9, which
is also the detector position. The measured data, meaning the positions and heights of the
major peaks (referring to single reflections), are presented in Table 2.
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Fig. 5 The function u(5, t), for t ∈ [0, 30] of the third example. In the left picture the assumption (B9) holds
but in the right picture does not hold. The red arrows point at the (minor) peaks appearing after (left) or in
between (right) the major peaks

Table 1 Material parameters Layer Length (�) Wave speed (c)

1 2.5 3/7

2 1.5 2/5

3 1 1/2

4 2 4/5

Table 2 Phaseless-data Peak Time (t) Height (|h|)
1 4 0.2000

2 47/3 0.0145

3 139/6 0.0461

4 163/6 0.0956

5 193/6 0.3923

Table 3 The output of the
iterative scheme for the 4-layered
medium. All sequences solve
(72) but only the fourth one
(highlighted) satisfies in addition
(71), since 2L = 14

Sequence c1 c2 c3 c4
∑4

j=1(t j+1 − t j )c j

1 3/7 0.400 0.320 0.200 10.280

2 3/7 0.400 0.320 0.512 11.840

3 3/7 0.400 0.500 0.313 11.562

4 3/7 0.400 0.500 0.800 14.000

5 3/7 0.459 0.367 0.229 11.061

6 3/7 0.459 0.367 0.588 12.852

7 3/7 0.459 0.574 0.359 12.533

8 3/7 0.459 0.574 0.918 15.331
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We focus at the solution of the inverse problem from phaseless-data and we present the
output of the proposed iterative scheme. The system of equations takes the form:

c1 − 1

2(c1 + 1)
= h1,

2c1(c2 − c1)

(c1 + 1)2(c2 + c1)
= ±h2,

8c21c2(c3 − c2)

(c2 + c1)2(c1 + 1)2(c3 + c2)
= ±h3,

32c21c
2
2c3(c4 − c3)

(c2 + c1)2(c1 + 1)2(c3 + c2)2(c4 + c3)
= ±h4

In Table 3 we present the 23 sequences of possible solutions, one of them satisfies the
condition (71) and is the output of the algorithm. Furthermore, as expected, all sequences
satisfy the constraint induced by the reflection of the wave from the boundary at x = 0,
which reads as ρ5(c1, c2, c3, c4) = h5; thus it does not provide any extra information. Our
reconstructions are exact and very well approximated by numerical reconstructions based on
iterative algorithms, see for example [11, 12].

5 Conclusion

In this work we presented the solution of the direct and inverse scattering problem, associated
with the 1-D wave equation for a multi-layered medium with constant refractive indices. To
our knowledge this is the first time that the Fokas method is employed for solving this
problem, producing a d’Alembert-type solution for the direct problem on the single-layered
medium.One couldwonderwhether thismethodology could be generalised to amediumwith
variable refractive index (in the current work is piecewise constant), as well as to the wave
equation in more spatial dimensions. For the latter question we speculate a positive answer,
taking into account other works on evolution equations which apply the Fokas method to
more spatial variables [19, 36]. For the case of variable refractive index, the answer seems
more complicated, but still doable taking into account the work of Deconinck et al. on the
heat equation [30, 37].

In this work we provided some evidence that the knowledge of the total length of the
medium L is enough to uniquely reconstruct the lengths and the refractive indices of the
layers of medium; in previous numerical reconstructions, more a priori assumptions are
needed [12]. Although a unique reconstruction is not guaranteed in general for every N -
layered medium, we have no sign of failure of our strategy; a rigorous proof is still an open
question. In addition, this is an exact reconstruction method and the case of real data (data
with noise) needs special treatment. The set of equations has to be replaced by a constrained
minimization problem and then error and convergence analysis is needed. Both topics are
out of scope of this work but an important task for future research.
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Appendix A

We present a different way to solve (16) by splitting the time in specific sub-intervals. We
restrict ourselves in the time interval t ∈ (0, 2L/c1), then Q is given by (24a) and the system
of equations (16) takes the form (by integrating (16b))

G(t) = H(t), t > 0, (A1a)

c1U0(L + t) − c1G(t) = H(t), t > 0. (A1b)

The solution of (A1) is given by

G(t) = c1
1 + c1

U0(L + t), t ∈
(
0,

2L

c1

)
. (A2)

As before, in the next time interval (2L/c1, 4L/c1), the system of equations (16) takes
the form

G(t) = H(t), 2L
c1

≤ t < 4L
c1

, (A3a)

c1U0(L + t) − c1G(t) = H(t) + 2H
(
t − 2L

c1

)
, 2L

c1
≤ t < 4L

c1
. (A3b)

The last term in (A3b), given (A1), takes the form

H

(
t − 2L

c1

)
= G

(
t − 2L

c1

)
, t >

2L

c1
. (A4)

Combining the last two equations together with (A2) results in

G(t) = c1
1 + c1

U0(L + t) − 2
c1

(1 + c1)2
U0

(
L + t − 2L

c1

)
,

2L

c1
< t <

4L

c1
. (A5)

The presented steps can be continued to derive the boundary function G for all the fol-
lowing time intervals. For example, in the next time interval, we get

G(t) = c1
1 + c1

U0(L + t) − 2
c1

(1 + c1)2
U0

(
L + t − 2L

c1

)
,

+ 2
c1(1 − c1)

(1 + c1)3
U0

(
L + t − 4L

c1

)
,

4L

c1
< t <

6L

c1
.

(A6)

This process can be generalized to obtain the function G for all time intervals, leading to
the form:

G(t) = c1
1 + c1

U0(L + t) − 2c1

N∑
n=0

(c1 − 1)n

(c1 + 1)n+2U0

(
L + t − 2(n + 1)L

c1

)
,

for
2(N + 1)L

c1
< t <

2(N + 2)L

c1
, N = −1, 0, 1, . . . ,

(A7)
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with N = −1, we mean that no summation is performed.
With similar but more lengthy calculations we obtain the function G0 also for a double-

layered medium.

Appendix B

We consider (45a) once for t = D + 2l1
c1

+ 2l2
c2

, and then for t = D + 2l2
c2

, and we subtract
the two resulted formulas to derive

G(2,2)
0 − G(0,2)

0 = − 2

c1 + 1
G(0,2)

0 + 2

c1 + 1
G(1,2)

1 . (B8)

In order to compute the terms involved in the above equation, we assume, without loss of
generality, that the medium is such that l1

c1
> l2

c2
. From a physical point of view, this means

that the first reflection from the boundary at x = 0 will arrive before the doubly-reflected
wave from the boundary at x = l2. In addition, we impose

1 <
c1l2
c2l1

< 2. (B9)

Equation (45a) gives

G(0,2)
0 = − 2

c1 + 1
G(−2,2)

0 + 2

c1 + 1
G(−1,2)

1 , (B10)

since the remaining remaining terms are zero from (48). In the right-hand side, the first term
is zero. The second term is given by (51) where we observe that the leading terms are again
zero, thus also the second term in (B10) is zero, resulting in

G(0,2)
0 = 0. (B11)

The remaining term in (B8), using (51) and taking into account the above assumptions, admits
the form

G(1,2)
1 = − 2c1

c2 + c1
G(1,0)

1

(51)= − 2c1
c2 + c1

2c2
c2 + c1

G(0,0)
0

(50)= − 4c21c2
(c2 + c1)2(c1 + 1)

.

(B12)

Finally, from (B8) considering (B11) and (B12), we obtain (57).
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