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Abstract

The stability features of the dissipative porous elastic systems have piqued the interest of
several researchers. The desired exponential decay property of the energy is obtained unless
the nonphysical equal speed condition is imposed. This work analyzes the porous elastic
system with micro-temperature. First, the exponential stability is obtained in case where there
is an assumption on physical constants. Then from a second-spectrum viewpoint, the system’s
global well-posedness is proved using the Faedo—Galerkin method. Later, we prove that the
microtemperature effect is enough to get the exponential stability of the solution without any
assumption on the physical constants. A numerical scheme is introduced. Finally, we present
some numerical results which demonstrates the exponential behavior of the solution.
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1 Introduction

In later a long time, some so numerous mathematical researchers have considered pondering
the asymptotic behavior of solutions to the equations proposed to study different flexible
materials with voids [1-4], which have decent physical properties, are utilized broadly in
engineering, such as vehicles, airplanes, expansive space structures and so on. Due to their
broad applications, many researchers’ interest comes from the need to establish results con-
cerning the existence and stabilization of elasticity problems.

In addition to the conventional elastic effects, materials with voids have a microstructure
in which the mass at each place is calculated by multiplying the material matrix mass den-
sity by the volume fraction. Nunziato and Cowin [4] pioneered the latter concept in their
groundbreaking work on elastic materials with voids. Iesan [5-7] and Iesan an Quintanilla
[8] expanded the hypothesis by including temperature and microtemperatures [9—11].

According to our knowledge, evaluating the temporal decay in one-dimensional porous-
elastic substances was pioneered with the aid of Quintanilla [12], where he proved that
porous-viscosity becomes not robust sufficient to stabilize the system exponentially. Interest-
ingly, Casas and Quintanilla [13] proved that the mixture of porous-viscosity and temperature
additionally lacks exponential stability [14—16]. However, the identical authors [17] con-
firmed that the mixture of porous-viscosity and thermal effects (each temperature and
microtemparatures) stabilized the system exponentially. Similarly, Magana and Quintanilla
[18] proved that viscoelasticity collectively with microtemperatures produced exponential
stability, while viscoelasticity collectively with temperature lacks exponential stability [19,
20].

It is natural to think that a porous-elastic system with dissipation due to only microtem-
peratures will lack exponential stability. However Apalara [21] establishes the contrary, he
proved that a porous system with microtempearture decays exponentially if and only if x = 0
where x = % - % otherwise the system is polynomially stable [22—40].

The equations for a one-dimensional porous elastic system with microtempeartureare of
the form

oy =Ty,
J¢tt :Hx+G, (11)
PE: =P +q—0Q,

where (x, 1) € (0,/) x (0, 00), ¢t is the time, x is the distance along the center line of the
beam structure and / is the length of the beam, T is the stress, H is the equilibrated stress,
G is the equilibrated body force, ¢ is the heat flux vector, P is the first heat flux moment, Q
is the mean heat flux and E is the first moment of energy. The functions u(x, ¢) and ¢(x, t)
are the displacement of the solid elastic material and the volume fraction. The constitutive
equations are given by

T = puy + bo,

H=348¢, —dw,

G = —buy —§¢,

PE = —aqw — doy,, (1.2)
P = —kw,,

q =kw,

0 =kw,
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where w is the microtemperature, ki, k2, d, i, 8, o, b, k and & are positive constants such
that ué — b% > 0. Substitute system (1.2) in (1.1) we get the porous elastic system with
microtemperature

PUr — UUxx — b¢x = 07 (xa [) S (07 l) X (0’ OO)’ (13)
Joir — 8xx +buy +EPp +dwy =0, (x,1) € (0,1) x (0, 00), (1.4)
AWy — KWyy +dyy +kw =0, (x,1) € (0,1) x (0, 00), (1.5)

with Neumann boundary conditions
w©,0) =u, 1) = ¢x(0,1) = ¢, 1) = w(0,1) = w(l, 1) = 0,1 > 0, (1.6)
and the initial conditions are

u(xvo):uo(x)a ut(-x’o):ul(x)! ¢(x70):¢0(x)7 ¢[(x70)=¢l(x)a
w(x, 0) = wo(x), x €(0,0), 1.7)

where k = ki — kr > 0.

The presence of Neumann boundary conditions for ¢ hinders the application of Poincaré
inequality. In order to overcome this obstacle, we introduce modifications to ¢ in the following
manner. Using equation (1.4) and the boundary conditions (1.6), we obtain

d2 l 1
Jﬁfo ¢(x, t)dx +‘§/(; ¢(x,t)dx =0,

which is solved by

/ $(x, Ddx = ( f ¢o(x>dx)cos<—z) ( / ¢1(x)dx)s1n<://§t)

Hence, if we define

o(x, 1) = P(x, 1) — (/Olm(x)dx)cos(ﬁz) - ﬁ(/olqﬁl(x)dx)sin(ﬁt),

then, (u, ¢, w) satisfies (1.3)-(1.7), with the following initial condition for ¢

[
o) = do(x) — ( /O ¢o(x)dx>.

Moreover

1
/ $(x, 1)dx =0,
0

which allows the application of Poincaré inequality for ¢. In the subsequent analysis, we will
utilize (1, ¢, w) for our calculations, but for the sake of convenience, we will represent it as
(u, ¢, w). Note that the stabilization of the Porous system and the Bresse-Timoshenko system
was studied by different researchers with different damping mechanisms (for example see
[41-46]).

Apalara [7] study system (1.3)—(1.7) in the case where & > b2. This paper will deal with
the case where p& = b2.
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The rest of the paper is as follows: In Sect. 2 we will establish exponential stability when
ué = b>.InSect. 3 we will study the system with a second spectrum free. First, we study well-
posedness using the Faedo Galerkin approximation and then prove the exponential stability
without any assumption on parameters. In Sect. 4 we present some numerical results which
demonstrate the exponential behavior of the solution.

2 Exponential stabilty

This section aims to show that the energy of system (1.3)—(1.7) decays exponentially when
ué = b? and under the condition of equal speed limits.
First we state the well-posedness theorem that is proved by Apalara [7].

Theorem 1 For Uy € 'H there exists a unique solution U € C(R,, H) to system (1.3)—(1.7).
Moreover if Uy € D(A) then U € C(R4, D(A))N CY(R,, H), where H is the Hilbert space
defined by

H = Hg(0,1) x L*(0,1) x H}(0,1) x L2(0,1) x L*(0, 1),

where the space Li(O, l) is defined as:
I
L20,1) := {u € L*(0, 1)|/ u(x)dx =0},
0
and the space H*1 (0, 1) is defined as:
H0,0):= H'(0,1)n L0, D).

Let us first define the energy of system (1.3)—(1.7). Multiply equations (1.3), (1.4) and
(1.6) by u;, ¢y and w respectively we get

1d !
M(pnutuz+u||ux||2)+b/O duridx = 0,

I

1d !
5d—(J||¢t||2+8||¢x||2+5||¢||2)+b/ ¢tuxdx+d/ wyrdx = 0, @.1)
4 0 0

1d [ [ 1
f—(a||w||2)+l</ wjzc+d/ ¢,xw+kf w? = 0.
2dt 0 0 0

Sum the equations of system (2.1) we obtain

1d
m(pnufnz+u||ux||2+J||¢z||2+5||¢x||2+5||¢||2+a||w||2+2b(ux,¢>)

1 1
:—/c/w%—k/wz.
0 0

Define

1
(1) = o (pllusl [ + pllux 1 + T1190 117 + 8116217 + £ NI + llwll® + 2b(us, §).

2 . . . .
Add then subtract Zz)? |2 x ||2 to the right side of the above equation we arrive at

1 b
E(r) = 5<p||ut||2+J||¢t||2+8||¢x||2+||ﬁux +J§¢||2+a||w||2>
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where |[.|| denotes the LZ—norm.
The dissipation law is given by

d 12 12
EE(t):—K/wa—k/Ow.

Now the exponential stability result is stated in the following theorem.

Theorem 2 If x = 0, the energy E(t) of the system (1.3)—(1.7) decays exponentially as time

t tends to infinity. That is, there exist two positive constants Myand w1such that
E(t) < M{E©0)e ", Vi >0,

where

The proof of Theorem 2 will be established through the following technical lemmas. First,

we set
i
Fi(t) = —p/ usudx.
0
Lemma 1 Let (u, ¢, w) be a solution of the system (1.3)—(1.7). Then we have

d}'(t)< fl| |2d +3/1 b
d a2 1
T Y V3

l
+sc,,/ x| 2dx.
0

2
dx

Ux

Proof Multiply equation (1.3) by u and integrate by parts over (0, /) we get
I 1 !
p/ Ugudx + 1 |ux|2dx +b/ uypdx =0,
0 0 0
add then subtract the term %2 ﬂ |ux|? from the above equation we obtain

/lu”udx+f/( ux+f¢>uxdx_o

taking into account that < ) = upu + |uy |2 we arrive at

[
i(—p/ u,udx) = /|u,|2dx+—/( ux+f¢>uxdx.
dt 0

Apply Young’s inequality and note that

[ 1
/ 4y Pdx 52/
0 0

we get the desired result.
Set

2

bx

2 IE
dx+2cp/ =
ol|b

Mx+z¢

1 b b 1
Fot) = J/O (j),(ﬁux + \/§¢>dx - 8%/?/0 Updx.

(2.2)

(2.3)

2.4)
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Lemma2 Let (u, ¢, w) be a solution of the system (1.3)—(1.7). Then we have

VE g !
*fz(l) = Jf/ I > — 7/ ‘7% dX+K1f lwe|*dx, (2.5)
0
where K| = %.
Proof Multiply equation (1.4) by ( Uy + /& (j)) we get:
J/;)¢,,<j§ux+f¢>dx+8/ ( ux+f¢>
1 2
= —\/E/0 %u“\/&p’ dx—d wa(ﬁux+\/§¢>dx. (2.6)
Using Young’s inequality we obtain
I
J/¢,,<;§ux+f¢)dx+8/ < ux+f¢>
N +Ep dx+ 2[/ |wy |2dx. (2.7)
Add then subtract the term %équ to equation (1.3) we get
b b
<ﬁ“x + \/'gfﬁ)x = Hpi«/‘?un. (2.8)
Substitute ( Uy + /& qb) in equation (2.7) we arrive at
J/ ¢tt(ﬁux+f¢>dx —d—F /¢uttxdx
< —% N dx Wi / |wy |2dx. (2.9)
Taking into account that u;,¢ = m(u,xd)) U@, and ¢,z( Uy + fqb) =
dt[qb,( ux+f¢)] (jgux+\/§¢>t we obtain
d L (b
Z(J/O b (f“x + /§¢> x — 5—/ d)u,xdx)
! 8b (J
< JJE[ i + —(f - 3)/ ity dx
- % —ux dx + K, 2[/ |wy|?dx. (2.10)
Set
[ x
Fi(t) = —Joz/o w(/o (j),(y)dy)dx.
O
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Lemma3 Let (u, ¢, w) be a solution of the system (1.3)—(1.7). Then we have

d —Jd ', Loy L
—F3(t) < —— | |¢:I"dx + (A +cpler | |dx|"dx +excp | |ux|“dx
dt 4 0 0 0

! 1
+1<2/ |w|2dx+1(3/ lwy|?dx. (2.11)
0 0

X
Proof Multiply equation (1.5) by J / ¢:(y)dy and integrate by parts by parts over (0, /) we
0

l X l !
Ja/ wy (/ ¢,(y)dy>dx+JK/ weddx — Jd/ |p:|>dx
0 0 0 0

1 x
+Jk/ w(/ ¢,(y)dy>dx =0. (2.12)
0 0
Knowing that

d x x *
E[“’( /O @(y)dy)}:w,( /O ¢t(y)dy)+w( /O %(y)dy)

and by substituting ¢;; from equation (1.4) we obtain

! x I ! ! I
i[fja/ w([ ¢t(y)dy>dx] = 780:‘/ drwdx +ba/ uwdx +doc/ |w|2dx + JK/ wyprdx
dt 0 0 0 0 0 0

l 1 x
- Jd/ s |dx +$a/ w(/ ¢(y)dy)a’x
0 0 0
1 x
+ Jk/ w(/ ¢,(y)dy>dx. (2.13)
0 0
Apply Young’s and Poincare’s inequalities, we get
d 1 x —Jd 1
A R R R T ¢t| drve [ loPds
dt 0 0 2

520[2 b20l2 520[2 JZk2 !
+ (da + + + + )/ lw|dx
€4 0

€1 €2 €3

K2 l 2d ! x J 2d
ﬁ/o [wy | x+53/0 </0 o(y) )’) X
1 1 x 2
+ezc,,/ |ux|2dx+e4/ (/ ¢,(y)dy> dx. (2.14)
0 0 0

Using Cauchy—Shwarz inequality we obtain

d 1 x —Jd 1 .IK2 1 1
d—[—fa f w( / q»(y)dy)dx] <l f B+ ke f e Pdx + €1 f 16, Pdx
t 0 0 2 Jo

52 2 b2 2 2.2 JZkZ
+K2<da+€—+ 5 )/ lw|?dx
1

+ezc,,/ [ty | dx+61/ |¢| dx

+e3/ 0 P (2.15)
0

get
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d

Applying Poincare’s inequality and taking €3 = J we get the desired result. O

Set
1
Fa(t) = J/o drpdx.

Lemma4 Let (u, ¢, w) be a solution of the system (1.3)—(1.7). Then we have

—f4<t)<1/ |¢t|2dx—*/ (s 2 + 57 /lu

+ K4/ |w|?dx. (2.16)
0

2
dx

Proof Now Multiply equation (1.4) by ¢ and integrate by parts over (0, /)we get

1
/qbnqbdx+8/ x| 2dx+f/< ux+f¢>¢dx— /wq&xdx:O, (2.17)
0

taking into account that E(q&,q’)) = ¢u¢ + |¢:|* we arrive at

dt( /¢t¢dx>—J/ |¢t2dx—5/ |¢x|dx—f/< ux+f¢>¢dx

/ wérdx. 2.18)
0

Apply Young’s and Poincaré inequalities we arrive at

( / ¢t¢dx) <J / 1912 — / 0o+ 50 “ax
dt 0
+K4—f |w|dx. (2.19)
s Jo
O
Set
ps ! Ju !
Fs5(t) = —/ U;prdx + —f Gru dx.
b Jo b Jo
Lemma5 Let (u, ¢, w) be a solution of the system (1.3)—(1.7). Then we have
d K 2 E 2
dt]-'5(t) < |ux| dx +(Ks+96) |¢x dx + Kg |wx| dx. (2.20)

Proof Differentiating Fs (t) with respect to ¢ we get

d[pé

o |:[; / urdrdx + —/ qbtuxdx:l
8 AWK

pb u[[¢xdx+ 7/ (i)nuxdx b <% - 7>A u,x(]btdx.

Substitute u;;and ¢;; from equations (1.3) and (1.4) respectively we obtain

d ) S ! l S 1
dt|:pb / Mt¢xd)€+7/‘ (/)zuxdx] = %/0 “xx¢xdx+5/0 |¢X|2dx+%/0¢xxuxdx
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[
— ,u/ |ux|2dx — %S uxpdx — —/ Uy Wydx
0
J 1
- fx/outxdhdx. 2.21)

Apply Young’s and Poincaré inequalities we arrive at

d [ pd
o [%/ UsPprdx + — / ¢,uxdx] < ——/ |ux|2dx +8/ |dx| 2d)c

1
ks “Tcpf Iy [2dx + K“T/ w.|2dx.
0 0
(2.22)
O

Let
L(t) = NiE@) + F1(2) + NoFo (1) + N3 F3(t) + NaFa(t) + Fs(2),
Where N1, N>, N3 and Ny are positive constants to be fixed.

Theorem 3 There exists positive constants oyand o3 such that
o1E(t) < L(t) < 02E(t), Vt>0.

Proof We have

1
L) — N{E@) = —p/ uudx +N21f ¢>,< Uy + f¢>dx — NQ(S—/ U Ppdx
0 vE

l X 1 5
—N3Ja/ w(/ ¢>t(y)dy>dx+N4J/ dipdx + 22 /u,(j)xdx
0 0 0 b Jo
l
+ J—“/ Grudx.
b Jo

By positivity of the constant N»§ LV We obtain

l 1
]L(t)—NlE(t)f—p/O u,udx+N21/O ¢,<%ux+\/§¢>dx

1 x l
— N3Ja/ w(/ ¢,(y)dy>dx +N4J/ ¢rpdx
0 0 0
1 )
+ &5/ Urpxdx + J—M/ druydx.
b Jy b Jy

Applying Young’s and Poincaré inequalities, we obtain

IL(r) — N1 E(r)| < (— )/ |u|>dx +< )f |y 2dx

NoJ NaJ
% d +( el )/lq&xzdx
0

(2 i ([
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N3Ja [!
+ 32“/ lw|?dx.

Knowing that u = we get

(pc,, >/ |u | dx = < J>/l —u 2dx
S EARETY N N
AN RIS Cea (P LY /’ 2
E(u +b>/0 ﬁux+/§¢‘ dx + Lty 0|\/§¢| dx,
(2.23)
Using (2.23) and Cauchy—Shwarz inequality we get
Ny J I\ [ b

|]L(t)—N1E(t)|§(§ P )[| ,|2dx+( ; +p;”+b>f N i

NayJ NJ L In
+< 2 )/ g P+ /|¢z Pdx
NyJ ) c J !
Y C"+p—+§p—"+ﬁ /|¢x|2dx+37a/ lw|?dx.
2 2b M b 0 2 0

No —max[p prS N2J . pCp l NoJ N NyJ . Ju N3zJa NgJcp
b 2 2

Define

2w 2 T

+&8+§p6p+gjcp .
% b

27 2 72

Hence

IL(r) — N1 E@®)|< NoE(),
which implies that

o1E@) < L(t) < o2E(1),
where 01 = N; — Ng and 0o = N + Np and N; > No. O

Proof of Theorem 2 It follows from Lemmas 1, 2 3, 4, 5 that
i]L(t) < p[ |u,| dx — ( —Nzexcp / qul dx

Jd 3\ [ b
_W(N3T—N4J—NZJ\/E)/O|¢,\2dx—,,3(N2‘f—N4% §>f()‘ﬁux

8 1
— s (N4Z —N3(1+cp)eg —(cp+8+ K5)>/0 | |*dx

2
dx

1 1
— ys(N1k — NgKy — N3K2)f lw|?dx — ;s (Njk —NaKj — N3 K3 — Kﬁ)/o lwy |>dx (2.24)
0

bZ
Choose €) = 2,EN; we get that n = 0,
now take
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which implies that n3 > 0.
Choose
1
€l =G
N3(1 +c¢p)
then take
4(1+&cp +6 + Ks)
> 5

N
4 s

then we obtain that n4 > 0.
Now take

N 4(Ng +No /%)
3 > #5

hence we obtain that n, > 0.
Take

{N4K4 +N3Ky N2Ki+N3ks + Kg }
N; > max ; )

k ’ K
from where we obtain that ns, ng > 0. Therefore we can conclude that there exists a positive
constant § = 2min{1, 12, 13, 14, N5, Ne} such that

d
—L(t) < —E@®),
7 (1) < —E@)
by equivalence between [E(7) and IL(¢) according to Theorem 3 we get:
d L(r) < L(z)
adl —w ;
dt =
where w; = ;'—2 Now integrate the above inequality over (0, #) we obtain
L(1) < L(0)e ™",
again by equivalence between E(#) and IL(¢) according to Theorem 3 we arrive at
E(r) < MiE(0)e™ ",

where M| = g—f O

3 Second spectrum approach

In this section, we consider the porous system with second spectrum free and microtemper-
ature:

PU — WUy — b¢x = 03 (x7 t) € (07 l) X (OOO), (31)
—JUspx —0@xx +buy +Edp+dwy, =0, (x,1) €(0,/) x (0.00), (3.2)
aw; — KWyyx +d¢y +kw =0, (x,1) € (0,1) x (0.00), (3.3)

with Dirichlet boundary conditions

u@O,)=ul,t)=¢0,1) = ¢, t) = wO,t) =w(l,t) =0, >0, (3.4)
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and the initial conditions are

u(x,0) =uo(x), ui(x,0) =ui(x), wuy(x,0)=ur(x),
¢(x,0) = po(x), w(x,0)=wox), x€(,1I). 3.5)

This system (3.1)—(3.5) is obtained by following the procedure of Elishakoff [28], which
involves replacing the term ¢;; in (1.4) by —u,; based on d’ Alembert’s principle for
dynamic equilibrium. This eliminates the second spectrum of frequency and its damaging
consequences for wave propagation speed. This work aims to get exponential decay without
assuming any conditions on the physical parameters.

The dissipation of system (3.1)—(3.5) is obtained from the definition of energy. Indeed,
multiply equation (3.1) by u,, integrate by parts over (0, /) and using boundary conditions
(3.4) we get

1d !
3 ol sl )+ [ g = o. (36)
0

Multiply equation (3.2) by ¢, integrate by parts over (0, /) and using boundary conditions
(3.4) we get

d i 1
VT —(8llgxl1* +&l1011?) + b ¢>zuxdx+1/ ”tt¢txdx+d/ wyprdx = 0. (3.7

From equation (3.1) we obtain that

oo = Pu —
Xt b ttt b XXt

substitute ¢y; in equation (3.7) we arrive at

l1d

!
CoT, <5ll¢xll +&llglI? +7|| ull? L IIszII >+b ¢tude+d/ wx¢dx = 0.

(3.8)

Now multiply equation (3.3) by w, integrate by parts over (0, /) and using boundary
conditions (3.4) we get

1d 1 l i
= (al|wl] )+K/ w?+d ¢,xw+kf w? = 0. (3.9)
2dt 0 0 0
Add equations (3.6), (3.8) and (3.9) we get
1d
§E<plluzll + e |1+ 8] |1* + £ 1911 +7|| il +*llumll +orl[w]|* +2b(u, ¢))
I l
=—K/w§—k/w2.
0 0
Define

1
E@t)= <p\|u1\|2 + wlluxl |+ 811l 1> + €111 + —nunn2 + —numnz +al|w||? +2b(uy, ¢))
2 . . . .
Add then subtract }2’—5 [l ||? to the right side of the above equation we arrive at

b
— s +JE¢||2+a\|w||2>

1 Jp Ju
E@) = —(p||u,\|2+ 7||un||2 + (1 — b2/l + Tnunn%anmnz + ||Jg

2
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where |[.|| denotes the LZ—norm.
The dissipation law is given by

d i I
—E(t):—/c/ w?—k/ w2,
dt 0 0

3.1 Well-Posedness

This section aims to show the existence and uniqueness of the weak solution of system
(3.1)—(3.5). Therefore, we will use the classical Faedo—Galerkin approximation and a priori
estimates, then pass the limits using compactness arguments.

Define the Hilbert space

H = Hi(0,1) x HL(0,1) x L*0,1) x Hi(0,1) x L*0, ]).

Now multiply the equations (3.1), (3.2) and (3.3) by u, ¢, w € HO1 (0, 1) respectively and
integrate by parts over (0, /) we get using boundary conditions (3.4)
P(usr, W) + iy, Uy) + b(@, uy) = 0,
T, ) +8(¢x, @)+ blux, ) +£(, d) +d(wy, ¢) =0, (3.10)

a(w, W) + k(wy, Wy) +d(¢ry, w) + k(w, w) = 0.

Definition 1 Let the initial data (uq, u, usz, ¢g, wg) € H then a function V =
(u, ur, uz, @, w) € C(0, T;H) is said to be a weak solution of (3.1)—(3.5) if it is a solu-
tion of the weak problem (3.10) for almost ¢ € [0, T].

Theorem 4 Suppose that the initial data (ug, uy, ua, ¢o, wo) € H then system (3.1)—(3.5)
have a weak solution satisfying

ue L=(0, T; Hy(0,1), u, € L%(0, T5 Hy (0, 1)),
uy € L0, T; L*0, 1)), ¢ € L>(0, T; Hy(0, 1)),

w e L=(0, T5 L2(0, 1)) N L*(0, T3 Hy (0, 1)),
where the solution V.= (u, uy, us, ¢, w) depends continuously on the initial data in H. In

particular V is unique solution of system (3.1)—(3.5).

Proof We will use the Faecdo-Galerkin method to prove the above theorem and proceed in
five steps. Step 1. Approximated solution Let (uo, u1, u2, ¢, wo) € H. Let {n;}72, C
C®([0, I]) be basis for HO1 (0,1), and let V"™ = span{n;}i"_,. Now we introduce

m

W'=Y aimi(x), 9" =Y bitmi(x), w" =Y ci(tmi(x), (3.11)

i=0 i=0 i=0
which solves the following approximated problem for u, ¢, w € V'™
plugy, ) + Y, uy) + b(@™ , uy) =0,
J(ugy, ¢+ 88y ¢.) + b, §) + (@™, §) +d(wy'. §) =0, (3.12)

a(wi', w) + kW, wy) +d(@, w) + k(w™, w) = 0.
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with initial conditions
(4™ (0), u}(0), u};(0), ¢" (0), w™(0)) = (ug), ull', uly, ¢, wi),
such that
(ug , ul', uy, ¢p', wy' ) = (uo, ui, uz, do, wo)stronglyin’H.

By using the Carathoedory theorem for standard ordinary differential equations theory,
system (3.12) has a local solution (um(t), ul(t), uji (1), o™ (@), w"’(t)) on the maximal inter-
val [0, t,,) with 0 < t,, < T forevery m € N

Step 2. A priori estimates

Letu = ul", ¢ = ¢ and w = w™ and taking into consideration from equation (3.1) that

0 0
G = Eum - Euxxt»
then system (3.12) becomes

pGugt, ) + @y, ult) +b(@", uit) =0

Jp Ju
T ) T (e ) + @ Q1) + D ) + £ @)+ ") = 0
awi, w) + k@i, wi) +d(@), w™) +k(w™, w™) =0
(3.13)
which is equivalent to
d d
@(PH“?” )+g(ﬂ||u I )+b(¢ Jup)=0
— 7” gt 7” up I” ) + 5= (811 11%) + by, ¢
2dr 2dt 2dt (3.14)
+@(5||¢'"||2)+d<w;%¢,’">=0
d
57 (@I 1) e[ 112 + d (g, w™) + k| [w” | =
where |[.|| denotes the norm in L2(0, [).
Add the above two equations we get
d
21 <P|Iut 12+ el |1 +7|| ult|? +*|Iutxll +8]|g |17
+E|¢" |17+ 26, ¢™) + erl|w™ |2 + k| [wi | > + k[ |w™ > = 0. (3.15)

Let

E™(t) = %(mm’,"nz + | + ’bluu;';uz + %"uu;’;nz + 81107117 + £llg™ |17 +2b(uf:’,¢'">+auwmu2).
Then equation (3.15) becomes

iEm(r)+/<||wjf||2+k||w'"||2:0. (3.16)

dt

Now integrate (3.16) from 0 to ¢ < #,,,, we obtain from the choice of the initial data that
for all ¢ € [0, T] and for every m € N that

t t
Em(t)+;</ ||w;’:(s)||2ds+k/ [lw™(s)||?ds < Co, (3.17)
0 0
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where Cy is a positive constant depending on the initial data.
Step 3. Passing to the limit. Using (3.17) and by the definition of E”(¢) we obtain that

{u™) isboundedin L*(0,T;Hy(0,1)),
{u"} isboundedin L*(0,T;Hy(0,1),
{u'} isboundedin LOO(O,T;LZ(O,I)),
{¢™} isboundedin L™(0,T;H;(0,10),
{w™} isboundedin L>(0,T;L*0,1)) N L*(0, T; Hy(0,1)).

Then we can extract a subsequence of {u™}, {¢™} and {w™} and still denoted by {u™},
{¢™} and {w™}, such that

u™ — uweakly starin LOO(O, T; HOI(O, l)),

ul' — u;  weakly starin L°°(O, T; HOI(O, l)),
uly — uy  weakly star in L°°(O, T: L%, l)),
¢" — ¢ weakly starin LOO(O, T; H&(O, l)),
w" — w  weakly star in LOO(O, T; L%, l)),

w”" —> w weaklyin LZ(O, T;Hol(O, l)).

Now pass to the limits in the approximate variational problem (3.12) we get a weak
solution satisfying

ue L%(0, T; Hy(0,1)), u; € L™(0,T; Hy(0,1)),
uy € L%(0, T;L*0,1), ¢ € L™(0,T; Hy(0, 1)),

w e L0, T; L*(0,1)) N L*(0, T; Hy (0, ).
Step 4. Initial data. Knowing that
Hy(0,1) € L*(0,1) c H(0,1),

where H~1(0, ) is the dual space of H}(0, ).
By using Aubin-Lions lemma, see [39], we obtain that L°°(O, T, HO1 0,1 )) is compactly
embedded in C (0, T; L*(0, [)). This implies that

u™ — u stronglyin C(O,T;LZ(O,I)),

m

uy' — u; stronglyin C(O, T; L2(0, l)),
Hence,
(u(0), u(0)) = (uo, uy).
Now differentiate with respect to ¢ the first equation of system (3.12) we get
gy, w) + gy, ux) + b(@y" ux) = 0,

forallw € H}(0, ).
Multiply the above equation by a test function

A€ HLNO.T), suchthat A0)=1,1(T)=0,
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and then integrate by parts over [0, T']

T T T
—puy, ) — p/ (ufy, WA, dt + ,u/ (', uy)rdt + bf (¢, uy)Adt = 0.
0 0 0

Take the limit m — oo, we arrive at

T T T
—puz, u) — p/ (urr, WAedt + M/ (upx, Ux)Adt + b/ (¢, ux)rdt =0.  (3.18)
0 0 0

Now differentiate the first equation of system (3.10) with respect to time, then multiply
the result by A under the same conditions above and integrate by parts over [0, T'] we get

T T T
—p(us(0), u) — p/ (ugr, WA, dt + M/ (rx, ux)rdr + b/ (fr, ux)rdt = 0. (3.19)
0 0 0

Combine the two equations (3.18) and (3.19) we obtain that u;;(0) = u5. In the same way
we can get that (¢(0), w(0)) = (¢o, wo).

Step 5. Continuous dependence on initial data. Let Vi(t) = (u, us, usr, ¢, w) and
Va(t) = (i, iy, tiys, B, ) be two solutions of the system (3.1)—(3.4) with initial data V; (0) =
(ug, uy, uz, ¢o, wo) and V»(0) = (up, uy, 1, ;5(), wo) such that V{(0), V2(0) € H. Then
U, Uy, Uy, @, W) = Vi(t) — Va(2) satisfies the following equations

pUsr — pUxy — bdy = 0, in(0,1) x (0.00), (3.20)
—JUpy — 8@y +bUy +ED +dWy = 0, in(0, 1) x (0.00), (3.21)
aW; — k Wy +d®rx + kW = 0, in(0, 1) x (0.00), (3.22)

with initial data (Uy, Uy, Uz, ®¢9, Wp) = V1(0) — V2(0).
Now multiply (3.20) by Uy, (3.21) by ®; and (3.22) by W then integrate the result over
(0, 1) we arrive at

d ~ l )
—E@t)=—« / W2dx — k / W2dx, (3.23)
dt 0 0
where E (t) is the energy related to Vi(¢) — Va(¢) and defined by
—~ 1 Jp Ju b
Et) = 5<p||Ut||2+ 7||Un||2+(u — b /O|UL + 7||Un||2+6||<1>x||2+ ||l—=Ux

VE
+V/EDIP +al| W)

Integrate (3.23) over (0, #), w get that there exists a positive constant C7 such that for any
te[0,T],

E@t) < CrE(0),

which implies that the weak solution depends continuously on the initial data. Consequently
the weak solution of system (3.1)—(3.5) is unique. O

3.2 Exponential stability
This section will prove the exponential decay of the system’s energy (3.1)—(3.5). We will

study two cases, first, the case when & > b2, and second, the case when pu& = b2. The
method of proof is based on multipliers techniques.
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3.2.1 First case:

We will study the exponential decay when p& > b, and our result is stated in the following
theorem.

Theorem 5 The energy E(t) of the system (3.1)—(3.5) decays exponentially as time t tends to

infinity. That is, there exist two positive constants M and w, independent of the initial data
and independent of any relationship between coefficients such that.

E(t) < MyE(0)e™ 2", V¥t > 0.

The proof of Theorem 5 will be established through two lemmas. First, we set
1 1
J
F(t) = p/ uudx + dlad UytUydX.
0 b Jo
Lemma 6 Let (u, ¢, w) be a solution of the system (3.1-3.5). Then we have
d J 1 1 1 5 L
S < (—"“ +2pcp)/ P = p [ P = Gu = 02/6) [ usPax = 3 [ iguPax
t b 0 0 0 2Jo
Jo [ 2 a2 1!
- ffo g 2dx — dx + 5[0 lw|2dx. (3.1)

Proof Multiply equation (3.1) by u and integrate by parts over (0, [) we get

VEY

1 l 1
,0/ Ugudx + |1 |ux|2dx +b/ uypdx =0,
0 0 0

2 . .
add then subtract the term % [)l |ux|? from the above equation we obtain

1 1
,0/ unudx+(u—b2/.§)/ qulzdx+—/< ux+f¢>uxdx—0
0 0

taking into account that %(u,u) = upu + |us|? we arrive at

jl( /umdx)—pf lug| 2dx—(u bz/E)/ Juy 2d)c f/( ux+f¢>uxdx

(3.2)

Multiply equation (3.2) by ¢ and integrate by parts over (0, /) we get

/u,,¢xdx+8/ x| dx+f/< ux+f¢)¢dx+d/ wepdx =0 (3.3)

From equation (3.1) we get that ¢, = £u;; — L uy,, then substitute ¢, in equation (3.3)
and taking into account that %(u,xux) = UgUy + Uy |2 we obtain

d (]
“/ st ——/ |u,x|2dx+—/ itz | dx+5/ |y |2dx
dt b 0

+f/< ux+f¢>¢dx— /Olwdﬁxdx:(),
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Using Poincaré and Young’s inequality, we get

jt(Jb“/oux,uxdx) <—/ |u,x|2dx——/ |Mtt|2dX—*v/ (62 2dx
—f/( ux+f¢>¢dx+—/ |w|?dx. (3.4)

Add the two equations (3.2) and (3.4) we obtain

d l Ju l Ju 1 l
E(p/(; u,udx+7/(.) ux,uxdx> < 7/0 |uxt|2dx+,0/0 |u,|2dx
!
(= bE) /0 i Palx
Jo (! Iy
—7/ |Mtt|2dx_/ ’ﬁux
0 0
d2 1 § L
+7/ |w|2dx—f/ x| *dx.
28 Jo 2Jo

Add and subtract the term p Lllutlzdx to the right side of the above inequality, then use
Poincaré inequality we get the desired result. (]

2
dx

Set

1 1 1
Gg@t) = —J/é u,x(%ux +\/§¢>dx — 8/;0—55/0 U Ppdx + (XTCI/O wudx.

Lemma7 Let (u, ¢, w)be a solution of the system (3.1)—(3.5). Then we have

—go_——/ |ux,|2dx+—/ |ut|2dx+—/ e P — 81 — bz/s)ff 6y Pelx

[
2

—=Ux

dx + C2/ [w|?dx + C3/ |wy|?dx. 3.5

S

where C1, C; and C3 are positive constant to be determined.

Proof Multiply equation (3.2) by ( Uy + /€ q)) we get:

! 1
—J/(; u,,x(%ux+\/§¢)dx+8/;) ¢x(jgux+\/§¢)xdx
I b 2 b
= —/5/0 ﬁux+ﬁ¢’ dx —d ux+\/§¢>dx‘ (3.6)

l
we | —
Using Young’s inequality we obtain

_J/()lu,,x<f/’§ux+f¢>dx+3/ < ux+f¢)
VE

<
-2

a’x + —f lwy|?dx. (3.7)
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Add then subtract the term ’%qﬁx to equation (3.1) we get
ob
L2 i+ (- bz/@ﬁ«m (3.38)

( uﬁfqb) NG

Substitute ( Uy + /€ ¢) in equation (3.7) we arrive at

l b pb 1
- J/(; Urrx <ﬁux +J§d))dx - 57/ Purcdx

L
S—S(M—bz/f)ﬁf |¢x|2dx—£ fux +VEp
w Jo 2 Jo

2
dx 2[/ |wy|“dx.
(3.9

Taking into account that u; ¢ = %(uu(p) — U@, and utlx(%ux +\/§¢> =
%[”tx (%“x + \/§¢)] - er(%ux + Jé«p) we obtain

[
;t< J/ u,x< ux+f¢)dx—6—/ ¢u,xdx)
<——f e .(J\/§+a—)f¢,u,x x — 8 — bz/@ff (62 Pdx
JE

2

dx + —/ |wy|?dx. (3.10)

Now multiply equation (3.3) by 7‘u,, integrate by parts over (0, /)we get and using
boundary conditions (3.4) we have

c [t c [t ! kCy (!
ahd weudx + K—lf WyllyydXx — C1/ Gruscdx + —1/ wudx = 0.
d Jo d Jo d Jo

Taking into account that w,u, (wu,) — wusWe obtain

= dr

d (aCy [ aCy ! kCi !
E (71k/(‘) wutdx) = 71/(‘) wu,,dx - TIA wxutxdx

l kC; 1
+C Uspdx — —/ wu;dx.
1/0¢t 1x a J t 3.11)

Add the two equations (3.10) and (3.11) and apply Young’s inequality then for all €1, &>
and &3 > 0 we have

I I I
%(—J/O u,,x<%ux+@¢>dx—8%/ </>u,xdx+a7C1/0 wutdx>
<——f > = 8 — b"‘/&)ff oePdx — V5 ;

2
22
aCy 1 2 51/ 2
+ dx + — d
c2<2d281 201283>/0|w| £+ 5 [ P

e, & f| Pdx + /| Pdx + /| P2d (3.12)
C3 2%, 2\/» wy|“dx Uy |“dx us|°dx. .
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Take &7 = we get the desired result.[]

2[
Let
L(t) = N E(t) + F(t) + N2G(1),

where Njand Njare positive constants to be fixed.

Theorem 6 There exists positive constants viand v such that
VI E() < L(t) S v E(@),Vt > 0.

Proof We have

l J l ) b
IL(t) — NV E()| < ,0/ woudx + —“/ Uyt pdx + NzJ/ e (—ux + \/gci))dx
0 b Jo 0 VE

+ Ny P /l éd +N“C‘/[ d
2 u X 2 wudx.
uVESo d Jo

Apply Young’s and Poincaré inequalities we obtain

L) — N1E@®)| < ( +N2f>/ lus |Pdx + (p L+ )/ lux [*dx
Ju  NyJ 2 N2J/
(Zb - N252Mf)/ lusy|“dx + ’fux

. 2 1 2
+N28¢,,2H\/§/0 [px|“dx + N2 Zd/le dx

dx

Define
N ma ! + N —acl 71 + T
:=max{ — ; cp+— |;
0 p /0 3 d ,LL—bz/é' 10 P b
b (Ju ob pb Cq
—| — +NoJ + Np§——= ) Ny J; Nac sz}
Ju( b uVE N
Hence

[L(t) — N1E(t)|< NoE(),
which implies that

VIE(t) = L(1) = nEQ),
where vi = Ni1 — Ng and v, = Nj + Ng and N1 > Nj.

Proof of Theorem 5 It follows from Lemmas 6 and 7 that

d Noe l J Nye ! !
Ly <— (- D253 /|Mt|2dX— Jp _ Nae /|un|2dx—(u—b2/s)/ ey 2dx
dt 2 0 b 2 0 0

Jb J ! Ny JEN [ b
—<N2ﬁ—(7#+2pcp)>/ |ux,|2dx—<1+ 22 >-/(;‘Eux

)
(2+N25(M b2 /e) = ) / x| 2dx

2
dx
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a2 [l !
— (N1k — NoCy — %)/ |w|?dx — (Njk — N2C3)f |y |2dx (3.13)
0 0
2
Choose &3 = ., &1 = . N2 > S (S +2pc,) and Ny > m‘“{NzCkﬂ;NzTC3 :
from where we obtain that &1 = p — % >0,0 = %p — % >0,03 = Ng% — (JT“ +

20cp) > 0.8 = 1+ 255 > 0,05 = §4+N28(u—b2/6)E > 0,56 = Nik—=N,C— & > 0
and {7 = Nik — N>C3 > 0 and from where we can conclude that there exists a positive
constant 8 = 2min{l, ¢1, {2, &3, $4, &5, §6, &7} such that

dl:t < —BE(t
7 (1) =< —BE(),

by equivalence between E(¢) and £(¢) according to Theorem 6 we get:
d L(r) = L(1)
il —w ,
dt -

B

where wy = 3, - Now integrate the above inequality over (0, #) we obtain

L(1) < L(O0)e™ ",
again by equivalence between E(¢) and £(¢) according to Theorem 3 we arrive at
E(t) < M2E(0)e™ ',

where My = 2. O

V1

3.2.2 Second case

We will prove exponential stability for u& = b?; our result is stated in the following theorem.

Theorem 7 The energy E(t) of the system (3.1-3.5) decays exponentially as time t tends to
infinity. That is, there exist two positive constants M3 and w3 independent of the initial data
and independent of any relationship between coefficients such that

E(t) < M3E(0) e 3 ¥t > 0.

Proof We will use the same multipliers used in Theorem 5, and define the Lyapunov func-
tional.

L(1) = N3E(t) + F(1) + N4G (1),

where N3 and N4 are positive constants to be fixed. We proceed similarly as the proof of
Theorem 5 to get the desired result.
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4 Numerical simulations

First we denote by &7 = uy, 5 = ¢, W = w, and we introduce the following weak form after
multiplying the equations (3.1), (3.2), 3.3) by u, ¢, w € HO1 0,1)

p(ﬁtvﬁ)+ :u'(MXsEX)-Fb((b’HX) = 0
(WP)Y J(Wr, §) +8(chx, §) +blux, §) +E(d, ) +d(wy, ) = 0 (4.1)

(W, W) + k(wy, Wy) + d(@y, W)+ k(w, w) = 0

Let us partition the interval (0;/) into subintervals I; = (x;_1; x;) of length h = % with
0 =xp < x1 < --- < x; = [ and define the associated finite element spaces by

Sy = {u € Hy(0,D);u € C([0,1]), ul;, € Pi(K)}.

For a given final time 7 and a positive integerN, define the time step At = % and
the nodest, = nAt,n = 0, ..., N. By using the Implicit Euler scheme in time and the
finite element variational approximation in space, we introduce the following scheme. For
up, ah, wy, € SE, find u}, ¢y, wy € SE such that,

1Y 1 — _ _
@ =, V) + @l dhy) + b(@) Tny) = 0

J _ _ _ _ _
(NP) E(ﬁ”h — 05 Ba) + 8@, i) + bl By) +EB] Bp) +d (W], By) =0

%(w;: —w W) + (L W) + AP W) + k(W] W) = 0
4.2)

n n—1
Wy —Wh

up— uh* g = Yo -4
h At

where uj, = A2— and W) =
Plugging u}, th and w7 in system (4.2) we get,

P _ _ _
(At)z( =20y 7T ) + (i ) + B8 ) = O,

o (00 =20 07 80) #8(0B) + (45 1) + €05 1)+ d (0] B1) =0,
d
—(wz —w, 1,@;,) +uc(why, Why) + E<¢ZX - d)ZX_l,Eh) +k(wj, wp) =0,

note that by the finite element theory, u}, = >";_jaly;, ¢) = > ;i_b!y; and wj =
Z, (¢ where y; are bases of the finite space S0 Taking up = v¥; we get

2
P zam+ura" +byB = Lozt = L _7am2
(Ar) (A1) (A1)
2J J
+8TB" +bXA" +EZB" +dXC" = n=l YA"2 (4.3)
(Ar)? (Ar)? (An?

d o d
L ZC" +kTC" + —XB" +kZC" = ~— 7z 4 S x !
At At At
where the vectors A", B" and C" are given by

A = {a»

3
——

B = (o]

1
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¢ = {ef)

l

and the matrices Z, X, Y, and T are given by
X = (Yix. ¥))
Y = (i, ¥jx)
Z =i, v))

Wi (x,6)]

Fig. 1 Graphs-Classical system with equal speed limits

Fig. 2 Energy as a function of 0.0030 -
time
0.0025
0.0020
0.0015

0.0010

0.0005
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T = (vfix’ ij)
We solve (4.3) using the following initial and physical data,
0.001, £ = 1 and p = 0.01. The space discritization Ax =

ﬁ and the time dicritization
At = % with total time 7 = 25. The initial data u2 = ¢2 = wg = u}l = ¢;1, =(1—x)x.
4.1 Classical system with equal speed limit
See Figs. 1, 2 and 3.
Fig.3 —log[energy] as function
of time
600
400
200
5 10 15 20 25 30
I —
‘ 0.2
! 0.1
100
! . ‘ . N
0 1 2 3 0.0 02 0.4 0.6 08
[t (0]

[0 C00)]

Wi (x.0)]

Fig. 4 Graphs-Classical system with non equal speed limits
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Fig. 5 Energy as a function of

time
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Fig.6 —log[energy] as function
of time
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[t (6] [Pm(x.0)]
Wi (x,8)]

Fig. 7 Graphs-Second spectrum free system

@ Springer



6 Page 26 of 28 Partial Differential Equations and Applications (2024) 5:6

4.2 Classical system with non-equal speed limit

See Figs. 4, 5 and 3.

4.3 Second spectrum free system

See Figs. 7, 8 and 9.

4.4 Graphical analysis

The case of classical system with equal Speed condition: In this case, the energy decays
so fast to zero which shows that the decay type is exponential, and what proves this is the
graph of log(E(t)) that shows a straight. This is graphical evidence of exponential behavior.
The fast decay of u, ¢, and w also show the exponential decay.

The case of classical system with non-equal Speed condition: Starting with the graphs
of the functions u, ¢, and w, it is clear that they have much more vibratory behavior than the
previous case, and this is a direct indication that the decay is slower than the previous case.
Regarding the graph of the energy, although the graph shows a decay to zero the graph of
log(E(t)) proves that we lost the exponential decay.

The second spectrum free case: In this case also the energy decays so fast to zero which
shows that the decay type is exponential, and what proves this is the graph of log(E(¢)) that
shows a straight. This is graphical evidence of exponential behavior.

Fig. 8 Energy as a function of
time 0.0012

0.0010
0.0008
0.0006
0.0004

0.0002

Fig.9 —log[energy] as function
of time

80
60
40

20
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