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Abstract
In this manuscript it is obtained existence of solution for the equation

−div(a(|∇u|p)|∇u|p−2∇u) + b(|u|p)|u|p−2u = c(x) f (u), in R
N ,

where 1 < p < N , N ≥ 2, the functions a, b : R+ → R
+ satisfy suitable conditions, c is a

continuous sign-changing potential and the nonlinearity f has an exponential critical growth
at infinity. In the proof we apply variational methods.

Keywords Exponential critical growth · Quasilinear equation · Trudinger–Moser
inequality · Variational methods

Mathematics Subject Classification 35J60 · 35A15 · 35A23

1 Introduction andmain results

In this manuscript we are interested in prove the existence of solution for the problem

−div(a(|∇u|p)|∇u|p−2∇u) + b(|u|p)|u|p−2u = c(x) f (u), in R
N , (P)

where 1 < p < N , N ≥ 2, f : R → R is a continuous function and a, b ∈ W , which
denotes the set of the functions k : R+ → R

+ that satisfy the following hypotheses

(k1) k ∈ C1 and there are constants a1, a2 > 0 that satisfy

a1t
p + t N ≤ k(t p)t p ≤ a2t

p + t N , for t > 0;
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(k2) the function t �→ K(t p), is convex, for t > 0, where K is the primitive of k, that is,
K(t) := ∫ t

0 k(τ ) dτ ;
(k3) the function t �→ k(t p)

t N−p is nonincreasing, for t > 0;

(k4) the function t �→ k(t p)t p−2 is increasing, for t > 0.

From the growth condition (k1) it follows the inequality

a1t
p + p

N
t N ≤ K(t p) ≤ a2t

p + p

N
t N , t > 0 (1.1)

for k ∈ W . Since we intend to use variational methods, the assumptions above are also
important to prove that there is an associated C1-class functional.

It will be considered that f satisfies

( f1) lim
t→0

f (t)
|t |N−1 = 0

and the exponential critical growth

( f2) there is α0 > 0 satisfying

lim
t→+∞

f (t)

eα|t | N
N−1

=
{

0 if α > α0.

+∞ if α < α0;
Before presenting the other conditions on f , wewill exhibit the hypotheses on the function

c, that were motivated by [2], and given by

(c1) c : RN → R is a bounded continuous function which change its sign;
(c2) dist(�+,�−) > 0, where �+ := {x ∈ R

N ; c(x) > 0} and �− := {x ∈ R
N ; c(x) <

0};
(c3) there is R > 0 with c(x) < 0 for all |x | ≥ R.

Assumption (c2) ensures the existence of ζ ∈ C∞(RN , [0, 1]) satisfying
ζ ≡ 1, in �+, ζ ≡ 0, in �−, M := sup

RN
|∇ζ | < ∞.

Now, we are able to state the remaining conditions on f .

( f3) there is ν > N and

0 < θ < min

{
ν

N + (N − 1)M ,
νa1

pa2 + Ma2 min{1, p − 1}
}

=: θ0,

such that

0 <
ν

θ
F(t) ≤ f (t)t, for |t | > 0,

where F(t) := ∫ t
0 f (τ ) dτ.

( f4) there are constants K0, R0 > 0 satisfying

0 < F(t) ≤ K0| f (t)|, for |t | ≥ R0;
( f5) if x0 ∈ �+ and r > 0 satisfy Br (x0) ⊂⊂ �+, by denoting c0 = infx∈Br (x0) c(x) > 0,

it will be considered that

lim|t |→+∞ t f (t)e−α0|t |
N

N−1 ≥ β0 >
NN

c0α
N−1
0 r N

.
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An example of function satisfying ( f1) − ( f5) can be found in [2] and is given by

f (s) =
(

q|s|q−1s + α0N

N − 1
|s|q+ N

N−1−2s

)

eα0|s|
N

N−1

for s ∈ R and q > ν
θ
. In this case F(s) = |s|qeα0|s

N
N−1 .

In the recent decades, problems related to (P) has been attracting the attention of
researchers due to its applicability in mathematical models that arise in several branches
of science such as biophysics, plasma physics and chemical reaction design driven by the
parabolic reaction-diffusion system

ut = div[(|∇u|p−2 + |∇u|N−2)∇u] + c(x, u).

In the mentioned applications, the solution u describes mathematically the concentration,
the divergent term provides informations of the diffusion D(u); whereas the term c is the
reaction and is related to loss processes and the source. In several application in Chemistry
and Biology, the reaction function c(x, u) exhibits a polynomial growth in the term u and
has variable coefficients. Without intention to present a complete list of references, we quote
the classical ones [7, 11] for more details regarding the mentioned applications.

From the mathematical point of view, the main motivations for (P) are [2, 9], where it
was considered a version of (P) for the N−Laplacian operator in an exterior domain and
a problem for the general nonhomogeneous operator considered in (P) with a nonlinearity
exhibiting a critical exponential growth, respectively.

Note that the hypotheses considered in the functions a and b allow to one consider a wide

class of problem. For example, by considering a(t) = 1+ t
N−p
p , b(t) = 1+ t

N−p
p , we obtain

a, b ∈ W with a1 = a2 = 1, that provide p&N−Laplacian equation

−	pu − 	Nu + |u|p−2u + |u|N−2u = c(x) f (u) in R
N ,

which arises in the study of reaction–diffusion systems as described before. If

a(t) = 1 + t
N−p
p + 1

(1 + t)
p−2
p

, b(t) = 1 + t
N−p
p + 1

(1 + t)
p−2
p

,

we have a, b ∈ W with a1 = 1 and a2 = 2. In such case one can consider the mean curvature
type problem

− 	pu − 	Nu − div

(
|∇u|p−2∇u

(1 + |∇u|p) p−2
p

)

+ |u|p−2u + |u|N−2u +
(

|u|p−2u

(1 + |u|p) p−2
p

)

= c(x) f (u) in R
N .

In what follows, we present the result obtained in this paper.

Theorem 1.1 Consider that a, b ∈ W and (c1) − (c3), ( f1) − ( f5) hold. Then there exists a
nontrivial solution for (P).

The proof of the result consists in an application of the Mountain Pass theorem. The main
difficulty is to prove the boundness of the Palais–Smale sequences which occurs due to the
sign changing potential c. Another mathematical difficulty is the lack of compactness which
is handled by considering the assumption ( f4) (see [8]) and the technical difficulties related
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to the minimax level may be solved by combining the hypothesis ( f5), a Trudinger–Moser
inequality and appropriate estimates involving the Moser’s functions.

The rest of the manuscript is organized as follows: in Section 2 it is presented some
preliminary facts to consider the problem through a variational approach; in Section 3 it is
studied the Palais–Smale sequences associated to the problem, the Mountain Pass level and,
finally, it is proved Theorem 1.1.

2 Preliminaries

We start this section with a substantial lemma proved in [1]. Before state the result let us
introduce the following notation: if N ≥ 2, we denote by

SN−2(α, t) =
N−2∑

j=0

α j

j ! |t | N j
(N−1) ,

for α > 0 and t ∈ R.

Lemma 2.1 Consider (un) a sequence in W 1,N (RN ) such that

lim sup
n→+∞

‖un‖N1,N <

(
αN

α0

)N−1

, (2.1)

where

‖u‖1,N =
(∫

RN
(|∇u|N + |u|N ) dx

)1/N

, u ∈ W 1,N (RN ),

αN := Nω
1

N−1
N−1, and ωN−1 is the measure of the unit sphere in R

N .
Then, there are constants α > α0, s > 1, C > 0, which does not depend on n, such that

∫

RN

[
exp(α|un | N

N−1 ) − SN−2(α, un)
]s

dx ≤ C, for all n ≥ n0. (2.2)

Consider α > α0 and q ≥ 1. From the hypotheses ( f1) − ( f2) it follows that, for an
arbitrary ε > 0, there are constants Cε, cε > 0 satisfying

| f (t)| ≤ ε|t |N−1 + cε|t |q−1(eα|t | N
N−1 − SN−2(α, t)),

|F(t)| ≤ ε

N
|t |N + Cε|t |q(eα|t | N

N−1 − SN−2(α, t)),
(2.3)

for all t ∈ R.
Regarding to obtain solutions for (P) it will be considered the space

X = W 1,p(RN ) ∩ W 1,N (RN ),

which is a Banach space with the norm ‖u‖ = ‖u‖1,p + ‖u‖1,N , where

‖u‖1,m =
(∫

RN
(|∇u|m + |u|m) dx

)1/m

, m ≥ 1.
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From the hypotheses a, b ∈ W , (c1), the inequalities in (2.3) and the Trudinger–Moser
inequality (see [5, 6]), it follows that the functional I : X → R defined by

I (u) = 1

p

∫

RN
A(|∇u|p) dx + 1

p

∫

RN
B(|u|p) dx −

∫

RN
c(x)F(u) dx

belongs to C1(X , R) and

I ′(u)v =
∫

RN
a(|∇u|p)|∇u|p−2∇u∇v dx +

∫

RN
b(|u|p)|u|p−2uv dx

−
∫

RN
c(x) f (u)v dx, for all u, v ∈ X .

Therefore, the critical points of I are weak solutions for (P).
In the next result it is obtained the Mountain Pass geometry for the functional I at the

origin.

Lemma 2.2 Consider that a and b verify (k1) and suppose that the conditions (c1), (c3),
( f1) − ( f3) hold. Then, there are ξ, ρ > 0 such that

I (u) ≥ ξ, for all u ∈ X ∩ ∂Bρ(0).

Proof From (1.1) we have

I (u) ≥ 1

N
‖u‖N1,N −

∫

RN
c(x)F(u) dx, for all u ∈ X . (2.4)

By using Lemma 2.1 and the Hölder’s inequality it follows that there are α > α0, s > 1 and
C > 0 satisfying

∫

RN
|u|q (exp(α|u| N

N−1 − SN−2(α, u))) dx ≤ C‖u‖qqs′ , for all ‖u‖N1,N <

(
αN

α0

)N−1

,(2.5)

for a fixed q > N , C > 0 not depending on u and s′ is the conjugated exponent of s.
Consider an arbitrary ε > 0. By using (2.3), the above inequality and the continuous

embeddings W 1,N (RN ) ↪→ LN (RN ), W 1,N (RN ) ↪→ Lqs′(RN ) we obtain that
∫

RN
c(x)F(u) dx ≤

∫

�+
c(x)F(u) dx ≤ ε

N
C0‖u‖NN +

+C0Cε

∫

RN
|u|q(eα|u|N/(N−1) − SN−2(α, u)) dx .

≤ ε

N
C1‖u‖N1,N + C2‖u‖q1,N ,

for ‖u‖N1,N < (αN /α0)
N−1 and with C0 := supx∈�+ c(x) > 0. From (2.4) and the previous

inequality we get

I (u) ≥ 1

N
‖u‖N1,N − ε

N
C1‖u‖N1,N − C2‖u‖q1,N , for all ‖u‖N1,N <

(
αN

α0

)N−1

.

Thus, by considering ε > 0 such that (1 − εC1) = C3 > 0 we can use the above inequality
to get

I (u) ≥ 1

N
C3‖u‖N1,N − C2‖u‖q1,N ,
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which proves the result for

ρ := min

{
1

2

(
αN

α0

) N−1
N

,

(
C3

2NC2

)1/(q−N )
}

and ξ := ρNC3

2N
.

��
By considering a nonnegative function ϕ ∈ C∞

0 (�+)\{0}, it follows from ( f3) that I (tϕ) →
−∞ as t → +∞. Thus, there is e ∈ X satisfying ‖e‖ > ρ and I (e) < 0. This and the
previous result imply that there is a Palais-Smale sequence at the mountain pass level (see
[4] and [14, Theorem 1.15]), that is, a sequence (un) ⊂ X satisfying

lim
n→+∞ I ′(un) = 0, lim

n→+∞ I (un) = c := inf
γ∈�

max
s∈[0,1] I (γ (s)),

with � := {γ ∈ C([0, 1], X); γ (0) = 0, γ (1) = e}.
Some prior definitions are needed for the next step. Let x0 ∈ �+ and r > 0 given ( f5).

As in [5], we consider the Moser’s functions [13] defined by

M̃n(x) := 1

ω
1
N
N−1

·

⎧
⎪⎨

⎪⎩

(log n)
N−1
N , if |x − x0| ≤ r/n,

log(r/|x−x0|)
(log n)1/N

, if r/n ≤ |x − x0| < r ,

0, if |x − x0| ≥ r .

Note that there is no loss of generality by considering x0 = 0. We have M̃n ∈ W 1,N (RN ) ∩
C0(R

N ) (which implies that M̃n ∈ X ) and supp(M̃n) ⊂ Br (0). Moreover, we have the result
below.

Lemma 2.3 The assertions below hold.

(i) ‖∇ M̃n‖N = 1, for all n ∈ N;

(ii)
∫

RN
|M̃n |N dx = O(1/ log(n)) → 0 as n → +∞;

(iii) Defining Mn := M̃n/‖M̃n‖1,N , there is a sequence (dn) ⊂ R satisfying

M
N

N−1
n = N

αN
log n + dn, lim

n→+∞ dn/ log n = 0, for |x | ≤ r/n; (2.6)

(iv) ‖∇ M̃n‖p → 0 and ‖M̃n‖p → 0 as n → +∞, for all 1 < p < N.

Proof The proof of properties (i) − (i i i) can be found in [5]. Regarding (iv), note that

∫

RN
|M̃n |p = 1

ω
p/N
N−1

⎡

⎢
⎣

∫

{|x |≤r/n}
(log(n))

N−1
N p +

∫

{r/n<|x |<r}

(
log

(
r
|x |
))p

(log(n))p/N

⎤

⎥
⎦

= 1

ω
p/N
N−1

⎡

⎢
⎣ωN−1

r N

NnN
(log(n))

N−1
N p +

∫

{r/n<|x |<r}

(
log

(
r
|x |
))p

(log(n))p/N

⎤

⎥
⎦ .

(2.7)

The fact that p < N implies

0 ≤ (log(n))
N−1
N p

nN
≤ n

N−1
N p

nN
nN ≤ n

N−p
N p−N → 0, (2.8)

as n → +∞.

123



Partial Differential Equations and Applications (2023) 4 :28 Page 7 of 12 28

Regarding to estimate the right-hand side of (2.7), note that the inequalities p < N and
log(s) ≤ s, for all s > 0, provide that

0 ≤
∫

{r/n<|x |<r}

(
log

(
r
|x |
))p

(log(n))p/N
≤ r p

(log(n))p/N
ωN−1

r N−p

N − p

(

1 − 1

nN−p

)

→ 0, (2.9)

as n → +∞. From (2.7), (2.8) and the previous inequality we obtain that
limn→+∞ ‖M̃n‖p → 0.

In order to prove the gradient estimate, it follows from the definition of M̃n and the
inequality p < N that

∫

RN
|∇ M̃n |p = 1

(ωN−1 log(n))
p
N

∫

{r/n<|x |<r}
1

|x |p

= ω
N−p
N

N−1

(log(n))
p
N

r N−p

N − p

(

1 − 1

nN−p

)

.

Since

1

(log(n))p/N

(

1 − 1

nN−p

)

→ 0,

as n → +∞, the result follows. ��
The previous properties will play an important role in the following result:

Lemma 2.4 Consider that a and b satisfy (k1) and suppose that (c1) − (c3), ( f3), ( f5) hold.
Then there is n ∈ N satisfying

max
t≥0

I (tMn) <
1

N

(
αN

α0

)N−1

.

Proof For each n ∈ N define the function

gn(t) := a2
p
t p‖Mn‖p

1,p + 1

N
tN −

∫

RN
c(x)F(tMn) dx, t ≥ 0.

Thus, it follows from (1.1) and ‖Mn‖1,N = 1 that

I (tMn) ≤ gn(t), for all t ≥ 0.

Note that, it is enough to obtain the existence of n ∈ N such that

max
t≥0

gn(t) ≤ 1

N

(
αN

α0

)N−1

. (2.10)

By using the fact that ν/θ > N and the hypothesis ( f2) we have gn(t) → −∞, as
t → +∞. Thus, gn attains its global maximum at tn > 0 which satisfies 0 = g′

n(tn), which
is equivalent to

t Nn =
∫

Br (0)
c(x) f (tnMn)tnMn dx − a2t

p
n ‖Mn‖p

1,p (2.11)

If gn(tn) ≥ 1/N (αN /α0)
N−1 , we can use the expression of gn , the fact that F ≥ 0 and

supp(Mn) ⊂ �+ to obtain

t Nn ≥
(

αN

α0

)N−1

− Na2t
p
n

p
‖Mn‖p

1,p. (2.12)
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Since ‖Mn‖1,p → 0, as n → +∞ we can use the previous inequality to obtain a constant
C̃ > 0 satisfying

tn ≥ C̃, for all n ∈ N. (2.13)

Consider β0 > 0 given in ( f5). If 0 < ε < β0, there is Rε > 0 with

t f (t) ≥ (β0 − ε)eα0|t |N/(N−1)
, for all |t | ≥ Rε. (2.14)

By using the definition of Mn and (2.13) we get

tnMn(x) = tn
M̃n

‖M̃n‖1,N
≥ C̃

‖M̃n‖1,N

(
(log n)N−1

ωN−1

) 1
N

≥ Rε,

for all |x | < r/n and n large enough. Thus, we have from (2.11), the choice of r > 0 in ( f5),
(2.14), the previous inequality and the definition of Mn that

t Nn ≥
∫

Br/n(0)
c(x) f (tnMn)tnMn dx − a2t

p
n ‖Mn‖p

1,p

≥ c0(β0 − ε)

∫

Br/n(0)
exp(α0(tnMn)

N/(N−1)) dx − a2t
p
n ‖Mn‖p

1,p, (2.15)

with c0 := minBr (0) c(x). Replacing the definition of Mn in Br/n(0) we get

t Nn ≥ c0(β0 − ε)

∫

Br/n(0)
exp

(

α0t
N

N−1
n

log n

ω
1/(N−1)
N−1 ‖M̃n‖N/(N−1)

1,N

)

dx

−a2t
p
n ‖Mn‖p

1,p

= c0(β0 − ε)
ωN−1r N

NnN
exp

⎛

⎝ α0t
N

N−1
n log n

ω
1/(N−1)
N−1 ‖M̃n‖N/(N−1)

1,N

⎞

⎠ − a2t
p
n ‖Mn‖p

1,p.

Since t N = exp(N log t) and 1/nN = exp(−N log n) we obtain that

1 ≥ c0(β0 − ε)
ωN−1r N

N
exp

⎛

⎝ α0t
N

N−1
n log n

ω
1/(N−1)
N−1 ‖M̃n‖N/(N−1)

1,N

− N log n − N log tn

⎞

⎠

− a2t
p−N
n ‖Mn‖p

1,p.

Using that 1 < p < N , ‖M̃n‖1,N → 1 and ‖Mn‖1,p → 0, as n → +∞, the previous
inequality implies that (tn) is a bounded sequence. By using again that ‖Mn‖1,p → 0 and
(2.12) we obtain, up to a subsequence, that t Nn → γ ≥ (αN /α0)

N−1.
Since 1/nN = exp(−N log n) and exp(t) ≥ t, t ∈ R, it follows from (2.15) that

t Nn ≥ c0(β0 − ε)ωN−1r
N

⎡

⎣ α0t
N

N−1
n

Nω
1/(N−1)
N−1 ‖M̃n‖N/(N−1)

1,N

− 1

⎤

⎦ log n − a2t
p
n ‖Mn‖p

1,p.

Hence, γ = (αN /α0)
N−1, otherwise we contradict the previous inequality. By using (2.6),

(2.12) and (2.15) we have
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t Nn ≥ −a2t
p−N
n ‖Mn‖p1,p

+ ωN−1

N

rN

nN
exp

⎛

⎝α0

⎡

⎣
(

αN

α0

)

−
(
Na2t

p
n

p

)1/(N−1)

‖Mn‖
p

N−1
1,p

⎤

⎦
[

N

αN
log n + dn

]
⎞

⎠

× c0(β0 − ε)

= −a2t
p−N
n ‖Mn‖p1,p

+ ωN−1

N

rN

nN
exp

([

N + αN
dn
log n

− c1t
p

N−1 ‖Mn‖
p

N−1
1,p − c2t

p
N−1
n ‖Mn‖

p
N−1
1,p

dn
log n

]

log n

)

× c0(β0 − ε)

= c0(β0 − ε)
ωN−1

N

rN

nN
n

(

N+αN
dn
log n −c1t

p
N−1 ‖Mn‖

p
N−1
1,p −c2t

p
N−1
n ‖Mn‖

p
N−1
1,p

dn
log n

)

− a2t
p−N
n ‖Mn‖p1,p,

with c1 = Nα0
αN

(
Na2
p

)1/(N−1)
and c2 =

(
Na2
p

)1/(N−1)
.

Considering the limit as n → +∞, using that ‖Mn‖1,p → 0, γ = (αN /α0)
N−1 and (2.6)

we get (αN /α0)
N−1 ≥ c0(β0 − ε)

ωN−1
N r N . Passing to the limit as ε → 0+ we have

β0 ≤ N

c0ωN−1r N
(αN /α0)

N−1.

Using the definition of αN = Nω
1/(N−1)
N−1 , we obtain a contradiction with ( f5). Thus, there

is n ∈ N for which (2.10) is verified. ��
We have Mn ∈ X and supp(Mn) ⊂ �+, thus e := t0Mn satisfies the mountain pass

geometry for t0 > 0 large enough. The path γ (t) := t t0Mn belongs to � and it follows, as a
consequence of the previous lemma and Lemma 2.2, that the mountain pass level satisfies

cM ∈
(

0,
1

N

(
αN

α0

)N−1
)

. (2.16)

3 Proof of Theorem 1.1

Regarding to prove the main result, it will be needed to study some properties of the Palais–
Smale sequences. In order to prove the result, let us rewrite the functional I as

I (u) = J (u) −
∫

RN
c(x)F(un) dx,

where J : X → R defined by

J (u) = 1

p

∫

RN
A(|∇un |p) dx + 1

p

∫

RN
B(|un |p) dx .

Lemma 3.1 If (un) ⊂ X is a (PS)c-sequence for I , then, up to a subsequence

(i) (un) is bounded
(ii) un⇀u0 weakly in X
(iii) ∂un

∂xi
(x) → ∂u0

∂xi
(x) a.e in R

N

123
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(iv) J ′(un)ψ → J ′(u0)ψ, for all ψ ∈ X

Proof Since (un) ⊂ X is a (PS)c-sequence we obtain

I (un) − θ/ν I ′(un)(ζun) = c + on(1) + on(1)‖un‖.
The definition ζ , (k1) and (1.1) imply

I (un) − θ/ν I ′(un)(ζun) ≥ 1

p

∫

RN
A(|∇un |p) dx + 1

p

∫

RN
B(|un |p) dx

−
∫

RN
c(x)F(un) dx

− θ

ν

∫

RN

[
a(|∇un |p)|∇un |p−2∇un∇(ζun) + b(|un |p)|un |pζ − c(x) f (un)ζun

]
dx

≥
(
1

p
a1 − θ

ν
a2

)

‖un‖p
1,p +

(
1

N
− θ

ν

)

‖un‖N1,n

− θM
ν

∫

RN
a(|∇un |p)|∇un |p−1|un | dx +

∫

�+
c(x)

[
θ

ν
f (un)un − F(un)

]

dx .

Thus, by using (k1) and ( f3) we have

c + on(1) + on(1)‖un‖ ≥
(
1

p
a1 − θ

ν
a2

)

‖un‖p
1,p +

(
1

N
− θ

ν

)

‖un‖N1,n

− θM
ν

∫

RN

(
a2|∇un |p−1|un | + |∇un |N−1|un |

)
dx . (3.1)

From Young’s inequality we have
∫

RN

(
a2|∇un |p−1|un | + |∇un |N−1|un |

)
dx ≤ a2 max{1, p − 1}

p
‖un‖p

1,p

+N − 1

N
‖un‖N1,n .

Using (3.1) and the previous inequality we get

c + on(1) + on(1)‖un‖ ≥ 1

p

(

a1 − θ

ν
(a2 p + Ma2 max{1, p − 1})

)

‖un‖p
1,p

+ 1

N

(

1 − θ

ν
(N + M(N − 1))

)

‖un‖N1,N .

By using ( f3) it follows that the terms into parenthesis in the right-hand side of the previous
expression are positive, which implies (i). Hence, there exists u0 ∈ X such that,

un⇀u0 weakly in X , un → u0 in Ls
loc(R

N ), un(x) → u0(x) a.e. in R
N ,

for some subsequence, still denoted by (un) and for any s ≥ 1. Then, we (i i) is also
verified.For the proofs of the properties (i i i) and (iv) see [3, Lema 3.2]. ��
The result below, whose proof can be found in [2], is needed to prove that u0 is a critical
point of I .

Lemma 3.2 Consider that (c1)−(c3) and ( f1)−( f4) hold. If c±(x) := max{±c(x), 0}, then
c±(x) f (un) → c±(x) f (u0) and c±(x)F(un) → c±(x)F(u0) in L1

loc(R
N ).

Now we are in position to prove Theorem 1.1.
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Proof of Theorem 1.1 Itwill be proved thatu0 is a nontrivial solution for (P). FromLemma3.2
we have

lim
n→+∞

∫

RN
c(x) f (un)ϕ dx =

∫

RN
c(x) f (u0)ϕ dx (3.2)

for all ϕ ∈ C∞
0 (RN ). We shall prove that the previous limit also holds considering test

functions in the space X . In the spirit of [10], we notice that given any ψ ∈ X there exist
sequences of mollifiers and cut-off functions (ρk)k and (ζk)k , respectively, such that ψk :=
ζk(ρk ∗ ψ) ∈ C∞

0 (RN ) satisfies the following properties:

(i) ψk(x) → ψ(x), |∇ψk(x)| → |∇ψ(x)|, a.e. x ∈ R
N ;

(ii) |ψk(x)|, |∇ψk(x)| ≤ hN (x) and |ψk(x)|, |∇ψk(x)| ≤ h p(x), a.e. x ∈ R
N , for some

functions hN ∈ LN (RN ) and h p ∈ L p(RN ),

for all k ∈ N. Since (3.2) holds for ψk , for all k ∈ N, passing to the limit as k → +∞, using
properties (i) − (i i) above and the Lebesgue’s dominated convergence theorem we obtain
that (3.2) holds for all ψ ∈ X . This together with item (iv) of Lemma 3.1 imply that u0 is a
critical point of I .

In what follows it will be proved that u0 �= 0. Suppose that u0 = 0. By using that �+ is
bounded,we obtain from Lemma 3.2 that

∫
�+ c(x)F(un) = on(1). Thus from (1.1) we have

c + on(1) = I (un) ≥ a1
p

‖un‖p
1,p + 1

N
‖un‖N1,N −

∫

�+
c(x)F(un) dx

≥ 1

N
‖un‖N1,N + on(1).

Now, we can proceed as in [2] to get that

lim
n→+∞

∫

�+
c(x) f (un)un dx = 0.

Since I ′(un)un = on(1), it follows from (k1) and the previous limit that

on(1) ≥ a1‖un‖p
1,p + ‖un‖N1,N ,

which implies that ‖un‖ = ‖un‖1,p + ‖un‖1,N → 0. Thus, un → 0 strongly in X which
provides that c = 0. This contradicts (2.16) and the result is proved. ��
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