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Abstract
In this paper we consider a nonlinear viscoelastic beam with a linear delay term and infinite
memory term. The well posedness of solutions is proved using the semigroup method. We
establish a general decay results by using minimal and general conditions on the relaxation
function, fromwhich the usual exponential and polynomial decay rates are only special cases.
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1 Introduction

In this paper, we consider the following one-dimensional version of a systemwhich describes
the vibrations of shallow shells with time delay and infinite memory term:{

utt − [g(u, w)]x + α1ut + α2ut (t − τ) = 0 in Q,

Dwt t + wxxxx − [ f (u, w)]x + k (x) g(u, w) + h ∗ wxxxx = 0 in Q,
(1)

where Q = I × R+, I =]0, L[ is an interval, ∂ I its boundary (∂ I = {0} ∪ {L}), � =
{0} × R+ ∪ {L} × R+, D is the operator I − ∂2x . The functions f and g are defined by:

f (u, w) = 2

1 − μ

[
wx

(
ux + 1

2
w2 + k(x)w

)]
, (2)

g(u, w) = 2

1 − μ

[
ux + 1

2
w2 + k(x)w

]
. (3)

In (1), subscripts mean partial derivatives, the space variable x runs in the interval 0 < x < L
and t denotes the positive time variable. The functions u = u(x, t) and w = w(x, t) are,
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respectively, the longitudinal and transversal displacements of the beam at the point x at time
t . Additionally, μ is a constant, 0 < μ < 1 and k = k(x) represents the curvature of the
beam at the point x.

In the system (1),α1ut represents a frictional damping. The time delay is given byα2ut (t−
τ), where α1, α2, τ are positive constants.

In (1), (h ∗ u)(t) is defined by

(h ∗ u)(t) =
∫ ∞

0
h(t − s)u(x, s)ds.

The viscoelastic damping term that appears in the equations describes the relationship
between the stress and the history of the strain in the beam, according to Boltzmann theory.
The function h represents the kernel of the memory term or the relaxation function.

The system (1) is subjected with the boundary conditions

w(0, t) = w(L, t) = 0,

wx (0, t) = wx (L, t) = 0,

u(0, t) = u(L, t) = 0, t ∈ R
∗+ (4)

and the initial conditions

(u(x, 0), ut (x, 0), w(x,−s), wt (x, 0)) = (u0(x), u1(x), w0(x), w1(x)) , (x, s) ∈ Q. (5)

Themain purpose about problem (1)–(5) is to deal with the well posedness and asymptotic
behavior of solutions. Before stating and proving our results, let us recall some other results
related to our work.

Several authors have studied the Mindlin–Timoshenko system of equations (see, e.g.,
[16]). This Model is a widely used and fairly complete mathematical model for describing
the transverse vibrations of beams. It is a more accurate model than the Euler-Bernoulli one,
since it also takes into account transverse shear effects.

For a beam of length L > 0, this one-dimensional nonlinear system reads as

h3
0

12
φt t − φxx + k [φ + ψx )] = 0, in Q,

ρhψt t − k [φ + ψx )]x +
[
ψx

(
ηx + 1

2
ψ2

x

)]
x

= 0, in Q,

ρhηt t −
[
ηx + 1

2
(ψx )

2
]

x
= 0, in Q, (6)

where Q = (0, L) × (0, T ) and T is a given positive time. Here, the unknown φ = φ(x, t)
represent the angle of rotation. The parameter k is the so called modulus of elasticity in shear.
It is given by the expression k = k̂ Eh0/2(1 + ε), where k̂ is a shear correction coefficient,
E is the Young’s modulus and ε is the Poisson’s ratio, 0 < ε < 1/2.

For Mindlin–Timoshenko system, there is a large literature, addressing problems of
existence, uniqueness and asymptotic behavior in time when some damping effects are
considered, as well as some other important properties (see [13, 26, 28] and references
therein).
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When one assumes the linear filament of the beam to remain orthogonal to the deformed
middle surface, the transverse shear effects are neglected, and one obtains, from theMindlin–
Timoshenko system of equations, the following von Kármán system (see [28]).

{
ρh0Dψt t + ψxxxx − [

ψx (ηx + 1
2ψ

2
x )
]

x = 0, in ]0, L[×R
∗+,

ρhηt t − [ηx + 1
2 (ψx )

2]x = 0, in ]0, L[×R
∗+.

(7)

There is also an extensive literature about system (7) (see [13, 18, 26, 27, 38, 51, 53–56]
and references therein).

Lagnese and Leugering [27] considered a one-dimensional version of the von Kármán
system describing the planarmotion of a uniform prismatic beam of length L . More precisely,
in [27] the following system was considered:

{
ψt t + ψxxxx − h0ψxxtt − [

ψx (ηx + 1
2ψ

2
x )
]

x = 0 in ]0, L[×R
∗+

ηt t − [
ηx + 1

2 (ψx )
2
]

x = 0 in ]0, L[×R
∗+

(8)

In [27], suitable dissipative boundary conditions at x = 0, x = L and initial conditions at
t = 0 were given and the stabilization problem was studied.

In [4], Araruna et al. have showed how the so called von Kármán model (8) can be
obtained as a singular limit of a modifiedMindlin–Timoshenko system (6) when the modulus
of elasticity in shear k tends to infinity, provided a regularizing term through a fourth order
dispersive operator is added. Introducing damping mechanisms, the authors also show that
the energy of solutions for this modified Mindlin–Timoshenko system decays exponentially,
uniformly with respect to the parameter k. As k −→ ∞, the authors obtain the damped von
Kármán model with associated energy exponentially decaying to zero as well.

The subject of stability of von Kármán system has received a lot of attention in the last
years, see [11, 12, 18, 18, 25, 26, 33, 39, 49, 50, 52] and references therein.

Delay effects are very important because most natural phenomena are in many cases very
complicated and do not depend only on the current state but also on the past history of the
system. The presence of delay can be a source of instability. In recent years, the stabilization
of PDEs with delay effects has draw attention for many author and become an active area of
research, see [11, 15, 24, 46–48, 57, 59–61].

For the stability of other kind of wave equation, let us mention the following problem:

utt (x, t) − �u(x, t) +
∫ t

0
h(t − s)�u(x, s)ds

+α1h1(ut (x, t)) + α2h2(ut (x, t − τ)) = 0, in � × R+,

u(x, t) = 0, in  × R+,

u(x, 0) = u0(x) ut (x, 0) = u1(x), in �,

ut (x, t − τ) = f0(x, t − τ), in �×]0, τ [, (9)

where� is a bounded domain inRn , n ∈ N, with a smooth boundary ∂� = , h is a positive
non-increasing function defined onRn , h1 and h2 are two functions, τ > 0 is a time delay, α1

and α2 are positive real numbers and the initial data (u0, u1, f0) belong to a suitable function
space.

In the case h ≡ 0, problem (9) has been studied by many authors (see [6–8, 10, 46, 61]).
For a wider class of relaxation functions, Messaoudi [36, 37] considered

utt − �u +
∫ t

0
h(t − s)�u(s)ds = b | u |γ u, (10)
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for γ > 0 and b = 0 or b = 1, and the relaxation function satisfies

h′(t) ≤ −ζ(t)h(t), (11)

where ζ is a differentiable nonincreasing positive function. He established a more general
decay result, from which the usual exponential and polynomial decay results are only special
cases. Such a condition was then employed in a series of papers, see for instance [3, 22, 23,
41, 42, 52].

Recently, Mustafa and Messaoudi [45] studied the problem (10) with b = 0 for the
relaxation functions satisfying

h′(t) ≤ −H(h(t)), (12)

where H is a nonnegative function, with H(0) = H ′(0) = 0 and H is strictly increasing and
strictly convex on ]0, k[ for some k0 > 0. The authors showed a general relation between the
decay rate for the energy and that of the relaxation function h without imposing restrictive
assumptions on the behavior of h at infinity. On the other hand, a condition of the form
(12) where H is a convex function satisfying some smoothness properties, was introduced
by Alabau-Boussouira and Cannarsa [2] and used then by several authors with different
approaches. We refer to [32] where not only general but also optimal result was established
by Lasiecka and Wang.

The main objective of this work is to investigate the problem (1) with the following very
general class of relaxation functions

h′(t) ≤ −ζ(t)H(h(t)), (13)

where H is increasing and convex without any additional constraints on H and the coef-
ficients. We will establish a general decay rate for the energy associated to the system for
linear damping, time delay terms and finite memory. We would like to see the influence of
frictional and viscoelastic dampings on the rate of decay of solutions in the presence of linear
degenerate delay term.

To prove decay estimates, we shall pursue a strategy based on an adaptation of non linear
differential inequalities technique developed in [40, 43, 44] and we use a perturbed energy
method and some properties of convex functions which were introduced and developed by
many authors [1, 9, 14, 17, 30, 31, 34].

Our work is organized as follows. In the next section, we prepare some material needed
in the proof of our result, like some lemmas (Poincaré’s and Young’s inequalities) and some
useful notations. We introduce the different functionals by which we modify the classical
energy to get an equivalent useful one. In Sect. 4, we state and prove the well-posedness of
the problem. Finally, in Sect. 5, we will prove our main results concerning the exponential
decay of the energy associated to the solutions of the problem.

2 Statement of results

In order to deal with the delay feedback term, motivated by [46, 47], we define the following
new dependent variables η and z:

z(x, t, p) = ut (x, t − pτ) in Q × (0, 1),
η(x, t, s) = w(x, t) − w(x, t − s) inQ × R+,

(14)
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consequently, we obtain

η(x, t, 0) = 0 in Q,

η(x, t, s) = 0 in �×R
2+,

η0(x, s) := w0(x) − w(x,−s) in Q×R+,

z(x, t, 0) = ut (x, t) in Q,

z(x, 0, p) = z0(x,−pτ) in I × (0, 1) ,

(15)

clearly, (14) gives

τ zt (x, t, p) − z p(x, t, p) = 0 in Q × (0, 1),
ηt (x, t, s) + ηs(x, t, s) − wt (x, t) = 0 inQ × R+,

(16)

where z p = ∂pz and ηs = ∂sη.
Therefore, problem (1)–(5) is equivalent to⎧⎪⎪⎨
⎪⎪⎩

utt − [g(u, w)]x + α1ut + α2z(1) = 0 in Q,

Dwt t + lwxxxx − [ f (u, w)]x + g(u, w) + ∫∞
0 h(s)ηxxxx (s)ds = 0 inQ,

τ zt (p) − z p(p) = 0 in Q × (0, 1),
ηt (s) + ηs(s) − wt = 0 in Q × R+,

(17)

where l = 1 − ∫∞
0 h(s)ds, with boundary conditions

u(x, t) = 0 in �,

w(x, t) = wx (x, t) = 0 in �,

η(x, t, s) = ηx (x, t, s) = 0 in �×R
2+,

(18)

and initial conditions

(u(x, 0), ut (x, 0)) = (u0(x), u1(x)) on I ,
(w(x,−s), wt (x, 0)) = (w0(x, s), w1(x)) in Q,

z0(x, p) = z(x,−pτ) in I × (0, 1) ,

η0(x, s) = w0(x) − w(x,−s) in Q.

(19)

In what follow, we assume that the function k belong to the sobolev space H1(0, L).

3 Preliminaries

In this section, we state our stability results for problem (17)–(19). For this purpose, we start
with the following hypotheses:

(H1) h : R+ → R+ is a non-increasing differentiable function such that h(0) > 0 and

l = 1 −
∫ +∞

0
h(s)ds > 0. (20)

Also assume that there exist a positive constant αsuch that

h′(s) ≤ αh(s), ∀s ≥ 0, (21)

(H1) There exists an increasing strictly convex function G : R+ → R+ of class C1(R+) ∩
C2(]0,+∞[) satisfying

G(0) = G ′(0) = 0 and lim
t→+∞ G ′(t) = +∞
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such that ∫ +∞

0

h(s)

G−1(−h′(s))
ds + sup

s∈R+

h(s)

G−1(−h′(s))
< +∞. (22)

Remark 1 The condition (22) introduced in [19] is satisfied by any positive function h of
class C1(R+) with h′ < 0 and h is integrable on R+ (see [19–21] for explicit examples).

C and c denote some general positive constants, whichmay be different in different estimates.

3.1 Functional setting and assumptions.

In order to prove the well-posedness of (17) by using the semigroups theory, we introduce
some functional spaces.

Let us introduce the energy space H by

H = H1
0 (I ) × L2(I ) × H2

0 (I ) × H1
0 (I ) × L2(I × (0, 1)) × Lh(I )

where Lh(I ) is the weighted Sobolev space defined by

Lh(I ) =
{
v ∈ L2 (0,∞; H2

0 (I )
) |

∫ ∞

0
h(s) ‖vxx (s)‖2 ds < ∞

}
.

The space Lh(I ) is endowed with the inner product

〈v, v〉h =
∫ ∞

0
h(s) 〈vxx (s), vxx (s)〉 ds.

Also, we denote by 〈〈., .〉〉 the natural inner product on the space L2(I × (0, 1)), we note
that the norms∫ L

0

∫ 1

0
z2(x, t, p)dpdx and

∫ L

0

∫ 1

0
e−2τ pz2(x, t, p)dpdx

are equivalent in L2(I × (0, 1)).
Let ξ be any positive number which satisfy

α2τ < ξ < (2α1 − α2)τ.

Also, we define

L∗
h(0, L) =

{
v ∈ L2 (0,∞; (H4 ∩ H2

0

)
(I )

) |
∫ ∞

0
h(s) ‖vxx (s)‖2 ds < ∞

}
.

H is endowed with the norm

‖U ‖H = 2

1 − μ
‖ux‖2 + ‖ut‖2 + l ‖wxx‖2 + ‖w‖2 + ‖wt x‖2 + ξ |||z|||2 + h ◦ ηxx

(23)

where

U = (u, ut , w,wt , z, η)

|||z|||2 =
∫ 1

0
e−2τ p ‖z (p)‖2 dp
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and

h ◦ ηxx =
∫ ∞

0
h(s) ‖ηxx (s)‖2 ds.

3.2 Energy identity

We start by the following lemma:

Lemma 1 For (h, φ) ∈ (
C 1 ∩ L1

)
(R+) × C 1 (R), we have

2 (h ∗ φ) φt = d

dt

{
−
∫ ∞

0
h(s) (φ(t) − φ(t − s))2 ds + h∞ |φ(t)|2

}

+
∫ ∞

0
h(s) (φ(t) − φ(t − s))2 ds (24)

Lemma 2 Assume that (ψ,ψt , η, ηt , z) is a strong solution of the problem (17)-(19). Then
we have

ξ

τ

d

dt

∫ L

0

∫ 1

0
z2(x, p, t)dpdx = − ξ

2τ

∫ L

0

∫ 1

0

∂

∂ p
z2(x, p, t)dpdx

= ξ

2τ

∫ L

0

{
z2(x, 0, t) − z2(x, 1, t)

}
dx . (25)

Proof Wemultiply the third equation in (17) by ξ
τ

z and integrate the result over (0, L)×(0, 1)
with respect to p and x , respectively, to get

ξ

τ

d

dt

∫ L

0

∫ 1

0
z2(x, p, t)dρdx = − ξ

2τ

∫ L

0

∫ 1

0

∂

∂ p
z2(x, p, t)dpdx

= ξ

2τ

∫ L

0

{
z2(x, 0, t) − z2(x, 1, t)

}
dx

which gives (25). ��
We define the energy associated with the solution of system (17)–(19) by

2E (t) =
∫ L

0

{
u2

t + 2

1 − μ

(
ux + 1

2
w2 + k(x)w

)2

+ lw2
xx + w2

xt dx

}

+h ◦ ηxx + ξ

∫ L

0

∫ 1

0
e−2τ pz2 (x, p) dpdx (26)

where ξ is a positive constant such that

α2τ < ξ < (2α1 − α2)τ (27)

and α1 and α1 satisfying

α2 < α1. (28)

Lemma 3 Assume that (ψ,ψt , η, ηt , z) is a strong solution of the problem (17)–(19). Then
the derivative of E (t) satisfies
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2
dE (t)

dt
= h′ ◦ ηxx + (

ξ

2τ
− α1)

∫ L

0
u2

t (s)dx

− ξ

2τ

∫ L

0
z2(1)dx − α2

∫ L

0
z(1)ut dx . (29)

Moreover, for all t ≥ 0, we have

2
d

dt
E (t) = h′ ◦ ηxx + (

ξ

2τ
− α1)

∫ L

0
u2

t (s)dx

− ξ

2τ

∫ L

0
z2(1)dx − α2

∫ L

0
z(1)ut dx

≤ h′ ◦ ηxx + (
α2

2
− ξ

2τ
)

∫ L

0
z2(1)dx

+(
α2

2
+ ξ

2τ
− α1)

∫ L

0
u2

t (s)dx

≤ 0. (30)

Proof Multiplying the first equation in (17) by ut , the second by wt and the third by ξ z(p),

integrating by part and using boundary condition in (18) and Lemma 2 yields (30). ��

Lemma 4 (Jensen inequality) Let F be a convex function on [a, b], r1 : � → [a, b] and r2
are integrable functions on �, r2(x) ≥ 0, and

∫
�

r2(x)dx = k0 > 0, then Jensen’s inequality
states that

F

[
1

k0

∫
�

r1(x)r2(x)dx

]
≤ 1

k0

∫
�

F[r1(x)]r2(x)dx . (31)

4 Global well-posedness

In this section we show the existence and regularity of solutions of the one dimensional
viscoelastic Marguerre–Vlasov system (17)–(19).

Then problem (17)–(19) is reduced to the following problem for an abstract first-order
evolutionary equation:

Ut = AU + B(U )

U (0) = U0 = (u0, u1, w0, w1, z0, η0)
T , (32)

where U = (u, ut , w,wt , z, η)T , and

AU =

⎡
⎢⎢⎢⎢⎢⎢⎣

ut
2

1−μ
uxx − α1ut − α2z(1)

wt

D−1
[−lwxxxx − ∫∞

0 h(s)ηxxxx (s)ds
]

1
τ

z p(p)

−ηs(s) + w

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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BU =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
2

1−μ

[ 1
2w

2 + kw
]

x
0

D−1
[
[ f (u, w)]x − kg(u, w)

]
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

with the domain

D(A ) = (
H2 ∩ H1

0

)
(I ) × L2(I ) × (

H4 ∩ H2
0

)
(I ) × H2

0 (I )

×L2(I × H1 (0, 1)) × L∗
h(0, L)

Lemma 5 The operator A defined in (32) is the infinitesimal generator of a C0-semigroup
in H .

Proof For all U (t) ∈ D(A ), one has

〈AU ,U 〉H = −α1

∫ L

0
u2

t dx − α2

∫ L

0
ut z(1)dx + l

∫ L

0
wxxwt xx dx

−l
∫ L

0
wt .DD−1wxxxx dx −

∫ ∞

0
h(s)

∫ L

0
wt .DD−1ηxxxx (s)dsdx

+ ξ

τ

〈〈
z p, z

〉〉 − 〈ηs, η〉h + 〈w, η〉h . (33)

Integrating by parts, we have

− 〈ηs, η〉h = h′ ◦ ηxx (34)

and

2
〈〈

z p, z
〉〉 =

∫ L

0
u2

t dx −
∫ L

0
z2(1)dx . (35)

Plugging (34) and (35) in (33), we get

〈AU ,U 〉H = 2
d

dt
E (t) ≤ 0. (36)

which implies that A is dissipative.
Next we will prove that the operator (I − A ): D(A ) −→ H is onto, that is, given

F = ( f1, f2, f3, f4, f5, f6) ∈ H , we seek U = (u, ut , w,wt , z, η)T ∈ D(A ) such that

(I − A )U = F . (37)

Equivalently, one must consider the system given by

u − ut = f1, (18.1) (38)

ut − 2

1 − μ
uxx + α1ut + α2z(1) = f2, (18.2) (39)

w − wt = f3, (18.3) (40)

Dwt + lwxxxx +
∫ ∞

0
h(s)ηxxxx (s)ds = D f4, (18.4) (41)

τ z − z p(p) = τ f5, (18.5) (42)

η(s) + ηs(s) − w = f6 (18.6) . (43)
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By integrating the Eqs. (42) and (43), we obtain

z(1) = ut e
−τ + τ

∫ 1

0
eτ(1−r) f4 (r) dr (44)

and

μ(s) = (1 − e−s)(w − f1) +
∫ s

0
er−s f5(r)dr . (45)

Plugging (44) and (45) in (39) and (41) and keeping inmind that ut = u− f1 andwt = w− f3
we find that u and w fulfil the equations

{ (
1 + α1 + α2e−τ

)
u − 2

1−μ
uxx = β1,

l̃wxxxx + Dw = β2,
(46)

where

l̃ = l +
∫ ∞

0
h(s)(1 − e−s)ds > 0, (47)

β1 = f2 + (
1 + α1 + α2e−τ

)
f1 − α2τ

∫ 1

0
eτ(1−r) f4 (r) dr , (48)

β2 = D ( f3 + f4) −
∫ ∞

0
h(s)

∫ s

0
er−s f5xxxx (r)drds

+
∫ ∞

0
h(s)(1 − e−s)ds f1xxxx . (49)

Since x �→ ( f1, f5) ∈ H2
0 (I )× H2

0 (I ) then ( f1xxxx , f5xxxx ) ∈ H−2(I )× H−2(I ). To show
that β1 ∈ H−2(I ), we have to show that

x �−→
∫ ∞

0
h(s)

∫ s

0
er−s f5xxxx (r)drds ∈ H−2(I ).

Applying Cauchy–Shwarz inequality and Fubini’s theorem, we get

∥∥∥∥
∫ ∞

0
h(s)e−s

∫ s

0
er f5xx (r)drds

∥∥∥∥
2

=
∫ 1

0

(∫ ∞

0
h(s)e−s

∫ s

0
er f5xx (r)drds

)2

dx

≤
∫ 1

0

(∫ ∞

0
h(s)e−s

∫ s

0
er | f5xx (r)| drds

)2

dx

≤
∫ 1

0

(∫ ∞

0
er | f5xx (r)|

∫ ∞

r
h(s)e−sdrds

)2

dx

≤
∫ 1

0

(∫ ∞

0
h(r)er | f5xx (r)|

∫ ∞

r
e−sdsdr

)2

dx

≤
∫ 1

0

(∫ ∞

0
h(s) | f5xx (r)| ds

)2

dx

≤
(∫ ∞

0
h(s)ds

)∫ 1

0

∫ ∞

0
h(s) f 25xx (r)(s)dsdx

= h∞ ‖ f5‖2h < ∞.
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Thus

x �−→
∫ ∞

0
h(s)

∫ s

0
er−s f5xxxx (r)drds ∈ H−2(0, L) (50)

Therefore, by Lax–Milgram Theorem, system (38) admits a unique solution U ∈ D(A ).
Thismeans that (37) holds and consequently I −A is onto. Thus, by using the Lumer–Phillips
[35, Theorem 4.3], we deduce that the operatorA generates a C0 semigroup of contractions
in H . ��
Lemma 6 The operator B defined in (32) is locally Lipschitz in H .

Proof Let Ũ = (u, ut , w,wt , z, η) and Ũ = (̃u, ũt , w̃, w̃t , z̃, η̃) two elements of H . A
direct calculation shows that

B(U ) − B(Ũ ) = 2

1 − μ

(
0, F, 0,D−1G, 0, 0

)

where

F =
[
1

2

(
w2 − w̃2) + k (w − w̃)

]
x

and

G =
[
wx

(
ux + 1

2
w2 + k(x)w

)
− w̃x

(
ũx + 1

2
w̃2 + k(x)w̃

)]
x

−k

[
1

2

(
w2 − w̃2) + k (w − w̃)

]
.

So we have to estimate F and G in L2(I ) and H1
0 (I ) norm respectively.

Since k ∈ H1(I ), we can use the embedding H1(I ) ↪→ L∞(I ) to prove

‖F‖ =
∥∥∥∥12

(
w2 − w̃2) + k(x) (w − w̃)

∥∥∥∥
H1
0

= 1

2
‖(w − w̃) (w + w̃)‖H1

0
+ ‖k(x) (w − w̃)‖H1

0

≤ C
(‖wxx‖ + ‖w̃xx‖ + ‖k‖H1

) ‖wx − w̃x‖
≤ C

(‖U ‖H ,
∥∥Ũ ∥∥

H

) ∥∥U − Ũ
∥∥
H

. (51)

Now, let

G1 = D−1∂x

[
wx

(
ux + 1

2
w2 + k(x)w

)
− w̃x

(
ũx + 1

2
w̃2 + k(x)w̃

)]
(52)

Taking into account that the operator D−1∂x is bounded from L2(I ) into H1
0 (I ), we can

write

‖G1‖H1
0

≤ C

∥∥∥∥wx

(
ux + 1

2
w2 + k(x)w

)
− w̃x

(
ũx + 1

2
w̃2 + k(x)w̃

)∥∥∥∥ . (53)

Adding and subtracting the term w̃x
(
ux + 1

2w
2 + k(x)w

)
inside the norm on the right hand

side of (27) and proceed with the same manner, we find that

‖G1‖H01 ≤ C
(‖U ‖H ,

∥∥Ũ ∥∥
H

) ∥∥U − Ũ
∥∥
H

.
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Finally, let

G2 =
[
1

2

(
w2 − w̃2) + k(x) (w − w̃)

]
x
.

Similarly, have

‖G2‖ ≤ C
(‖U ‖H ,

∥∥Ũ ∥∥
H

) ∥∥U − Ũ
∥∥
H

. (54)

Then the operatorB is locally Lipschitz inH . So problem (17)–(19) admits a local solution.
The proof is hence complete. ��

The boundedness of the energy in (30) allows to extend the solution on [0, T ] for an any
arbitrary T > 0, so we have shown:

Theorem 1 Assume that (H1) holds. Let U0 ∈ D(A ), then (17)–(19) has a unique solution

U ∈ C (R+, D(A )) .

5 General decay

In this section we consider a wider class of kernel functions, and we establish a general decay
result, where exponential and polynomial decay rates are special cases.

The main result of general decay is the following.

Theorem 2 Assume that (20) hold such that (21) hold or there exists a positive constant M
such that

sup
s>0

∫ L

0
η20xx (s)dx ≤ M, ∀s ∈ R+, (55)

then there exists positive constants c′, c′′ and ε0 for which E satisfies

E (t) ≤ c′′e−c′t ,∀t ∈ R+, (56)

or

E (t) ≤ c′′G−1
1 (c′t),∀t ∈ R+, (57)

where

G1(s) =
∫ 1

s

dr

rG ′(ε0r)
, s ∈ (0, 1],

Remark 2 The previous theorem shows that exponential decay holds when (20) holds, oth-
erwise, if (21) holds, we get a weak decay of energy. For precise examples illustrating (57)
see [19–21].

To prove Theorem 2, we need some useful lemmas.

Lemma 7 The following inequalities holds
(∫ ∞

0
h(s)μ(s)ds

)2

≤ h∞
∫ ∞

0
h(s)μ2(s)ds, (58)

(∫ ∞

0
h(s)μ(s)ds

)2

≤ −h(0)
∫ ∞

0
h′(s)μ2(s)ds. (59)
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Proof For inequality (58), we have
(∫ ∞

0
h(s)μ(s)ds

)2

=
(∫ ∞

0

√
h(s)(

√
h(s)μ(s)ds

)2

.

Cauchy–Schwarz inequality leads to
(∫ ∞

0
h(s)μ(s)ds

)2

≤
∫ ∞

0
h(s)ds

∫ ∞

0
h(s)μ2(s)ds.

Similarly, we prove (59) by replacing
√

h(t − s) by
√−h′(t − s). ��

Let F be the functional defined by

F (t) = λE (t) + δ1I (t) + δ2I2(t) + δ3I3 (t) (60)

where

I1(t) = =
∫ L

0
u.ut + w.Dwt dx, (61)

I2(t) = −
∫ L

0
wt

∫ ∞

0
h(s)η(s)dsdx, (62)

I3(t) =
∫ L

0

∫ 1

0
e−2τ pz(p)dpdx, (63)

E (t) is defined in (26), λ > 0, δ1, δ2 and δ3 are positive constants that will be chosen later.
The following proposition gives the equivalence between E (t) and the functional F (t).

Proposition 1 Assume that (H1) holds, then there exists two positive constants β1, β2 such
that

β1E (t) ≤ F (t) ≤ β2E (t). (64)

Proof To compare F (t) with E (t), we have to estimate the terms I (t), J (t) and K (t)
of the right hand side of (60) and show that.

| F (t) − λE (t) |≤ c∗E (t), c∗ > 0.

From (61), (62) and (63), we obtain
• Estimate for I1(t)
Using Poincaré’s and (72, we obtain

δ1 |I1(t)| = δ1

∣∣∣∣
∫ L

0
ut u + Dwt .wdx

∣∣∣∣
≤ δ1

2

∫ L

0
u2

t dx + δ1

2

∫ L

0
u2dx + δ1

2

∫ L

0
w2

t dx

+δ1

2

∫ L

0
w2

xt dx + δ1

2
L2

∫ L

0
w2

xx dx

≤ c1E (t). (65)

where c1 is a positive constant.
• Estimate for I2(t)
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Using Poincaré’s and (58, we obtain

δ2 |I2(t)| = δ2

∣∣∣∣
∫ L

0
Dwt

∫ ∞

0
h(s)μ(s)dsdx

∣∣∣∣
≤ δ2

2

∫ L

0
w2

t dx + δ2

2

∫ L

0
w2

xt dx

+δ2

2
L2

∫ L

0
w2

xx dx + Ch ◦ ηxx

≤ c2E (t). (66)

where c2 is a positive constant.
• Estimate for I3(t) := ∫ L

0

∫ 1
0 e−2τ pz2dpdx

Since I3(t) defines a norm in L2(0, L; L2(0, 1)) which is equivalent to the one induced
by L2(0, L; L2(0, 1)), then we have

δ3 |I3(t)| ≤ δ3

∫ L

0

∫ 1

0
e−2τ pz2dpdx ≤ δ3

∫ L

0

∫ 1

0
z2dpdx ≤ c3E (t), (67)

where c3 is a positive constant.
According to (65), (66) and (67), we have

| F (t) − λE (t) |≤ c∗E (t), c∗ > 0,

where

c∗ = max {c1, c2, c3} .

Therefore, we obtain

| F (t) − λE (t) |≤ c∗E (t),

that is

(λ − c∗)E (t) ≤ F (t) ≤ (λ + c∗)E (t).

So, we choose λ large enough such that β1 = λ− c∗ > 0, β2 = λ+ c∗ > 0. Then (64) holds
true.

This completes the proof. ��
In order to proof the main theorem, we need some additionals lemmas.

Lemma 8 Suppose that (ψ,ψt , η, ηt , z) is the solution of (17)–(19). Then the derivative of
the functional I1(t) satisfies

d

dt
I1(t) ≤ Cε

∫ L

0
u2

t dx +
∫ L

0
w2

t dx +
∫ L

0
w2

xt dx − (l − εC)

∫ L

0
w2

xx dx

−
(

8

1 − μ
− εC

)∫ L

0

(
ux + 1

2
w2 + kw

)2

dx

+Cε

∫ L

0
z2(1)dx + Cεh ◦ ηxx . (68)

where ε is an arbitrary positive constant.
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Proof Multiplying the first equation in (17) by u, the second by w and taking account that
d
dt

∫ L
0 ht hdx = ∫ L

0

(
htt h + h2

t

)
dx, then integrating by part, we get

0 = − d

dt
I1(t) +

∫ L

0
u2

t dx +
∫ L

0
w2

t dx +
∫ L

0
w2

xt dx − l
∫ L

0
w2

xx dx

− 8

1 − μ

∫ L

0

(
ux + 1

2
w2 + kw

)2

dx +
∫ L

0
(α1ut + α2z(1)) udx

+
∫ L

0
wxx

∫ ∞

0
h(s)ηxx (s)dsdx . (69)

Using Young’s and Poincaré’s inequalities, the two last terms are estimated by

∫ L

0
(α1ut + α2z(1)) udx ≤ ε

∫ L

0
u2dx + Cε

∫ L

0
u2

t dx + Cε

∫ L

0
z2(1)dx (70)

and using (58), we arrive at

∫ L

0
wxx

∫ ∞

0
h(s)ηxx (s)dsdx ≤ ε

∫ L

0
w2

xx dx + Cεh ◦ ηxx . (71)

Now to estimate
∫ L
0 u2dx , we have

∫ L

0
u2dx ≤ L2

∫ L

0
u2

x dx ≤ L2
∫ L

0

(
ux + 1

2
w2 + k(x)w

)2

dx

+L6
∫ L

0
w4

xx dx + L6 ‖k‖L∞
∫ L

0
w2

xx dx

≤ L2
∫ L

0

(
ux + 1

2
w2 + k(x)w

)2

dx +
(

L6CE (0)

4
+ L6 ‖k‖L∞

)∫ L

0
w2

xx dx

≤ C

{∫ L

0

(
ux + 1

2
w2 + k(x)w

)2

dx +
∫ L

0
w2

xx dx

}
. (72)

Plugging (70), (71) and (72) in (69) this proves (68). ��

Lemma 9 Assume that (ψ,ψt , η, ηt , z) is the solution of (17)–(19). Then the derivative of
the functional I2(t) satisfies

d

dt
I2(t) ≤ − (h∞ − 3ε)

∫ L

0
w2

t dx − (h∞ − ε)

∫ L

0
w2

t x dx + (
ε + ε2

)
C
∫ L

0
w2

xx dx

+Cε

∫ L

0

(
ux + 1

2
w2 + k(x)w

)2

dx − Cεh′ ◦ ηxx + Cεh ◦ ηxx . (73)

where ε is an arbitrary positive constant.

Proof Multiplying the second equation in (18) by
∫∞
0 h(s)μ(s)ds and integrating by parts,

we get
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0 =
∫ L

0
Dwt t

∫ ∞
0

h(s)μ(s)dsdx + l
∫ L

0
wxx

∫ ∞
0

h(s)μxx (s)dsdx

+
∫ L

0
f (u, w)

∫ ∞
0

h(s)ηx (s)dsdx +
∫ L

0
k〈(u, w)wdx +

∫ L

0

(∫ ∞
0

h(s)ηxx (s)ds

)2
dx .

(74)

For the first term in the right hand side of (74), we have
∫ L

0
Dwt t

∫ ∞

0
h(s)μ(s)ds = − d

dt
J (t) −

∫ L

0
Dwt

d

dt

∫ ∞

0
h(s)μ(s)dsdx . (75)

In the other hand, we also have

d

dt

∫ ∞

0
h(s)η(s)ds = d

dt

∫ ∞

0
h(s) (w(t) − w(t − s)) ds

= d

dt

∫ t

−∞
h(t − s) (w(t) − w(s)) ds

=
∫ t

−∞
h′(t − s) (w(t) − w(t − s)) + h∞wt

=
∫ ∞

0
h′(s)η(s)ds + h∞wt . (76)

Plugging (76) in (75), we infer
∫ L

0
Dwt

∫ ∞

0
h(s)μ(s)dsdx = − d

dt
J (t) − h∞

∫ L

0
w2

t dx − h∞
∫ L

0
w2

t x dx

+
∫ L

0
Dwt

∫ ∞

0
h′(s)η(s)dsdx . (77)

Integrating by parts and applying Young’s inequality and (59), then Poincaré’s inequality, we
get

∫ L

0
Dwt

∫ ∞

0
h′(s)μ(s)dsdx =

∫ L

0
(wt − wt xx )

∫ ∞

0
h′(s)η(s)dsdx

≤ 2ε
∫ L

0
w2

t dx − Cεh′ ◦ ηxx . (78)

Using the embedding H1(I ) ↪→ L∞ (I ), we estimate − ∫ L
0 [ f (u, w)]x

∫∞
0 h(s)μ(s)dsdx

as follows

−
∫ L

0
[ f (u, w)]x

∫ ∞

0
h(s)μ(s)dsdx

= − 2

1 − μ

∫ L

0
wx

(
ux + 1

2
w2 + k(x)w

)∫ ∞

0
h(s)ηx (s)dsdx

≤ ε2
∫ L

0

[
wx

(
ux + 1

2
w2 + k(x)w

)]2
dx + Cεh ◦ ηxx

≤ Cε2 ‖wx‖L∞
∫ L

0

(
ux + 1

2
w2 + k(x)w

)2

dx + Cεh ◦ ηxx
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≤ Cε3
∫ L

0
w2

xx dx + Cε

∫ L

0

(
ux + 1

2
w2 + k(x)w

)2

dx

+Cεh ◦ ηxx . (79)

Similarly, we estimate
∫ L
0 kg(u, w)wdx using the umbedding H1(I ) ↪→ L∞ (I ).

Gathering (77), (78) and (79), (73) is proven. ��
Lemma 10 Suppose that (ψ,ψt , η, ηt , z) is the solution of (17)–(19). Then the time derivative
of the functional I3(t) satisfies

d

dt
I3(t) = e−2τ

τ

∫ L

0
z2(1) − 1

τ

∫ L

0
η2t dx − 2I3(t). (80)

Proof Multiplying the third equation in (17) by e−2τ pz and integrating over I × (0, 1), we
arrive at

0 = τ

∫ L

0

∫ 1

0
e−2τ pz(p)zt (p)dpdx −

∫ L

0

∫ 1

0
e−2τ pz(p)z p(p)dpdx

= τ

2

d

dt

∫ L

0

∫ 1

0
e−2τ pz2(p)dpdx − 1

2

∫ L

0

∫ 1

0
e−2τ p d

dp

[
z2(p)

]
dpdx

= τ

2

d

dt
I3(t) + 1

2

∫ L

0
u2

t dx − e−2τ

2

∫ L

0
z(1)2dx + τI3(t),

which gives (80) ��
Proposition 2 Assume that (H1) and (H2) hold, then there exists two positive constants β1, β2

such that

d

dt
F (t) ≤ −β1E (t) + β2h ◦ ψxx . (81)

Proof By using (60) and combining (30), (68), (73) and (80), we get

d

dt
F (t) ≤ {−N1 (l − εC) + N2C

(
ε + ε2

)} ‖ψxx‖2

+{N1 − N2 (h∞ − 3ε)} ‖ψt‖2 +
{

N1Cε + λ(
ξ

2τ
+ α2

2
− α1)

}
‖ηt‖2

+{N1 − N2 (h∞ − ε)}
× ‖ψt x‖2 +

{
N1

(
εC − 8

1 − μ

)
+ C N2ε

}∥∥∥∥ux + 1

2
w2 + k(x)w

∥∥∥∥
2

−
(

N2Cε − λ

2

)
h′ ◦ ψxx + Cε (N1 + N2) h ◦ ψxx − 2I3(t)

+
{

N2Cε − e−2τ α1

τ
+ λ(

α2

2
− ξ

2τ
)

}
‖z(1)‖2 . (82)

We want to impose suitable conditions on the different parameters so that the coeffi-
cients on the right hand side of (82) are all strictly negative. That is to obtain the following
inequalities

N2C
(
ε + ε2

)
< N1 (l − εC) , (83)

N1 < N2 (h∞ − 3ε) , (84)
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N1 < N2 (h∞ − ε) , (85)

C N2ε < N1

(
8

1 − μ
− εC

)
, (86)

N2Cε <
λ

2
, (87)

N2Cε <
e−2τ α1

τ
− λ

(
α2

2
− ξ

2τ

)
, (88)

N1Cε < −λ

(
ξ

2τ
+ α2

2
− α1

)
. (89)

We observe that (83) and (84) will be satisfied if we choose ε > 0 small enough and such
that

ε < max

{
l

C
,

h∞
3

,
8

C (1 − μ)

}
.

To make (84) and (85) hold we can choose

N1 < N2 (h∞ − 3ε) .

Concerning (87), (88) and (89), we pick

λ = max

{
2N2Cε,− N2Cε

( α2
2 − ξ

2τ )
,− N1Cε

(
ξ
2τ + α2

2 − α1)
, c∗

}
,

This completes the proof. ��
We consider the following two cases.
Case I. H(t) is linear:
By multiplying (81) by ξ(t) and using (30), we get

d

dt
F (t)ξ(t) ≤ −β1ξ(t)E (t) + β2ξ(t)h ◦ ψxx

≤ −β1ξ(t)E (t) + β2hξ ◦ ψxx

≤ −β1ξ(t)E (t) − β2ah′ ◦ ψxx

≤ −β1ξ(t)E (t) − cE ′(t)

which gives, as ξ is nonincreasing,

d

dt
(F (t)ξ(t) + cE (t)) ≤ −β1ξ(t)E (t), ∀t ≥ t1.

Hence, using the fact that F (t)ξ(t) + cE (t) is equivalent to E (t), it is easy to see that

d

dt
(F (t)ξ(t) + cE (t)) ≤ −β1ξ(t)(F (t)ξ(t) + cE (t)), ∀t ≥ t1.

for some β1 > 0. Then

(F (t)ξ(t) + cE (t)) ≤ γ2e
−β1

∫ t
t1

ξ(s)ds
, ∀t ≥ t1

from which we deduce

E (t) ≤ γ2e
−β1

∫ t
t1

ξ(s)ds
,∀t ≥ t1
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for some γ2 > 0.
Furthermore, using the continuity and boundedness of E (t) in [0, t1], we get

E (t) ≤ γ2e−β1
∫ t
0 ξ(s)ds, ∀t ≥ 0.

Case II. H(t) is nonlinear:
Next, with f (t) = ∫∞

t h(s)ds, we use the functional

K (t) =
∫ t

0
f (t − s) ‖ψxx (s)‖2I ds. (90)

Lemma 11 Suppose that (ψ,ψt , η, ηt , z) is the solution of ((17))–(19). The functional K
defined by (90) satisfies, for any ε > 0, the estimate

d

dt
K (t) ≤ (2ε − 1) h ◦ ψxx + ( f (t) + Cε) ‖ψxx‖2 . (91)

Proof By Young’s inequality and the fact f ′(t) = −h(t), we see that

d

dt
K (t) = f (0) ‖ψxx‖2 −

∫ t

0
h(t − s) ‖ψxx (s)‖2 ds

= −h ◦ ψxx − 2 〈ψxx , h � ψxx 〉 + f (t) ‖ψxx‖2 . (92)

But

− 2 〈ψxx , h � ψxx 〉 ≤ Cε ‖ψxx‖2 + 2εh ◦ ψxx , (93)

Combining (92) and (93), we obtain (91). ��
Let us introduce the functional

F̃ (t) = F (t) + σK (t),

where σ is a positive constant. Then we have

F̃ (t) ∼ E (t).

Therefore, it is always possible to pick N1 (in 82) and h large enough to get

d

dt
F̃ (t) ≤ −CE (t).

Integrating over (t0,∞), we get

C
∫ ∞

t0
E (s)ds ≤ F̃ (t0) < ∞. (94)

Next, let us define the functional L (t)

L (t) = q
∫ t

t0
‖ψxx (s) − ψxx (t − s)‖2I ds ,∀t ≥ t0.

where q > 0. Thanks to (94), we can always choose q such that

L (t) < 1,∀t ≥ t0. (95)

Next we define

Lh(t) = −
∫ t

t0
h′(s) ‖ψxx (t) − ψxx (t − s)‖2 ds, ∀t ≥ t0.
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Observe that

Lh(t) ≤ −CE ′(t),

for some positive constant C .
Since H is strictly convexe on (0, r ] and H(0) = 0 we have

H(θx) ≤ θ H(x), (θ, x) ∈ [0, 1] × (0, r ]. (96)

Using (H2), we get:

Lh(t) = 1

qL (t)

∫ t

t0
L (t)

(−h′(s)
)

q ‖ψxx (t) − ψxx (t − s)‖2 ds

≥ 1

qL (t)

∫ t

t0
L (t)ξ(s)H (h(s)) q ‖ψxx (t) − ψxx (t − s)‖2 ds

≥ ξ(t)

qL (t)

∫ t

t0
H (L (t)h(s)) q ‖ψxx (t) − ψxx (t − s)‖2 ds,

Keeping in mind (95) and applying inequality (96) for θ := L (t) and x = h(s), yields

Lh(t) ≥ ξ(t)

qL (t)

∫ t

t0
H (L (t)h(s)) q ‖ψxx (t) − ψxx (t − s)‖2 ds. (97)

Applying Jensen’s inequality in (31) for r1(t) = L (t)h(s) and r2(s) = q ‖ψxx (t) − ψxx

(t − s)‖2 , we obtain

Lh(t) ≥ ξ(t)

qL (t)

∫ t

t0
H (L (t)h(s)) q ‖ψxx (t) − ψxx (t − s)‖2 ds

≥ ξ(t)

q
H

(
1

L (t)

∫ t

t0
L (t)h(s)q ‖ψxx (t) − ψxx (t − s)‖2 ds

)

= ξ(t)

q
H

(∫ t

t0
h(s)q ‖ψxx (t) − ψxx (t − s)‖2 ds

)

= ξ(t)

q
H

(∫ t

t0
h(s)q ‖ψxx (t) − ψxx (t − s)‖2 ds

)
,

where H is an extention of H such that H is strictly increasing and strictly convexe C 2

function on (0,∞) and this leads to∫ t

t0
g(s)q ‖ψxx (t) − ψxx (t − s)‖2 ds ≤ 1

q
H

−1
(

qLg(t)

ξ(t)

)
.

So (81) becomes

F̃ (t) ≤ −β1E (t) + β2
1

q
H

−1
(

qLg(t)

ξ(t)

)
, ∀t > t0. (98)

Let ε0 < r , using the fact that E ′ ≤ 0, H
′
> 0, H

′′
> 0, we observe that the functional

N defined by

N (t) := H
′
(

ε0
E (t)

E (0)

)
F (t) + E (t),

is equivalent to E .
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Using (98), we find that N satisfies

d

dt
N (t) = ε0

E ′(t)
E (0)

H
′′
(

ε0
E (t)

E (0)

)
F (t) + H

′
(

ε0
E (t)

E (0)

)
F ′(t) + E ′(t)

≤ ε0
E ′(t)
E (0)

H
′′
(

ε0
E (t)

E (0)

)
F (t)

+H
′
(

ε0
E (t)

E (0)

)[
−β1E (t) + β2

1

q
H

−1
(

qLg(t)

ξ(t)

)]
+ E ′(t)

≤ −β1E (t)H
′
(

ε0
E (t)

E (0)

)

+β2

q
H

−1
(

qLg(t)

ξ(t)

)
H

′
(

ε0
E (t)

E (0)

)
+ E ′(t). (99)

Let us denote by G∗ the conjugate function of the convex function G defined by G∗(s) =
Supt∈R+(st − G(t)), then

st ≤ G∗(s) + G(t), (100)

and, thanks to the arguments given in [5, 9, 14, 29, 30]

G
∗
(s) = s(G

′
)−1(s) − G

[
(H

′
)−1(s)

]
, ∀s ≥ 0.

This and the definition of H give

H
∗
(s) = s(H

′
)−1(s) − H

[
(H

′
)−1(s)

]
, ∀s ≥ 0. (101)

Taking s := C2
q H

′ (
ε0

E (t)
E (0)

)
and t := H

−1
(

qL g(t)
ξ(t)

)
in (100), then making use of (99),

(100) and (101), we arrive at

d

dt
N (t)

≤ −β1E (t)H
′
(

ε0
E (t)

E (0)

)
+ H

[
H

−1
(

qLg(t)

ξ(t)

)]
+ H

∗
[

β2

q
H

′
(

ε0
E (t)

E (0)

)]
+ E ′(t)

≤ −β1E (t)H
′
(

ε0
E (t)

E (0)

)
+ qLg(t)

ξ(t)
+ H

∗
[

β2

q
H

′
(

ε0
E (t)

E (0)

)]
+ E ′(t)

≤ −β1E (t)H
′
(

ε0
E (t)

E (0)

)
+ qLg(t)

ξ(t)
+ β2ε0

q

E (t)

E (0)
H

′
(

ε0
E (t)

E (0)

)
+ E ′(t). (102)

Next, multiplying (102) by ξ(t) and using the fact that ε0
E (t)
E (0) < r , H

′ (
ε0

E (t)
E (0)

)
=

H ′
(
ε0

E (t)
E (0)

)
, we get

ξ(t)
d

dt
N (t) ≤ −β1E (t)ξ(t)H

′
(

ε0
E (t)

E (0)

)
+ qLg(t)

+β2ε0

q
ξ(t)

E (t)

E (0)
H

′
(

ε0
E (t)

E (0)

)
+ ξ(t)E ′(t)

≤ −β1E (t)ξ(t)H
′
(

ε0
E (t)

E (0)

)
+ β2ε0

q
ξ(t)

E (t)

E (0)
H

′
(

ε0
E (t)

E (0)

)
− cE ′(t),

where c is a positive constant [58].
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Now, let us define the functional Ñ

Ñ (t) = N (t)ξ(t) + E (t).

It is not difficult to see that there exist positive constants ρ1 and ρ2 for which we have

ρ1Ñ (t) ≤ E (t) ≤ ρ2Ñ (t). (103)

Consequently, with an appropriate choice of ε0, then there exists a positive constant k such
that

d

dt
Ñ (t) ≤ −kξ(t)H

′
(

ε0
E (t)

E (0)

)
= −kξ(t)H2

(
ε0

E (t)

E (0)

)
, ∀t ≥ t0 (104)

where H2(s) = s H ′(ε0s).
Since H ′

2(s) = H ′(ε0s) + ε0s H ′′(ε0s), we use the strict convexity of H on [0, r), we
observe that H2 > 0, H ′

2 > 0 on (0, r ].
Defining now

R(t) = δ1Ñ (t)

E (0)
,

thanks to (103) and (104) we have E ∼ R and for a positive constant k̃

d

dt
R(t) ≤ −k̃ξ(t)H2(R(t)) , ∀t ≥ t0.

Then, integrating over (t0, t) yields

∫ t

t0

R′(s)
H2(R(s))

≤ −
∫ t

t0
k̃ξ(s)ds,

and this leads to
∫ ε0R (t0)

ε0R (t)

R′(s)
H ′(R(s))

≥ k̃
∫ t

t0
ξ(s)ds,

which gives us

R(t) ≤ 1
ε0

H−1
1

(̃
k
∫ t

t0
ξ(s)ds

)
,

where H1(t) = ∫ r
t

ds
s H ′(s) .

This completes the proof.
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