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Abstract
We construct a linear approximation of the solution to the surface quasi-geostrophic equation
in 2-dimensional Euclidean space, and obtain a convergence rate in the Lebesgue norm
between the solution and this approximation with respect to time. We also demonstrate that
the nonlinear term of the solution is bounded sharply by the same function of time.
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1 Introduction

This paper is concerned with the surface quasi-geostrophic equation.

⎧
⎪⎨

⎪⎩

∂tθ + (−�)α/2θ + (u · ∇)θ = 0, in (0,∞) × R
2,

u = (−R2θ, R1θ), in (0,∞) × R
2,

θ |t=0 = θ0, in R
2.

(1.1)

Here, θ : (0,∞) × R
2 → R is an unknown function, representing the potential temperature

of a fluid parcel at a point (t, x) in spacetime; and u represents the velocity of a fluid parcel.
R j = ∂ j (−�)−1/2 = F−1[ iξ j/|ξ | ]∗ is the j th Riesz transform; and α ∈ [1, 2]. We refer
to references [1, 3, 11, 16–18] for the physical meaning and derivation of the equations. We
will prove existence and uniqueness results for given initial data; and, under some slightly
stronger restrictions, we will consider the large-time behaviour of solutions.
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Let us recall several existing results related to the regularity of solutions. In the subcritical
case, α ∈ (1, 2], unique global existence and regularity can be shown, for initial data

θ0 ∈ L1 ∩ L p, p ∈
( 2

α − 1
,∞

]
,

by classical methods using the Banach fixed point theorem, similarly to [8, 13]. Global unique
existence and regularity for the subcritical case are also proven on the torus in [5].

In the critical case, α = 1, we can guarantee local existence of a solution for uniformly
continuous initial data (see [20], which studies the problem in the framework of Besov spaces
larger than L∞). The local smooth solutions are then extended to global smooth solutions,
as in the papers [2, 4, 15].

Finally, for the supercritical case, α ∈ [0, 1), the paper [7] proves global regularity for all
α ∈ [α0, 1), where α0 grows with respect to the size of the initial data. Global regularity for
large data in the supercritical case is an open problem.

In this paper, we discuss an optimal decay estimate of the nonlinear part of the solution in
the subcritical and critical cases. This is the first paper to prove such optimality for equations
with divergence-free flow. We also construct a linear approximation of the solution in L p .

We begin our study of (1.1) by defining the following function

Pα/2(t, x) = F−1
[
e−t |ξ |α]

(x), for t > 0, x ∈ R
2, (1.2)

which is the fundamental solution to the fractional heat equation, the linear part of (1.1). We
will use this new function to introduce the idea of mild solutions.

For this paper, we set the initial data as follows

θ0 ∈ W 1,1 ∩ W 1,∞, (1.3)

which provides us with sufficient regularity for global existence and smoothness of solutions
in the subcritical and critical cases.

Definition (Mild solution) A function θ is a mild solution of (1.1) if

θ(t) = Pα/2(t) ∗ θ0 −
∫ t

0
Pα/2(t − s) ∗ (u(s) · ∇)θ(s) ds, for all t > 0, (1.4)

lim
t→0+ θ(t) = θ0, in L p, for all p ∈ [1,∞), (1.5)

θ ∈ C([0,∞); L p(R2)), for all p ∈ [1,∞), (1.6)

θ ∈ C((0,∞);W 2,p(R2)) ∩ C1((0,∞); L p(R2)), for all p ∈ [1,∞]. (1.7)

We also define M , the “mass” of the solution θ as

M :=
∫

R2
θ0(x) dx,

and denote the linear part of θ by

U (t) := Pα/2(t) ∗ θ0.

We state an existence result for global solutions.

Proposition 1.1 Let α ∈ [1, 2] and θ0 ∈ W 1,1 ∩ W 1,∞. Then there exists a unique global
mild solution θ ∈ C([0,∞);W 1,p)∩C((0,∞);W 1,1∩W 1,∞) of (1.1), for all 1 ≤ p < ∞.
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The above proposition can be easily shown in the subcritical case α ∈ (1, 2] using the
Banach fixed point argument. In fact, for the subcritical case it is sufficient to set θ0 ∈ L1∩L p

with p ∈ ( 2
α−1 ,∞]. For existence in the critical case, we refer to [14, 15].

As a first step in creating a linear approximation of the solution, it is possible to prove
that, for 1 ≤ p ≤ ∞,

lim
t→∞ t

2
α

(
1− 1

p

)

‖θ(t) − MPα/2(t)‖L p = 0.

This explains that the L p-decay of the solution is essentially equivalent to that of the linear
solution. In this paper, we will extract the optimal decay of the nonlinear part of θ . Our result
reads as follows:

Theorem 1.2 Let α ∈ [1, 2], p ∈ [1,∞] and

bα,p(t) =
⎧
⎨

⎩

t
2
α

(
1− 1

p

)
+ 3

α
−1

if α ∈ (1, 2],
t
2
(
1− 1

p

)
+2

ln t if α = 1.
(1.8)

Let θ0 ∈ W 1,1 ∩W 1,∞, and let θ be a mild solution. Also assume |x |2θ0 ∈ L1(R2). Then we
have the following convergence:

bα,p(t)

∥
∥
∥
∥θ(t) − MPα/2(t) + ∇Pα/2(t) ·

∫

R2
yθ0(y) dy −

2∑

i, j=1

∂xi ∂x j Pα/2(t)
∫

R2
yi y jθ0 dy

+
∫ t

0
Pα/2(t − s) ∗ ∇ ·

(
(RU (s))U (s)

)
ds

∥
∥
∥
∥
p

→ 0, as t → ∞, (1.9)

where R := (−R2, R1). Furthermore, there exists θ0 such that the nonlinear component is
optimally bounded by bα,p(t) in the p = 2 case. That is

∥
∥
∥
∥

∫ t

0
Pα/2(t − s) ∗ ∇ ·

(
(RU (s))U (s)

)
ds

∥
∥
∥
∥
2


 1

bα,2(t)
(1.10)

for all sufficiently large t.

Our proof of (1.10) is fully self-contained, with all necessary work shown explicitly in this
paper. For the bound from above in (1.10), the proofmainly consists of carefully taking Besov
norms of the solution via Littlewood-Paley decomposition; and, in the case of the L p norm
for 1 ≤ p < 2, applying the Hardy–Littlewood–Sobolev and Grönwall inequalities. For the
bound from below, we force the initial data to take a shape resemblant of a Gaussian function
with a narrow support, and exploit this assumption to achieve the necessary inequalities.

The first term inside the norm of (1.9) is the solution θ . The second, third, and fourth
terms are a (Taylor-expanded) approximation of the linear term of θ . The final term is a
linear approximation of the nonlinear term in θ .

Remark 1.3 If the initial data θ0 is radially symmetric, the approximation of the nonlinear
term becomes 0 (see e.g. [9, page 46]). That is,

∫

R2
Pα/2(t − s) ∗ (RU (s) · ∇)U (s) ds = 0.
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Notation. For a function f we denote the Fourier transform of f as follows:

F[ f ](ξ) := f̂ (x) := 1

2π

∫

R2
e−i x ·ξ f (x) dx .

The inverse Fourier transform is then written as

F−1[ f̂ ](x) := 1

2π

∫

R2
eix ·ξ f̂ (ξ) dξ.

For the purpose of calculating inequalities, we will frequently omit the factor of 1/2π , as it
will have no influence on the proofs. Let S ′ = S ′(R2) be the space of tempered distributions.
Let P = P(R2) be the set of all polynomials.

2 Preliminaries

We recall the definition and some basic properties of Besov spaces, and write the L p-norm
decay of the solution, θ .

2.1 Besov spaces

We use the Littlewood-Paley decomposition of unity to define homogeneous Besov spaces.

Definition Let {φk}k∈Z be a set of non-negative measurable functions such that

1.
∑

k∈Z φ̂k(ξ) = 1, for all ξ ∈ R
2\{0},

2. φ̂k(ξ) = φ̂0(2−kξ),
3. supp φ̂k(ξ) ⊆ {ξ ∈ R

2 | 2k−1 ≤ |ξ | ≤ 2k+1}.
The Besov norm is then defined as follows. For f ∈ S ′/P , 1 ≤ p, q ≤ ∞, and s ∈ R,

‖ f ‖Ḃs
p,q

:=
∥
∥
∥
∥{2sk‖φ ∗ f ‖p}k∈Z

∥
∥
∥
∥
lq

.

Finally, the set Ḃs
p,q is defined as the set of distributions, f ∈ S ′/P , whose Besov norm is

finite.

We introduce the following propositions, and refer to [19] for their proofs.

Proposition 2.1 Let 1 ≤ p, q ≤ ∞, and s ∈ R. Then for f ∈ Ḃs+1
p,q ,

‖∇ f ‖Ḃs
p,q

≤ C‖ f ‖Ḃs+1
p,q

.

Proposition 2.2 Let 1 ≤ p ≤ ∞. Then for f ∈ Ḃ
2(1− 1

p )

1,1 ,

‖ f ‖Ḃ0
p,1

≤ C‖ f ‖
Ḃ
2(1− 1

p )

1,1

.

2.2 Lp-norm decay

Proposition 2.3 (Hardy–Littlewood–Sobolev [10]) Let 0 < α < n and 1 < p < r < ∞,
such that 1

r = 1
p − α

n . Then there exists a constant C > 0 such that

‖(−�)−α/2 f ‖Lr (Rn) ≤ C‖ f ‖L p(Rn).
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Proposition 2.4 Let n ∈ N, p ∈ [1,∞], k ∈ N, α ∈ [1, 2]. Then there exists C > 0 such
that, for all 1 ≤ j ≤ n, and t > 0,

‖∂kj Pα/2(t)‖L p(Rn) ≤ Ct
n
α
(1− 1

p )− k
α . (2.1)

The decay rate is easily obtained by a change of variables, recalling (1.2). The overall
boundedness is proven using the Hausdorff-Young inequality.

Proposition 2.5 Let θ0 ∈ W 1,1 ∩ W 1,∞, and 1 ≤ p ≤ ∞. Let θ be a solution to (1.1).

(i) For all α ∈ [1, 2], there exists C > 0 such that, for all t > 0,

‖θ(t)‖p ≤ C(t + 1)−
2
α
(1− 1

p )
. (2.2)

(ii) For α = 1, β > 0, there exists Cβ > 0 such that, for all t ≥ 1,

‖|∇|βθ(t)‖p ≤ Cβ t
−2(1− 1

p )−β
, (2.3)

where

|∇|βθ(t) := F−1[|ξ |β θ̂(t)].
For the proof of (i), see [6]. For the proof of (ii), see Proposition 4.3 in [12].

3 Large-time behaviour

We will now begin to discuss the large-time behaviour of the solution θ . Before beginning
our proof of Theorem 1.2, we begin with a less strong approximation of the solution. Results
similar to the belowhave been provenwith respect to the N -dimensional convection-diffusion
equations [8] and the critical Burger’s equations [13].

3.1 Approximation by the fractional heat kernel

Proposition 3.1 Let α ∈ [1, 2] and p ∈ [1,∞]. Let θ0 ∈ W 1,1 ∩ W 1,∞, and also assume
|x |θ0 ∈ L1. Then the solution θ to (1.4) satisfies

‖θ(t) − MPα/2(t)‖p ≤ Ct−
2
α
(1− 1

p )− 1
α , for all t ≥ 1. (3.1)

In order to prove the above proposition, it is useful to split the norm into linear and
nonlinear parts as follows:

‖θ(t) − MPα/2(t)‖p ≤ ‖Pα/2(t) ∗ θ0 − MPα/2(t)‖p

+
∥
∥
∥
∥

∫ t

0
Pα/2(t − s) ∗ (u(s) · ∇)θ(s) ds

∥
∥
∥
∥
p
.

We then prove the bound (3.1) in parts as two separate lemmas. The first concerns the linear
part, and has been adapted from Escobedo-Zuazua [8] to apply to the fractional heat kernel.

Lemma 3.2 [8] Let p ∈ [1,∞], and α ∈ [1, 2]. Let φ, |x |φ ∈ L1, with M := ∫

R2 φ(x) dx.
Then there exists C > 0, such that

‖Pα/2(t) ∗ φ − MPα/2(t)‖p ≤ C‖φ‖L1(R2;|x |)t
2
α
(1− 1

p )− 1
α . (3.2)
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Lemma 3.3 Let 1 ≤ p ≤ ∞, and α ∈ [1, 2]. Suppose that θ is a mild solution satisfying the
decay properties in Proposition 2.5. Then there exists C > 0 such that, for all t ≥ 1,

∥
∥
∥
∥

∫ t

0
Pα/2(t − s) ∗ (u(s) · ∇)θ(s) ds

∥
∥
∥
∥
p

≤ Cbα,p(t),

where bα,p is defined by (1.8).

Proof Step 1. (p ≥ 2 case) We will need to split the time interval into two halves, and handle
the α = 1 and α > 1 cases separately. The proof below is only for the p < ∞ case, as the
p = ∞ case is almost identical.

We utilise the L p decay of the solution and its derivative. For values t ∈ (0, 1], we can
increase the powers of s in our estimates by taking

‖θ(t)‖p ≤ ‖θ0‖p ≤ C, for all t > 0,

by which we ensure that the time-integral does not blow up locally.
We start on the second half of the time-interval, with α > 1. By the boundedness of the

Riesz transform,
∥
∥
∥
∥

∫ t

t/2
Pα/2(t − s) ∗ ∇ · (u(s)θ(s)) ds

∥
∥
∥
∥
p

≤
∫ t

t/2
‖∇Pα/2(t − s)‖1‖u(s)θ(s)‖p ds

≤
∫ t

t/2
C(t − s)−1/α‖θ(s)‖22p ds

≤ Ct−1/α+1t−
4
α
(1− 1

2p )

= Ct−
2
α
(1− 1

p )− 3
α
+1

.

In the α = 1 case,
∥
∥
∥
∥

∫ t

t/2
P1/2(t − s) ∗ ∇ · (u(s)θ(s)) ds

∥
∥
∥
∥
p

≤
∫ t

t/2
‖P1/2(t − s)‖1‖(u(s) · ∇)θ(s)‖p ds

≤
∫ t

t/2
C‖θ(s)‖2p‖∇θ(s)‖2p ds

≤ Ct−2(1− 1
p )−2

,

where we have used (2.3) to handle the derivative of θ .
For the first half of the time-interval, we will distinguish between the α > 1 and α = 1

cases when it becomes necessary. We will take the Fourier transform inside the norm, and
manipulate the resulting multipliers from the derivative and Riesz transform. In particular,
let us first note that the following Fourier multiplier can be written in the following forms

2∑

j=1

(−1) j ξ j
2

(η3− j

|η| + ξ3− j − η3− j

|ξ − η|
)

=
2∑

j=1

(−1) j ξ jη3− j

2

( 1

|η| − 1

|ξ − η|
)

=
2∑

j=1

(−1) j ξ jη3− j

2

|ξ − η|2 − |η|2
|η||ξ − η|(|ξ − η| + |η|)

=
2∑

j=1

(−1) j ξ jη3− j

2

ξ · (ξ − 2η)

|η||ξ − η|(|ξ − η| + |η|) .

(3.3)
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Now we begin estimating our L p norm.
∥
∥
∥
∥

∫ t/2

0
Pα/2(t − s) ∗ ∇ · (u(s)θ(s)) ds

∥
∥
∥
∥
p

=
∥
∥
∥
∥

∫ t/2

0

2∑

j=1

F−1
[
e−(t−s)|ξ |α

∫

R2
ξ j

(−1) j

2

(η3− j

|η| + ξ3− j − η3− j

|ξ − η|
)
θ̂ (s, ξ − η)θ̂(s, η) dη

]
ds

∥
∥
∥
∥
p

=
∥
∥
∥
∥

∫ t/2

0

2∑

j=1

(−1) j

2
F−1

[
e−(t−s)|ξ |α

∫

R2
ξ jη3− j

|ξ − η|2 − |η|2
|η||ξ − η|(|ξ − η| + |η|) θ̂(s, ξ − η)θ̂(s, η) dη

]
ds

∥
∥
∥
∥
p
.

We start with the p = 2 case. By the Plancherel theorem,
∥
∥
∥
∥

∫ t/2

0
Pα/2(t − s) ∗ ∇ ·

(
u(s)θ(s)

)
ds

∥
∥
∥
∥
2

≤
∥
∥
∥
∥

∫ t/2

0
|ξ |2e−(t−s)|ξ |α 1

2

∫

R2

|η||ξ − η| + |η|2
|η||ξ − η|(|ξ − η| + |η|)

∣
∣
∣θ̂ (s, ξ − η)θ̂(s, η)

∣
∣
∣ dη ds

∥
∥
∥
∥
2
.

The large multiplier inside the η integral is easily estimated from above by

2

|ξ − η| .

Next, we take the Littlewood-Paley decomposition of both θ functions:

θ̂ (s, ξ − η) =
∑

k∈Z
φ̂k(ξ − η)θ̂(s, ξ − η) =:

∑

k∈Z
θ̂k(s, ξ − η),

θ̂(s, η) =
∑

l∈Z
φ̂l(η)θ̂(s, η) =:

∑

l∈Z
θ̂l(s, η).

We also split the L2 norm by Hölder’s inequality.
∥
∥
∥
∥

∫ t/2

0
|ξ |2e−(t−s)|ξ |α 1

2

∫

R2

|η||ξ − η| + |η|2
|η||ξ − η|(|ξ − η| + |η|)

∣
∣
∣θ̂ (s, ξ − η)θ̂(s, η)

∣
∣
∣ dη ds

∥
∥
∥
∥
2

≤
∑

k,l∈Z

∫ t/2

0
‖|ξ |2e−(t−s)|ξ |α‖2

∥
∥
∥
∥

∫

R2

1

|ξ − η|
∣
∣
∣θ̂k(s, ξ − η)θ̂l(s, η)

∣
∣
∣ dη

∥
∥
∥
∥∞

ds

≤ Ct−
2
α
(1− 1

2 )− 2
α

∫ t/2

0

∑

k,l∈Z

1

2k
‖θ̂k(s)‖ 4

3
‖θ̂l(s)‖4 ds

≤ Ct−
2
α
(1− 1

2 )− 2
α

∫ t/2

0

∑

k,l∈Z
‖θk(s)‖ 4

3
‖θl(s)‖ 4

3
ds. (3.4)

The final step is obtained by applying the Hausdorff–Young inequality and the following
Hölder inequality

‖θ̂k(s)‖ 4
3

= ‖ψ̂k θ̂k(s)‖ 4
3

≤ ‖ψ̂k‖2‖θ̂k‖4 ≤ C2k‖θ̂k‖4,

where ψ̂k := φ̂k−1 + φ̂k + φ̂k+1. The above sum in (3.4) can be written as the product of
Besov norms of the solution θ . We give estimates for the necessary Besov norms next.
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Recall that θ is made up of a linear and nonlinear term. We will take the norms of each
separately, and will see that both hinge on the Besov norm of the fundamental solution, Pα/2.
We start with the linear term. Clearly

‖Pα/2(t) ∗ θ0‖Ḃ0
4
3 ,1

≤ ‖Pα/2(t)‖Ḃ0
4
3 ,1

‖θ0‖1 ≤ Ct−
1
2α ‖θ0‖1.

Let us now consider the Besov norms of the whole solution θ . In the following, we must
distinguish between the noncritical and critical cases. We start with the noncritical α ∈ (1, 2]
case.

‖θ(t)‖Ḃ0
4
3 ,1

≤ Ct−
1
2α +

∥
∥
∥
∥

∫ t

0
Pα/2(t − s) ∗ (u(s) · ∇)θ(s) ds

∥
∥
∥
∥
Ḃ0
4
3 ,1

≤ Ct−
1
2α +

∫ t/2

0
‖∇Pα/2(t − s)‖Ḃ0

4
3 ,1

‖u(s)θ(s)‖1 ds

+
∫ t

t/2
‖∇Pα/2(t − s)‖Ḃ0

1,1
‖u(s)θ(s)‖ 4

3
ds

≤ Ct−
1
2α +

∫ t/2

0
C(t − s)−

1
2α − 1

α ‖u(s)θ(s)‖1 ds

+
∫ t

t/2
C(t − s)−1/α‖u(s)θ(s)‖ 4

3
ds

≤ Ct−
1
2α + Ct−

1
2α − 1

α

∫ t/2

0
(s + 1)−2/α ds + Ct−

1
2α − 2

α

∫ t

t/2
(t − s)−1/α ds

≤ Ct−
1
2α , for all t ≥ 1, and all α ∈ (1, 2].

We now look at the critical case, α = 1. Here, the only difference is that we leave the
derivative on the right hand side of the convolution for the second half of the time-integral,
and apply the decay estimate of the derivative.

‖θ(t)‖Ḃ0
4
3 ,1

≤ Ct−
1
2 +

∫ t/2

0
‖∇P1/2(t − s)‖Ḃ0

4
3 ,1

‖u(s)θ(s)‖1 ds

+
∫ t

t/2
‖P1/2(t − s)‖1‖u(s) · ∇θ(s)‖ 4

3
ds

≤ Ct−
1
2 +

∫ t/2

0
C(t − s)−

3
2 ‖u(s)θ(s)‖1 ds +

∫ t

t/2
C‖θ(s)‖ 8

3
‖∇θ(s)‖ 8

3
ds

≤ Ct−
1
2 + Ct−

3
2

∫ t/2

0
(s + 1)−2 ds + C

∫ t

t/2
s− 7

2 ds

≤ Ct−
1
2 , for all t ≥ 1.

Returning to (3.4), we get

t−
2
α
(1− 1

2 )− 2
α

∫ t/2

0
‖θ(s)‖2

Ḃ0
4
3 ,1

ds ≤ Ct−
2
α
(1− 1

2 )− 2
α

{ ∫ 1

0
ds +

∫ t/2

1
s− 1

α ds
}

≤ 1/bα,2(t).

123



Partial Differential Equations and Applications (2022) 3 :60 Page 9 of 17 60

The above result is easily extended to all p > 2 by Young’s convolution inequality. We
simply split the fundamental solution into two parts as follows, and then proceed through the
exact same steps as above.

∥
∥
∥
∥

∫ t/2

0
Pα/2(t − s) ∗ ∇ ·

(
u(s)θ(s)

)
ds

∥
∥
∥
∥
p

≤
∫ t/2

0
‖Pα/2((t − s)/2)‖ 2p

2+p

×
∥
∥
∥
∥e

−((t−s)/2)|ξ |α 1
2

∫

R2
(ξ2η1 − ξ1η2)

ξ · (ξ − 2η)

|η||ξ − η|(|ξ − η| + |η|) θ̂(s, ξ − η)θ̂(s, η) dη

∥
∥
∥
∥
2
ds.

Step 2 (1 ≤ p < 2 case) We take the j = 1 term of the Fourier multiplier in (3.3):

2∑

j=1

(−1) jξ jη3− j

2

ξ · (ξ − 2η)

|η||ξ − η|(|ξ − η| + |η|)

For simplicity of notation, we also only take one term from the dot product above. We then
split the Fourier multiplier into two parts:

−ξ21 η2(ξ1 − 2η1)

2|η||ξ − η|(|ξ − η| + |η|) = −ξ21 η2(ξ1 − η1)

2|η||ξ − η|(|ξ − η| + |η|) + ξ21 η1η2

2|η||ξ − η|(|ξ − η| + |η|) ,

and we focus on the first term above, as both cases have almost identical proofs. We write

m(ξ − η, η) := η2(ξ1 − η1)

|η||ξ − η|(|ξ − η| + |η|) .

Next, the most crucial step to this method is to split the Euclidean space into squares, whose
size depends on time. For k = (k1, k2) ∈ Z

2, define the set

Qt,k := {
x = (x1, x2) ∈ R

2 | x j ∈ [t1/αk j , t1/α(k j + 1)), j = 1, 2
}
.

Then we can once again fit our inverse Fourier transform into an L2 norm, and thus estimate
away the Riesz transforms. That is,

∥
∥
∥
∥F−1

[ ∫ t/2

0
e−(t−s)|ξ |α

∫

R2
ξ21 m(ξ − η, η)θ̂(s, ξ − η)θ̂(s, η) dη ds

]∥∥
∥
∥
p

(3.5)

≤
∑

k∈Z2

∥
∥
∥
∥F−1

[ ∫ t/2

0
e−(t−s)|ξ |α

∫

R2
ξ21 m(ξ − η, η)θ̂(s, ξ − η)θ̂(s, η) dη ds

]∥∥
∥
∥
L p(Qt,k )

≤
∑

k,l∈Z2

t
2
α

( 1
p − 1

2 )

∥
∥
∥
∥F−1

[ ∫ t/2

0
e−(t−s)|ξ |α

∫

R2
ξ21 m(ξ − η, η)θ̂Qt,l (s, ξ − η)θ̂(s, η) dη ds

]∥∥
∥
∥
L2(Qt,k )

where we have used Hölder’s inequality. We are able to eliminate the Riesz transform by
taking advantage of the Plancherel theorem, and split one of the solution functions θ into
parts defined on squares Qt,l as follows:

θ =
∑

l∈Z2

1Qt,l θ =:
∑

l∈Z2

θQt,l .

Next, we split up the above double sum into two cases: k = l, and k �= l.
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In the case when k = l,

∑

k∈Z2

t
2
α
( 1
p − 1

2 )

∥
∥
∥
∥F−1

[ ∫ t/2

0
e−(t−s)|ξ |α

∫

R2
ξ21 m(ξ − η, η)θ̂Qt,k (s, ξ − η)θ̂(s, η) dη ds

]∥∥
∥
∥
L2(Qt,k )

≤
∑

k∈Z2

t
2
α
( 1
p − 1

2 )

∫ t/2

0
‖e−(t−s)|ξ |α ξ21 ‖2

∥
∥
∥
∥

∫

R2

∣
∣
∣θ̂Qt,k (s, ξ − η)θ̂(s, η)

∣
∣
∣

|ξ − η|1/2|η|1/2 dη

∥
∥
∥
∥∞

ds

≤ Ct
2

α p − 4
α

∫ t/2

0

∑

k∈Z2

‖|∇|−1/2θQt,k (s)‖2‖|∇|−1/2θ(s)‖2 ds

≤ Ct
2

α p − 4
α

∫ t/2

0

∑

k∈Z2

‖θQt,k (s)‖4/3‖θ(s)‖4/3 ds. (3.6)

The steps above have used Young’s convolution inequality and the Hardy–Littlewood–
Sobolev inequality, as we have seen before in our original estimations of the nonlinear term
of θ .

In the k �= l case, we multiply by 1 by inserting |t1/αk − t1/αl|2/|t1/αk − t1/αl|2, and thus
write

∑

l∈Z2

∑

k �=l

t
2
α
( 1
p − 1

2 ) |t1/αk − t1/αl|2
|t1/αk − t1/αl|2

∥
∥
∥
∥F−1

[ ∫ t/2

0
e−(t−s)|ξ |α

∫

R2
ξ21 m(ξ − η, η)θ̂Qt,l (s, ξ − η)θ̂(s, η) dη ds

]∥∥
∥
∥
L2(Qt,k )

≤
∑

l∈Z2

Ct
2
α
( 1
p − 1

2 )− 2
α

( ∑

k �=l

{

|t1/αk − t1/αl|2 (3.7)

∥
∥
∥
∥F−1

[ ∫ t/2

0
e−(t−s)|ξ |α

∫

R2
ξ21 m(ξ − η, η)θ̂Qt,l (s, ξ − η)θ̂(s, η) dη ds

]∥∥
∥
∥
L2(Qt,k )

}2)1/2

≤
∑

l∈Z2

Ct
2
α
( 1
p − 1

2 )− 2
α (3.8)

∥
∥
∥
∥|x − t1/αl|2F−1

[ ∫ t/2

0
e−(t−s)|ξ |α

∫

R2
ξ21 m(ξ − η, η)θ̂Qt,l (s, ξ − η)θ̂(s, η) dη ds

]∥∥
∥
∥
2
.

The step (3.7) was obtained by simply using Hölder’s inequality for sequences, noting that
∑

k �=l

|t1/αk − t1/αl|−4 ≤ Ct−4/α, for all α ∈ [1, 2], t ≥ 1, and each fixed l ∈ Z
2.

Our next concern is with the boundedness of the sum over l. The key points to the following
steps are that t1/αk is close to x , where x is the variable of our L2(Qt,k) norm; and that we
thus treat t1/αk as a derivative in ξ after moving it inside the inverse Fourier transform. For
each l,

∥
∥
∥
∥|x − t1/αl|2F−1

[ ∫ t/2

0
e−(t−s)|ξ |α

∫

R2
ξ21 m(ξ − η, η)θ̂Qt,l (s, ξ − η)θ̂(s, η) dη ds

]∥∥
∥
∥
2

=
∥
∥
∥
∥F−1

[
(i∇ξ − t1/αl)2

∫ t/2

0
e−(t−s)|ξ |α

∫

R2
ξ21 m(ξ − η, η)θ̂Qt,l (s, ξ − η)θ̂(s, η) dη ds

]∥∥
∥
∥
2
.
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Briefly, the ξ derivative results in a factor of t1/α, which simply cancels with the inverse
factor emerging from the ξ21 already present inside the integral. The resulting estimate is thus
essentially similar to

∥
∥
∥
∥F−1

[ ∫ t/2

0
e−(t−s)|ξ |α

∫

R2
m(ξ − η, η)θ̂Qt,l (s, ξ − η)θ̂(s, η) dη ds

]∥∥
∥
∥
2

≤ C
∫ t/2

0
‖Pα/2(t − s)‖2

∥
∥
∥
∥

∫

R2

∣
∣
∣θ̂Qt,l (s, ξ − η)θ̂(s, η)

∣
∣
∣

(|ξ − η| + |η|) dη

∥
∥
∥
∥∞

ds

≤ Ct−1/α
∫ t/2

0
‖|∇|−1/2θQt,l (s)‖2‖|∇|−1/2θ(s)‖2 ds

≤ Ct−1/α
∫ t/2

0
‖θQt,l (s)‖4/3‖θ(s)‖4/3 ds.

Returning to (3.8),

∑

l∈Z2

∑

k �=l

t
2
α
( 1
p − 1

2 ) |t1/αk − t1/αl|2
|t1/αk − t1/αl|2

∥
∥
∥
∥F−1

[ ∫ t/2

0
e−(t−s)|ξ |α

∫

R2
ξ21 m(ξ − η, η)θ̂Qt,l (s, ξ − η)θ̂(s, η) dη ds

]∥∥
∥
∥
L2(Qt,k )

≤ Ct
2

α p − 4
α

∫ t/2

0

∑

l∈Z2

‖θQt,l (s)‖4/3‖θ(s)‖4/3 ds. (3.9)

It is a delicate process to prove that the above sums (3.6) and (3.9) are bounded properly.
As such, we provide an outline of the proof, beginning with the following estimates.

∑

k∈Z2

‖θQt,k (t)‖4/3 ≤ Ct−
1
2α + Ct

2
α p − 4

α

∫ t/2

0

∑

k∈Z2

‖θQt,k (s)‖4/3‖θ(s)‖4/3 ds

+ C
∫ t

t/2

∑

k∈Z2

‖1Qt,l Pα/2(t − s)‖ 4
3
‖(u(s) · ∇)θ(s)‖1 ds

≤ Ct−
1
2α + Ct−

1
2α

∫ t/2

0

∑

k∈Z2

‖θQt,k (s)‖4/3(1 + s)−
3
2α ds, t ≥ 1,

≤ Ct−
1
2α + Ct−

1
2α

∫ t/2

0

∑

k∈Z2

‖θQs,k (s)‖4/3(1 + s)−
3
2α ds, t ≥ 1,

where here we have applied the decay estimate of the solution and its derivative, and the
elementary inequality t−1 ≤ C(1 + s)−1, for t ≥ max{1, s}. By Grönwall’s inequality we

have the same decay as in L
4
3 ,

∑

k∈Z2

‖θQt,k (t)‖4/3 ≤ Ct−
1
2α , t ≥ 1.

We apply the decay above to the inequalities (3.6) and (3.9), and so (3.5) is bounded by

Ct
2

α p − 4
α

∫ t/2

0
(1 + s)−

1
2α (1 + s)−

1
2α ds = 1/bα,p(t).

This completes the proof in the case when 1 ≤ p < 2. ��
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We thus have completed the proof of (3.1), and also obtained a useful bound on the
nonlinear term of our solution, which we will use later. For all p ∈ [1,∞], and with initial
data satisfying (1.3),

∥
∥
∥
∥

∫ t

0
Pα/2(t − s) ∗ (u(s) · ∇)θ(s) ds

∥
∥
∥
∥
p

≤ 1/bα,p(t) (3.10)

for all α ∈ [1, 2], t ≥ 1.

3.2 Improving the decay rate

We now begin our proof of Theorem 1.1. We will show convergence for the linear and
nonlinear approximations separately. The convergence of the linear part is expressed in the
next lemma.

Lemma 3.4 Let α ∈ [1, 2] and p ∈ [1,∞]. Let φ, |x |2φ ∈ L1 and M := ∫

R2 φ(x) dx. Then

t
2
α
(1− 1

p )+ 2
α ‖φ ∗ Pα/2(t) − MPα/2(t) + ∇Pα/2(t) ·

∫

R2
yφ(y) dy

−
2∑

i, j=1

∂xi ∂x j Pα/2(t)
∫

R2
yi y jφ(y) dy‖p → 0, as t → ∞.

Proof This lemma is proven analogously to Lemma 3.2. Indeed, by the Taylor expansion

Pα
2
(t, x − y) = Pα/2(t, x) − ∇Pα/2(x) · y +

2∑

i, j=1

∂xi ∂x j Pα/2(t)yi y j , y → 0,

the convergence result becomes clear; and so we omit the details. ��
Finally, we discuss the nonlinear approximation.

Lemma 3.5 Let α ∈ [1, 2] and p ∈ [1,∞].

U (t) := Pα/2(t) ∗ θ0, I (t) :=
∫ t

0
Pα/2(t − s) ∗ (u(s) · ∇)θ(s) ds.

Then

bα,p(t)

∥
∥
∥
∥I (t) −

∫ t

0
Pα/2(t − s) ∗ ∇ ·

(
(RU (s))U (s)

)
ds

∥
∥
∥
∥
p

→ 0, as t → ∞.

Proof The convergence can be shown by a similar method to the bounds from above that we
have calculated up to this point. We split the time interval into two halves. The second half
is estimated simply using Hölder’s inequality and Young’s convolution inequality. The first
half is estimated using the same method as in Sect. 3.1.

The key point is that a faster decay is achieved when taking the difference between the
two terms above than when they are estimated separately. This is accomplished by splitting
the difference of the integrand as follows:

(u(s) · ∇)θ(s) −
(
RU (s) · ∇

)
U (s) = N

(
U (s),−I (s)

) − N
(
I (s), θ(s)

)
, (3.11)
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where

N ( f , g) :=
∑

j �=k

F−1
[ ∫

R2
ξ j

(−1) j

2

( ηk

|η| + ξk − ηk

|ξ − η|
)
f̂ (ξ − η)ĝ(η) dη

]
.

We know that there are faster decay estimates for the two terms in the right hand side of
(3.11) than for (u · ∇)θ , since the nonlinear part I decays faster than the linear part.

We split the time interval into two halves again. The second half is simply calculated using
estimates of θ,U , I that we have seen above. For the first half of the time interval, we again
split up the proof into the p ≥ 2 and 1 ≤ p < 2 cases.

Step 1 (First half of time interval, p ≥ 2 case) We will show the proof for p = 2, and
again the result can be easily extended to all greater values of p afterwards. We handle the
two terms in (3.11) separately.

∥
∥
∥
∥

∫ t/2

0
|ξ |2e−(t−s)|ξ |α

∫

R2

|η||ξ − η| + |η|2
|η||ξ − η|(|ξ − η| + |η|) Û (s, ξ − η) Î (s, η) dη ds

∥
∥
∥
∥
2

≤ Ct−
2
α
(1− 1

2 )− 2
α

∫ t/2

0
‖U (s)‖Ḃ0

4
3 ,1

‖I (s)‖Ḃ0
4
3 ,1

ds

≤ Ct−3/α
( ∫ 1

0
ds +

∫ t/2

1
(1 + s)−

1
2α · bα, 43

(s) ds
)
,

which proves that

bα,2(t)

∥
∥
∥
∥

∫ t/2

0
Pα/2(t) ∗ N

(
U (s),−I (s)

)
ds

∥
∥
∥
∥
2

→ 0, t → ∞.

The convergence of the second term N
(
I (s), θ(s)

)
follows from almost the same argument

as above, by applying the decay of θ instead of U .
Step 2 (First half of time interval, 1 ≤ p < 2 case) We again take the terms from (3.11),

and use the same technique as was used for the bound from above in Sect. 3.1. That is, we
split the Fourier multiplier and divide the time-integral into two halves, and split the space
into squares Qt,k . We omit the details. ��

3.3 Optimal decay of nonlinear term

We lastly discuss the optimality (in the p = 2 case) of our estimate in Lemma 3.3. The decay
rate for our estimate from above is optimal if we can bound the nonlinear estimate from
below by the same power of t . That is, we need

∥
∥
∥
∥

∫ t

0
Pα/2(t − s) ∗ ∇ ·

(
(RU (s))U (s)

)
ds

∥
∥
∥
∥
2

≥ bα,2(t), (3.12)

for all α ∈ [1, 2], and t > 0 sufficiently large.
Since we are taking the L2-norm, taking the Fourier Transform inside the norm does not

change its value.
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∥
∥
∥
∥

∫ t

0
Pα/2(t − s) ∗ ∇ · ((RU (s))U (s)) ds

∥
∥
∥
∥
2

=
∥
∥
∥
∥

∫ t

0

2∑

j=1

ξ j e
−(t−s)|ξ |α (−1) j

2

∫

R2

(
η3− j

|η| + ξ3− j − η3− j

|ξ − η|
)

e−s|ξ−η|α

× e−s|η|α θ̂0(ξ − η)θ̂0(η) dη ds

∥
∥
∥
∥
2
.

We rewrite the divergence operator and Riesz transform as two separate Fourier multipli-
ers.

2∑

j=1

ξ j
(−1) j

2

(
η3− j

|η| + ξ3− j − η3− j

|ξ − η|
)

= 2ξ1ξ2
|ξ − η|

(
η21 − η22

|η|(|η| + |ξ − η|)
)

+ 2η1η2
|ξ − η|

(
ξ22 − ξ21

|η|(|η| + |ξ − η|)
)

+
2∑

j=1

|ξ |2ξ jη3− j

|η||ξ − η|(|η| + |ξ − η|) .

Let

m1(ξ − η, η) := 2ξ1ξ2
|ξ − η|

(
η21 − η22

|η|(|η| + |ξ − η|)
)

+ 2η1η2
|ξ − η|

(
ξ22 − ξ21

|η|(|η| + |ξ − η|)
)

m2(ξ − η, η) :=
2∑

j=1

|ξ |2ξ jη3− j

|η||ξ − η|(|η| + |ξ − η|)

The key difference between these two multipliers is that the numerator of m1 features a
second-order derivative, whereas that of m2 has a third-order derivative. We show that, for
some initial data θ0, the first part with m1 has the optimal decay and the remainder with m2

is smaller.

Lemma 3.6 Let δ, ε > 0. Let θ0 ∈ W 1,1 ∩W 1,∞ as before, but with the following additional
conditions:

• θ̂0 ≥ 0, on R
2,

• supp θ̂0 ⊆ {ξ ∈ R
2 | |ξ2| < δ|ξ1|},

• θ̂0(ξ) ≥ C, for some C > 0, for all ξ ∈ supp θ̂ ∩ {ξ ∈ R
2 | |ξ | ≤ 1}.

Then, for sufficiently small δ and ε, we have
∥
∥
∥
∥

∫ t

0
e−(t−s)|ξ |α

∫

R2
m1(ξ − η, η) e−s|ξ−η|αe−s|η|α dη ds

∥
∥
∥
∥
L2(|ξ |≤εt−1/α)

≥
{
Ct1− 4

α ε3, for α ∈ (1, 2],
Ct−3ε3 ln(t), for α = 1,

(3.13)

∥
∥
∥
∥

∫ t

0
e−(t−s)|ξ |α

∫

R2
m2(ξ − η, η) e−s|ξ−η|αe−s|η|α dη ds

∥
∥
∥
∥
L2(|ξ |≤εt−1/α)

≤ Cε7/2t1−
4
α , for all α ∈ [1, 2]. (3.14)
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Proof We consider (3.14) and (3.13) separately. Beginning with (3.14), we consider just the
j = 1 part, as the estimates of both terms are identical.
∥
∥
∥
∥

∫ t

0
e−(t−s)|ξ |α

∫

R2

|ξ |2ξ1η2
|η||ξ − η|(|η| + |ξ − η|) Û (s, ξ − η)Û (s, η) dη ds

∥
∥
∥
∥
L2(|ξ |≤εt−1/α)

≤
∥
∥
∥
∥

∫ t

0
|ξ |3e−(t−s)|ξ |α

∫

R2

η2

|η||ξ − η|(|η| + |ξ − η|) e
−s|ξ−η|α e−s|η|α θ̂0(ξ − η)θ̂0(η) dη ds

∥
∥
∥
∥
L2(|ξ |≤εt−1/α)

≤ C

∥
∥
∥
∥

∫ t

0
|ξ |3e−(t−s)|ξ |α

∫

R2

η2

|η||ξ − η|(|η| + |ξ − η|) e
−s|ξ−η|α e−s|η|α dη ds

∥
∥
∥
∥
L2(|ξ |≤εt−1/α)

,

as θ̂0 is bounded. We bound the above norm by considering the integral
∫

R2

η2

|η||ξ − η|(|η| + |ξ − η|)e
−s|ξ−η|αe−s|η|α dη.

Note that, by making the substitution η → ξ − η, we can rewrite the integral as
∫

R2

η2

|η||ξ − η|(|η| + |ξ − η|)e
−s|ξ−η|αe−s|η|α dη

= 1

2

∫

R2

(η2 + (ξ2 − η2))

|η||ξ − η|(|η| + |ξ − η|)e
−s|ξ−η|αe−s|η|α dη

= 1

2
ξ2

( ∫

|η|≤ 1
2 |ξ |

+
∫

1
2 |ξ |≤|η|≤2|ξ |

+
∫

2|ξ |≤|η|

)

× 1

|η||ξ − η|(|η| + |ξ − η|)e
−s|ξ−η|αe−s|η|α dη

=: A1 + A2 + A3,

where we have split the integral into three parts with |η| small, |η| close to |ξ |, and |η| large.
We start with the small part.

|A1| ≤ C |ξ |
∫

|η|≤ 1
2 |ξ |

1

|ξ |2|η| dη ≤ C .

Next we take |η| large.

A3 ≤ C |ξ |
∫

|η|≥2|ξ |
1

|η|3 dη ≤ C,

and finally we take |η| close to |ξ |.

A2 ≤ C |ξ |
∫

1
2 |ξ |≤|η|≤2|ξ |

e−s|ξ−η|α

|ξ |2|ξ − η| dη ≤ C |ξ |−1
∫

|η̃|≤|ξ |
e−s|η̃|α

|η̃| dη̃

= C |ξ |−1s− 1
α

∫

|η̃|≤s
1
α |ξ |

e−s|η̃|α

|η̃| dη̃ ≤ C |ξ |−1s− 1
α min{s 1

α |ξ |, 1}

≤ C |ξ |−1/2s−1/2α.

Therefore, we obtain
∥
∥
∥
∥

∫ t

0
|ξ |3e−(t−s)|ξ |α

∫

R2

η2

|η||ξ − η|(|η| + |ξ − η|)e
−s|ξ−η|αe−s|η|α dη ds

∥
∥
∥
∥
L2(|ξ |≤εt−1/α)

≤
∥
∥
∥
∥

∫ t

0
|ξ |3e−(t−s)|ξ |α (C + C |ξ |−1/2s−1/2α) ds

∥
∥
∥
∥
L2(|ξ |≤εt−1/α)
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≤
∥
∥
∥
∥|ξ |3

∫ t

0
C ds

∥
∥
∥
∥
L2(|ξ |≤εt−1/α)

+
∥
∥
∥
∥|ξ |5/2

∫ t

0
Cs−1/2α ds

∥
∥
∥
∥
L2(|ξ |≤εt−1/α)

≤ C(ε4 + ε7/2)t1−
4
α .

We note that all of these terms are smaller than

ε7/2t1−
4
α

for ε < 1 and t > 1, and thus we have (3.14).
We next will show (3.13), for sufficiently small ε, and for sufficiently large t . We begin

by labelling the two terms in our integral.
∥
∥
∥
∥

∫ t

0
e−(t−s)|ξ |α

∫

R2

(
2ξ1ξ2
|ξ − η|

(
η21 − η22

|η|(|η| + |ξ − η|)
)

+ 2η1η2
|ξ − η|

(
ξ22 − ξ21

|η|(|η| + |ξ − η|)
))

Û (s, ξ − η)Û (s, η) dη ds

∥
∥
∥
∥
L2(|ξ |≤εt−1/α)

(3.15)

=: ‖(L) + (R)‖L2(|ξ |≤εt−1/α). (3.16)

Our plan is to make (L) the larger term. This is accomplished by the conditions on θ0 that
we have imposed. Taking the norm of (L) on its own,
∥
∥
∥
∥

∫ t

0
e−(t−s)|ξ |α

∫

R2

2ξ1ξ2
|ξ − η|

(
η21 − η22

|η|(|η| + |ξ − η|)
)

e−s|ξ−η|α θ̂0(ξ − η)e−s|η|α θ̂0(η) dη ds

∥
∥
∥
∥
L2(|ξ |≤εt−1/α)

≥ C

∥
∥
∥
∥ξ1ξ2

∫ t

0
e−(t−s)|ξ |α

∫

R2

η21e
−s|ξ−η|α θ̂0(ξ − η)e−s|η|α θ̂0(η)

|η||ξ − η|(|η| + |ξ − η|) dη ds

∥
∥
∥
∥
L2(|ξ |≤εt−1/α)

≥ C

∥
∥
∥
∥ξ1ξ2

∫ t

1
e−ε

∫

2|ξ |<|η|<1

η21e
−cs|η|α

|η|3 dη ds

∥
∥
∥
∥
L2(|ξ |≤εt−1/α)

,

where in the first step we made use of the shape of supp θ̂0, and in the second we used the
fact that the integrands are positive and the bound from below for θ̂0 on supp θ̂0 close to 0.
We next convert the integral over η to polar coordinates and use substitution of variables to
produce the final powers of t in the subcritical case, and the ln function in the critical case.

∥
∥
∥
∥ξ1ξ2

∫ t

1
e−ε

∫

2|ξ |<|η|<1

η21e
−cs|η|α

|η|3 dη ds

∥
∥
∥
∥
L2(|ξ |≤εt−1/α)

≥
∥
∥
∥
∥ξ1ξ2

∫ t

1
e−ε

∫ 1

2|ξ |
e−csρα

dρ ds

∥
∥
∥
∥
L2(|ξ |≤εt−1/α)

=
∥
∥
∥
∥ξ1ξ2

∫ t

1
e−ε

∫ s1/α

2|ξ |s1/α
e−cρ dρs−1/α ds

∥
∥
∥
∥
L2(|ξ |≤εt−1/α)

≥
∥
∥
∥
∥ξ1ξ2

∫ t

1
e−εCs−1/α ds

∥
∥
∥
∥
L2(|ξ |≤εt−1/α)

≥
{
Ct1− 4

α ε3, for α ∈ (1, 2],
Ct−3ε3 ln(t), for α = 1.

Finally, by our setting of supp θ̂0, we obtain

‖(R)‖L2(|ξ |≤εt−1) ≤ Ct−3ε4 ln (t),

by estimations of integrals similar to before. Thus we obtain (3.13). ��
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