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Abstract
In this paper, we establish the existence of weak solutions to the ellipsoidal BGKmodel (ES-
BGKmodel) of the Boltzmann equation with the correct Prandtl number, which corresponds
to the case when the Knudsen parameter is −1/2.

Keywords BGK model · Ellipsoidal BGK model · Boltzmann equation · Kinetic theory
of gases · Cauchy problem · Correct Prandtl number

Mathematics Subject Classification 82C40 · 35Q20 · 76P05 · 35F25

1 Introduction

This paper studies the global in time existence of weak solutions to the Cauchy problem of
the ES-BGK model:

∂t f + v · ∇x f = Aν(Mν( f ) − f ),

f (x, v, 0) = f0(x, v),
(1.1)

in the critical case (ν = −1/2). The particle distribution function f (x, v, t) is the number
density of the molecules on the position x ∈ R

3, with the velocity v ∈ R
3 at time t ≥ 0.

The Knudsen parameter ν is chosen in the range −1/2 ≤ ν < 1, and Aν = 1/(1 − ν). The
non-isotropic Gaussian Mν( f ) parametrized by ν is defined by

Mν( f ) = ρ√
det(2πTν)

exp

(
−1

2
(v −U )�T −1

ν (v −U )

)
. (1.2)
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Here the local densityρ, momentumU , temperature T and stress tensor� are defined through
the following relations:

ρ(x, t) =
∫
R3

f (x, v, t)dv,

ρ(x, t)U (x, t) =
∫
R3

f (x, v, t)vdv,

3ρ(x, t)T (x, t) =
∫
R3

f (x, v, t)|v −U (x, t)|2dv,

ρ(x, t)�(x, t) =
∫
R3

f (x, v, t)
(
v −U (x, t)

) ⊗ (
v −U (x, t)

)
dv.

(1.3)

Note that elements of � are given by (1 ≤ i, j ≤ 3)

ρ(x, t)�i j (x, t) =
∫
R3

f (x, v, t)
(
v −Ui (x, t)

)(
v −Uj (x, t)

)
dv.

The temperature tensor Tν is given as a linear combination of the temperature and the stress
tensor:

Tν = (1 − ν)T Id + ν�

=
⎛
⎝ (1 − ν)T + ν�11 ν�12 ν�13

ν�21 (1 − ν)T + ν�22 ν�23

ν�31 ν�32 (1 − ν)T + ν�33

⎞
⎠ ,

where I d is the 3× 3 identity matrix. We note that on (x, t) where ρ = 0,Mν( f ) is defined
to be zero. The range of ν is restricted to 1/2 ≤ ν < 1 since it is the minimum condition that
guarantees the non-negative definiteness of the temperature tensor at least at the formal level
[2]. We also mention that the horizontal cross-section of the non-isotropic GaussianMν( f )
is an ellipsoid, whereas the horizontal-cross section of the usual Maxwellian is a sphere. This
is why the model is called the ellipsoidal BGK model.

A direct computation shows that the ellipsoidal Gaussian satisfies

∫
R3

{Mν( f )(x, v, t) − f (x, v, t)}
⎛
⎝ 1

v

|v|2

⎞
⎠ dv = 0,

which leads to the conservation laws of mass, momentum and energy:

d

dt

∫
R3×R3

f (x, v, t)

⎛
⎝ 1

v

|v|2

⎞
⎠dxdv = 0.

The celebrated H-theorem was verified by Andries et al [2]:

d

dt

∫
R3×R3

f ln f dvdx ≤ 0. (1.4)

TheBoltzmann equation is the fundamentalmodel for the description of gases at themeso-
scopic level. In practice, theBGKmodel [4] iswidely used in place of theBoltzmann equation
due to its reliable performance in numerical simulations at much lower computational costs.
But the compressible Navier-Stokes limit of the original BGK model shows that the Prandtl
number—The ratio between the heat conductivity and the viscosity—is not computed cor-
rectly. Holway managed this problem by introducing a free parameter ν ∈ [−1/2, 1) and
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generalizing the local Maxwellian into a non-isotropic Gaussian [13]. When ν = 0, (1.1)
reduces to the original BGK model [4] and ν = −1/2 is the choice that yields the correct
Prantl number. The ES-BGK model, however, was not employed popularly in the commu-
nity since the H-theorem was not known. The H-theorem was verified later in [2], and the
model got popularized [1, 10–12, 15, 18, 23]. Tomotivate the current work, we briefly review
the results that are directly relevant to this work. Brull et al. derived ES-BGK model sys-
tematically using an entropy minimization argument [5]. The entropy production estimate
for ES-BGK model was obtained in [22] for the non-critical case −1/2 < ν < 1 and in
[14] for the critical case ν = −1/2. The weak solutions and the unique mild solution in
the non-critical case, were established in [16], and [8, 19, 20] respectively. The existence
of classical solutions near-equilibrium was studied in [21] for −1/2 ≤ ν < 1. The results
on the stationary solution for the ES-BGK in a bounded interval can be found in [3] for the
non-critical case and in [6] for the critical case.

All in all, the existence of the ES-BGK model in the non-critical case has been rather
thoroughly studied, while many problems remain open for the critical case. One of the main
reasons is that, in the non-critical case (−1/2 < ν < 1), the temperature tensor enjoys the
following equivalence type estimate [6, 19, 21]:

min{1 − ν, 1 + 2ν}T Id ≤ Tν ≤ max{1 − ν, 1 + 2ν}T Id.

Therefore, many estimates of the temperature tensor can be reduced to similar estimates of
the local temperature. In the critical case ν = −1/2, however, such estimate breaks down,
and the temperature tensor has to be treated with more care. Especially, the existence of weak
solutions for (1.1) in the critical case (ν = −1/2) has not been addressed, which is the main
purpose of this work. In this regard, our main result is as follows:

Theorem 1.1 Let ν = −1/2. Suppose that f0(x, v) ≥ 0 satisfies∫
R6

(1 + |v|2 + |x |2 + | ln f0|) f0dxdv < ∞.

Then, for any final time T f there exists a non-negative weak solution f (x, v, t) ∈
L1([0, T f ],R3 × R

3) to (1.1):

−
∫
R3×R3

f0φ(0)dxdv −
∫ T f

0

∫
R3×R3

f (∂tφ + v · ∇xφ)dxdvdt

= Aν

∫ T f

0

∫
R3×R3

(
Mν( f ) − f

)
φdxdvdt

for every φ ∈ C1
c (R

3 × R
3 × R

+) with φ(x, v, T f ) = 0. Moreover, f satisfies

∫ T f

0

∫
R6

(1 + |v|2 + |x |2 + | ln f |) f dxdvdt < ∞,

the conservation laws:

∫
R6

f (t)

⎛
⎝ 1

v

|v|2

⎞
⎠ dxdv =

∫
R6

f0

⎛
⎝ 1

v

|v|2

⎞
⎠ dxdv,

and the entropy dissipation (t2 ≥ t1 ≥ 0):∫
R6

f (t2) ln f (t2)dxdv ≤
∫
R6

f (t1) ln f (t1)dxdv.
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2 Proof of Theorem 1.1

2.1 Approximate problem

For n = 1, 2, · · · , we set up our approximate problem of (1.1) by

∂t fn + v · ∇x fn = A−1/2+1/n
(
M−1/2+1/n( fn) − fn

)
,

fn(x, v, 0) = f0,n(x, v),
(2.1)

where f n0 is the regularized initial data:

f0,n(x, v) = f0(x, v) + 1

n
m(x, v),

with m(x, v) is defined by (q > 5)

m(x, v) = e−|v|2(1 + |x |2)−q/2,

and M−1/2+1/n( fn) corresponds to the non-isotropic Gaussian defined in (1.2) with ν =
−1/2 + 1/n:

M−1/2+1/n( fn) = ρn√
det(2πT−1/2+1/n,n)

exp

(
−1

2
(v −Un)

�T −1
−1/2+1/n,n(v −Un)

)
,

where ρn ,Un , Tn and�n are the macroscopic fields constructed from the particle distribution
function fn through the relation (1.3), and T−1/2+1/n,n is the temperature tensor constructed
from fn in the case ν = −1/2 + 1/n:

T−1/2+1/n,n =
(
1 −

(1
2

− 1

n

))
Tn Id +

(1
2

− 1

n

)
�n

=
(1
2

+ 1

n

)
Tn Id +

(1
2

− 1

n

)
�n .

We note that the approximate equation (2.1) corresponds to the ES-BGK model with non-
critical Prandtl parameter (−1/2 < ν < 1), whose existence theory is considered in [16]:

Proposition 2.1 Let T f be any final time. For each n = 1, 2, 3, · · · , there exists a global
weak solution fn(x, v, t) ≥ 0 to (2.1):

−
∫
R3×R3

f0,nφ(0)dxdv −
∫ T f

0

∫
R3×R3

fn(∂tφ + v · ∇xφ)dxdvdt

= A−1/2+1/n

∫ T f

0

∫
R3×R3

(
M−1/2+1/n( fn) − fn

)
φdxdvdt

for every φ ∈ C1
c (R

3 × R
3 × R

+) with φ(x, v, T f ) = 0. Moreover

1. fn satisfies

∫ T f

0

∫
R6

(1 + |v|2 + |x |2 + | ln fn |) fndxdvdt < C,

for some C > 0 independent of n.
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2. The conservation laws hold:

∫
R6

fn(t)

⎛
⎝ 1

v

|v|2

⎞
⎠ dxdv =

∫
R6

f0,n

⎛
⎝ 1

v

|v|2

⎞
⎠ dxdv.

3. fn satisfies the entropy dissipation:∫
R6

fn(t2) ln fn(t2)dxdv ≤
∫
R6

fn(t1) ln fn(t1)dxdv. (t2 ≥ t1)

4. For any compact set Kx ⊆ R
3
x , fn satisfies the following moment estimate:

∫ T f

0

∫
Kx

∫
R3

|v|3 fn(x, v, t)dvdxdt ≤ CKx .

5. T−1/2+1/n,n is strictly positive definite:

κ�T−1/2+1/n,n(x, t)κ ≥ CT f , f0,n ,n(1 + |x |2)−q/2 > 0, for any κ ∈ S
2.

Remark 2.1 (1) The 3rd moment is established by Perthame in [17]. (2) The strictly positive
definiteness in (5) holds due to the fact that the regularized initial data f0,n has a strict lower
bound. See Theorem 2.1. in [16].

The following estimate is also crucially used for the weak L1 compactness of M−1/2+1/n .

2.2 Weak compactness of fn andM−1/2+1/n(fn)

We deduce from Proposition 2.1 and Dunford-Pettis theorem [7, 9] that there exists f ∈ L1

such that fn , fnv converge to f , f v weakly L1(R3 × R
3 × [0, T f ]). This, combined with

the velocity averaging lemma gives

ρn =
∫
R3

fndv⇀

∫
R3

f dv = ρ in L1([0, T f ],R3
x ),

ρnUn =
∫
R3

fnvdv⇀

∫
R3

f vdv = ρU in L1([0, T f ],R3).

Similarly, but this time combined with Proposition 2.1 (4), it can be shown that∫
R3

fnviv j dv⇀

∫
R3

f viv j dv

in L1([0, T f ], Kx × R
3), so that

ρnT−1/2+1/n,n + ρn

{(1
2

− 1

3n

)
|Un |2 I d +

(
− 1

2
+ 1

n

)
ρnUn ⊗Un

}

=
∫
R3

fn

{(1
2

− 1

3n

)
|v|2 I d +

(
− 1

2
+ 1

n

)
v ⊗ v

}
dv

⇀

∫
R3

f

{
1

2
|v|2 I d − 1

2
v ⊗ v

}
dv

= ρT−1/2 + ρ

{
1

2
|U |2 I d − 1

2
ρU ⊗U

}
,
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in L1([0, T f ], Kx×R
3). Therefore, we have almost everywhere convergence ofmacroscopic

fields on a set where ρ does not vanish:

ρn → ρ a.e on R3 × [0, T f ],
Un → U a.e on E,

T−1/2+1/n,n → T−1/2 a.e on E,

(2.2)

where E is defined by

E = {(x, t) ∈ R
3 × (0, T f ) | ρ(x, t) �= 0}. (2.3)

On the other hand, the weak compactness of M−1/2+1/n( fn) in L1((0, T f ) × R
3 × R

3)

follows from the following inequality established in Lemma 2.3 of [16] with a C > 0
independent of n:

∫ T f

0

∫
R6

(1 + |v|2 + |x |2 + | lnM−1/2+1/n( fn)|)M−1/2+1/n( fn)dxdvdt < C .

Therefore, we can findM ∈ L1([0, T f ],R3×R
3) such thatM−1/2+1/n convergesweakly

in L1 to M as n → ∞.

2.3 Conclusion of the proof

It remains to check that

M = M−1/2(ρ,U , T−1/2).

For this, we define

A = {
(x, t) ∈ R

3
x × [0, T f ]| k�T−1/2k �= 0 for all non zero k ∈ R

3}
and consider (Recall that E is defined in (2.3).)

∫ T f

0

∫
R3
x

∫
R3

v

M−1/2+1/n( fn)φdvdxdt

=
∫
A∩E

∫
R3

v

M−1/2+1/n( fn)φdvdxdt +
∫
A∩Ec

∫
R3

v

M−1/2+1/n( fn)φdvdxdt

+
∫
Ac∩Ec

∫
R3

v

M−1/2+1/n( fn)φdvdxdt +
∫
Ac∩E

∫
R3

v

M−1/2+1/n( fn)φdvdxdt

:= I1 + I2 + I3 + I4.

Below, we consider each integrals separately to show that M coincides withM−1/2 on each
subset of R3 × R

3.
• I1: Since ρ �= 0, we find from (2.2) thatM−1/2+1/n(ρn,Un, T−1/2+1/n,n) converges almost
everywhere to M−1/2(ρ,U , T−1/2). Therefore, using Fatou’s Lemma, we get∫

A∩E

∫
R3

v

M−1/2(ρ,U , T−1/2)φdvdxdt ≤ lim
n→∞

∫
A∩E

∫
R3

v

M−1/2+1/n( fn)φdvdxdt .

But we have from the definition of M that∫
A∩E

∫
R3

v

M−1/2+1/n( fn)φdvdxdt =
∫
A∩E

∫
R3

v

Mφdvdxdt .
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This yields∫
A∩E

∫
R3

v

M−1/2+1/n(ρ,U , T−1/2+1/n)φdvdxdt ≤
∫
A∩E

∫
R3

v

Mφdvdxdt . (2.4)

To show the reverse inequality, we choose φ = 1 and observe from the definition of M that∫
A∩E

∫
R3

v

Mdvdxdt = lim
n→∞

∫
A∩E

∫
R3

v

M−1/2+1/n( fn)dvdxdt .

Since T−1/2+1/n is strictly positive definite by Proposition 2.1 (5), we can take the change of
variable:

X = T −1/2
−1/2+1/n(v −U )

to compute

lim
n→∞

∫
A∩E

∫
R3

v

M−1/2+1/n( fn)dvdxdt = lim
n→∞

∫
A∩E

∫
R3

v

ρndvdxdt =
∫
A∩E

∫
R3

v

ρdvdxdt .

The last line comes from (2.2). Now, since T−1/2(x, t) is also strictly positive definite on A.
We can take the change of variable:

Y = T −1/2
−1/2 (v −U ),

to get ∫
A∩E

ρdxdt =
∫
A∩E

∫
R3

v

M− 1
2
(ρ,U , T−1/2)dvdxdt .

In summary, we have on A ∩ E∫
A∩E

∫
R3

v

Mdvdxdt =
∫
A∩E

∫
R3

v

M− 1
2
(ρ,U , T−1/2)dvdxdt . (2.5)

From (2.4) and (2.5), we conclude that

M = M− 1
2
(ρ,U , T−1/2)

almost everywhere on A ∩ E.
• I2: Using the same argument of case I1, we find∫

A∩Ec

∫
R3

v

Mdvdxdt = lim
n→∞

∫
A∩Ec

∫
R3

v

M−1/2+1/n( fn)dvdxdt = lim
n→∞

∫
A∩Ec

ρndxdt

=
∫
A∩Ec

ρdxdt = 0.

Therefore, M = 0 = M−1/2(ρ,U , T−1/2).
• I3 : Since ρ = 0, we have M−1/2( f ) = 0 by definition. Therefore, by the Fatou’s lemma
and the fact that Mν( fn) converges in weak L1 to M , we have

0 =
∫
Ac∩Ec

∫
R3

v

M−1/2( f )φdvdxdt

≤ lim
n→∞

∫
Ac∩Ec

∫
R3

v

M−1/2+1/n( fn)φdvdxdt

=
∫
Ac∩Ec

∫
R3

v

Mφdvdxdt .

123



41 Page 8 of 9 Partial Differential Equations and Applications (2022) 3 :41

On the other hand, fixing φ to 1 and proceeding as in the previous case, we get
∫
Ac∩Ec

∫
R3

v

Mdvdxdt = lim
n→∞

∫
Ac∩Ec

∫
R3

v

M−1/2+1/n( fn)dvdxdt = lim
n→∞

∫
Ac∩Ec

ρndxdt

=
∫
Ac∩Ec

ρdxdt = 0.

• I4: (x, t) ∈ A
c means that there exists a non-zero vector k(x, t) ∈ R

3 such that

k�(x, t)T−1/2(x, t)k(x, t) = 0.

We can find through an explicit computation using

Y�(X ⊗ X)Y = {X · Y }2 (X , Y ∈ R
3).

Since (x, t) ∈ A, the statement k�T−1/2k = 0, is equivalent to k� {
ρT−1/2

}
k = 0. But

k� {
ρ−1/2

}
T−1/2k = k�ρ

(
3

2
T−1/2 − 1

2
�−1/2

)
k

= k�
{
1

2

∫
R3

v

f |v −U |2dv

}
k − k�

{
1

2

∫
R3

v

f (v −U ) ⊗ (v −U )dv

}
k

= 1

2

∫
R3

v

f |v −U |2|k|2dv − 1

2

∫
R3

v

f {(v −U ) · k}2dv

= 1

2

∫
R3

v

f
{|v −U |2|k|2 − {(v −U ) · k}2} dv.

Recalling

|v −U |2|k|2 − {(v −U ) · k}2 ≥ 0.

One finds that

f (t, x, v)
{|v −U |2|k|2 − {(v −U ) · k}2} = 0

on (t, x, v) ∈ A
c ∩E×R

3
v . If f is identically zero on the set, we are done. If not, there exists

a measurable set B of strictly positive measure such that

f (t, x, v) > 0 on B.

Therefore,
{|v −U |2|k|2 − {(v −U ) · k}2} = 0

on B, which is possible only when v −U (x, t) and k(x, t) are parallel on B. Combining the
conclusion This is contradiction since k does not depend on v. From this, we conclude that

f (t, x, v) = 0 for (x, t) ∈ E and ∀v ∈ R
3.

Therefore, we have desired result from the same argument as in the case of I2.
Combining the arguments above, we conclude that M = M−1/2 on R3 × R

3, and the
proof of main theorem is completed.
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