

ORIGINAL PAPER ORIGINAL PAPER

Cauchy problem for the ES-BGK model with the correct Prandtl number

Sung-jun Son¹ · Seok-Bae Yun[1](http://orcid.org/0000-0001-9827-0639)

Received: 5 January 2022 / Accepted: 25 April 2022 / Published online: 16 May 2022 © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022

Abstract

In this paper, we establish the existence of weak solutions to the ellipsoidal BGK model (ES-BGK model) of the Boltzmann equation with the correct Prandtl number, which corresponds to the case when the Knudsen parameter is $-1/2$.

Keywords BGK model · Ellipsoidal BGK model · Boltzmann equation · Kinetic theory of gases · Cauchy problem · Correct Prandtl number

Mathematics Subject Classification 82C40 · 35Q20 · 76P05 · 35F25

1 Introduction

This paper studies the global in time existence of weak solutions to the Cauchy problem of the ES-BGK model:

$$
\partial_t f + v \cdot \nabla_x f = A_v(\mathcal{M}_v(f) - f),
$$

$$
f(x, v, 0) = f_0(x, v),
$$
 (1.1)

in the critical case ($\nu = -1/2$). The particle distribution function $f(x, v, t)$ is the number density of the molecules on the position $x \in \mathbb{R}^3$, with the velocity $v \in \mathbb{R}^3$ at time $t > 0$. The Knudsen parameter *v* is chosen in the range $-1/2 \le v < 1$, and $A_v = 1/(1 - v)$. The non-isotropic Gaussian $\mathcal{M}_{\nu}(f)$ parametrized by ν is defined by

$$
\mathcal{M}_{\nu}(f) = \frac{\rho}{\sqrt{\det(2\pi\mathcal{I}_{\nu})}} \exp\left(-\frac{1}{2}(v-U)^{\top}\mathcal{I}_{\nu}^{-1}(v-U)\right). \tag{1.2}
$$

This article is part of the topical collection "T.C.: Kinetic Theory" edited by Seung-Yeal Ha, Marie-Therese Wolfram, Jose Carrillo and Jingwei Hu.

B Seok-Bae Yun sbyun01@skku.edu Sung-jun Son sungjun129@skku.edu

¹ Department of mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea

Here the local density ρ , momentum U, temperature T and stress tensor Θ are defined through the following relations:

$$
\rho(x,t) = \int_{\mathbb{R}^3} f(x, v, t) dv,
$$

\n
$$
\rho(x,t)U(x,t) = \int_{\mathbb{R}^3} f(x, v, t) v dv,
$$

\n
$$
3\rho(x,t)T(x,t) = \int_{\mathbb{R}^3} f(x, v, t)|v - U(x,t)|^2 dv,
$$

\n
$$
\rho(x,t)\Theta(x,t) = \int_{\mathbb{R}^3} f(x, v, t)(v - U(x,t)) \otimes (v - U(x,t)) dv.
$$
\n(1.3)

Note that elements of Θ are given by $(1 \le i, j \le 3)$

$$
\rho(x,t)\Theta_{ij}(x,t)=\int_{\mathbb{R}^3}f(x,v,t)(v-U_i(x,t))(v-U_j(x,t))dv.
$$

The temperature tensor \mathcal{T}_v is given as a linear combination of the temperature and the stress tensor:

$$
T_{\nu} = (1 - \nu) T I d + \nu \Theta
$$

=
$$
\begin{pmatrix} (1 - \nu) T + \nu \Theta_{11} & \nu \Theta_{12} & \nu \Theta_{13} \\ \nu \Theta_{21} & (1 - \nu) T + \nu \Theta_{22} & \nu \Theta_{23} \\ \nu \Theta_{31} & \nu \Theta_{32} & (1 - \nu) T + \nu \Theta_{33} \end{pmatrix},
$$

where *Id* is the 3 \times 3 identity matrix. We note that on (x, t) where $\rho = 0$, $\mathcal{M}_{\nu}(f)$ is defined to be zero. The range of v is restricted to $1/2 \le v < 1$ since it is the minimum condition that guarantees the non-negative definiteness of the temperature tensor at least at the formal level [\[2](#page-8-0)]. We also mention that the horizontal cross-section of the non-isotropic Gaussian $\mathcal{M}_{\nu}(f)$ is an ellipsoid, whereas the horizontal-cross section of the usual Maxwellian is a sphere. This is why the model is called the ellipsoidal BGK model.

A direct computation shows that the ellipsoidal Gaussian satisfies

$$
\int_{\mathbb{R}^3} {\{\mathcal{M}_{\nu}(f)(x,v,t) - f(x,v,t)\}} \begin{pmatrix} 1 \\ v \\ |v|^2 \end{pmatrix} dv = 0,
$$

which leads to the conservation laws of mass, momentum and energy:

$$
\frac{d}{dt} \int_{\mathbb{R}^3 \times \mathbb{R}^3} f(x, v, t) \begin{pmatrix} 1 \\ v \\ |v|^2 \end{pmatrix} dx dv = 0.
$$

The celebrated H-theorem was verified by Andries et al [\[2](#page-8-0)]:

$$
\frac{d}{dt} \int_{\mathbb{R}^3 \times \mathbb{R}^3} f \ln f dv dx \le 0.
$$
 (1.4)

The Boltzmann equation is the fundamental model for the description of gases at the mesoscopic level. In practice, the BGK model [\[4\]](#page-8-1) is widely used in place of the Boltzmann equation due to its reliable performance in numerical simulations at much lower computational costs. But the compressible Navier-Stokes limit of the original BGK model shows that the Prandtl number—The ratio between the heat conductivity and the viscosity—is not computed correctly. Holway managed this problem by introducing a free parameter $v \in [-1/2, 1)$ and generalizing the local Maxwellian into a non-isotropic Gaussian [\[13](#page-8-2)]. When $\nu = 0$, [\(1.1\)](#page-0-0) reduces to the original BGK model [\[4\]](#page-8-1) and $\nu = -1/2$ is the choice that yields the correct Prantl number. The ES-BGK model, however, was not employed popularly in the community since the H-theorem was not known. The H-theorem was verified later in [\[2\]](#page-8-0), and the model got popularized $[1, 10-12, 15, 18, 23]$ $[1, 10-12, 15, 18, 23]$ $[1, 10-12, 15, 18, 23]$ $[1, 10-12, 15, 18, 23]$ $[1, 10-12, 15, 18, 23]$ $[1, 10-12, 15, 18, 23]$ $[1, 10-12, 15, 18, 23]$ $[1, 10-12, 15, 18, 23]$ $[1, 10-12, 15, 18, 23]$. To motivate the current work, we briefly review the results that are directly relevant to this work. Brull et al. derived ES-BGK model systematically using an entropy minimization argument [\[5](#page-8-9)]. The entropy production estimate for ES-BGK model was obtained in [\[22](#page-8-10)] for the non-critical case $-1/2 < v < 1$ and in [\[14\]](#page-8-11) for the critical case $v = -1/2$. The weak solutions and the unique mild solution in the non-critical case, were established in $[16]$ $[16]$, and $[8, 19, 20]$ $[8, 19, 20]$ $[8, 19, 20]$ $[8, 19, 20]$ $[8, 19, 20]$ respectively. The existence of classical solutions near-equilibrium was studied in [\[21](#page-8-16)] for $-1/2 \leq \nu < 1$. The results on the stationary solution for the ES-BGK in a bounded interval can be found in [\[3](#page-8-17)] for the non-critical case and in [\[6](#page-8-18)] for the critical case.

All in all, the existence of the ES-BGK model in the non-critical case has been rather thoroughly studied, while many problems remain open for the critical case. One of the main reasons is that, in the non-critical case $(-1/2 < v < 1)$, the temperature tensor enjoys the following equivalence type estimate [\[6,](#page-8-18) [19,](#page-8-14) [21](#page-8-16)]:

$$
\min\{1-\nu, 1+2\nu\} T Id \leq T_{\nu} \leq \max\{1-\nu, 1+2\nu\} T Id.
$$

Therefore, many estimates of the temperature tensor can be reduced to similar estimates of the local temperature. In the critical case $v = -1/2$, however, such estimate breaks down, and the temperature tensor has to be treated with more care. Especially, the existence of weak solutions for [\(1.1\)](#page-0-0) in the critical case ($\nu = -1/2$) has not been addressed, which is the main purpose of this work. In this regard, our main result is as follows:

Theorem 1.1 *Let* $v = -1/2$ *. Suppose that* $f_0(x, v) \ge 0$ *satisfies* $\overline{1}$ $\int_{\mathbb{R}^6} (1+|v|^2+|x|^2+|\ln f_0|) f_0 dx dv < \infty.$

Then, for any final time T^{*f*} *there exists a non-negative weak solution* $f(x, v, t) \in$ $L^1([0, T^f], \mathbb{R}^3 \times \mathbb{R}^3)$ *to* [\(1.1\)](#page-0-0)*:*

$$
-\int_{\mathbb{R}^3 \times \mathbb{R}^3} f_0 \phi(0) dx dv - \int_0^{T^f} \int_{\mathbb{R}^3 \times \mathbb{R}^3} f(\partial_t \phi + v \cdot \nabla_x \phi) dx dv dt
$$

= $A_\nu \int_0^{T^f} \int_{\mathbb{R}^3 \times \mathbb{R}^3} (\mathcal{M}_\nu(f) - f) \phi dx dv dt$

for every $\phi \in C_c^1(\mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^+)$ *with* $\phi(x, v, T^f) = 0$ *. Moreover, f satisfies*

$$
\int_0^{T^f} \int_{\mathbb{R}^6} (1+|v|^2+|x|^2+|\ln f|) f dx dv dt < \infty,
$$

the conservation laws:

$$
\int_{\mathbb{R}^6} f(t) \begin{pmatrix} 1 \\ v \\ |v|^2 \end{pmatrix} dx dv = \int_{\mathbb{R}^6} f_0 \begin{pmatrix} 1 \\ v \\ |v|^2 \end{pmatrix} dx dv,
$$

and the entropy dissipation ($t_2 \geq t_1 \geq 0$):

$$
\int_{\mathbb{R}^6} f(t_2) \ln f(t_2) dx dv \leq \int_{\mathbb{R}^6} f(t_1) \ln f(t_1) dx dv.
$$

 $\circled{2}$ Springer

2 Proof of Theorem 1.1

2.1 Approximate problem

For $n = 1, 2, \dots$, we set up our approximate problem of (1.1) by

$$
\partial_t f_n + v \cdot \nabla_x f_n = A_{-1/2+1/n} \big(\mathcal{M}_{-1/2+1/n}(f_n) - f_n \big), \nf_n(x, v, 0) = f_{0,n}(x, v),
$$
\n(2.1)

where f_0^n is the regularized initial data:

$$
f_{0,n}(x,v) = f_0(x,v) + \frac{1}{n}m(x,v),
$$

with $m(x, v)$ is defined by $(q > 5)$

$$
m(x, v) = e^{-|v|^2} (1 + |x|^2)^{-q/2},
$$

and $\mathcal{M}_{-1/2+1/n}(f_n)$ corresponds to the non-isotropic Gaussian defined in [\(1.2\)](#page-0-1) with $\nu =$ −1/2 + 1/*n*:

$$
\mathcal{M}_{-1/2+1/n}(f_n) = \frac{\rho_n}{\sqrt{\det(2\pi \mathcal{T}_{-1/2+1/n,n})}} \exp\left(-\frac{1}{2}(v - U_n)^\top \mathcal{T}_{-1/2+1/n,n}^{-1}(v - U_n)\right),
$$

where ρ_n , U_n , T_n and Θ_n are the macroscopic fields constructed from the particle distribution function f_n through the relation [\(1.3\)](#page-1-0), and $\mathcal{T}_{-1/2+1/n,n}$ is the temperature tensor constructed from f_n in the case $v = -1/2 + 1/n$:

$$
\mathcal{T}_{-1/2+1/n,n} = \left(1 - \left(\frac{1}{2} - \frac{1}{n}\right)\right)T_n Id + \left(\frac{1}{2} - \frac{1}{n}\right)\Theta_n \n= \left(\frac{1}{2} + \frac{1}{n}\right)T_n Id + \left(\frac{1}{2} - \frac{1}{n}\right)\Theta_n.
$$

We note that the approximate equation (2.1) corresponds to the ES-BGK model with noncritical Prandtl parameter $(-1/2 < v < 1)$, whose existence theory is considered in [\[16\]](#page-8-12):

Proposition 2.1 *Let* T^f *be any final time. For each n* = 1, 2, 3, \cdots , *there exists a global weak solution* $f_n(x, v, t) \geq 0$ *to* (2.1) *:*

$$
-\int_{\mathbb{R}^3 \times \mathbb{R}^3} f_{0,n} \phi(0) dx dv - \int_0^{T^f} \int_{\mathbb{R}^3 \times \mathbb{R}^3} f_n(\partial_t \phi + v \cdot \nabla_x \phi) dx dv dt
$$

= $A_{-1/2+1/n} \int_0^{T^f} \int_{\mathbb{R}^3 \times \mathbb{R}^3} (\mathcal{M}_{-1/2+1/n}(f_n) - f_n) \phi dx dv dt$

for every $\phi \in C_c^1(\mathbb{R}^3 \times \mathbb{R}^3 \times \mathbb{R}^+)$ *with* $\phi(x, v, T^f) = 0$ *. Moreover*

1. *fn satisfies*

$$
\int_0^{T^f} \int_{\mathbb{R}^6} (1+|v|^2+|x|^2+|\ln f_n|) f_n dx dv dt < C,
$$

for some $C > 0$ *independent of n.*

 \bigcirc Springer

2. *The conservation laws hold:*

$$
\int_{\mathbb{R}^6} f_n(t) \begin{pmatrix} 1 \\ v \\ |v|^2 \end{pmatrix} dx dv = \int_{\mathbb{R}^6} f_{0,n} \begin{pmatrix} 1 \\ v \\ |v|^2 \end{pmatrix} dx dv.
$$

3. *fn satisfies the entropy dissipation:*

$$
\int_{\mathbb{R}^6} f_n(t_2) \ln f_n(t_2) dx dv \le \int_{\mathbb{R}^6} f_n(t_1) \ln f_n(t_1) dx dv. \quad (t_2 \ge t_1)
$$

4. For any compact set $K_x \subseteq \mathbb{R}^3_x$, f_n satisfies the following moment estimate:

$$
\int_0^{T^f} \int_{K_x} \int_{\mathbb{R}^3} |v|^3 f_n(x, v, t) dv dx dt \leq C_{K_x}.
$$

5. *T*−1/2+1/*n*,*ⁿ is strictly positive definite:*

$$
\kappa^{\top} \mathcal{I}_{-1/2+1/n, n}(x, t)\kappa \geq C_{T^f, f_{0,n}, n}(1+|x|^2)^{-q/2} > 0, \text{ for any } \kappa \in \mathbb{S}^2.
$$

Remark 2.1 (1) The 3rd moment is established by Perthame in [\[17\]](#page-8-19). (2) The strictly positive definiteness in (5) holds due to the fact that the regularized initial data *f*0,*ⁿ* has a strict lower bound. See Theorem 2.1. in [\[16](#page-8-12)].

The following estimate is also crucially used for the weak L^1 compactness of $M_{-1/2+1/n}$.

2.2 Weak compactness of f_n and $\mathcal{M}_{-1/2+1/n}(f_n)$

We deduce from Proposition [2.1](#page-3-1) and Dunford-Pettis theorem [\[7,](#page-8-20) [9](#page-8-21)] that there exists $f \in L^1$ such that f_n , $f_n v$ converge to f , $f v$ weakly $L^1(\mathbb{R}^3 \times \mathbb{R}^3 \times [0, T^f])$. This, combined with the velocity averaging lemma gives

$$
\rho_n = \int_{\mathbb{R}^3} f_n dv \to \int_{\mathbb{R}^3} f dv = \rho \text{ in } L^1([0, T^f], \mathbb{R}^3_x),
$$

$$
\rho_n U_n = \int_{\mathbb{R}^3} f_n v dv \to \int_{\mathbb{R}^3} f v dv = \rho U \text{ in } L^1([0, T^f], \mathbb{R}^3).
$$

Similarly, but this time combined with Proposition [2.1](#page-3-1) (4), it can be shown that

$$
\int_{\mathbb{R}^3} f_n v_i v_j dv \to \int_{\mathbb{R}^3} f v_i v_j dv
$$

in $L^1([0, T^f], K_x \times \mathbb{R}^3)$, so that

$$
\rho_n T_{-1/2+1/n,n} + \rho_n \left\{ \left(\frac{1}{2} - \frac{1}{3n} \right) |U_n|^2 Id + \left(-\frac{1}{2} + \frac{1}{n} \right) \rho_n U_n \otimes U_n \right\}
$$

=
$$
\int_{\mathbb{R}^3} f_n \left\{ \left(\frac{1}{2} - \frac{1}{3n} \right) |v|^2 Id + \left(-\frac{1}{2} + \frac{1}{n} \right) v \otimes v \right\} dv
$$

$$
\to \int_{\mathbb{R}^3} f \left\{ \frac{1}{2} |v|^2 Id - \frac{1}{2} v \otimes v \right\} dv
$$

=
$$
\rho T_{-1/2} + \rho \left\{ \frac{1}{2} |U|^2 Id - \frac{1}{2} \rho U \otimes U \right\},
$$

 $\hat{\mathfrak{D}}$ Springer

$$
\rho_n \to \rho \qquad \text{a.e on } \mathbb{R}^3 \times [0, T^f],
$$

\n
$$
U_n \to U \qquad \text{a.e on } \mathbb{E},
$$

\n
$$
T_{-1/2+1/n, n} \to T_{-1/2} \qquad \text{a.e on } \mathbb{E},
$$

\n(2.2)

where E is defined by

$$
\mathbb{E} = \{ (x, t) \in \mathbb{R}^3 \times (0, T^f) \mid \rho(x, t) \neq 0 \}. \tag{2.3}
$$

On the other hand, the weak compactness of $M_{-1/2+1/n}(f_n)$ in $L^1((0, T^f) \times \mathbb{R}^3 \times \mathbb{R}^3)$ follows from the following inequality established in Lemma 2.3 of $[16]$ $[16]$ with a $C > 0$ independent of *n*:

$$
\int_0^{T^f} \int_{\mathbb{R}^6} (1+|v|^2+|x|^2+|\ln \mathcal{M}_{-1/2+1/n}(f_n)|)\mathcal{M}_{-1/2+1/n}(f_n)dxdvdt < C.
$$

Therefore, we can find $M \in L^1([0, T^f], \mathbb{R}^3 \times \mathbb{R}^3)$ such that $M_{-1/2+1/n}$ converges weakly in L_1 to *M* as $n \to \infty$.

2.3 Conclusion of the proof

It remains to check that

$$
M = \mathcal{M}_{-1/2}(\rho, U, \mathcal{T}_{-1/2}).
$$

For this, we define

$$
\mathbb{A} = \left\{ (x, t) \in \mathbb{R}_x^3 \times [0, T^f] \middle| k^\top \mathcal{T}_{-1/2} k \neq 0 \text{ for all non zero } k \in \mathbb{R}^3 \right\}
$$

and consider (Recall that E is defined in (2.3) .)

$$
\int_{0}^{T^{f}} \int_{\mathbb{R}_{x}^{3}} \int_{\mathbb{R}_{y}^{3}} \mathcal{M}_{-1/2+1/n}(f_{n}) \phi dv dx dt
$$
\n
$$
= \int_{\mathbb{A} \cap \mathbb{E}} \int_{\mathbb{R}_{y}^{3}} \mathcal{M}_{-1/2+1/n}(f_{n}) \phi dv dx dt + \int_{\mathbb{A} \cap \mathbb{E}^{c}} \int_{\mathbb{R}_{y}^{3}} \mathcal{M}_{-1/2+1/n}(f_{n}) \phi dv dx dt
$$
\n
$$
+ \int_{\mathbb{A}^{c} \cap \mathbb{E}^{c}} \int_{\mathbb{R}_{y}^{3}} \mathcal{M}_{-1/2+1/n}(f_{n}) \phi dv dx dt + \int_{\mathbb{A}^{c} \cap \mathbb{E}} \int_{\mathbb{R}_{y}^{3}} \mathcal{M}_{-1/2+1/n}(f_{n}) \phi dv dx dt
$$
\n
$$
:= I_{1} + I_{2} + I_{3} + I_{4}.
$$

Below, we consider each integrals separately to show that *M* coincides with $M_{-1/2}$ on each subset of $\mathbb{R}^3 \times \mathbb{R}^3$.

• I_1 : Since $\rho \neq 0$, we find from [\(2.2\)](#page-5-1) that $\mathcal{M}_{-1/2+1/n}(\rho_n, U_n, \mathcal{T}_{-1/2+1/n,n})$ converges almost everywhere to *M*−1/2(ρ , *U*, *T*−1/2). Therefore, using Fatou's Lemma, we get

$$
\int_{\mathbb{A}\cap\mathbb{E}}\int_{\mathbb{R}^3_v}\mathcal{M}_{-1/2}(\rho,U,\mathcal{T}_{-1/2})\phi dvdxdt\leq \lim_{n\to\infty}\int_{\mathbb{A}\cap\mathbb{E}}\int_{\mathbb{R}^3_v}\mathcal{M}_{-1/2+1/n}(f_n)\phi dvdxdt.
$$

But we have from the definition of *M* that

$$
\int_{\mathbb{A}\cap\mathbb{E}}\int_{\mathbb{R}^3_v}\mathcal{M}_{-1/2+1/n}(f_n)\phi dvdxdt=\int_{\mathbb{A}\cap\mathbb{E}}\int_{\mathbb{R}^3_v}\mathcal{M}\phi dvdxdt.
$$

 \circledcirc Springer

This yields

$$
\int_{\mathbb{A}\cap\mathbb{E}}\int_{\mathbb{R}^3_v} \mathcal{M}_{-1/2+1/n}(\rho, U, \mathcal{T}_{-1/2+1/n})\phi dv dx dt \le \int_{\mathbb{A}\cap\mathbb{E}}\int_{\mathbb{R}^3_v} M\phi dv dx dt. \tag{2.4}
$$

To show the reverse inequality, we choose $\phi = 1$ and observe from the definition of *M* that

$$
\int_{\mathbb{A}\cap\mathbb{E}}\int_{\mathbb{R}^3_v}Mdvdxdt=\lim_{n\to\infty}\int_{\mathbb{A}\cap\mathbb{E}}\int_{\mathbb{R}^3_v}\mathcal{M}_{-1/2+1/n}(f_n)dvdxdt.
$$

Since $\mathcal{T}_{-1/2+1/n}$ is strictly positive definite by Proposition [2.1](#page-3-1) (5), we can take the change of variable:

$$
X = \mathcal{T}_{-1/2+1/n}^{-1/2}(v - U)
$$

to compute

$$
\lim_{n\to\infty}\int_{\mathbb{A}\cap\mathbb{E}}\int_{\mathbb{R}^3_v}\mathcal{M}_{-1/2+1/n}(f_n)d\nu dxdt=\lim_{n\to\infty}\int_{\mathbb{A}\cap\mathbb{E}}\int_{\mathbb{R}^3_v}\rho_n d\nu dxdt=\int_{\mathbb{A}\cap\mathbb{E}}\int_{\mathbb{R}^3_v}\rho d\nu dxdt.
$$

The last line comes from [\(2.2\)](#page-5-1). Now, since $T_{-1/2}(x, t)$ is also strictly positive definite on A. We can take the change of variable:

$$
Y = \mathcal{T}_{-1/2}^{-1/2} (v - U),
$$

to get

$$
\int_{\mathbb{A}\cap\mathbb{E}}\rho dxdt=\int_{\mathbb{A}\cap\mathbb{E}}\int_{\mathbb{R}_{v}^{3}}\mathcal{M}_{-\frac{1}{2}}(\rho,U,\mathcal{T}_{-1/2})dvdxdt.
$$

In summary, we have on $A \cap E$

$$
\int_{\mathbb{A}\cap\mathbb{E}}\int_{\mathbb{R}^3_v}Mdvdxdt = \int_{\mathbb{A}\cap\mathbb{E}}\int_{\mathbb{R}^3_v}\mathcal{M}_{-\frac{1}{2}}(\rho,U,\mathcal{T}_{-1/2})dvdxdt.
$$
 (2.5)

From (2.4) and (2.5) , we conclude that

$$
M = \mathcal{M}_{-\frac{1}{2}}(\rho, U, \mathcal{T}_{-1/2})
$$

almost everywhere on $A \cap E$.

• I_2 : Using the same argument of case I_1 , we find

$$
\int_{\mathbb{A}\cap\mathbb{E}^c} \int_{\mathbb{R}^3_v} M dv dx dt = \lim_{n\to\infty} \int_{\mathbb{A}\cap\mathbb{E}^c} \int_{\mathbb{R}^3_v} \mathcal{M}_{-1/2+1/n}(f_n) dv dx dt = \lim_{n\to\infty} \int_{\mathbb{A}\cap\mathbb{E}^c} \rho_n dx dt
$$

$$
= \int_{\mathbb{A}\cap\mathbb{E}^c} \rho dx dt = 0.
$$

Therefore, $M = 0 = M_{-1/2}(\rho, U, T_{-1/2})$.

• I_3 : Since $\rho = 0$, we have $\mathcal{M}_{-1/2}(f) = 0$ by definition. Therefore, by the Fatou's lemma and the fact that $\mathcal{M}_{\nu}(f_n)$ converges in weak L^1 to M, we have

$$
0 = \int_{\mathbb{A}^c \cap \mathbb{E}^c} \int_{\mathbb{R}^3_v} \mathcal{M}_{-1/2}(f) \phi dv dx dt
$$

\n
$$
\leq \lim_{n \to \infty} \int_{\mathbb{A}^c \cap \mathbb{E}^c} \int_{\mathbb{R}^3_v} \mathcal{M}_{-1/2+1/n}(f_n) \phi dv dx dt
$$

\n
$$
= \int_{\mathbb{A}^c \cap \mathbb{E}^c} \int_{\mathbb{R}^3_v} M \phi dv dx dt.
$$

² Springer

On the other hand, fixing ϕ to 1 and proceeding as in the previous case, we get

$$
\int_{\mathbb{A}^c \cap \mathbb{E}^c} \int_{\mathbb{R}^3_v} M dv dx dt = \lim_{n \to \infty} \int_{\mathbb{A}^c \cap \mathbb{E}^c} \int_{\mathbb{R}^3_v} \mathcal{M}_{-1/2+1/n}(f_n) dv dx dt = \lim_{n \to \infty} \int_{\mathbb{A}^c \cap \mathbb{E}^c} \rho_n dx dt
$$

$$
= \int_{\mathbb{A}^c \cap \mathbb{E}^c} \rho dx dt = 0.
$$

• *I*₄: $(x, t) \in \mathbb{A}^c$ means that there exists a non-zero vector $k(x, t) \in \mathbb{R}^3$ such that

$$
k^{\top}(x,t)\mathcal{I}_{-1/2}(x,t)k(x,t) = 0.
$$

We can find through an explicit computation using

$$
Y^{\top}(X \otimes X)Y = \{X \cdot Y\}^2 \quad (X, Y \in \mathbb{R}^3).
$$

Since $(x, t) \in \mathbb{A}$, the statement $k^T T_{-1/2}k = 0$, is equivalent to k^T $\{pT_{-1/2}\} k = 0$. But

$$
k^{\top} \{ \rho_{-1/2} \} \mathcal{T}_{-1/2} k = k^{\top} \rho \left(\frac{3}{2} T_{-1/2} - \frac{1}{2} \Theta_{-1/2} \right) k
$$

$$
= k^{\top} \left\{ \frac{1}{2} \int_{\mathbb{R}^3_v} f |v - U|^2 dv \right\} k - k^{\top} \left\{ \frac{1}{2} \int_{\mathbb{R}^3_v} f (v - U) \otimes (v - U) dv \right\} k
$$

$$
= \frac{1}{2} \int_{\mathbb{R}^3_v} f |v - U|^2 |k|^2 dv - \frac{1}{2} \int_{\mathbb{R}^3_v} f \{ (v - U) \cdot k \}^2 dv
$$

$$
= \frac{1}{2} \int_{\mathbb{R}^3_v} f \{ |v - U|^2 |k|^2 - \{(v - U) \cdot k \}^2 \} dv.
$$

Recalling

$$
|v - U|^2 |k|^2 - \{(v - U) \cdot k\}^2 \ge 0.
$$

One finds that

$$
f(t, x, v) \left\{ |v - U|^2 |k|^2 - \left\{ (v - U) \cdot k \right\}^2 \right\} = 0
$$

on $(t, x, v) \in A^c \cap \mathbb{E} \times \mathbb{R}^3_v$. If *f* is identically zero on the set, we are done. If not, there exists a measurable set *B* of strictly positive measure such that

$$
f(t, x, v) > 0 \text{ on } B.
$$

Therefore,

$$
\{|v - U|^2 |k|^2 - \{(v - U) \cdot k\}^2\} = 0
$$

on *B*, which is possible only when $v - U(x, t)$ and $k(x, t)$ are parallel on *B*. Combining the conclusion This is contradiction since k does not depend on v . From this, we conclude that

$$
f(t, x, v) = 0
$$
 for $(x, t) \in \mathbb{E}$ and $\forall v \in \mathbb{R}^3$.

Therefore, we have desired result from the same argument as in the case of *I*2.

Combining the arguments above, we conclude that $M = M_{-1/2}$ on $\mathbb{R}^3 \times \mathbb{R}^3$, and the proof of main theorem is completed.

 \circledcirc Springer

Acknowledgements Seok-Bae Yun is supported by Samsung Science and Technology Foundation under Project Number SSTF-BA1801-02.

Data Availability Statement Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Declarations

Conflicts of interest The authors state that there is no conflict of interest.

References

- 1. Andries, P., Bourgat, J.-F., Le Tallec, P., Perthame, B.: Numerical comparison between the Boltzmann and ES-BGK models for rarefied gases. Comput. Methods Appl. Mech. Engrg. **191**(31), 3369–3390 (2002)
- 2. Andries, P., Le Tallec, P., Perlat, J.-P., Perthame, B.: The Gaussian-BGK model of Boltzmann equation with small Pranl number. Eur. J. Mech. B. Fluids **19**(6), 813–830 (2000)
- 3. Bang, J., Yun, S.-B.: Stationary solution for the ellipsoidal BGK model in slab. J. Differ. Equ. **261**(10), 5803–5828 (2016)
- 4. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. Small amplitude process in charged and neutral one-component systems. Phys. Rev. **94**, 511–525 (1954)
- 5. Brull, S., Schneider, J.: A new approach for the ellipsoidal statistical model. Contin. Mech. Thermodyn. **20**(2), 63–74 (2008)
- 6. Brull, S. and Yun, S.-B.: Stationary flows of the ES-BGK model with the correct Prandtl number. Submitted
- 7. Cercignani, C., Illner, R., and Pulvirenti, M.: The mathematical theory of dilute gases. Applied Mathematical Sciences, 106. Springer-Verlag, New York, 1994. viii+347 pp
- 8. Chen, Z.: Smooth solutions to the BGK equation and the ES-BGK equation with infinite energy. J. Differ. Equ. **265**(1), 389–416 (2018)
- 9. Dunford, N., Schwartz, J.T.: Linear operators. Part I General theory. A Wiley-Interscience Publication. John Wiley & Sons Inc, New York (1988)
- 10. Filbet, F., Jin, S.: An asymptotic preserving scheme for the ES-BGK model of the Boltzmann equation. J. Sci. Comput. **46**(2), 204–224 (2011)
- 11. Filbet, F., Russo, G.: Semilagrangian schemes applied to moving boundary problems for the BGK model of rarefied gas dynamics. Kinet. Relat. Models **2**(1), 231–250 (2009)
- 12. Galli, M.A., Torczynski, R.: Investigation of the ellipsoidal-statistical Bhatnagar-Gross-Krook kinetic model applied to gas-phase transport of heat and tangential momentum between parallel walls. Phys. Fluids **23**, 030601 (2011)
- 13. Holway, L.H.: Kinetic theory of shock structure using and ellipsoidal distribution function. Rarefied Gas Dynamics, Vol. I (Proc. Fourth Internat. Sympos., Univ. Toronto, : Academic Press. N. Y. **1966**, 193–215 (1964)
- 14. Kim, D., Lee, M.-S., and Yun, S.-B.: Entropy production estimate for the ES-BGK model with the correct Prandtl number. Submitted. Available at [arXiv:2104.14328](http://arxiv.org/abs/2104.14328)
- 15. Meng, J., Wu, L., Reese, J.M., Zhang, Y.: Assessment of the ellipsoidal-statistical Bhatnagar-Gross-Krook model for force-driven Poiseuille flows. J. Comput. Phys. **251**, 383–395 (2013)
- 16. Park, S.J., Yun, S.-B.: Cauchy problem for the ellipsoidal-BGK model of the Boltzmann equation. J. Math. Phys. **57**(8), 081512 (2016)
- 17. Perthame, B.: Global existence to the BGK model of Boltzmann equation. J. Differ. Equ. **82**(1), 191–205 (1989)
- 18. Russo, G., Yun, S.-B.: Convergence of a semi-Lagrangian scheme for the ellipsoidal BGK model of the Boltzmann equation. SIAM J. Numer. Anal. **56**(6), 3580–3610 (2018)
- 19. Yun, S.-B.: Classical solutions for the ellipsoidal BGK model with fixed collision frequency. J. Differ. Equ. **259**(11), 6009–6037 (2015)
- 20. Yun, S.-B.: Ellipsoidal BGK model for polyatomic molecules near Maxwellians: a dichotomy in the dissipation estimate. J. Differ. Equ. **266**(9), 5566–5614 (2019)
- 21. Yun, S.-B.: Ellipsoidal BGK model near a global Maxwellian. SIAM J. Math. Anal. **47**(3), 2324–2354 (2015)
- 22. Yun, S.-B.: Entropy production for ellipsoidal BGK model of the Boltzmann equation. Kinet. Relat. Models. **9**(3), 605–619 (2016)
- 23. Zheng, Y., Struchtrup, H.: Ellipsoidal statistical Bhatnagar-Gross-Krook model with velocity dependent collision frequency. Phys. Fluids **17**, 127103 (2005)