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Abstract
A relativistic version of the Kinetic Theory for polyatomic gas is considered and a new
hierarchy of moments that takes into account the total energy composed by the rest energy
and the energy of the molecular internal modes is presented. In the first part, we prove via
classical limit that the truncated system of moments dictates a precise hierarchy of moments
in the classical framework. In the second part, we consider the particular physical case of
fifteen moments closed via maximum entropy principle in a neighborhood of equilibrium
state. We prove that this symmetric hyperbolic system satisfies all the general assumptions
of some theorems that guarantee the global existence of smooth solutions for initial data
sufficiently small.
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1 Introduction

The kinetic theory offers an excellent mathematical model for rarefied gases. The celebrated
Boltzmann equation1

∂t f C + ξ i ∂i f C = QC , (1)

is widely used in many applications and is still now a challenge for its difficult mathematical
questions. The state of the gas is described by the distribution function f C (x, t, ξ), being
respectively x ≡ (xi ) the space coordinates, ξ ≡ (ξ i ) the microscopic velocity and t the
time. QC denotes the collisional term and ∂t = ∂/∂t , ∂i = ∂/∂xi with i = 1, 2, 3. There are
many results on Boltzmann equation, in particular we quote for the mathematical treatment
the books of Cercignani [1, 2] whowas one of the world leaders that gave fundamental papers
on this subject.

The relativistic counterpart of Boltzmann equation is the Boltzmann–Chernikov equation
[3–5]:

pα∂α f = Q, (2)

in which the relativistic distribution function f depends on (xα, pβ), where xα are the
space-time coordinates, pα is the four-momentum, ∂α = ∂/∂xα , Q is the collisional term
and α, β = 0, 1, 2, 3.

Formally the relativistic equation converges to the classical one if we take into account
the following expressions (see for example [6])

x0 = ct, p0 = m � c , pi = m � ξ i , � =
(
1 − ξ2

c2

)− 1
2

,

lim
c→+∞ f = 1

m3 f C , lim
c→+∞ Q = 1

m2 QC ,

(3)

where c denotes the light velocity,m is the particle mass in the rest frame and� is the Lorentz
factor.

The weak point of the Boltzmann equation both in classical and relativistic regimes is
that its validity holds only for monatomic gas even if the classical kinetic theory was used
in fields very far from gas dynamics like in biological phenomena, socio-economic systems,
models of swarming, and many other fields (see, for example, [7–9] and references therein).

Amore realistic casewhich is important for applications is the kinetic theory of polyatomic
gas. In the classical framework, it was proposed based on two different approaches:

• the description of the internal structure of a polyatomic gas is taken into account by a
large number of discrete energy states, so that the gas might be considered as a sort of
mixture ofmonatomic components, which interact by binary collisions with conservation
of total energies, but with possible exchange of energy between its kinetic and internal
(excitation) forms. The model can be used also in a reactive frame, even in the presence
of its self–consistent radiation field [10].

• Another approach in the development of the theory of rarefied polyatomic gases was
made by Borgnakke and Larsen [11]. The distribution function is assumed to depend on

1 As usual, repeated indices indicate omitted sum symbol.
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an additional continuous variable I representing the energy of the internal modes of a
molecule in order to take into account the exchange of energy (other than translational
one) in binary collisions. This model was initially used for Monte Carlo simulations of
polyatomic gases, and later it has been applied to the derivation of the generalized Boltz-
mann equation by Bourgat et al.[12]. In this case the Boltzmann equation (1) has the
same form but the distribution function f C (x, t, ξ , I) is defined on the extended domain
R3 × [0,∞) × R3 × [0,∞) and the collision integral takes into account the influence
of the internal degrees of freedom through the collisional cross section. The case of non
polytropic gases in which the internal energy is a non-linear function of the temperature
was considered by Ruggeri and coworkers in a series of papers [13–15]. A more refined
case in which the internal mode is divided into the rotational and vibrational modes was
presented by Arima, Ruggeri and Sugiyama [16, 17]. Concerning the production terms it
was used aBGKmodel [15] or an extendedonewith twoormore relaxation times [16–19].

In the relativistic framework, Pennisi andRuggeri [6] used a similar technique, and they postu-
late the sameBoltzmann-Chernikov equation (2) butwith a distribution function f (xα, pα, I)

depending on themicroscopic energy due to the internalmodes. The same authors constructed
a new BGK model both for monatomic and for polyatomic gas in [20]. The existence and
asymptotic behavior of classical solutions for this model when the initial data is sufficiently
close to a global equilibrium was the subject of the paper [21].

Both in the classical and relativistic theory, we can associate macroscopic quantities,
called moments, which satisfy an infinite set of balance laws. The choice of the moments is
a controversial question in particular in the polyatomic gas.

The closure of moments when the number is finite is the starting point of modern Rational
Extended Thermodynamics (RET). The aim of this paper is to discuss first the classical
limit of a new hierarchy of relativistic moments and in the particular case of a RET with
15 moments to discuss the qualitative analysis of the solutions. In particular, we prove that
these systems, both in relativistic and classical cases, satisfy the conditions of the well-known
theorems for the existence of the global smooth solutions for sufficiently small initial data.

In the present paper, in Sect. 2, we first discuss the relativistic Boltzmann–Chernikov
equation for polyatomic gases, and after we present a brief review on the possible physical
moments that take into account the total energy composed of the rest energy and the energy
of molecular internal states. Then in Sect. 3, we will study the non-relativistic limit of the
system of balance equations for any number of moments. As a particularly interesting case,
we summarize in Sect. 4 the results of the RET theory with 15 moments. In Sect. 5, we show
that the relativistic RET with 15 moments and its classical limit satisfy the theorems of the
existence of the global smooth solutions under given sufficiently small initial data.

2 Moments associated to the kinetic equation

In the classical case and for monatomic gases the moments are:

Fk1k2...k j = m
∫
R3

f Cξk1ξk2 . . . ξk j dξ , ( j = 0, 1, . . .), (4)

k1, k2, . . . = 1, 2, 3, and by convention when j = 0, we have

F = m
∫
R3

f C dξ .
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Due to the Boltzmann equation (1), the moments satisfy an infinite hierarchy of balance
laws in which the flux in one equation becomes the density in the next one:

∂t FA + ∂i Fi A = PA, (A = 0, 1, . . .) (5)

where we introduce the following multi-index notation:

FA = Fi1i2...i A , Fi A = Fii1i2...i A , PA = Pi1i2...i A , (6)

with

Pk1k2...k j = m
∫

R3

QCξk1ξk2 . . . ξk j dξ . (7)

The relativistic counterpart of the moment equations for monatomic gas are

∂α Aαα1...αn = I α1...αn (n = 0, 1 , . . .) , (8)

with

Aαα1...αn = c

mn−1

∫

R3

f pα pα1 . . . pαn d P,

I α1...αn = c

mn−1

∫

R3

Q pα1 . . . pαn d P,

where the Greek indices run from 0 to 4, and

d P = dp1 dp2 dp3

p0
.

If we truncate the moments (8) until the index N , i.e., n = 0, 1, 2, . . . , N , the following
theorem was proved in [22]:

Theorem 1 (Pennisi–Ruggeri [22]). − For a prescribed truncation index N, for any integer
0 ≤ s ≤ N and for multi-index 0 ≤ B ≤ N − s, the relativistic moment system for a
monatomic gas (8) with n = 0, 1, . . . , N converges, when c → ∞, to the following classical
moments system:

∂t FB + ∂i Fi B = PB , if s = 0, 0 ≤ B ≤ N , and

∂t Fj1 j1... js js i1i2...iN−s + ∂i Fi j1 j1... js js i1i2...iN−s = Pj1 j1... js js i1i2...iN−s ,
(9)

with 1 ≤ s ≤ N. The moments F’s are given by (4) and the productions P’s are given by
(7). In particular, for s = 0, we have the F’s moments with all free indexes until index of
truncation N and for 1 ≤ s ≤ N there is a single block of F’s moments with increasing
number of pairs of contracted indexes. The truncated tensorial index in (9) is N̄ = 2N.

This theorem has solved the old problem how to choose in an optimal way the moments in
the classical case. In fact, there are several degrees of freedomdepending on howmany indices
are saturated in the truncated tensors. For example, in the Grad systemwhich truncation order
of (5) is N̄ = 3, instead of taking all free indices, it was considered two indexes saturated in
the triple tensor: (F, Fi , Fi j , Fkki ).

We remark that, for N = 1, the system (8) is the Euler relativistic fluid and the classi-
cal limit is the Euler classical fluid with moments (F, Fi , Fll) of which balance equations
correspond to the mass, momentum and energy conservation laws. While, for N = 2, the
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relativistic system (8) is the one proposed by Liu et al. [23] and the classical limit converges
to the 14 moments model proposed by Kremer [24]: (F, Fi , Fi j , Flli , Fkk j j ), instead of the
Grad system. The Grad 13 moments model doesn’t correspond to any classical limit of a
relativistic theory!

How to construct moments in the polyatomic case was an open problem. Starting from
the equilibrium case of 5 moments proposed by Bourgat et al. [12] a double hierarchy of
moments was proposed first at macroscopic level with 14 field by Arima et al. [25] and
successively at kinetic level in the papers [26, 27], (see [28] for more details):

Fi1...i j = m
∫

R3

+∞∫
0

f C ξi1 . . . ξi j ϕ(I) dIdξ ,

Glli1...ik = 2
∫

R3

+∞∫
0

f C
(

mξ2

2
+ I

)
ξi1 . . . ξik ϕ(I) dIdξ .

Here ϕ(I) is the state density corresponding to I, i.e., ϕ(I)dI represents the number of
internal state between I and I + dI. As (for k = 0) Gll is the energy, except for a factor
2, we have that the F ′s are the usual momentum-like moments and the G ′s are energy-like
moments.

From theBoltzmann equation (1), we obtain a binary hierarchy of balance equations called
(F, G)-hierarchies:

∂t Fk1k2...kn + ∂i Fk1k2...kni = Pk1k2...kn , n = 0, 1, . . . , N̄ ,

∂t Gllk1k2...km + ∂i Gllk1k2...kmi = Qllk1k2...km , m = 0, 1, . . . , M̄ .
(10)

From the requirement of the Galilean invariance and the physically reasonable solutions, it
is shown that M̄ = N̄ − 1 [27]. The case with N̄ = 1 corresponds to the Euler system, and
the one with N̄ = 2 corresponds to RET with 14 moments [25, 26].

Pennisi and Ruggeri first in [6] and then in [22] proved that the relativistic theory of
moments for polyatomic case contains in the classical limit the (F, G)-hierarchies if we
consider a system (8) but with the following moments:

Aαα1...αn = 1

mnc

∫

R3

+∞∫
0

f pα pα1 . . . pαn
(
mc2 + nI)

φ(I) dI d P ,

I α1...αn = 1

mnc

∫

R3

+∞∫
0

Q pα1 . . . pαn
(
mc2 + nI)

φ(I) dI d P,

(11)

where the distribution function f (xα, pβ, I) depends on the extra energy variable I, similar
to the classical one, and φ(I) is the relativistic counterpart of the state density function ϕ(I).

Pennisi in [29] noticed first the unphysical situation in which, instead to have the full
energy at molecular level, i.e., mc2 + I , we have in (11) the term mc2 + nI but he observed
that (mc2)n−1(mc2 + nI) are the first two terms of the Newton binomial formula of (mc2 +
I)n/(mc2)n−1. Therefore he proposed in [29] to modify, in the relativistic case, the definition
of the moments by using the substitution (see also [30]):

(mc2)n−1 (
mc2 + nI)

with
(
mc2 + I)n

,
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i.e., instead of (11), the following moments were proposed:

Aαα1...αn =
(

1

mc

)2n−1 ∫

R3

+∞∫
0

f pα pα1 . . . pαn
(
mc2 + I)n

φ(I) dI d P ,

I α1...αn =
(

1

mc

)2n−1 ∫

R3

+∞∫
0

Q pα1 . . . pαn
(
mc2 + I)n

φ(I) dI d P . (12)

In the next section, we determine what is the classical limit of the truncated system (8)
with n = 0, 1, . . . , N and moments given by (12).

3 The non relativistic limit

In this section we prove the following

Theorem 2 For a prescribed truncation integer index N and 0 ≤ s ≤ N, the relativistic
moment system for polyatomic gases (8) (with n = 0, 1, . . . , N) with (12), converges when
c → +∞ to the following N + 1 hierarchies of classical moments:

∂t H i1...ih
s +∂i H i i1...ih

s = J i1...ih
s

with s = 0 , . . . , N and h = 0 , . . . , N − s
(13)

where

Hi1...ih
s = m

∫

R3

+∞∫
0

f C ξ i1 . . . ξ ih

(
2 I
m

+ ξ2
)s

φ(I) d I dξ ,

Hi i1...ih
s = m

∫

R3

+∞∫
0

f C ξ iξ i1 . . . ξ ih

(
2 I
m

+ ξ2
)s

φ(I) d I dξ ,

J i1...ih
s = m

∫

R3

+∞∫
0

QC ξ i1 . . . ξ ih

(
2 I
m

+ ξ2
)s

φ(I) d I dξ , (14)

f C and QC are the classical limits of f and Q respectively. In particular, for s = 0 we have
the momentum-like block of equations (10)1, for s = 1 the energy-like block (10)2 and for
2 ≤ s ≤ N there are new blocks never considered before in the literature.

Proof Let us write our equations in 3-dimensional form. Taking into account that x0 = c t
and ∂0 = 1/c ∂t , they become

1

c
∂t A0α1...αn + ∂i Aiα1...αn = I α1...αn ,

or

∂t A0

n−h︷ ︸︸ ︷
0 · · · 0 i1...ih + ∂i

⎛
⎝c Ai

n−h︷ ︸︸ ︷
0 · · · 0 i1...ih

⎞
⎠ = c I

n−h︷ ︸︸ ︷
0 · · · 0 i1...ih

with h = 0 , . . . , n , and n = 0 , . . . , N . (15)
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Here

n−h︷ ︸︸ ︷
0 · · · 0 represents a set of n − h zeros. From (3) and (12), we have

Ai

n−h︷ ︸︸ ︷
0 · · · 0 i1...ih = m4

∫

R3

+∞∫
0

f cn−h�n+5ξ iξ i1 . . . ξ ih

(
1 + I

m c2

)n

φ(I) d I dξ ,

and

A0

n−h︷ ︸︸ ︷
0 · · · 0 i1...ih = m4

∫

R3

+∞∫
0

f cn−h+1�n+5ξ i1 . . . ξ ih

(
1 + I

m c2

)n

φ(I) d I dξ .

Eq. (15) divided by cn−h+1 becomes

∂t Ãi1...ih
n + ∂i Ãi i1...ih

n = Ĩ i1...ih
n

for h = 0 , . . . , n , and n = 0 , . . . , N , (16)

with

Ãi1...ih
n = m4

∫

R3

+∞∫
0

f �n+5ξ i1 . . . ξ ih

(
1 + I

m c2

)n

φ(I) d I dξ ,

Ãii1...ih
n = m4

∫
R3

+∞∫
0

f �n+5ξ iξ i1 . . . ξ ih

(
1 + I

m c2

)n

φ(I) d I dξ ,

Ĩ i1...ih
n = 1

cn−h
I i1...ih = m3

∫

R3

+∞∫
0

f �n+4ξ iξ i1 . . . ξ ih

(
1 + I

m c2

)n

φ(I) d I dξ . (17)

We can see that the equations (16) with different n but the same value of h have the same non
relativistic limit, so that the number of independent equations is reduced. In order to preserve
the number of independent equations, for every fixed value of h, we define a new tensor as a
linear combination of the Ãi1...ih

n from (17)1:

Hi1...ih

rel,N−n

def= (
2 c2

)N−n
N−n∑
r=0

(
N − n

r

)
(−1)N−n−r Ãi1...ih

r+n =

m4 (
2 c2

)N−n
∫

R3

+∞∫
0

f ξ i1 . . . ξ ih

N−n∑
r=0

(
N − n

r

)
(−1)N−n−r �r+n+5

(
1 + I

m c2

)r+n

φ(I) d I dξ

= m4
∫

R3

+∞∫
0

f ξ i1 . . . ξ ih �n+5
(
1 + I

m c2

)n

{
2 c2

[
�

(
1 + I

m c2

)
− 1

]}N−n

φ(I) d I dξ .
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The non relativistic limit of the underlined part of the above expression is 2I/m + ξ2, so
that

lim
c →+∞ Hi1...ih

rel,N−n
= Hi1...ih

N−n with

Hi1...ih
N−n = m

∫

R3

+∞∫
0

f C ξ i1 . . . ξ ih

(
2 I
m

+ ξ2
)N−n

φ(I) d I dξ ,

for h = 0 , . . . , n , and n = 0 , . . . , N . This set of indexes can be expressed also by the
conditions 0 ≤ h ≤ N , 0 ≤ n ≤ N and h ≤ n. Now we can change index according to
the law N − n = s so that

Hi1...ih
s = m

∫

R3

+∞∫
0

f C ξ i1 . . . ξ ih

(
2 I
m

+ ξ2
)s

φ(I) d I dξ ,

and the above set of indexes transforms in 0 ≤ h ≤ N , 0 ≤ s ≤ N and h ≤ N − s or,
equivalently, s = 0 , . . . , N , and h = 0 , . . . , N − s. Eq. (14)1 is proved.

The same passages can be followed starting from (17)2 and (17)3. Finally, starting from
(16) we can prove our theorem, showing that the non relativistic limit is (13).

We observe that also in the classical limit now appears in the moments (17) the full energy
given by the sum of kinetic energy plus the energy of internal modes: mξ2/2 + I.

3.1 Particular cases

As an example we consider the cases N = 1, 2.
When N = 1 the relativistic moment equations (8) with n = 0, 1 reduce now to

∂α Aα = 0, ∂α Aαβ = 0 (18)

that correspond to the Euler relativistic polyatomic gas. Its limit according with the Theorem
2 is:

s = 0 ‖ ∂t H0
0 + ∂i H i

0 = 0, ↔ ∂t F + ∂i Fi = 0, (mass)

∂t H j
0 + ∂i H i j

0 = 0, ↔ ∂t F j + ∂i Fi j = 0, (momentum)

s = 1 ‖ ∂t H0
1 + ∂i H i

1 = 0, ↔ ∂t Gll + ∂i G
lli = 0, (energy),

i.e. the Euler classical polyatomic gas.
In the case N = 2 the relativistic moments (8) with n = 0, 1 reduce now to the 15

moments that generalize the LMR theory to the polyatomic gases [30]:

∂α Aα = 0, ∂α Aαβ = 0, ∂α Aαβγ = I βγ (19)

and the corresponding classical limit is the system:

s = 0 ‖ ∂t H0
0 + ∂i H i

0 = 0, ↔ ∂t F + ∂i Fi = 0,

∂t H j
0 + ∂i H i j

0 = 0, ↔ ∂t F j + ∂i Fi j = 0,

∂t H jk
0 + ∂i H i jk

0 = J jk
0 , ↔ ∂t F jk + ∂i Fi jk = P jk,

s = 1 ‖ ∂t H0
1 + ∂i H i

1 = 0, ↔ ∂t Gll + ∂i G
lli = 0,

∂t H j
1 + ∂i H i j

1 = J j
1 , ↔ ∂t G

ll j + ∂i G
ll j i = Qll j ,
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s = 2 ‖ ∂t H0
2 + ∂i H i

2 = J 0
2 , (20)

where the new scalar moment H0
2 and the corresponding flux Hi

2 are

(
H0
2

Hi
2

)
= m

∫

R3

+∞∫
0

f

(
ξ2 + 2

I
m

)2 (
1
ξi

)
ϕ(I) dIdξ ,

and the production term

J 0
2 = m

∫

R3

+∞∫
0

Q

(
ξ2 + 2

I
m

)2

ϕ(I) dIdξ .

4 Closure of moments and RET15

Until now, we discussed the choice of the truncated moments to consider and we proved that
for a given relativistic system with truncation index N + 1, there exists a unique classical
limit for the moments. The truncated system are both in relativistic and classic regimes,
not closed. The closure procedure belongs to RET theory [28, 31–33]. It is expressed by a
hyperbolic system of field equationswith local constitutive equations. The closure is obtained
at the phenomenological level using universal principles such as the entropy principle, the
entropy convexity, and the covariance with respect to the proper group of transformation.
Or, at the molecular level, the closure is obtained by using the Maximum Entropy Principle
(MEP) introduced in non-equilibrium thermodynamics first by Janes [34] and successively
developed by Müller and Ruggeri who first proved as first that the closed system becomes
symmetric hyperbolic [31].

The closure of polytropic relativistic Euler fluids (18) was given first in the paper [6] (see
also [35, 36]), while the closure in the case of 15 fields (RET15) (19) (relativistic case) and
(20) (classical limit) was respectively the subject of the recent papers [30] and [37].

More precisely, in the case N = 2 the system (8) becomes

∂α Aα = 0, ∂α Aαβ = 0, ∂α Aαβγ = I βγ , (β, γ = 0, 1, 2, 3) . (21)

with

Aα = mc
∫

R3

+∞∫
0

f pα φ(I) dI d P ,

Aαβ = c
∫

R3

+∞∫
0

f pα pβ
(
1 + I

mc2

)
φ(I) dI d P ,

Aαβγ = c

m

∫

R3

+∞∫
0

f pα pβ pγ
(
1 + I

mc2

)2
φ(I) dI d P ,

I βγ = c

m

∫

R3

+∞∫
0

Q pβ pγ

(
1 + I

mc2

)2

φ(I) dI d P .

(22)
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We recall the following decomposition of the particle number vector and the energy-
momentum tensor in terms of physical variables:

Aα = ρUα , Aαβ = e

c2
UαUβ + (p + �) hαβ + 1

c2
(Uαqβ + Uβqα) + t<αβ>3 ,

where n, ρ = nm, Uα, hαβ, p, e are respectively the particle number, the rest mass density,
the four-velocity, the projector tensor (hαβ = UαUβ/c2 − gαβ), the pressure, the energy.
Moreover gαβ = diag(1 , −1 , −1 , −1) is the metric tensor, � is the dynamic pressure,

qα = −hα
μUνT μν is the heat flux and t<αβ>3 = T μν

(
hα

μhβ
ν − 1

3hαβhμν

)
is the deviatoric

shear viscous stress tensor. We also recall the constraints:

UαUα = c2, qαUα = 0, t<αβ>3Uα = 0, t<α
α>3

= 0,

and we choose as the 15th variable:


 = 4

c2
UαUβUγ

(
Aαβγ − Aαβγ

E

)
.

The pressure and the energy compatible with the equilibrium distribution function are [6]:

p = kB

m
ρT , e = ρc2ω(γ ),

with ω(γ ) =
∫ +∞
0 J ∗

2,2

(
1 + I

mc2

)
φ(I) d I∫ +∞

0 J ∗
2,1 φ(I) d I

,

(23)

J ∗
m,n = Jm,n(γ ∗), γ ∗ = γ

(
1 + I

m c2

)
, γ = m c2

kB T
, (24)

with T being the temperature and kB being the Boltzmann constant, and

Jm,n(γ ) =
+∞∫
0

e−γ cosh s sinhm s coshn s ds.

To close the system (22), we have adopted in [30] the MEP which requires to find the
distribution function that maximizes the non-equilibrium entropy density:

h = hαUα → max (25)

with the entropy four-vector given by

hα = −kB c
∫

R3

+∞∫
0

f ln f pαφ(I) dI d P, (26)

under the constraints that the temporal part AαUα, AαβUα and Aαβγ Uα are prescribed.
Proceeding in the usual way as indicated in previous papers of RET (see [6, 38]), we obtain:

f = e
−1− χ

kB , with

χ = m λ + λμ pμ

(
1 + I

m c2

)
+ 1

m
λμν pμ pν

(
1 + I

m c2

)2

,
(27)

where λ, λμ, λμν are the Lagrange multipliers.
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In the molecular RET approach, we consider, as usual, the processes near equilibrium.
For this reason, we expand (27) around an equilibrium state as follows:

f 
 fE

(
1 − 1

kB
χ̃

)
, with

χ̃ = m (λ − λE ) + (λμ − λμE ) pμ

(
1 + I

m c2

)
+ 1

m
λμν pμ pν

(
1 + I

m c2

)2

,

with

λE = − 1

T

(
g + c2

)
, λμE = Uμ

T
, λμνE = 0,

where g = ε + p/ρ − T S is the equilibrium chemical potential with S being the equilibrium
entropy and ε = e/ρ − c2.

In [30], it was proved that choosing as collisional term the variant of the BGK model
proposed in [20] the triple tensor and the production term have necessarily this closed form:

Aαβγ =
(

ρ θ0,2 + 1

4c4



)
UαUβU γ +

(
ρ c2 θ1,2 − 3

4c2
N


D4

 − 3

N�

D4
�

)
h(αβU γ )

+ 3

c2
N3

D3
q(αUβU γ ) + 3

5

N31

D3
h(αβqγ ) + 3C5t (<αβ>3U γ ) ,

I βγ = 1

τ

{
− 1

4c4

 UβU γ +

(
1

4c2
N


D4

 + N�

D4
�

)
hβγ

+
(

− 2

c2
N3

D3
+ θ1,3

θ1,2

1

c2

)
q(βU γ ) − C5t<βγ>3

}
,

where all coefficients are explicit functions of

θa,b = 1

2a + 1

(
b + 1
2a

) ∫ +∞
0 J ∗

2a+2,b+1−2a

(
1 + I

mc2

)b
φ(I) d I∫ +∞

0 J ∗
2,1 φ(I) d I

(28)

that are dimensionless function only of γ (i.e. function of the temperature, see (24)) and
depending through recursive formulae on the unique function ω(γ ) strictly related with the
energy (see Eq. (23)).

It was also proved in [30] that the classical limit of this model coincides with the corre-
sponding classical RET15 studied in [37].

Both the models of relativistic and classical RET15 are very complex, and therefore, in
principle, it is hard to discuss the qualitative analysis. Nevertheless, we want to prove that
they belong to the systems of balance lawswith a convex entropy for which there exist general
theorems of qualitative analysis as we summarize in the next section.

5 Qualitative analysis

The system (21) belongs to a general quasi-linear system of N balance laws:

∂αFα(u) = f(u), (29)

compatible with an entropy law

∂αhα(u) = � (u), � ≥ 0, (30)
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where hα and � are, respectively, the entropy vector and the entropy production. For this
kind of systems starting from previous results of Godunov [39], Friedrichs and Lax [40] and
Boillat [41], Ruggeri and Strumia proved the following theorem [38]:

Theorem 3 (Ruggeri–Strumia). The compatibility between the system of balance laws (29)
and the supplementary balance law (30) with the entropy h = hαξα being a convex function
of u ≡ Fαξα , with ξα a congruence time-like, implies the existence of the "main field" u′ that
satisfies

dhα = u′ · dFα, � = u′ · f ≥ 0.

If we choose the components of u′ as field variables, we have

Fα = ∂h′α

∂u′ , (31)

and the original system (29) can be rewritten in a symmetric form with Hessian matrices:

∂α

(
∂h′α

∂u′

)
= f ⇐⇒ ∂2h′α

∂u′∂u′ ∂αu′ = f, (32)

where h′α is the four-potential defined by

h′α = u′ · Fα − hα. (33)

The function

h′ = h′αξα = u′ · u − h,

is the Legendre transformation of h and therefore a convex function of the dual field u′.

In the general theory of symmetric hyperbolic balance laws, it is well-known that the
system (29) has a unique local (in time) smooth solution for smooth initial data [40, 42, 43].
However, in a general case, even for arbitrarily small and smooth initial data, there is no
global continuation for these smooth solutions, which may develop singularities, shocks, or
blowup, in a finite time, see for instance [44, 45].

On the other hand, in many physical examples, thanks to the interplay between the source
term and the hyperbolicity, there exist global smooth solutions for a suitable set of initial
data. In this context, the following K-condition [46] plays an important role:

Definition 1 (K-condition). A system (29) satisfies the K-condition if, in the equilibrium
manifold, any right characteristic eigenvectors d of (29) are not in the null space of ∇f ,
where ∇ ≡ ∂/∂u: (

∇f dI
)

E
�= 0 ∀dI , I = 1, 2, . . . N . (34)

For dissipative one-dimensional systems (29) satisfying the K-condition, it is possible to
prove the following global existence theorem by Hanouzet and Natalini [47]:

Theorem 4 (Global existence). Assume that the system (29) is strictly dissipative with a
convex entropy and that the K-condition is satisfied. Then there exists δ > 0, such that, if∥∥u′(x, 0)

∥∥
2 ≤ δ, there is a unique global smooth solution, which verifies

u′ ∈ C0([0,∞); H2(R) ∩ C1([0,∞); H1(R)).
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This global existence theorem was generalized to a higher-dimensional case by Yong [48]
and successively by Bianchini, Hanouzet, and Natalini [49].

Moreover Ruggeri and Serre [50] proved that the constant equilibrium state is stable.
Dafermos showed the existence and long time behavior of spatially periodic BV solutions
[51].

The K-condition is only a sufficient condition for the global existence of smooth solu-
tions. Lou and Ruggeri [52] observed that there indeed exists a weaker K-condition that is
a necessary (but unfortunately not sufficient) condition for the global existence of smooth
solutions. Instead of the condition that the right eigenvectors are not in the null space of ∇f ,
they posed this condition only on the right eigenvectors corresponding to genuine nonlinear
eigenvalues. It was proved that the assumptions of the previous theorems are fulfilled in both
classical [53] and relativistic [54, 55] RET theories of monatomic gases, and also in the
theory of mixtures of gases with multi-temperature [56].

In [30], it was proved that at least in a neighborhood of equilibrium, the entropy (25) is a
convex function of the field u = FαUα , and the entropy principle (30) is satisfied, then we
need to prove only the K-condition to satisfy the assumptions of previous theorem.

For this aimwe first need to calculate the characteristic velocities evaluated in equilibrium.

5.1 Characteristic velocities in equilibrium

We recall that in [57] it was proved that in the theory of moments, the main field coincides
with the Lagrangemultipliers ofMEP (see also [28, 58]), and therefore (8) taking into account
(31) and (32) can be written

∂α

(
∂ h′α

∂ λA

)
= I A , or

∂2 h′α

∂ λA∂ λB
∂αλB = I A , (35)

where the multi-index A is used for the Lagrange multipliers in equivalent way of (6):

λA = λα1α2...αA , (λ when A = 0),

that in the present case of 15 moments A = 0, 1, 2, i.e. u′ ≡ (λ, λα, λαβ).
As it is well-known, the wave equations associated with the system (35) can be obtained

by the following rule:

∂α → ϕα δ , I A → 0,

with

ϕα = V

c
ξα + ηα ,

where V indicates the characteristic velocity and ξα and ηα indicate, respectively, a generic
time-like and space-like congruence: ξαξα = 1, ξαηα = 0, ηαηα = −1. Therefore we have
from (35):

ϕα

∂2 h′α

∂ λA ∂ λB
δλB = 0, (36)
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where δλB are the right eigenvectors associated to the system (35). For the symmetry of
∂2h′α

∂λA ∂λB
and the convexity of h′ = h′αξα with respect to the main field, the quadratic form 2

∂2h′

∂λA ∂λB
δλA δλB

is negative definite for all time-like 4-vector ξα , we can deduce that all the eigenvalues V
are real and the equations (36) give a basis of eigenvectors δλB ; in other words, our field
equations, according to Theorem 3, are symmetric hyperbolic.

Wehave also that the characteristic velocitiesV don’ t exceed the light speed, i.e.,V 2 ≤ c2,
thanks to theorems proved in [58] and in the Appendix A of [59].

For the effective evaluation of the wave velocities, we use the same strategy used in a
similar problem in [59]. More precisely, by using the definition of the 4-potential (33), the
expressions (22), f given in (27) and the entropy vector (26), we obtain:

h′α = − kBc
∫

R3

+∞∫
0

e
− 1− χ

kB pαφ(I) d I d P ,

then

∂ h′α

∂ λA
= c

∫

R3

+∞∫
0

e
− 1− χ

kB
∂ χ

∂ λA
pαφ(I) d I d P .

Since from (27) χ is linear in the Lagrange multipliers, ∂χ
∂λA

does not depend on λB , it follows

∂2 h′α

∂ λB ∂ λA
= − c

kB

∫

R3

+∞∫
0

e
− 1− χ

kB
∂ χ

∂ λB

∂ χ

∂ λA
pαφ(I) d I d P .

By using these results, we can consider the quadratic form

δK = − c

kB
ϕα

∫

R3

+∞∫
0

e
− 1− χ

kB (δ χ )2 pαφ(I) d I d P ,

and see that the equations (36) for the wave velocities are equivalent to say that the derivatives
of δK with respect to δλA are zero.

As the closure was obtained only near equilibrium, we rewrite δK as

δK = ϕα

[
∂2 h′α

∂ λ2
(δλ)2 + 2

∂2 h′α

∂ λ ∂ λμ

δλ δλμ + 2
∂2 h′α

∂ λ ∂ λμν

δλ δλμν+

+ ∂2 h′α

∂ λβ ∂ λμ

δλβ δλμ + 2
∂2 h′α

∂ λβ ∂ λμν

δλβ δλμν + ∂2 h′α

∂ λβγ ∂ λμν

δλβγ δλμν

]
.

By calculating the coefficients at equilibrium, it becomes

δKE = − m

kB
ϕα

[
Aα

E (δλ)2 + 2 Aαμ
E δλ δλμ + 2 Aαμν

E δλ δλμν

+ Aαβδ
E δλβ δλδ + 2 Aαβμν

E δλβ δλμν + Aαβγμν

E δλβγ δλμν

]
,

2 We remember that in Mathematical community the entropy is the physical entropy changed by sign and
therefore we use still the terms convexity where in reality our function is concave.
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where the explicit expressions of the tensors in the right hand side in terms of the θa,b (28) are
reported in [30]. For the sakeof simplicity,we calculate also the coefficients of the differentials
in the reference frame where Uα and ϕα have the components Uα ≡ (c , 0 , 0 , 0) and
ϕα ≡ (ϕ0 , ϕ1 , 0 , 0); in any case, we can at the end express again all the results in covariant
form replacing ϕ0 and (ϕ1)

2 with ϕ0 = 1
c ϕαUα and (ϕ1)

2 = ϕαϕβhαβ .
After having calculated δK E , we note that a first eigenvalue is

ϕ0 = 0 , i.e., V = −c
Uαηα

U γ ξγ

, i.e., V = 0 , (37)

where the last expression holds when ξγ = Uγ /c.
We can observe that ϕ1 �= 0 under the hypothesis that the 2 time-like vectors ξγ and

Uγ are oriented both towards the future or both towards the past. After that, if ϕ0 = 0, the
derivatives of δK E with respect to δλA give a system whose solution is δλ1 = 0, δλ01 = 0,
δλ12 = 0, δλ13 = 0 and the remaining unknowns are linked only by

6 θ1,1 δλ + 2 θ1,2 c δλ0 + θ1,3 c2 δλ00 + 2 θ2,3 c2 (3 δλ11 + δλ22 + δλ33) = 0 ,

10 θ1,2 δλ + 5 θ1,3 c δλ0 + 3 θ1,4 c2 δλ00 + 2 θ2,4 c2 (3 δλ11 + δλ22 + δλ33) = 0 ,

5 θ2,3 δλ2 + 2 θ2,4 c δλ20 = 0 , 5 θ2,3 δλ3 + 2 θ2,4 c δλ30 = 0 .

(38)

Therefore, we have 7 free unknowns and the eigenvalue (37) has multiplicity 7.
For the research of other eigenvalues we have ϕ0 �= 0 and we can consider the quadratic

form − kB
m ρ c ϕ0

δKE . By defining

δλ = X1, c δλ0 = X2, c δλ1 = X3, c2 δλ00 = X4, c2 δλ01 = X5, c2 δλ11 = X6,
c2 (δλ22 + δλ33) = X7, c δλ2 = Y1, c2 δλ20 = Y2, c2 δλ12 = Y3, c δλ3 = Z1,

c2 δλ30 = Z2, c2 δλ13 = Z3, c2δλ23 = Y4, c2 (δλ22 − δλ33) = Z4,
we have

− kB

m ρ c ϕ0
δKE =

7∑
h,k=1

ahk Xh Xk +
3∑

h=1

bhk Yh Yk +
3∑

h=1

bhk Zh Zk + 4

15
θ2,4 (Y4)

2

+ 1

15
θ2,4 (Z4)

2 ,

with

a11 = θ0,0 , a12 = θ0,1 , a13 = θ1,1
ϕ1

ϕ0
, a14 = θ0,2 , a15 = 2

3
θ1,2

ϕ1

ϕ0
,

a16 = 1

3
θ1,2 , a17 = a16 , a22 = θ0,2 , a23 = 1

3
θ1,2

ϕ1

ϕ0
,

a24 = θ0,3 , a25 = 1

3
θ1,3

ϕ1

ϕ0
, a26 = 1

6
θ1,3 , a27 = a26 , a33 = 1

3
θ1,2 ,

a34 = 1

6
θ1,3

ϕ1

ϕ0
, a35 = 1

3
θ1,3 , a36 = θ2,3

ϕ1

ϕ0
, a37 = 1

3
θ2,3

ϕ1

ϕ0
,

a44 = θ0,4 , a45 = 1

5
θ1,4

ϕ1

ϕ0
, a46 = 1

10
θ1,4 , a47 = a46 , a55 = 2

5
θ1,4 ,

a56 = 2

5
θ2,4

ϕ1

ϕ0
a57 = 2

15
θ2,4

ϕ1

ϕ0
, a66 = 1

5
θ2,4 , a67 = 1

15
θ2,4 ,

a77 = 2

15
θ2,4 ,
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b11 = 1

3
θ1,2 , b12 = 1

3
θ1,3 , b13 = 2

3
θ2,3

ϕ1

ϕ0
,

b22 = 2

5
θ1,4 , b23 = 4

15
θ2,4

ϕ1

ϕ0
, b33 = 4

15
θ2,4 .

b11 = 1

3
θ1,2 , b12 = 1

3
θ1,3 , b13 = 2

3
θ2,3

ϕ1

ϕ0
,

b22 = 2

5
θ1,4 , b23 = 4

15
θ2,4

ϕ1

ϕ0
, b33 = 4

15
θ2,4 .

From these results it follows that the equations to determine eigenvalues and eigenvectors
are

7∑
k=1

ahk Xk = 0 ,

3∑
k=1

bhk Yk = 0 ,

3∑
k=1

bhk Zk = 0 , Y4 = 0 , Z4 = 0 . (39)

The equations (39)2,3 show that 2 eigenvalues with multiplicity 2 are the solution of

det

∥∥∥∥∥∥∥∥∥∥∥

1
3 θ1,2

1
3 θ1,3

2
3 θ2,3

ϕ1
ϕ0

1
3 θ1,3

2
5 θ1,4

4
15 θ2,4

ϕ1
ϕ0

2
3 θ2,3

ϕ1
ϕ0

4
15 θ2,4

ϕ1
ϕ0

4
15 θ2,4

∥∥∥∥∥∥∥∥∥∥∥
= 0 , (40)

that is,

det

∥∥∥∥∥∥∥∥∥∥

θ1,2 θ1,3 2 θ2,3

θ1,3
6
5 θ1,4

4
5 θ2,4

2 θ2,3
4
5 θ2,4 0

∥∥∥∥∥∥∥∥∥∥

(
ϕ1

ϕ0

)2

+ 4

5
θ2,4 det

∥∥∥∥∥∥
θ1,2 θ1,3

θ1,3
6
5 θ1,4

∥∥∥∥∥∥ = 0 ,

The eigenvalues different from those in (37), (40) are given by (39)1 in the unknowns Xk ,
that is the determinant of the matrix ahk must be zero, i.e.,

det

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

θ0,0 θ0,1 θ1,1
ϕ1
ϕ0

θ0,2
2
3 θ1,2

ϕ1
ϕ0

1
3 θ1,2

1
3 θ1,2

θ0,1 θ0,2
1
3 θ1,2

ϕ1
ϕ0

θ0,3
1
3 θ1,3

ϕ1
ϕ0

1
6 θ1,3

1
6 θ1,3

θ1,1
ϕ1
ϕ0

1
3 θ1,2

ϕ1
ϕ0

1
3 θ1,2

1
6 θ1,3

ϕ1
ϕ0

1
3 θ1,3 θ2,3

ϕ1
ϕ0

1
3 θ2,3

ϕ1
ϕ0

θ0,2 θ0,3
1
6 θ1,3

ϕ1
ϕ0

θ0,4
1
5 θ1,4

ϕ1
ϕ0

1
10 θ1,4

1
10 θ1,4

2
3 θ1,2

ϕ1
ϕ0

1
3 θ1,3

ϕ1
ϕ0

1
3 θ1,3

1
5 θ1,4

ϕ1
ϕ0

2
5 θ1,4

2
5 θ2,4

ϕ1
ϕ0

2
15 θ2,4

ϕ1
ϕ0

1
3 θ1,2

1
6 θ1,3 θ2,3

ϕ1
ϕ0

1
10 θ1,4

2
5 θ2,4

ϕ1
ϕ0

1
5 θ2,4

1
15 θ2,4

1
3 θ1,2

1
6 θ1,3

1
3 θ2,3

ϕ1
ϕ0

1
10 θ1,4

2
15 θ2,4

ϕ1
ϕ0

1
15 θ2,4

2
15θ2,4

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

= 0. (41)

It is easy to prove that this equation depends on ϕ1
ϕ0

only through
(

ϕ1
ϕ0

)2 = hαβϕαϕβ

(Uγ ϕγ )
2 c2 (which

is equal to
( c

V

)2 if Uα = c ξα) and it is a second degree equation in
(

ϕ1
ϕ0

)2
. So it gives 4
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Fig. 1 Dependence of maximum V /c on γ for a diatomic gas. The solid line indicates the value of RET15
and the dashed line indicates the one of Euler system [36]

independent eigenvectors; other 7 come from (37), other 4 come from (40). The total is 15,
as expected.

As an example we can use the expressions of θa,b (28) given in [30] in the case of diatomic
gases for which the expression of the energy e given in (23) is explicit because ω(γ ) can be
written in terms of ratio of modified Bessel functions [36]

ω(γ ) = K0(γ )

K1(γ )
+ 3

γ
.

As a consequence it is easy to plot the maximum characteristic velocity in the rest frame as
function of γ (see Fig. 1). According with general results for which increasing the number
of moments increases the maximum characteristic velocity [57, 58] and since the relativistic
Euler system is a principal subsystem of RET15 by the definition given in [60], the sub-
characteristic conditions hold and the maximum characteristic velocity of RET15 that is
obtained from (41) is larger than the one of Euler system which is studied in [36] as evident
in Fig. 1.

5.2 K-condition

As was proved in [52], the K-condition (34) is equivalent to δf �= 0 for any characteristic
velocity in equilibrium. In the present case this is equivalent to prove that δ I βγ �= 0 at
equilibrium. We prove it through a reductio ad impossible, and we suppose that there exists
at least a characteristic velocity with δ I βγ = 0. Now δ I βγ = 0 with the coefficients of the
differentials of the independent variables calculated at equilibrium, is equivalent to δλβγ = 0
(because the quadratic form� is positive defined and, consequently, I βγ is invertible in λβγ ).

If the eigenvalue under consideration is ϕαUα = 0, this means that, jointly with (38), its
expression calculated in δλβγ = 0 holds, i.e.,

6 θ1,1 δλ + 4 θ1,2 c δλ0 = 0, 10 θ1,2 δλ + 5 θ1,3 c δλ0 = 0, δλ2 = 0, δλ3 = 0.
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This implies δλ0 = 0. Jointly with (38) and with the other results written before, we obtain
δλ = 0, δλβ = 0, δλβγ = 0. This contradiction proves that our hypothesis is false and hence
the K-condition is satisfied for the eigenvalue ϕαUα = 0.

If the eigenvalue under consideration is one of those in (40), our hypothesis implies that,
jointly with (39), its expression calculated in δλβγ = 0 holds, i.e.,

3∑
k=1

ahk Xk = 0 , bh1 Y1 = 0 , bh1 Z1 = 0 . (42)

The last two of these relations give δλ2 = 0, δλ3 = 0, while the first one gives ( with the
results written before (40)) δλ = 0, δλ0 = 0, δλ1 = 0. This implies δλ = 0, δλβ = 0,
δλβγ = 0. Again, the contradiction proves that our hypothesis is false and hence that the
K-condition is satisfied for the eigenvalues (40).

It remains to prove that the K-condition is satisfied also for the eigenvalues which are
solutions of (41). In this case the hypothesis means that, jointly with (39), also its expression
calculated in δλβγ = 0 holds, i.e., (42). The last two of these relations give δλ2 = 0, δλ3 = 0,
while the first one says that

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ0,0 θ0,1 θ1,1
ϕ1
ϕ0

θ0,1 θ0,2
1
3 θ1,2

ϕ1
ϕ0

θ1,1
ϕ1
ϕ0

1
3 θ1,2

ϕ1
ϕ0

1
3 θ1,2

θ0,2 θ0,3
1
6 θ1,3

ϕ1
ϕ0

2
3 θ1,2

ϕ1
ϕ0

1
3 θ1,3

ϕ1
ϕ0

1
3 θ1,3

1
3 θ1,2

1
6 θ1,3 θ2,3

ϕ1
ϕ0

1
3 θ1,2

1
6 θ1,3

1
3 θ2,3

ϕ1
ϕ0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎝ δλ

c δλ0
c δλ1

⎞
⎠ =

⎛
⎝0
0
0

⎞
⎠ . (43)

This implies that all the 35 third order minors of the matrix in the left hand side must be
zero for the same value of the unknown ϕ1

ϕ0
. In particular, we may consider eqs. (43)1,2,4

(or (43)1,2,6, or (43)1,2,7, or (43)1,4,6, or (43)1,4,7, or (43)2,4,6, or (43)2,4,7, or (43)4,6,7) and
obtain the result ϕ1

ϕ0
= 0 which is a contradiction because we said that ϕ1 �= 0 and, in any

case, the system (43) would give the absurd result δλ = 0, δλ0 = 0, δλ1 = 0.
Similar calculations can be done for the classical limit system (20) (see [37]) and it is

possible to prove that also in classical case the K-condition is satisfied.
Therefore we can conclude that both the solutions of the relativistic and classical systems

satisfy the theorems before stated, and as a consequence, global smooth solutions exist
provided initial data are sufficiently small and not far away from an equilibrium state.
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