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Abstract
In this paper, we establish a sharp weighted Sobolev inequality on the upper half-space.
We also discourse existence and nonexistence of minimizer . As an application, we study a
quasilinear problem on the upper half-space.
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1 Introduction andmain results

1.1 Overview

In the past decades, the inequalities of Sobolev type have played a fundamental role both
from the theoretical point of view in calculus of variations as well as from the point of view
of applications in the development of many branches of mathematics and physics. In [16], G.
Talenti proved the following Gagliardo–Nirenberg–Sobolev inequality: for p ∈ (1, n), there
exists a constant C0(n, p) > 0 such that
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(∫
Rn

|u|p∗
dx

) p
p∗ ≤ C0

∫
Rn

|∇u|pdx, for all u ∈ C1
0 (R

n), (1.1)

where p∗ := np
n−p denotes the critical Sobolev exponent and the extremals have the form

u(x) =
(
a + b|x | p

p−1

) p−n
p

, a, b > 0.

In studying boundary value problems in the domain � instead of the entire space R
n , the

so-called Sobolev trace inequalities are particularly of importance. For the Euclidean upper
half-space

R
n+ := {x = (x ′, xn) ∈ R

n−1 × R : xn > 0},
the Sobolev trace embedding states that there exists a constant C1(n, p) > 0 such that

(∫
Rn−1

|u|p∗dx ′
) p

p∗ ≤ C1

(∫
R
n+

|∇u|pdx
)

, for all u ∈ C1
0 (R

n), (1.2)

where p∗ := p(n−1)
n−p denotes the critical Sobolev trace exponent. In [9], some sharp constants

related to (1.2) with p = 2 have been established by J. Escobar and the extremals are given
by the form of

u(x ′, xn) =
(

ε

(ε + xn)2 + ∣∣x ′ − x ′
0

∣∣2
)(n−2)/2

, ε > 0

Moreover, the author conjectured that for p ∈ (1, n), the Sobolev trace inequality (1.2) admits
the similar extremals to the case p = 2. This conjecture was shown to be true by B. Nazaret
in [15] via a mass transportation method.

1.2 Main purpose andmotivation

The main purpose of this present paper is two-folds. First, we aim to obtain some optimal
conditions on q > 0 and α to the validity of the weighted anisotropic Sobolev inequality

(∫
R
n+

|u|q
(1 + xn)α

dx

) p
q

≤ B0

∫
R
n+

|∇u|pdx, for all u ∈ C∞
0 (Rn), (1.3)

for some constant B0(n, q, p, α) > 0. It is worthwhile to mention that an important feature
of this inequality is the fact that the anisotropic weight functionw(x ′, xn) = (1+ xn)−α does
not belong to any Lebesgue space L p(Rn+). Second, we want to provide some conditions on
existence and nonexistence of minimizes to best constants of this inequality.

Remark 1.1 Notice that, the inequality (1.3) holds true for any α ≥ 0 and q = p∗. Indeed,
for any u ∈ C∞

0 (Rn), defining

ũ(x ′, xn) :=
{
u(x ′, xn), if xn ≥ 0

− 3u(x ′,−xn) + 4u(x ′,−xn/2), if xn < 0,
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and performing a straightforward computation we see that ũ ∈ C1
0 (R

n) and there exists a
constant C̃ = C̃(n, p) > 0 such that∫

Rn
|∇ũ|pdx ≤ C̃

∫
R
n+

|∇u|pdx .

This, combined with (1.1), applied to ũ, yields that
(∫

R
n+

|u|p∗
dx

) p
p∗

≤ K0

(∫
R
n+

|∇u|pdx
)

, for all u ∈ C∞
0 (Rn), (1.4)

for some K0(n, p) > 0, which clearly implies that (1.3) holds for any α ≥ 0 and q = p∗.

Remark 1.2 The inequality (1.3) is false on the region

R2 := {(q, α) : q > p∗ and α ∈ R},
which is enough to assume α > 0. To see this, let u0 ∈ C∞

0 (Rn) \ {0} and define uλ(x) =
λ(n−p)/pu0(λx) for x ∈ R

n and λ > 0. A straightforward calculation shows that there exists
C1 > 0 independent of λ such that∫

R
n+

|∇uλ|pdx = C1

and making a change of variables, for any λ ≥ 1 we get∫
R
n+

|uλ|q
(1 + xn)α

dx = λ
(n−p)q

p −n
∫
R
n+

|u0(y)|q
(1 + yn

λ
)α

dy ≥ λ
(n−p)q

p −n
∫
R
n+

|u0(y)|q
(1 + yn)α

dy.

Assume by contradiction that the inequality holds. Then, in particular, for some C2 > 0 we
have

0 < B−1
0 ≤

∫
R
n+ |∇uλ|pdx(∫

R
n+

|uλ|q
(1+xn)α

dx
) p

q
≤ C1

C2λ
n−p− np

q
→ 0,

if q > p∗ and λ → +∞ we reach a contradiction and hence the inequality is false for all
q > p∗ and α > 0.

Remark 1.3 The inequality (1.3) also is false on the region

R1 := {(q, α) : q < p∗ and α ∈ R}.
To see this, is sufficient to assume α > 1. Consider a function φ ∈ C∞

0 (Rn) such that
φ(x) = 1 for |x | ≤ 1 and φ(x) = 0 for |x | ≥ 2. Let us define φt (x) = φ(x/t) for
x ∈ R

n and t > 0. A straightforward calculation shows that there are constants C1,C2 > 0
independent of t such that ∫

R
n+

|∇φt |pdx = C1t
n−p

and∫
R
n+

|φt |q
(1 + xn)α

dx ≥
∫ t√

2

0

∫
|x ′|≤t/

√
2

1

(1 + xn)α
dx ′dxn

=
[

1

(α − 1)
− 1

(α − 1)(1 + t/
√
2)α−1

]
C2t

n−1, for all α > 1.
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Hence, if the inequality (1.3) holds we have

0 < B−1
0 ≤

∫
R
n+

|∇φt |pdx
(∫

R
n+

|φt |q
(1 + xn)α

dx

) p
q

≤ C4t
n−p− p(n−1)

q ,

for t large and any α > 1. In particular, if q < p∗ we obtain a contradiction by letting
t → +∞.

We also mention that Hardy–Sobolev type inequalities on the upper-half space appear
in many papers, see for instance, [7, 10, 11, 14, 17] and references therein. In [7] Chen–Li
proved the inequality

(∫
R
n+

|u|2∗(α)

xα
n

dx

)2/2∗(α)

≤ C
∫
R
n+

|∇u|2dx, for all u ∈ C∞
0 (Rn+),

where 2∗(α) = 2(n−α)/(n−2) for all α ∈ (0, 2]. In fact, in all these papers the inequalities
are derived for functions u ∈ C∞

0 (Rn+).
Finally, we observe that an inspection in Remark 1.2 shows that inequality (1.3) does not

hold for p = n and α > 1. Indeed, in this case there are constants C1 > 0 and C2 > 0 such
that ∫

R
n+

|∇φt |ndx = C1 and
∫
R
n+

|φt |q
(1 + xn)α

dx ≥ C2t
n−1,

which yields that ∫
R
n+ |∇φt |ndx(∫

R
n+

|φt |q
(1+xn)α

dx
) n

q
→ 0, as t → ∞.

For a related inequality when q = n, we refer the reader to [1].

1.3 Main results

Motivated by the mentioned papers and the previous Remarks, a natural question is

whether inequality (1.3) holds for q < p∗?

A complete answer is given below concerning this specifically issue. To this purpose, we
will borrow some idea from [6,Proposition 3.5] and [11,Thorem 1], see also [8] for p = 2.
In this context, our first main result reads as follows.

Theorem 1.1 Let 1 < p < n and α > 1. Then there exists C = C(n, α, p) > 0 such that

(∫
R
n+

|u|p∗

(1 + xn)α
dx

) p
p∗

≤ C
∫
R
n+

|∇u|pdx, ∀ u ∈ C∞
0 (Rn). (1.5)

Furthermore, the power α > 1 is optimal in the sense that this inequality is false for any
α ≤ 1.
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Let 1 < p < n and α > 1. Since (1 + xn)α ≥ 1 for xn ≥ 0, by inequality (1.4) we see
that

(∫
R
n+

|u|p∗

(1 + xn)α
dx

) p
p∗

≤ K0

∫
R
n+

|∇u|pdx, for all u ∈ C∞
0 (Rn).

Thus, by interpolating this inequality with (1.5), for all q ∈ [p∗, p∗] it holds that
(∫

R
n+

|u|q
(1 + xn)α

dx

) p
q

≤ C
∫
R
n+

|∇u|pdx, for all u ∈ C∞
0 (Rn), (1.6)

for someconstantC = C(n, α, p, q) > 0. In fact,wehave an improvement of (1.6). Precisely,
defining the function

α(q) := n − (n − p)q

p
∈ [0, 1], q ∈ [p∗, p∗],

we see that α(p∗) = 1, α(p∗) = 0 and the following result holds:

Corollary 1.1 Let 1 < p < n. Then the inequality (1.6) holds true on the region

R3 := {
(q, α) : p∗ ≤ q ≤ p∗ and α > α(q)

} ∪ {(p∗, α(p∗))}
and is false on the region

R4 := {(p∗, α(p∗))} ∪ {(q, α) : p∗ ≤ q ≤ p∗ and − ∞ < α < α(q)}.
For a better comprehension we present a graphic that corresponds the regions obtained in

the previous results.

As another consequence of Theorem 1.1, we derive an inequality with exponential weight
that was proved and used in [6] to study the asymptotic profile of ground state of a Henon
equation with Neumann boundary conditions when p = 2. In fact, for any τ > 0 and α > 1,
there exists C0 = C0(τ, α) > 0 such that

exp(τ xn) ≥ C0(1 + xn)
α, for all xn ≥ 0.

Thus, as a consequence of inequality 1.6, we have
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Corollary 1.2 Let 1 < p < n and τ > 0. Then, for any q ∈ [p∗, p∗] there exists C1 =
C1(τ, q, p) such that

(∫
R
n+

|u|q
exp(τ xn)

dx

) p
q

≤ C1

∫
R
n+

|∇u|pdx, for all u ∈ C1
0 (R

n).

Furthermore, the condition q ≥ p∗ is necessary.

Next, denote by C∞
δ (Rn+) the space of C∞

0 (Rn)−functions restricted toRn+. For 1 < p <

n we define the Sobolev space E as the completion of C∞
δ (Rn+) with respect to the norm

‖u‖E :=
(∫

R
n+

|∇u|pdx
) 1

p

.

In view of Corollary 1.1, we have the following embedding result.

Corollary 1.3 Let 1 < p < n. Then the weighted Sobolev embedding

E ↪→ Lq
(
R
n+,

1

(1 + xn)α

)
(1.7)

is continuous, for all pair (q, α) ∈ R3.

This paper is organized as follows. In Sect. 2, we give the proofs of Theorem 1.1 and
Corollary 1.1. Section 3 is devoted to existence and nonexistence of minimizers for the best
constant in inequality (1.5). In Sect. 4, as an application of inequality (1.5), we investigate the
existence of solutions to a quasilinear elliptic equation in the upper half-space with Neumann
boundary condition. In Sect. 5, some open questions are given.

2 Proofs of Theorem 1.1 and Corollary 1.1

Proof of Theorem 1.1 Let v ∈ C∞
0 (Rn) and σ ∈ R with σ �= −1. Integrating by parts one

has

(σ + 1)
∫
R
n+
(1 + xn)

σ |v|dx =
∫
R
n+

∂xn ((1 + xn)
σ+1)|v|dx

= −
∫
R
n+
(1 + xn)

σ+1(|v|)xn dx −
∫
Rn−1

|v|dx ′,

where we used that the unit outward normal on the boundary Rn−1 is ν = (0′,−1). Thus,

|σ + 1|
∫
R
n+
(1 + xn)

σ |v|dx ≤
∫
R
n+
(1 + xn)

σ+1|∇v|dx +
∫
Rn−1

|v|dx ′.

Applying this inequality with v = |u|q for u ∈ C∞
0 (Rn), q > 1 and using that σ + 1 < 0

we obtain

|σ + 1|
∫
R
n+
(1 + xn)

σ |u|qdx ≤ q
∫
R
n+

|u|q−1|∇u|dx +
∫
Rn−1

|u|qdx ′. (2.1)
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Now, choosing q = p∗ and using the trace inequality (1.2) we obtain C1(n, p) > 0 such
that

∫
Rn−1

|u|p∗dx ′ ≤
(
C1(n, p)

∫
R
n+

|∇u|pdx
) n−1

n−p

. (2.2)

On the other hand, by using the Hölder inequality and (1.4) it follows that

∫
R
n+

|u|p∗−1|∇u|dx ≤
(∫

R
n+

|u|p∗
dx

) p−1
p
(∫

R
n+

|∇u|pdx
) 1

p

≤ K
n(p−1)
p(n−p)
0

(∫
R
n+

|∇u|pdx
) n−1

n−p

.

(2.3)

Combining inequalities (2.1), (2.2) and (2.3) we conclude that

|σ + 1|
∫
R
n+

|u|p∗

(1 + xn)−σ
dx ≤ (p∗K

n(p−1)
p(n−p)
0 + C

n−1
n−p
1 )

(∫
R
n+

|∇u|pdx
) n−1

n−p

.

Thus, choosing α = −σ > 1, we obtain

(∫
R
n+

|u|p∗

(1 + xn)α
dx

) 1
p∗

≤
⎛
⎜⎝ p∗K

n(p−1)
p(n−p)
0 + C

n−1
n−p
1

| − α + 1|

⎞
⎟⎠

1
p∗ (∫

R
n+

|∇u|pdx
) 1

p

,

which is the desired inequality.
Next we shall prove that (1.5) is false for any α ≤ 1. To this end, it is enough to consider

α = 1. Let φ ∈ C∞
0 (Rn) such that φ(x) = 1 for |x | ≤ 1 and φ(x) = 0 for |x | ≥ 2. For any

t > 0, we define φt (x) = φ(x/t) for all x ∈ R
n . A straightforward calculation shows that

there are constants C1,C2 > 0 independent of t such that
∫
R
n+

|∇φt |pdx = C1t
n−p

and using that |(x ′, xn)| ≤ t if xn ≤ t/
√
2 and |x ′| ≤ t/

√
2, we conclude that

∫
R
n+

|φt |p∗

1 + xn
dx ≥

∫ t√
2

0

∫
|x ′|≤ t√

2

1

1 + xn
dx ′dxn = log

(
t√
2

+ 1

)
C2t

n−1.

Now, assume by contradiction that (1.5) holds true. Then, we have

0 < C0 ≤

∫
R
n+

|∇φt |pdx
(∫

R
n+

|φt |p∗

1 + xn
dx

) p
p∗

≤ C1[
C2 log

(
t√
2

+ 1
)] p

p∗
,

which is a contradiction since the right-hand side of the last inequality goes to zero as t → ∞
and this completes the proof of Theorem 1.1. ��
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Proof of Corollary 1.1 If q = p∗ this result is exactly Theorem 1.1. When q = p∗, inequal-
ity (1.6) was proved in Remark 1.1. For each q ∈ (p∗, p∗) it holds that

q = p∗θ + p∗(1 − θ), with θ = p∗ − q

p∗ − p∗
∈ (0, 1).

From Hölder’s inequality, ones has that

∫
R
n+

|u|q
(1 + xn)α

dx ≤
(∫

R
n+

|u|p∗

(1 + xn)
α
θ

dx

)θ (∫
R
n+

|u|p∗
dx

)1−θ

. (2.4)

Now take into account that α/θ > α(q)/θ = 1, Theorem 1.1 and inequality (1.4) yield hat

∫
R
n+

|u|q
(1 + xn)α

dx ≤
(
C0

∫
R
n+

|∇u|pdx
) θ p∗

p
(
K0

∫
R
n+

|∇u|pdx
) (1−θ)p∗

p

= C1

(∫
R
n+

|∇u|pdx
) q

p

,

(2.5)

which is the desired inequality. Next we will prove that inequality (1.6) is false for all
0 < α < α(q) with q ∈ (p∗, p∗). For this purpose, let u ∈ C∞

0 (Rn) \ {0} and define
uλ(x) := u(λx) for x ∈ R

n+ and λ ∈ (0, 1]. It is easy to see that there are constants
C1,C2 > 0, independent of λ, such that∫

R
n+

|∇uλ|pdx = C1λ
p−n,

and using that 0 < λ ≤ 1, after a change of variables we obtain∫
R
n+

|uλ|q
(1 + xn)α

dx ≥
∫
R
n+

|uλ|q( 1
λ

+ xn
)α dx = C2λ

−(n−α).

Now, assume by contradiction that (1.6) holds true. Then, we have

0 < C0 ≤
∫
R
n+ |∇uλ|pdx(∫

R
n+

|uλ|q
(1+xn)α

dx
) p

q
≤
⎛
⎝ C1

C
p
q
2

⎞
⎠ λ

p−n+ p(n−α)
q .

If 0 < α < α(q) we obtain a contradiction by taking λ → 0. To finish, we will prove that
inequality (1.6) is false when q = p∗ and α < α(p∗). For this purpose, let u ∈ C∞

0 (Rn)\{0}
and define uλ(x) := u(λx) for x ∈ R

n+ and λ > 0. It is easy to check that there exists a
constant C1,C2 > 0, independent of λ, such that∫

R
n+

|∇uλ|pdx = C1λ
p−n,

and for all α ≤ 0 we have∫
R
n+

|uλ|q
(1 + xn)α

=
∫
R
n+

|uλ|q(1 + xn)
−α ≥

∫
R
n+

|uλ|q(xn)−α = C2λ
α−n .

Hence, if the inequality holds we have

0 < C0 ≤
∫
R
n+ |∇uλ|pdx(∫

R
n+

|uλ|q
(1+xn)α

dx
) p

q
≤
⎛
⎝ C1

C
p
q
2

⎞
⎠ λ

p−n+ p(n−α)
q .

123



Partial Differential Equations and Applications (2022) 3 :30 Page 9 of 17 30

In particular, if α < α(p∗) and q = p∗ we obtain a contradiction by taking the limit as
λ → 0, and this finishes the proof. ��

3 Existence and nonexistence of minimizers

In this section, we analyze existence and nonexistence of minimizers for the best constant in
inequality (1.6). Precisely, we consider the variational problem

l(q, α) := inf{u∈E\{0}}

∫
R
n+ |∇u|pdx

(∫
R
n+

|u|q
(1+xn)α

dx
) p

q
.

Notice that l(q, α) is positive if and only if (1.6) holds and further C = 1/l(q, α).
For q = p∗, we have the following nonexistence result of minimizers.

Theorem 3.1 Assume 1 < p < n and α = 2. Then l(q, α) has no minimizer for q = p∗.

To prove Theorem 3.1 we requires two technical lemmas. For every ε > 0, the functions

uε(x
′, xn) =

(
n − p

p − 1

) n−p
p
(

ε
2
p

(ε + xn)2 + |x ′|2
) n−p

2(p−1)

, (x ′, xn) ∈ R
n+

are minimizers of the best constant in the trace inequality (1.2), i.e.,

1

C1
=

∫
R
n+ |∇uε|p(∫

Rn−1 |uε|p∗
) p
p∗

,

and solves the quasilinear elliptic problem{−div(|∇u|p−2∇u) = 0 in R
n+,

|∇u|p−2 ∂u
∂xn

= |u|p∗−2u on R
n−1.

(3.1)

Moreover, if we define

m := I (uε),

where I : E → R is the functional energy associated to problem (3.1)

I (u) = 1

p

∫
R
n+

|∇u|pdx − 1

p∗

∫
Rn−1

|u|p∗dx ′,

by using a simple calculation we see that

m = p − 1

p(n − 1)

(∫
R
n+ |∇uε|p

) n−1
p−1

(∫
Rn−1 |uε|p∗

) n−p
p−1

= p − 1

p(n − 1)
C

− n−1
p−1

1 .

Furthermore, the following characterization holds true

m = inf
{u∈C∞

0 (Rn)\{0}}
max
t>0

I (tu).

The next result allows us to compare the energy of minimizers of the best constants C1 and
C in the inequalities (1.2) and (1.5), respectively.
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Lemma 3.1 Assume 1 < p < n and α ≥ 2. Let w ∈ E be a least energy solution of
{

−div(|∇w|p−2∇w) = |w|p∗−2w
(1+xn)α

, in R
n+,

∂w
∂xn

= 0, on R
n−1.

(3.2)

Then the following estimate holds:

J (w) := 1

p

∫
R
n+

|∇w|pdx − 1

p∗

∫
R
n+

|w|p∗

(1 + xn)α
dx > m.

Proof Suppose by contradiction that there exists a solution w of (3.2) with

J (w) ≤ m.

Let w∗ be the Steiner symmetrization of |w| with respect to x ′ ∈ R
n−1. Then, w∗ ∈ E and

by [5,Proposition 3.1], we see that for any t > 0, J (tw∗) ≤ J (tw) and hence

max
t>0

J (tw∗) ≤ max
t>0

J (tw) = J (w) ≤ m.

Using integration by parts we see that
∫
R
n+

|w∗|p∗

(1 + xn)α
dx = 1

1 − α

∫
R
n+

|w∗|p∗ ∂

∂xn
(1 + xn)

−α+1dx

= 1

1 − α

(
−p∗

∫
R
n+

|w∗|p∗−1

(1 + xn)α−1

∂w∗

∂xn
dx −

∫
Rn−1

|w∗|p∗dx ′
)

,

which implies that

J (tw∗) = t p

p

∫
R
n+

|∇w∗|pdx − t p∗

p∗(α − 1)

(
p∗
∫
R
n+

|w∗|p∗−1

(1 + xn)α−1

∂w∗

∂xn
dx +

∫
Rn−1

|w∗|p∗dx ′
)

≥ I (tw∗) − t p
∗

α − 1

∫
R
n+

|w∗|p∗−1

(1 + xn)α−1

∂w∗

∂xn
dx,

where in the last inequality we used that α ≥ 2. Since maxt>0 I (tw∗) ≥ m and ∂w∗
∂xn

≤
0, we conclude that

∫
R
n+

|w∗|p∗−1

(1+xn)α−1
∂w∗
∂xn

dx = 0, which implies that ∂w∗
∂xn

= 0 on R
n+ and

maxt>0 I (tw∗) = m. It follows that for some t∗ > 0 such that t∗w∗ is a least energy solution
to (3.1). Then

|∇w∗|p−2 ∂w∗

∂xn
= |w∗|p∗−2w∗ on R

n−1

and w∗ = 0 on R
n−1. Due to ∂w∗

∂xn
= 0 on R

n+, w∗ ≡ 0 on R
n+, which contradicts the fact

that m > 0. ��

Another ingredient in the proof of Theorem 3.1 is the following estimate.

Lemma 3.2 If α ≤ 2, then

lim
ε→∞max

t>0
J (tuε) ≤ m. (3.3)
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Proof By using a straightforward computation, one has

max
t>0

J (tuε) = p − 1

p(n − 1)

(∫
R
n+ |∇uε|p

) n−1
p−1

(∫
R
n+

|uε |p∗
(1+xn)α

) n−p
p−1

.

On the other hand, we have

(∫
R
n+ |∇uε|p

) n−1
p−1

(∫
R
n+

|uε |p∗
(1+xn)α

) n−p
p−1

=
(∫

R
n+ |∇uε|p

) n−1
p−1

(∫
Rn−1 |uε|p∗

) n−p
p−1

⎛
⎝
∫
Rn−1 |uε|p∗

∫
R
n+

|uε |p∗
(1+xn)α

⎞
⎠

n−p
p−1

= p(n − 1)m

p − 1

⎛
⎝
∫
Rn−1 |uε|p∗

∫
R
n+

|uε |p∗
(1+xn)α

⎞
⎠

n−p
p−1

.

Therefore, to conclude the proof, it is enough to prove that

lim
ε→∞

∫
Rn−1 |uε|p∗∫
R
n+

|uε |p∗
(1+xn)α

≤ 1.

To this purpose, we observe that by using polar coordinates we obtain

∫
R
n+

|uε|p∗

(1 + xn)α
=
(
n − p

p − 1

)n−1 ∫
R
n+

(
ε

2
p

(ε + xn)2 + |x ′|2
) p(n−1)

2(p−1)
1

(1 + xn)α

= ωn−2

(
n − p

p − 1

)n−1 ∫ ∞

0

∫ ∞

0

(
ε

2
p

(ε + t)2 + r2

) p(n−1)
2(p−1)

rn−2

(1 + t)α
dtdr

and

∫
Rn−1

|uε|p∗ = ωn−2

(
n − p

p − 1

)n−1 ∫ ∞

0

(
ε

2
p

ε2 + r2

) p(n−1)
2(p−1)

rn−2dr

= ωn−2

(
n − p

p − 1

)n−1

(α − 1)
∫ ∞

0

(
ε

2
p

ε2 + r2

) p(n−1)
2(p−1)

rn−2dr
∫ ∞

0

1

(1 + t)α
dt

= ωn−2

(
n − p

p − 1

)n−1

(α − 1)
∫ ∞

0

∫ ∞

0

(
ε

2
p

ε2 + r2

) p(n−1)
2(p−1)

rn−2

(1 + t)α
dtdr .

Then we have that

∫
Rn−1 |uε|p∗∫
R
n+

|uε |p∗
(1+xn)α

=
(α − 1)

∫∞
0

∫∞
0

(
1

ε2+r2

) p(n−1)
2(p−1) rn−2

(1+t)α dtdr

∫∞
0

∫∞
0

(
1

(ε+t)2+r2

) p(n−1)
2(p−1) rn−2

(1+t)α dtdr
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=
(α − 1)

∫∞
0

∫∞
0

(
1

1+r2

) p(n−1)
2(p−1) rn−2

(1+t)α dtdr

∫∞
0

∫∞
0

(
ε
2
p

(ε+t)2+r2

) p(n−1)
2(p−1)

rn−2

(1+t)α dtdr

=
(α − 1)

∫∞
0

∫∞
0

(
1

1+r2

) p(n−1)
2(p−1) rn−2

(1+t)α dtdr

∫∞
0

∫∞
0

(
ε

ε+t

) n−1
p−1

(
1

1+r2

) p(n−1)
2(p−1) rn−2

(1+t)α dtdr

Applying the Lebesgue Dominate Convergence Theorem, we obtain

lim
ε→∞

∫
Rn−1 |uε|p∗∫
R
n+

|uε |p∗
(1+xn)α

= α − 1 ≤ 1.

proving the claim and this concludes the proof. ��
Proof of Theorem 3.1 Assume by contradiction that l(p∗, α) has a minimizer u0, which is a
least energy solution of problem (3.2), then

m = lim
ε→∞max

t>0
J (tuε) ≥ inf{ϕ∈E\{0}}max

t>0
J (tϕ) = J (u0) > m,

which is a contradiction and this completes the proof. ��
When q ∈ (p∗, p∗), we have the following result of existence on minimizers.

Theorem 3.2 Assume 1 < p < n and α > 1. Then, l(q, α) has a minimizer for every
q ∈ (p∗, p∗).

Proof The proof is similar to [6]. For the sake of completeness, we give the details. By the
Steiner symmetrization, we see that

l(q, α) = inf
{u∈D1,p

r (Rn+)\{0}}

∫
R
n+ |∇u|pdx

(∫
R
n+ a(x)|u|q

) p
q

, a(x) = (1 + xn)
−α,

where

D1,p
r (Rn+) := {

u ∈ D1,p(Rn+) : u(x ′, xn) = u(|x ′|, xn), x ′ ∈ R
n−1, xn > 0

}
.

Let {φl} ⊂ D1,p
r (Rn+) ∩C∞

0 (Rn) be a minimizing sequence of l(q, α). We may assume that
supp(φl) ⊂ B(0, Rl) with R1 < R2 < · · · < Rl < · · · and liml→∞ Rl = ∞. We define

D1,p
+ (Rl) ≡ D1,p(Rn+) ∩ H1

0 (B(0, Rl)).

We may take a better minimizing sequence {ul} of l(q, α) such that ul is a minimizer of

l(α, q, B(0, Rl)) = inf
{u∈D1,p

+ (Rl )\{0}}

∫
R
n+∩B(0,Rl )

|∇u|pdx
(∫

R
n+∩B(0,Rl )

a(x)|u|q
) p

q
.

we may assume that∫
R
n+∩B(0,Rl )

|∇ul |pdx =
∫
R
n+∩B(0,Rl )

a(x)|ul |qdx .
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Then, we see that

⎧⎪⎨
⎪⎩

−div(|∇ul |p−2∇ul) = uql
(1+xn)α

, in R
n+ ∩ B(0, Rl),

ul = 0, on R
n+ ∩ ∂B(0, Rl),

∂ul
∂xn

= 0, on R
n−1 ∩ B(0, Rl).

By the moving plane method, we see that ul ∈ D1,p
r (Rn+) and ul(0) > ul(x) for any x �= 0.

Then, applying the standard blow up argument, we see that {‖ul‖L∞} is bounded. Since
∫
R
n+∩B(0,Rl )

|∇ul |pdx ≤ ‖ul‖q−p∗
L∞

∫
R
n+∩B(0,Rl )

a(x)|ul |p∗dx,

by Proposition 2.3 in [6], we deduce that {‖ul‖L∞} is bounded away from 0. Taking a
subsequence, if necessary, we may assume that

⎧⎪⎨
⎪⎩
ul⇀u0 weakly in E,

ul → u0 strongly in L p(Rn+, a),

ul(x) → u0(x) for a.e. x ∈ R
n+.

ul converges weakly to some u0 in D1,p
r (Rn+) and ul → u0 in C2(Rn+ ∩ B(0, R)) for each

R > 0.
Furthermore, we see that the limit u0 ∈ D1,p

r (Rn+) is a solution of

{
−div(|∇u0|p−2∇u0) = uq0

(1+xn)α
, u > 0, in R

n+,

| ∂u0
∂ν

|p−2∇u0 · ν = 0, on R
n−1.

(3.4)

From the standard regularity theory, we see that {‖ul‖C1(R+
n ∩B(0,Rl ))

} is bounded. Since
{∫

R
n+ a(x)|ul |q}l is bounded, we deduce that lim|x ′|→∞ ul(x ′, 0) = 0 uniformly for l ≥ 1.

For each x ′ ∈ R
n−1 ∩ B(0, Rl), we get

(ul(x
′, 0))q = −q

∫ √
(Rl )2−|y′|2

0
uql (x

′, xn)
∂ul(x ′, xn)

∂xn
dxn

≤ q

2

∫ √
(Rl )2−|y′|2

0
(ul(x

′, 0))q−p∗(ul(x
′, xn))pp∗dxn

+ p

2

∫ √
(Rl )2−|y′|2

0
(ul(x

′, 0))q−p∗ |∇ul |pdxn .

(3.5)

Thus, we see that for some C > 0, independent of l ≥ 1 and D > 0,

∫
Rn−1\B(0,D)

(ul(x
′, xn))qdx ′ ≤

∫
Rn−1\B(0,D)

(ul(x
′, 0))qdx ′

≤ C max
|x ′|=D

(ul(x
′, 0))q−p∗

∫
R
n+∩B(0,Rl )

(|∇ul |p + (ul)
p∗

)dx

(3.6)
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By Theorem 1.1, we have that∫
R
n+\B(0,D)

a(x)uql dx ≤
∫

{(x ′,xn)∈Rn+:|x ′|≥D/
√
2}
a(x)uql dx

+
∫

{(x ′,xn)∈Rn+:xn≥D/
√
2}
a(x)uql dx

≤ C max
|x ′|=D/

√
2
(ul(x

′, 0))q−p∗
∫
R
n+∩B(0,Rl )

(|∇ul |p + u p∗
l )dx

+ C
1

(1 + D/2
√
2)α

∫
R
n+∩B(0,Rl )

uql
(1 + xn/2)α

dx

≤ C max
|x ′|=D/

√
2
(ul(x

′, 0))q−p∗
∫
R
n+∩B(0,Rl )

(|∇ul |p + u p∗
l )dx

+ C1
1

(1 + D/2
√
2)α

∫
R
n+∩B(0,Rl )

|∇ul |pdx .
(3.7)

This means that

lim
D→∞

∫
R
n+\B(0,D)

a(x)uql dx = 0 (3.8)

uniformly for l ≥ 1, which implies that

lim
l→∞

∫
R
n+
a(x)uql dx =

∫
R
n+
a(x)uq0dx . (3.9)

Since

lim inf
l→∞

∫
R
n+

|∇ul |pdx ≥
∫
R
n+

|∇u0|pdx,

we see that u0 is a minimizer of l(α, q) and this completes the proof. ��

4 Application

In this section, with the purpose to illustrate an application of inequality (1.5), motivated by
the works [12, 13], where the authors have consider quasilinear elliptic problem with Robin
boundary conditions on the upper-half space, we investigate the existence of solutions to
the following quasilinear elliptic equation with Neumann boundary condition and involving
anisotropic weight:

{−div(|∇u|p−2∇u) = λb(x)|u|q−1u + |u|p∗−2u in R
n+,

|∇u|p−2∇u · ν = 0 on R
n−1,

, (P≥)

where 1 < q < p < n, ν denotes the unit outward normal on the boundary, λ > 0 is a
parameter and the weight function b : Rn+ → R is a positive continuous function satisfying
the assumption

∫
R
n+

b
p∗

p∗−q

a
q

p∗−q
dx < ∞, (4.1)
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where a(x) = (1 + xn)−α for α > 1.

Remark 4.1 We quote that assumption (4.1) is inspired by the one in the paper [2] and we

can check that the function b(x) = 1/(1 + xn)
αq
p∗ (1 + |x |)θ with θ > n(p∗ − q)/q satisfies

the assumption (4.1). In fact, if θ > n(p∗ − q)/q one has

∫
R
n+

b
p∗

p∗−q

a
q

p∗−q
dx ≤

∫
R
n+

1

(1 + xn)
αq

p∗−q (1 + |x |) θq
p∗−q

(1 + xn)
αq

p∗−q dx =
∫
R
n+

1

(1 + |x |) θq
p∗−q

dx < ∞.

By carrying out a direct minimization argument similar in the spirit as those in [3, 4] we are
able to prove the following result.

Theorem 4.1 Let 1 < q < p < n and assume that (4.1) holds. Then there exists λ∗ > 0
such that problem (P≥) possesses at least a nonzero weak solution for all λ ∈ (0, λ∗).

Here, by a weak solution of problem (P≥), wemean a nontrivial function u ∈ E verifying∫
R
n+

|∇u|p−2∇u∇ϕdx = λ

∫
R
n+
b|u|q−2uϕdx +

∫
R
n+

|u|p∗−2uϕdx, ∀ ϕ ∈ E .

To prove Theorem 4.1 we shall need the following result.

Lemma 4.1 Assume that (4.1) holds. Then the weighted Sobolev embedding E ↪→
Lq

(
R
n+, b

)
is continuous and compact.

Proof Notice that by the Hölder inequality

∫
R
n+
b|u|qdx =

∫
R
n+

b

a
q
p∗

(a
1
p∗ |u|)qdx ≤

(∫
R
n+

b
p∗

p∗−q

a
q

p∗−q
dx

)(∫
R
n+
a|u|p∗dx

) q
p∗

.

Thus, byTheorem1.1 andhypothesis (4.1)we conclude that the embedding E ↪→ Lq
(
R
n+, b

)
is continuous. We claim that, up to a subsequence, uk → 0 strongly in Lq(Rn+, b) whenever
uk⇀0 weakly in E . Indeed, for R > 0 to be chosen later on, we can write∫

R
n+
b|uk |qdx =

∫
B+
R

b|uk |qdx +
∫
R
n+\B+

R

b|uk |qdx, (4.2)

where B+
R = R

n+ ∩ BR . Since the restriction operator u �→ u|
B+
R
is continuous from E into

E(B+
R ) :=

{
v|

B+
R

: v ∈ E

}
and the embedding E(B+

R ) ↪→ Lq(B+
R , b) is compact, for any

ε > 0 there exists k1 ∈ N such that for any 1 < q ≤ p∗∫
B+
R

b|uk |qdx <
ε

2
, ∀ k ≥ k1. (4.3)

On the other hand, by using the Hölder inequality and the fact that (uk) is bonded in E , we
can invoke assumption (4.1) to choose R > 0 large enough such that

∫
R
n+\B+

R

b|uk |qdx ≤
(∫

R
n+\B+

R

b
p∗

p∗−q

a
q

p∗−q
dx

) p∗−q
p∗ (∫

R
n+\B+

R

a|uk |p∗dx

) p∗
q

≤ ε

2
.

This combined with (4.2) and (4.3) imply the desired convergence. ��
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In view of Lemma 4.1 the energy functional associated to problem (P≥), Iλ : E → R given
by

Iλ(u) = 1

p

∫
R
n+

|∇u|pdx − λ

q

∫
R
n+
b|u|qdx − 1

p∗

∫
R
n+

|u|p∗
dx,

is well defined and of C1 class. Furthermore, standard arguments show that critical points of
Iλ are weak solutions of problem (P≥) and reciprocally.

Lemma 4.2 Let 1 < q < p < n and assume (4.1). Then there exists λ∗ > 0 such that for all
0 < λ < λ∗ the following statements hold:

(i) there are γ, ρ > 0 such that Iλ(u) ≥ γ if ‖u‖E = ρ;
(ii) Iλ(tu0) < 0 for any u0 ∈ E \ {0} and t > 0 small enough.

Proof It follows from Lemma 4.1 and inequality (1.4) that

Iλ(u) ≥ 1

p
‖u‖p − λC1

q
‖u‖q − C2

p∗ ‖u‖p∗

≥
(
1

p
ρ p−q − λC

q
− C

p
ρ p∗−q

)
ρq ,

whereρ = ‖u‖ > 0. Sinceq < p < p∗, one can chooseρ > 0 such that 1
pρ p−q−C

p ρ p∗−q >

1
2pρ p−q . Thus, for 0 < λ < 1

2pC ρ p−q , there exists γλ > 0 in order that

Iλ(u) ≥ γλ ∀ u ∈ E, with ‖u‖E = ρ

where γε =
(

1
2pρ p−q − λC

q

)
ρ p−q , and assertion (i) is proved.

Since q < p < p∗, for any u0 ∈ E \ {0} one has

Iλ(tu0) = tq
[
t p−q

p

∫
R
n+

|∇u0|pdx − λ

q

∫
R
n+
b|u0|qdx − t p

∗−q

p∗

∫
R
n+

|u0|p∗
dx

]
< 0,

for t > 0 small enough and this proves assertion (i i). ��
Proof of Theorem 4.1 By Lemma 4.2 we see that

−∞ < Cλ := inf
Bρ

Iλ(u) < 0.

By applying the Ekeland variational principle we get a sequence (un) ⊂ E such that

I ′
λ(un) → Cλ and ‖I ′

λ(un)‖E∗ → 0. (4.4)

where E∗ denotes the dual space of E . Since (un) is bounded, up to a subsequence, we
may assume that un⇀u weakly in E . By using standard arguments we see that u is a weak
solution. We claim that u is nontrivial. In fact, defining l := limn→∞ ‖∇un‖ ≥ 0, from (4.4)
and the compact embedding E ↪→ Lq(Rn+, b) we obtain

l = lim
n→∞

∫
R
n+

|∇un |p = lim
n→∞

∫
R
n+

|un |p∗
.

Thus, using again (4.4) we conclude that

0 ≤ (
1

p
− 1

p∗ )l = Cλ < 0,

which is a contradiction and this completes the proof. ��
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5 Final comments

In this section we raise some questions related our results that have been of interest by many
authors in different contexts.

Question 1 The question of optimal constants and attainability has been the subject of many
papers, see for instance [9, 15, 16] and references therein. In this context, it is very important
to investigate the optimality and attainability of the constant C(n, α, p) in Theorem 1.1. ��
Question 2 In view of Theorem 1.1 and Corollary 1.2 it is natural to ask if the weight function
(1+ xn)−α is optimal in the sense that, ifw : Rn+ → R verifies the inequality in Theorem 1.1
then there are constants α > 1 and c3 > 0 such that

0 ≤ w(x) ≤ c3
(1 + xn)α

, a.e. in R
n+.

��
Question 3 Is inequality (1.6) true or false for α = α(q) with q ∈ (p∗, p∗)? ��

DataAvailibility Statement Data sharing not applicable to this article as no datasetswere generated or analysed
during the current study.
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