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Abstract
Sobolev energy estimates are proven for solutions of initial-value-problems for non-uniformly
parabolic second-order PDEs having symmetric coefficients depending on the independent
and dependent variables. Local-in-time existence of solutions to initial-value problems for
such systems and convergence results for singular limits involving such systems are conse-
quences of those uniform bounds.
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1 Introduction

There are many ways that a parabolic second-order PDE can fail to be uniformly parabolic.
Many results for such PDEs concern equations that fail to be uniformly parabolic on specified
lower-dimensional sets, such as when the dependent variable equals zero (e.g. the porous
media equation [1]) or tends to infinity [2], or the time variable equals zero [3]. Other results
concern partially parabolic systems, which are uniformly parabolic with respect to some of
the spatial variables and contain no second derivatives with respect to the remaining spatial
variables [4], or hyperbolic-parabolic systems [5], which are uniformly parabolicwith respect
to certain equations and contain no second derivatives in the remaining equations. The results
presented here place no restrictions on the locations where uniform parabolicity fails and do
not assume uniform parabolicity with respect to certain spatial or dependent variables. Linear
non-uniformly parabolic equations and systems without such restrictions are a special case
of the degenerate elliptic equations and systems treated in [6–8], but the results there cannot
be generalized to the nonlinear equations and systems considered here because, as detailed
in Appendix B, the estimates require more derivatives of the coefficients than are estimated
for the solution.

This article is part of the section “Theory of PDEs” edited by Eduardo Teixeira.
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Methods specific to parabolic equations and systems [9] can often be utilized even when
uniform parabolicity does not hold at specified locations [10], but do not seem to be appli-
cable under the conditions considered here. The energy method, which is applicable to a
wide variety of evolutionary PDEs, will be used instead. The difficulty in deriving Sobolev
energy estimates for parabolic equations is due to the troublesome contributions to the energy
estimates that arise from differentiating the coefficients of the second-order terms. For uni-
formly parabolic, partially-parabolic, or hyperbolic-parabolic equations [11, Theorem 4] the
troublesome terms can be estimated by cancellation against the helpful contribution obtained
on account of full or partial uniform parabolicity. The main point of this paper is that those
troublesome terms can be controlled even when the parabolic terms are nonlinear and make
no helpful contribution whatsoever.

Initial-value problems will be considered here for PDEs having one of the forms

A0(t, x, u)ut +
d∑

j=1

A j (t, x, u)ux j =
d∑

j,k=1

D j,k(t, x, u)∂x j ∂xk u + F(t, x, u) (1)

or

A0(εu)ut +
d∑

j=1

A j (t, x, u)ux j + 1
ε

d∑

j=1

C jux j =
d∑

j,k=1

D j,k(t, x, u)∂x j ∂xk u + F(t, x, u), (2)

where the first-order part is symmetric hyperbolic and the second-order terms are symmetric
and satisfy the non-strict Legendre condition, as detailed inAssumption 2.1 below. In contrast
to the corresponding hyperbolic systems in which the second-order spatial derivatives are
absent, when the second derivative terms are present but make no helpful contribution it is not
possible in general to obtain a closed energy estimate for just spatial derivatives of solutions
to (1) or (2). The problem is that the time derivative appears in the equations for spatial
derivatives, and when that time derivative is eliminated by solving the original PDE for ut
and substituting the result for ut wherever it appears on the right side of energy estimates for
the spatial derivatives then the resulting expressions involve one more spatial derivative than
is being estimated. The main results Theorems 2.7 and 3.1 of this paper say that under the
hypotheses mentioned above a local in time closed energy estimate can be obtained when
both space and time derivatives are are estimated together, where for (2) the norms involving
time derivatives are weighted by appropriate powers of ε and the resulting estimate is uniform
in ε.

The difficulty in proving estimates for the solution and its derivatives when the parabolic
terms provide no helpful contribution is that those parabolic terms involve onemore derivative
than is dealt with in classical estimates for hyperbolic systems. The key estimates (13)–(15)
provide bounds for the parabolic terms for the case when more derivatives have been applied
to a single factor of the solution than are being estimated. Although those estimates, like the
key estimate [6, (3.4)–(3.5)] in the theory of degenerate elliptic systems, involve repeated
integrations by parts, the two sets of estimates are otherwise different in every possible
manner.

However, a problem remains even for the terms in which the maximum number of deriva-
tives applied to any one factor of the solution is at most the number of derivatives being
estimated, because the total number of derivatives applied to all factors of the solution
remains larger than for the hyperbolic case. The standard proof of the commutator esti-
mate [11, Lemma A.1] for the product of two functions used in hyperbolic estimates yields

123



Partial Differential Equations and Applications (2022) 3 :13 Page 3 of 25 13

the slightly more general result

∑
∑

� |α�|≤s+1,max� |α�|≤s

∫ ∏

�

[Dα�w(�)]2 dx ≤ c
∏

�

‖w(�)‖2Hs

provided s ≥ s0 + 1, (3)

where Dα� is a spatial derivative of order |α�| and

s0 := � d
2 � + 1 (4)

is the Sobolev embedding index, i.e., the smallest integer such that Hs0 ⊂ L∞. The require-
ment that s be at least s0 + 1 is therefore a standard requirement in the local existence theory
for nonlinear symmetric hyperbolic systems. In order to deal with the parabolic terms and
in light of the fact that we need to estimate time as well as spatial derivatives, we require
a generalization of (3) to the case when the total number of derivatives is s + 2 rather than
s+1, and moreover some of those derivatives may be with respect to time, although the inte-
gral and norms still involve integration only over the spatial variables. The required calculus
estimate, which more generally allows the total number of derivatives to be s + r provided
that s ≥ s0 + r , is presented in Lemma A.1 in Appendix A. The estimate proven there is
also used in [12]. Since s+2 derivatives appear in the parabolic terms when s derivatives are
taken of the PDE, the condition on s in Lemma A.1 requires that s be at least s0 + 2, which
will therefore be assumed in both Theorems 2.7 and 3.1.

Since the presentation of the assumptions and the norms used in the theorems is somewhat
lengthy, the full statements of the theorems on uniform bounds for (1) and for (2) are given in
the same section as the corresponding proof. The uniform bound for (1) is proven in Sect. 2;
for emphasis, the key estimates for the nonuniformly parabolic term are presented there in
Lemma 2.3. The modifications needed to obtain uniform bounds for (2) using ε-weighted
norms of time derivatives are shown in Sect. 3, both for the case when the first time derivative
is uniformly bounded at time zero (known as the case of “well-prepared” initial data), and
for the general case. Obtaining uniform estimates for (2) is more complicated than for purely
hyperbolic systems having large constant-coefficient terms on account of the need to estimate
time derivatives in order to obtain bounds for spatial derivatives. Moreover, in contrast to the
purely hyperbolic case, the estimates here for well-prepared initial data are more complicated
than those for the general case. The key estimate (14) for the parabolic terms is the source
of the chief difficulty, since it makes the nonuniform second time derivative utt appear in
the estimate for the first time derivative ut that we want to show to be uniformly bounded.
In order to prove that ut nevertheless remains uniformly bounded for positive times it is
necessary to use an intricate system of ε-dependent weights.

Once the energy estimates are obtained, local-in-time existence of solutions to the initial-
value problem for those equations, for a time independent of ε in the case of (2), then follows
by a mollification argument as in [13, Section 5.2, Section 7.1]. Furthermore, the local-in-
time convergence of solutions of (2) to corresponding solutions of appropriate limit or profile
equations as ε → 0+ then follows as in [14] since the convergence parts of the theorems
there only require uniform estimates and times of existence plus an easy L2 estimate for
the difference of sufficiently smooth solutions of the limit system. The statements of those
theorems and some indications of the proofs are presented in Sect. 4. The full details of the
existence and convergence proofs are omitted since they are minor variations of those in the
references mentioned above.
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In addition to the existence and convergence results just described, several additional
results follow from themethods here. First, uniform estimates can be obtained for two variants
of (1)–(2):

1. If the diagonal terms (D j,k)�� of the second-order coefficients depend only on t , x , and
u�, the off-diagonal terms depend only on t and x , and all second-order coefficients D j,k

have one more bounded derivative than assumed below, then the second-order terms can
be allowed to have the divergence form

∑
j,k ∂x j

[
D j,k∂xk u

]
. In particular, divergence

form is allowed for scalar PDEs. The additional assumptions just mentioned are needed
in order to eliminate via integration by parts the term in the Sobolev energy estimates in
which ∂x j and all derivatives applied to the PDE are placed on the variable u appearing
inside D j,k .

2. The solution u can be required to satisfy a linear constant-coefficient constraint Lu =
0, enforced by adding the adjoint Lagrange multiplier term L∗φ to the equation. This
situation is familiar from the incompressible Navier-Stokes equations.

For brevity, further details of the extension to such variant equations are omitted. Applying
both extensions yields uniform estimates for the incompressible Navier-Stokes equations
with eddy viscosity considered in [15], even when the variable-coefficient eddy viscosity
coefficient is merely non-negative, since the incompressibility constraint can be used to
write the viscosity terms in symmetric form.

Finally, the results here also make it possible to generalize geometric optics results of
[16] to the case when the second-order terms are not uniformly parabolic, by using scaled
norms ‖u‖L2 + ∑

1≤�+m≤s ε�+m−1‖∂mt u‖H� . The verification that the bound obtained for
the scaled norms is independent of ε is similar to the calculations in [16, Section IV] or [17,
Proof of Theorem 3.6].

2 Uniform bounds

Since ∂x j ∂xk = ∂xk ∂x j we can ensure without loss of generality that

D j,k = Dk, j (5)

by replacing D j,k with 1
2 (D

j,k +Dk, j ) if necessary. The following assumptions will be made
on D j,k and the other coefficient matrices appearing in (1) and (2).

Assumption 2.1 1. For every k < ∞ there is a constant b(k) such that
{

‖A0(t, x, v)‖Cs ([0,∞)×Rd×{|v|≤k}) ≤ b(k) for (1)

‖A0(v)‖Cs ({|v|≤k}) ≤ b(k) for (2)
(6:s)

and

‖{A j (t, x, v)}dj=1, {D j,k(t, x, v)}dj,k=1‖Cs ([0,∞)×Rd×{|v|≤k}) (7:s)

+ ‖F(t, x, v),
∫ 1
0

∂F
∂u (t, x, rv) dr‖Cs ([0,∞)×Rd×{|v|≤k}) ≤ b(k),

where s is a positive integer to be specified.
2. The matrices A j for 0 ≤ j ≤ d , the matrices C j for 1 ≤ j ≤ d , and the matrices D j,k

for 1 ≤ j, k ≤ d are symmetric, and (5) holds.
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3. The matrix A0 is positive definite, i.e., for every k < ∞ there is a δ(k) > 0 such that

{
wTA0(t, x, v)w ≥ δ(k)|w|2 for |v| ≤ k for (1)

wTA0(v)w ≥ δ(k)|w|2 for |v| ≤ k for (2).
(8)

4. The matrices D j,k satisfy the non-strict Legendre condition

d∑

j,k=1

(w( j))TD j,k(t, x, u)w(k) ≥ 0

for all (t, x, u) and all sets of vectors {w( j)}dj=1. (9)

Remark 2.2 The non-strict Legendre condition (9) in Assumption 2.1 ensures that

−
∫

Rd

d∑

j,k=1

(∂x j v(t, x))T D j,k(t, x, u(t, x))∂xkv(t, x) ≤ 0, (10)

whichwill be vital for the proof of Theorem 2.7 below. In contrast, if the D j,k are not constant
then the non-strict Legendre-Hadamard condition

d∑

j,k=1

ξ jξkw
T D j,kw ≥ 0 for all real numbers {ξ j }dj=1 and vectors w (11)

only implies the the sharp Gårding inequality (e.g., [13, Section 0.7])

−
∫

Rd

d∑

j,k=1

(∂x j v(t, x))T D j,k(t, x, u(t, x))∂xkv(t, x) ≤ c‖v‖2H1/2 , (12)

which is not sufficient for the proof of Lemma 2.3 because there is no helpful contribution
to compensate for the extra half derivative on the right side of (12).

The following lemma contains the key estimates involving the nonuniformly parabolic
terms that will be used for the troublesome case when more derivatives are applied to the
solution than are being estimated.

Lemma 2.3 Let the spatial domain be the torus T
d or the whole space R

d . Suppose that
Assumption 2.1 holds, with(6:s)–(7:s) holding for s := s0 + 2. In addition, let u and v be
functions in ∩2

m=0C
m([0, Tu]; Hs−m) and ∩1

m=0C
m([0, Tu]; H2−m), respectively. Then

1.
∫ ∑

j,k

vT D j,k(t, x, u(t, x)))∂x j ∂xkv ≤ b(‖u‖L∞)P(‖u‖Hs0+2)‖v‖2L2 , (13)

where here and later P denotes a polynomial, which may be different in different occur-
rences.
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2.

2
∫ ∑

j,k

(∂tv)T (∂t D
j,k(t, x, u(t, x)))∂x j ∂xkv

≤ − d
dt

[ ∫ ∑

j,k

(∂x j v)T (∂t D
j,k(t, x, u(t, x)))∂xkv

]

+ b(‖u‖L∞)P(‖u‖Hs0+1)(1 + ‖ut‖Hs0+1)‖vt‖L2‖v‖H1

+ b(‖u‖L∞)P(‖u‖Hs0 )(1 + ‖ut‖2Hs0 + ‖utt‖Hs0 )‖v‖2H1 ,

(14)

where here and later ∂t D j,k(t, x, u(t, x)) means

[∂t (D j,k(t, x, w)) + (ut · ∇w)(D j,k(t, x, w))]⏐⏐
w=u(t,x)

and ∂x�
D j,k has an analogous meaning.

3.
∫ ∑

j,k

(∂x�
v)T (∂xm D

j,k(t, x, u(t, x)))∂x j ∂xkv

≤ b(‖u‖L∞)P(‖u‖Hs0+2)‖v‖2H1 . (15)

Proof To estimate the left side of (13), the two derivatives ∂x j and ∂xk must both be transferred
from v to D j,k . That can be accomplished by using integration by parts, the product rule
for derivatives, the consequence (10) of the assumed Legendre condition (9), the assumed
symmetry of the coefficient matrices D j,k , the integration-by-parts identity

abc′ + a′bc = (abc)′ − ab′c, (16)

and the facts that the integral over R
d or T

d of a spatial derivative vanishes and that Hs0+2

is an algebra. This yields,

2
∫ ∑

j,k

vT D j,k∂x j ∂xkv = −2
∫ ∑

j,k

∂x j

[
vT D j,k

]
∂xkv

= −2

{∫ ∑

j,k

[
∂x j v

]T
D j,k∂xkv +

∫ ∑

j,k

vT
[
∂x j D

j,k
]
∂xkv

}

≤ −2
∫ ∑

j,k

vT
[
∂x j D

j,k
]
∂xkv

= −
∫ ∑

j,k

vT
[
∂x j D

j,k
]
∂xkv −

∫ ∑

j,k

{
∂xkv

T
}[

∂x j D
j,k
]
v

= −
∑

j,k

∫
∂xk

{
vT
[
∂x j D

j,k
]
v
}

+
∫

vT
[∑

j,k

∂xk ∂x j D
j,k
]
v

=
∫

vT
[∑

j,k

∂xk ∂x j D
j,k
]
v ≤

∥∥∥∥
∑

j,k

∂xk ∂x j D
j,k
∥∥∥∥
L∞

‖v‖2L2

≤ b(‖u‖L∞)P(‖u‖Hs0+2)‖v‖2L2 , (17)

where here and later P denotes a polynomial, whichmay be different in different occurrences.
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To estimate the left side of (14), integrate by parts, use the fact that Hs is an algebra for
s ≥ s0 to estimate the term in which two derivatives are applied to the D j,k , use the symmetry
of the matrices D j,k and the symmetry (5) of D j,k under interchange of the indices j, k and
switch the labels j and k of the indices to write the term in which a time derivative is applied
to ∂x j v as half the sum of terms in which a time derivative is applied once to ∂x j v and once
to ∂xkv, and use the identity (16) to obtain a term in which a time derivative is applied to
an entire integral minus a term in which both time derivatives are applied to the coefficients
D j,k . Upon estimating the last term in similar fashion to the previous term in which two
derivatives were applied to D j,k , this yields

2
∫ ∑

j,k

(∂tv)T (∂t D
j,k(t, x, u(t, x)))∂x j ∂xkv

= −2
∫ ∑

j,k

(∂t∂x j v)T (∂t D
j,k(t, x, u(t, x)))∂xkv

− 2
∫ ∑

j,k

(∂tv)T (∂x j ∂t D
j,k(t, x, u(t, x)))∂xkv

≤ −2
∫ ∑

j,k

(∂t∂x j v)T (∂t D
j,k(t, x, u(t, x)))∂xkv

+ b(‖u‖L∞)P(‖u‖Hs0+1)(1 + ‖ut‖Hs0+1)‖vt‖L2‖v‖H1

= −
∫ ∑

j,k

(∂t∂x j v)T (∂t D
j,k(t, x, u(t, x)))∂xkv

−
∫ ∑

j,k

(∂x j v)T (∂t D
j,k(t, x, u(t, x)))∂t∂xkv

+ b(‖u‖L∞)P(‖u‖Hs0+1)(1 + ‖ut‖Hs0+1)‖vt‖L2‖v‖H1

= − d
dt

∫ ∑

j,k

(∂x j v)T (∂t D
j,k(t, x, u(t, x)))∂xkv

+
∫ ∑

j,k

(∂x j v)T (∂2t D
j,k(t, x, u(t, x)))∂xkv

+ b(‖u‖L∞)P(‖u‖Hs0+1)(1 + ‖ut‖Hs0+1)‖vt‖L2‖v‖H1

≤ − d
dt

∫ ∑

j,k

(∂x j v)T (∂t D
j,k(t, x, u(t, x)))∂xkv

+ b(‖u‖L∞)P(‖u‖Hs0 )(1 + ‖ut‖2Hs0 + ‖utt‖Hs0 )‖v‖2H1 ,

+ b(‖u‖L∞)P(‖u‖Hs0+1)(1 + ‖ut‖Hs0+1)‖vt‖L2‖v‖H1 .

The process of estimating the left side of (15) is similar, but since spatial rather than time
derivatives are involved the term− ∫

∂x�

[
(∂x j v)T (∂xm D

j,k(t, x, u(t, x)))∂xkv
]
that vanishes

is obtained instead of the time derivative of an integral, and spatial derivatives rather than time
derivatives are applied to v and u. Hence the estimate on the right side of (15) is obtained. ��

Before stating the theoremonuniformbounds for (1) it is necessary to define the expression
that will satisfy a differential inequality and verify that it is the square of a norm.

123



13 Page 8 of 25 Partial Differential Equations and Applications (2022) 3 :13

Definition 2.4 For any nonnegative integer r and function u ∈ L∞ define a weighted Hr

norm by

‖v‖r ,u :=
√√√√

∑

0≤|α|≤r

∫

Rd
(Dαv)T A0(t, x, u)(Dαv) dx, (18)

and for any (u, ut ) ∈ L∞ and any set W := {wm}sm=0 of positive constants, define

|||v|||s,u,W := √
Qs,u,W (v, vt , . . . , ∂

s
t v) , (19)

where

Qs,u,W (v(0), . . . , v(s)) :=
s−1∑

m=0

‖v(m)‖2s−1−m,u +
s∑

m=0

wm

∑

|α|=s−m

‖Dαv(m)‖20,u

+
s−1∑

m=0

(m + 1)wm+1

d∑

j,k=1

∑

|γ |=s−1−m

∫
(∂x j D

γ v(m))T [∂t D j,k]∂xk Dγ v(m).

(20)

Although the inclusion of the term involving ∂t D j,k in (20) may seem strange, that term will
arise naturally in the proof of Theorem 2.7 on account of the use of estimate (14).

Lemma 2.5 Let s be a positive integer, and assume that the positivity condition (8) holds and
the boundedness conditions (6:s)–(7:s) hold for that value of s. Assume in addition that

‖u‖L∞ ≤ M1 and ‖ut‖L∞ ≤ M2, (21)

and that W := {wm}sm=0 are positive constants satisfying

max
0≤m≤s−1

(m + 1)wm+1

wm
≤ μ

d2(1 + NM2)b(M1)

for some μ satisfying 0 < μ < δ(M1), (22)

where N denotes the number of components of the vector u, d is the number of spatial
variables, and δ(·) and b(·) are defined in Assumption 2.1. Then

1. ‖ · ‖s,u is a norm on Hs equivalent to the standard Hs norm; specifically,

δ(M1)‖v‖Hs ≤ ‖v‖s,u ≤ b(M1)‖v‖Hs . (23)

2.
√
Qs,u,W (v(0), . . . , v(s)) is a norm on

∏m
s=0 H

s−m equivalent to sum of the standard
Hs−m norms of the components. Quantitatively,

Qs,u,W (v(0), . . . , v(s)) ≥ δ(M1)

s−1∑

m=0

‖v(m)‖2Hs−1−m + δ(M1)ws‖v(s)‖2L2

+ (δ(M1) − μ)

s−1∑

m=0

wm

∑

|α|=s−m

‖Dαv(m)‖2L2

(24)

and

Qs,u,W (v(0), . . . , v(s)) ≤ b(M1)

s−1∑

m=0

‖v(m)‖2Hs−1−m + b(M1)ws‖v(s)‖2L2

+ (b(M1) + μ)

s−1∑

m=0

wm

∑

|α|=s−m

‖Dαv(m)‖2L2 .

(25)
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Proof The bounds (23) follow directly from (21), (8), and (6:s). Straightforward estimation
of the term involving D j,k in (20) using (21) and (7:s) shows that

d∑

j,k=1

∑

|γ |=s−1−m

⏐⏐⏐⏐
∫

(∂x j D
γ v(m))T [∂t D j,k]∂xk Dγ v(m)

⏐⏐⏐⏐

≤ d2‖∂t D j,k‖L∞
∑

|α|=s−m

‖Dαv(m)‖2L2

≤ d2(1 + NM2)b(M1)
∑

|α|=s−m

‖Dαv(m)‖2L2 ,

(26)

and (24)–(25) follow directly from (26), formula (20) for Qs,u,W , and the bounds (22), (8),
and (6:s). ��

In order to simplify the statement of the theorem, it will be convenient to state and prove
a lemma estimating Qu,s,W (u, ut , . . . , ∂st u) in terms of ‖u‖H2s when u is a solution of (1).
This result is only used to bound the initial value of Q.

Lemma 2.6 Let the assumptions of Lemma 2.5 hold, and assume that s ≥ s0, where s0 is
defined in (4). Then there exists a continuous increasing functionCinit such that any solution u
of (1) satisfies

|||u|||2u,s,W ≤ Cinit(‖u‖H2s ). (27)

Proof Since Hr is an algebra for r ≥ s0, solving the PDE (1) for ut , and then repeatedly
differentiating with respect to t , substituting into the result the formulas for lower-order time
derivatives obtained at earlier stages, and estimating an appropriate norm of the result yields
a bound

∑s
m=0 ‖∂mt u‖Hs−m ≤ C(‖u‖H2s ), because each time derivative adds at most two

spatial derivatives. Combining this with (25) yields (27). ��
The theorem on bounds for (1) includes two parts: an estimate for Qs,u,W and an estimate

for ‖u‖2s,u when the equation satisfies additional conditions that make it possible to eliminate
ut from that estimate. In the latter case an estimate for ut can then be obtained by solving the
PDE for ut and estimating the expression so obtained. Since that expression contains second
derivatives of u, the Sobolev index of the bound for ut for that case is two less than the index
of the bound for u. Although one might expect that should hold for the first case as well, the
expression Qs,u,W actually includes only one less derivative of ut than of u. The reason is
that the estimate for derivatives of order s of u involves derivatives of order s − 1 of ut , so it
is necessary to estimate ut in a Sobolev space having index only one less that the index for
u. As a consequence, in order to obtain an Hs estimate for u its initial data must belong to
H2s , in accordance with the estimate (27).

Theorem 2.7 Let the spatial domain be the torus T
d or the whole space R

d . Let s be an
integer satisfying

s ≥ s0 + 2, (28)

where s0 is defined in (4). Suppose that Assumption 2.1 holds, with (6:s)–(7:s) holding for
the given value of s, and that

∑s
m=0 ‖∂mt F(t, x, 0)‖C0([0,∞);Hs−m ) is finite.

1. Let m1, m2, and m3 be arbitrary positive constants, and let M1, M2, and M3 satisfy

M1 > m1, M2 > m2, and M3 > Cinit(m3). (29)
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Then there exist positive weights W := {wm}sm=0 satisfying (22), a continuously differen-
tiable nondecreasing function G, and a positive time T such that every solution u of (1)
that satisfies

‖u(0, ·)‖L∞ ≤ m1, ‖ut (0, ·)‖L∞ ≤ m2, and ‖u(0, x)‖H2s ≤ m3, (30)

and belongs to ∩s
m=0C

m([0, Tu]; Hs−m) also satisfies the estimates

‖u‖L∞ ≤ M1 and ‖ut‖L∞ ≤ M2

from (21) and the differential and integrated energy estimates

d
dt |||u(t, ·)|||2s,u,W ≤ G(|||u(t, ·)|||2s,u,W ) (31)

and

|||u|||2s,u,W ≤ U (t,Cinit(m3)) ≤ M3 (32)

for 0 ≤ t ≤ min(T , Tu), where U (t,U0) is the unique solution of the ODE U ′ = G(U )

satisfying U (0) = U0. The constant T , the weights W, and the function G are all
independent of the particular solution u satisfying the above conditions.

2. Assume that in addition either the PDE (1) is scalar or the matrix A0 is independent of x
and u. Let m1 and m3 be arbitrary constants, and let M1 and M3 satisfy M1 > m1, and
M3 > b(M1)

2m2
3. Then there exist a constant M2, a continuous nondecreasing function

G̃, and a positive time T̃ such that any sufficiently smooth solution u of (1) that satisfies

‖u(0, ·)‖L∞ ≤ m1 and ‖u(0, x)‖Hs ≤ m3 (33)

and belongs to ∩s
m=0C

m([0, Tu]; Hs−m) also satisfies the estimates

‖u‖L∞ ≤ M1 and ‖ut‖L∞ ≤ M2

from (21) and the estimates

d
dt ‖u(t, ·)‖2s,u ≤ G̃(‖u(t, ·)‖2s,u) (34)

and

‖u‖2s,u ≤ Ũ (t, b(m1)
2m2

3) ≤ M3 (35)

for 0 ≤ t ≤ min(T̃ , Tu), where Ũ (t,U0) is the unique solution of the ODE Ũ ′ = G̃(Ũ )

satisfying Ũ (0) = U0. The constants M2 and T̃ and the function G̃ are independent of
the particular solution u satisfying the above conditions.

Proof Let the assumptions of the first part hold. The standard method of mollifying u allows
us to assume that as many derivatives of it as needed exist and belong to L2, which justifies
the calculations below that involve placingmore than s derivatives on u or use the fact that the
integral of a spatial derivative of any expression vanishes even when that expression contains
a derivative of order s + 1 of u.

The difference F(t, x, u) − F(t, x, 0) can be written as
∫ 1
0 ∂r F(t, x, ru) dr , and the

derivative inside the integral equals u · ∂F
∂u (t, x, ru), which yields the identity

F(t, x, u) = F(t, x, 0) + H(t, x, u)u, where H(t, x, u) :=
∫ 1

0

(
∂F

∂u
(t, x, ru)

)T

dr .

(36)
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Substitute (36) into (1) and take m time derivatives and a spatial derivative Dα of the result,
with 0 ≤ m + |α| ≤ s. Rewrite the expression so obtained as the sum of the terms in which
all derivatives are applied to the derivatives of u already appearing in (1) plus commutator
terms, multiply the result on the left by 2(Dα∂mt u)T , integrate over the spatial domain, and
use the symmetry of the A j to obtain

2
∫

vT A(Dv) =
∫

vT A(Dv) +
∫

(Dv)T Av =
∫

D(vT Av) − vT (DA)v, (37)

where v = Dα∂mt u, A is any of the matrices A j for 0 ≤ j ≤ d , and the operator D is ∂t if
j = 0 and is ∂x j if j > 0. After noting that

∫
∂x j (v

T A jv) = 0 by the periodicity of u and
its derivatives or their decay at infinity, this yields

d
dt

∫
(Dα∂mt u)T A0(Dα∂mt u)

=
∫

(Dα∂mt u)T

⎡

⎣∂t A
0 +

d∑

j=1

∂x j A j

⎤

⎦ (Dα∂mt u) + 2
∫

(Dα∂mt u)T (Dα∂mt F(t, x, 0))

+ 2
∫

(Dα∂mt u)T (Dα∂mt (Hu)) + 2
∫ ∑

j,k

(Dα∂mt u)T D j,k∂x j ∂xk (D
α∂mt u)

− 2
∫

(Dα∂mt u)T
{
[Dα∂mt , A0]ut +

∑

j

[Dα∂mt , A j ]ux j −
∑

j,k

[Dα∂mt , D j,k]∂x j ∂xk u
}
.

(38)

By the assumption on F(t, x, 0), theCauchy-Schwartz inequality and the elementary estimate
2ab ≤ a2 + b2 can be used to obtain

2
∫

(Dα∂mt u)T Dα∂mt F(t, x, 0) ≤ 2‖∂mt u‖H |α| ‖∂mt F(t, x, 0)‖H |α| ≤ c + ‖∂mt u‖2H |α| .(39)

All the remaining terms on the right side of (38) have the form

c
∫

(Dα∂mt ui )g(t, x, u)
∏

�

Dα�∂
m�
t ui� (40)

where ui is a component of u and g is some component of some derivative of a coefficient
A0, A j , D j,k , or H . Because each term of the PDE (1) contains at most two derivatives, and
at most s derivatives were applied to that equation,

∑

�

|α�| + m� ≤ s + 2. (41)

The terms in (40) that satisfy in addition

|α�| + m� ≤ s for all � (42)

will be estimated using Lemma A.1. Since no derivatives are applied to the coefficients in
the original PDE, the factors g in (40) involve at most derivatives of order s of the coeffi-
cients. Hence by the assumed bound (6:s)–(7:s) for the coefficients and the Cauchy-Schwartz
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inequality,

[sum of all terms on right side of (38) having form (40) with (42) holding]

≤
∑

terms (40) satisfying (42)

c‖g‖L∞
∫

|Dα∂mt ui |
⏐⏐⏐⏐⏐
∏

�

[Dα�∂
m�
t ui�

⏐⏐⏐⏐⏐

≤
∑

{i�},{m�},{α�} satisfying (41),(42)

c b(‖u‖L∞)‖Dα∂mt u‖L2

{∫ ∏

�

[Dα�∂
m�
t ui� ]2

}1/2

(43)

Since the conditions (41)–(42) hold and s satisfies (28), applying Lemma A.1 with r := 2
shows that for all the terms appearing in (43)

[∫ ∏

�

[Dα�∂
m�
t ui� ]2

]1/2
≤
∏

�

‖∂m�
t u‖Hs−m� . (44)

Substituting (44) back into (43) yields the estimate

[sum of all terms on right side of (38) having form (40) with (42) holding]

≤ c b(‖u‖L∞)‖∂mt u‖H |α|
∑

{m�}satisfying m�≤s,
∑

m�≤s+1

∏

�

‖∂m�
t u‖Hs−m� ,

(45)

where the restriction
∑

m� ≤ s + 1 in the final sum comes from the fact that only one time
derivative appears in the PDE and at most s were applied to that equation.

The remaining terms on the right side of (38) have at least s+1 derivatives applied to some
occurrence of u, and all such terms involve the viscosity matrix D j,k since the presence of the
commutators in the terms involving A0 and A j prevents all s + 1 derivatives in those terms
from being applied to one factor. To treat the term in which D j,k appears undifferentiated,
apply (13) with v := Dα∂mt u, which yields

2
∫ ∑

j,k

(Dα∂mt u)T D j,k∂x j ∂xk (D
α∂mt u) ≤ b(‖u‖L∞)P(‖u‖Hs0+2)‖∂mt u‖2Hs−m . (46)

The other term involving D j,k is the commutator term, which has the form

2
∑

j,k

∑

0≤l≤m,0≤βi≤αi
�+|β|≥1

(m
�

)(
α
β

) ∫
(Dα∂mt u)T (∂�

t D
βD j,k)∂m−�

t Dα−β∂x j ∂xk u, (47)

where
(
α
β

)
is the product binomial coefficient

∏d
j=1

(α j
β j

)
. Since � + |β| ≤ m + |α| ≤ s, the

terms for which m − � + |α| − |β| + 2 ≤ s have already been estimated in (45), so only the
cases for which

m + |α| − [� + |β|] ≥ s − 1 (48)

need be considered. Sincem+|α| ≤ s and �+|β| ≥ 1, (48) can only hold whenm+|α| = s
and �+|β| = 1, i.e., when a total of s derivatives have been applied to the PDE and only one
of those derivatives is applied to the coefficient D j,k . When the derivative applied to D j,k is
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a spatial derivative, use (15) with v := Dα−β∂mt u, which yields

2
∑

j,k

∑

0≤βi≤αi|β|=1

(
α
β

) ∫
(Dα∂mt u)T (DβD j,k)∂x j ∂xk D

α−β∂mt u

≤ b(‖u‖L∞)P(‖u‖Hs0+2)‖∂mt u‖2H |α|−m .

(49)

When the derivative applied to D j,k is a time derivative, use (14) with v := Dα∂m−1
t u, which

yields

2m
∑

j,k

∫
(Dα∂mt u)T (∂t D

j,k)∂x j ∂xk D
α∂m−1

t u

≤ −m
∑

j,k

d
dt

∫
(∂x j D

α∂m−1
t u)T (∂t D

j,k)∂xk D
α∂m−1

t u

+ b(‖u‖L∞)P(‖u‖Hs0+1)(1 + ‖ut‖Hs0+1)‖∂mt u‖H |α| ‖∂m−1
t u‖H |α|+1

+ b(‖u‖L∞)P(‖u‖Hs0 )(1 + ‖ut‖2Hs0 + ‖utt‖Hs0 )‖∂m−1
t u‖2H |α|+1 .

(50)

As noted above, only the case when |α| + m = s needs to be estimated by (50).
Now pickμ satisfying 0 < μ < δ(M1). Then definew0 := 1 and successively choose the

wm for 1 ≤ wm ≤ s satisfying (22) for the given values of M1, M2, andμ, so the conclusions
of Lemma 2.5 will hold for as long as (21) holds. Multiply (38) by wm if |α| + m = s and
by 1 otherwise, add the resulting equations, use the estimates (39), (45), (46), (49), and (50)
to estimate the right side of the result, and move the time derivative terms arising from (50)
to the left side. By the definition (19)–(20), the left side of the combined estimate is the
time derivative of |||u|||2s,u,W . Hence, after replacing b(‖u‖L∞) by its upper bound b(M1) and
using the elementary estimate x ≤ 1 + x2 to eliminate odd powers of norms, the combined
estimate has the form

d
dt |||u|||2s,u,W ≤ b(M1)P(

∑s
m=0‖∂mt u‖2Hs−m ). (51)

The right side of (24) with v(m) replaced by ∂mt u is bounded from above and below by
constants times

∑s
m=0 ‖∂mt u‖2Hs−m .Hence byLemma2.5 and the definition (19) of |||u|||s,u,W ,

the right side of (51) can be bounded by a polynomial of |||u|||2s,u,ε,W as long as (21) holds.
Once (21) has been shown to hold for some positive time this will yield (31).

By the comparison principle for ODEs, also known as the fence theorem [18, Theorem
4.7.1], as long as (21) holds then (31) together with (27) and (30) implies the first inequality
in (32). In view of the last condition in (29), there exists a time T3 such thatU (t,Cinit(m3)) ≤
M3 for 0 ≤ t ≤ T3, which is the second inequality in (32). Moreover, the bounds

‖u‖L∞ ≤ m1 + t sup
[0,t]

‖ut‖L∞ and ‖ut‖L∞ ≤ m2 + ct sup
[0,t]

|||u|||s,u,W (52)

yield times T1 := M1−m1
M2

and T2 := M2−m2
c
√
M3

such that

‖ut‖L∞ ≤ M2 on the time interval 0 ≤ t ≤ min(T2, Tu) for as long as (32) holds, (53)

‖u‖L∞ ≤ M1 on the time interval 0 ≤ t ≤ min(T1, Tu) for as long as (53) holds, (54)

where Tu is the time of existence of u defined in the statement of the theorem. Since the
estimates (52) and (32) imply bounds smaller than (M1, M2, M3) for

(‖u‖L∞ , ‖ut‖L∞ , |||u|||2s,u,ε,W ) (55)
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for times less than the minimum of T := min(T1, T2, T3) and Tu as long as the
bounds (M1, M2, M3) hold, the continuity of the expressions (55) implies that the bounds
(M1, M2, M3), and hence also (31)–(32), remain valid on [0,min(T , Tu)].

Now assume that the additional hypothesis of the second part of the theorem holds. In this
case we take only spatial derivatives of the PDE (1), so (38) is replaced by

d
dt

∫
(Dαu)T A0(Dαu)

=
∫

(Dαu)T

⎡

⎣∂t A
0 +

d∑

j=1

∂x j A j

⎤

⎦ (Dαu) + 2
∫

(Dαu)T (DαF(t, x, 0))

+ 2
∫

(Dαu)T (Dα(Hu)) + 2
∫

(Dαu)T D j,k∂x j ∂xk (D
αu)

− 2
∫

(Dαu) ·
⎧
⎨

⎩[Dα, A0]ut +
∑

j

[Dα, A j ]ux j −
∑

j,k

[Dα, D j,k]∂x j ∂xk u
⎫
⎬

⎭ .

(56)

The terms on the right side of (56) that do not contain the time derivative ut can be estimated in
the same way as was done for (38), which yields a boundC(‖u‖Hs ) since no time derivatives
are present. When A0 is independent of x and v then [Dα, A0] vanishes, so there is no term
on the right of (56) that involves a time derivative of u. When the equation is scalar, then
modify (56) by using the PDE (1) and the identity (36) to replace [Dα, A0]ut in (56) with
the equal expression

[Dα, A0]
{
(A0)−1

(∑

j,k

D j,k∂x j ∂xk u + F(t, x, 0) + H(t, x, u)u −
∑

j

A j ux j

)}
. (57)

Since (57) is only used to eliminate ut when the equation is scalar, the term [DαA0](A0)−1∂x j
D j,k appearing in (57) is a 1× 1 matrix, and so is automatically symmetric. Hence the term
in the modified (56) in which that expression appears can be estimated in the same way that
the term in (38) containing [Dα, D j,k]∂x j ∂xk u was estimated. The terms in (56) arising from
the remaining terms in (57) can also be estimated in the same manner as for the terms in (38).
Since no time derivatives appear, summing the result over 0 ≤ |α| ≤ s and proceeding in
similar fashion to the general case yields (34) and (35). In particular, (52) is replaced by

‖ut‖L∞ ≤ c‖ut‖Hs0 ≤ C(‖u‖Hs0+2) ≤ C
( ‖u‖s,u

δ(M1)

)
≤ M2 := C

( √
M3

δ(M1)

)
,

where ut has been estimated in terms of u in similar fashion to (27), and

‖u‖L∞ ≤ m1 + t sup
[0,t]

‖ut‖L∞ ≤ m1 + ctM2.

��
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3 Uniform Hs bounds and weighted time-derivative bounds for
singular limit equations

For the PDE (2) the norm (18) is naturally replaced by

‖v‖r ,u,ε :=
√√√√

∑

0≤|α|≤r

∫

Rd
(Dαv)T A0(εu)(Dαu) dx . (58)

In order to obtain uniform spatial bounds for solutions of (2), the expression Q whose time
derivative is estimated must be modified to include powers of ε in the terms involving time
derivatives. Just as for hyperbolic singular limits, for general initial data one factor of ε is
applied to each time derivative, so ∂mt u is multiplied by εm . For hyperbolic singular limits
the well-prepared case is treated by simply replacing that factor εm by εmax(m−1,0), but this
does not quite work for the PDE (2), because the energy equation (38) for the case when
m = 1 and |α| = s − 1 would not be multiplied by a power of ε yet the term (50) of its
estimate contains a term with a factor utt that needs to be multiplied by ε to be uniformly
bounded. Hence the term

∑
|α|=s−1 ‖Dαut‖20,u,ε in Q must be multiplied by ε, which will

necessitate a more careful treatment of some of the estimates. Thus, for general initial data
(19)–(20) are replaced by

|||v|||s,u,ε,W := √
Qs,u,ε,W (v, vt , . . . , ∂

s
t v) , (59)

where

Qs,u,ε,W (v(0), . . . , v(s)) :=
s−1∑

m=0

ε2m‖v(m)‖2s−1−m,u,ε

+
s∑

m=0

wmε2m
∑

|α|=s−m

‖Dαv(m)‖20,u,ε

+
s−1∑

m=0

(m + 1)wm+1ε
2(m+1)

d∑

j,k=1

∑

|γ |=
s−1−m

∫
(∂x j D

γ v(m))T [∂t D j,k]∂xk Dγ v(m),

(60)

while for well prepared initial data

|||v|||s,u,ε,W ,alt := √
Qs,u,ε,W ,alt(v, vt , . . . , ∂

s
t v) , (61)

Qs,u,ε,W ,alt(v
(0), . . . , v(s)) := ‖v(0)‖2s−1,u,ε +

s−1∑

m=1

ε2(m−1)‖v(m)‖2s−1−m,u,ε

+w0

∑

|α|=s

‖Dαv(0)‖20,u,ε + εw1

∑

|α|=s−1

‖Dαv(1)‖20,u,ε

+
s∑

m=2

wmε2(m−1)
∑

|α|=s−m

‖Dαv(m)‖20,u,ε

+w1ε

d∑

j,k=1

∑

|γ |=s−1

∫
(∂x j D

γ v)T [∂t D j,k]∂xk Dγ v
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+
s−1∑

m=1

(m + 1)wm+1ε
2m

d∑

j,k=1

∑

|γ |=
s−1−m

∫
(∂x j D

γ v(m))T [∂t D j,k]∂xk Dγ v(m) (62)

will be used. Calculations similar to those in the proof of Lemma 2.5 show that if

ε‖u‖L∞ ≤ M1 (63)

then (23) remains valid when ‖ ‖s,u is replaced by ‖ ‖s,u,ε, and if in addition, for positive
(M2, ε0, μ) satisfying μ < δ(M1),

ε‖ut‖L∞ ≤ M2 (64)

and

max
0≤m≤s−1

(m + 1)wm+1

wm
≤ μ

d2ε0(ε0 + NM2)b(M1)
, (65)

then (24)–(25) remain valid for 0 < ε ≤ ε0 when Qs,u,W is replaced by Qs,u,ε,W and v(m)

for 0 ≤ m ≤ s is replaced by εmv(m) on the right sides of those inequalities. Similarly, if
instead

‖ut‖L∞ ≤ M2 (66)

and

max
0≤m≤s−1

ε
p(m)
0 (m + 1)wm+1

wm
≤ μ

d2(1 + NM2)b(M1)

with p(m) :=
{
1 m ≤ 1

2 m ≥ 2
, (67)

then (24)–(25) remain valid for 0 < ε ≤ ε0 when Qs,u,W is replaced by Qs,u,ε,W , alt and
powers of ε matching the corresponding powers on the first two lines of (62) are inserted into
the right sides of those inequalities.

In similar fashion to (27), there exist continuous increasing functions Cinit,ε, C∗, and
and C init,ε,alt such that when Assumption 2.1, (63), (64), and (65) hold and s ≥ s0 defined
in (4) then solutions of (2) satisfy

|||v|||2s,u,ε,W ≤ Cinit,ε(‖u‖H2s ), (68)

while if Assumption 2.1, (63), (66), and (67) hold then solutions of (2) satisfy

‖ut‖H2(s−1) ≤ C∗
(

‖ 1
ε

∑
jC

j∂x j u‖H2(s−1) , ‖u‖H2s

)
(69)

and

|||v|||2s,u,ε,W ,alt ≤ Cinit,ε,alt(‖u‖H2s , ‖ut‖H2(s−1) ). (70)

Like (27), (68) is obtained by solving the PDE for ut and then taking time derivatives of the
result and using the formulas obtained previously to express time derivatives in terms of u
and its spatial derivatives. Similarly, (70) is obtained by refraining from substituting for ut
in terms of u but substituting for utt and higher time derivatives in terms of u and ut , while
(69) is obtained by solving (2) for ut and estimating the result while keeping the large term
intact.
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The theorem for (2) includes three parts: The first part is an estimate for Qs,u,ε,W when
ut is not assumed to be uniformly bounded at time zero, and the second is an estimate for
Qs,u,ε,W ,alt assuming well-prepared initial data. The final part of the theorem is an estimate
for ‖u‖2s,u,ε when the equation satisfies additional conditions thatmake it possible to eliminate
ut from that estimate. In that case, a uniform estimate for εut can then be obtained by solving
the PDE for ut and estimating the expression so obtained. If the initial data is well prepared,
then a uniform estimate for ut without a power of ε can be obtained by differentiating the
PDE with respect to t and using the result to estimate ‖ut‖2s−2,u,ε in similar fashion to the

estimate for ‖u‖2s,u,ε.

Theorem 3.1 Let the spatial domain be the torus T
d or the whole space R

d . Let s be an
integer satisfying s ≥ s0 + 2, where the Sobolev embedding index s0 is defined in (4).
Suppose also that Assumption 2.1 holds, with (6:s)–(7:s) holding for the given value of s,
and that

∑s
m=0 ‖∂mt F(t, x, 0)‖C0([0,∞);Hs−m ) is finite.

1. Let ε0, m1, and m3 be arbitrary positive constants, and let M1 and M3 satisfy M1 > m1

and M3 > Cinit,ε(m3). Then there exist a positive M2, positive weights W := {wm}sm=0
satisfying (65), a continuously differentiable nondecreasing function G, and a positive
time T such that every solution u of (2) with 0 < ε ≤ ε0 that satisfies

ε‖u(0, ·)‖L∞ ≤ m1 and ‖u(0, x)‖H2s ≤ m3 (71)

and belongs to ∩s
m=0C

m([0, Tu]; Hs−m) also satisfies

ε‖u‖L∞ ≤ M1 and ε‖ut‖L∞ ≤ M2

from (63) to (64),

d
dt |||u(t, ·)|||2s,u,ε,W ≤ G(|||u(t, ·)|||2s,u,ε,W ), (72)

and

|||u|||2s,u,ε,W ≤ U (t,Cinit,ε(m3)) ≤ M3 (73)

for 0 ≤ t ≤ min(T , Tu), where U (t,U0) is the unique solution of the ODE U ′ = G(U )

satisfying U (0) = U0. The constants M2 and T , the weights W, and the function G
are all independent of ε ∈ (0, ε0] and of the particular solution u satisfying the above
conditions.

2. Let ε0, m1, m3, and m4 be arbitrary positive constants, and let M1 and M3 satisfy
M1 > m1 and M3 > Cinit,ε,alt(m3,C∗(m4,m3)). Then there exist a positive M2, positive
weights W := {wm}sm=0 satisfying (67), a continuously differentiable nondecreasing
function G, and a positive time T such that every solution u of (2) with 0 < ε ≤ ε0 that
satisfies (71) and the well-preparedness condition

‖∑ jC
j∂x j u(0, x)‖H2(s−1) ≤ m4ε (74)

and belongs to ∩s
m=0C

m([0, Tu]; Hs−m) also satisfies

ε‖u‖L∞ ≤ M1 ‖ut‖L∞ ≤ M2

from (63), 66),

d
dt |||u(t, ·)|||2s,u,ε,W ≤ G(|||u(t, ·)|||2s,u,ε,W ), (75)

and

|||u|||2s,u,ε,W ≤ U (t,Cinit,ε,alt(m3,C∗(m4,m3))) ≤ M3 (76)
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for 0 ≤ t ≤ min(T , Tu), where U (t,U0) is the unique solution of the ODE U ′ = G(U )

satisfying U (0) = U0. The constants M2 and T , the weights W, and the function G
are all independent of ε ∈ (0, ε0] and of the particular solution u satisfying the above
conditions.

3. Assume that in addition either the PDE (2) is scalar or the matrix A0 is constant. Let
m1 and m3 be arbitrary constants, and let M1 and M3 satisfy M1 > m1, and M3 >

b(M1)
2m2

3. Then there exist a constant M2, a continuous nondecreasing function G̃, and
a positive time T̃ such that for any sufficiently smooth solution u of (2) that satisfies (71)
and belongs to ∩s

m=0C
m([0, Tu]; Hs−m), also satisfies

ε‖u‖L∞ ≤ M1 and ε‖ut‖L∞ ≤ M2

from (63) to (64),

d
dt ‖u(t, ·)‖2s,u,ε ≤ G̃(‖u(t, ·)‖2s,u,ε), (77)

and

‖u‖2s,u,ε ≤ Ũ (t, b(m1)
2m2

3) ≤ M3 (78)

for 0 ≤ t ≤ min(T̃ , Tu), where Ũ (t,U0) is the unique solution of the ODE Ũ ′ = G̃(Ũ )

satisfying Ũ (0) = U0. The constants M2 and T̃ and the function G̃ are independent of
the particular solution u satisfying the above conditions.

Proof Assume that the conditions of the first part hold. The derivation of the estimate (72) for
solutions of (2) proceeds in similar fashion to the derivation of estimate (31) for solutions of
(1). Since the matrices C j are symmetric and constant, (37) implies that the terms involving
them drop out of the energy estimates, so (38) still holds. The terms on the right side of (38)
are estimated in the same way as before. This time choose the wm = wm(M2) to satisfy
(65) for the given M1 and a chosen μ as a function of M2 that will be determined later.
Multiply (38) by wmε2m if |α| + m = s and by ε2m otherwise. As before, add the resulting
equations, use the estimates shown in the proof of Theorem 2.7 to estimate the right side of
the result, and move the time derivatives to the left side. On account of the powers of ε, this
time the resulting left side is the time derivative of |||u|||2s,u,ε,W . The key point is that the total
number of time derivatives of u appearing in each term on the right side is less than or equal
to the power of ε that term is multiplied by, because every term in (38) either had 2m time
derivatives or had 2m + 1 time derivatives multiplied by a derivative of A0, which yields a
factor of ε thanks to the assumed form of that matrix, so the multiplication by ε2m made the
powers of ε balance the number of time derivatives (some of which may be applied to the
explicit time dependence of coefficients rather than to u). Hence instead of (51) we obtain,
provided (63)–(64) hold,

d
dt |||u|||2s,u,ε,W ≤ b(M1)P(

∑s
m=0ε

2m‖∂mt u‖2Hs−m )

≤ b(M1)P̃M1,μ(|||u|||2s,u,ε,W ) := G(|||u|||2s,u,ε,W ),

which is (72), from which (73) follows for some time T3. To define M2 so that (64) holds,
note that

ε‖ut‖L∞ ≤ cε‖ut‖Hs0 ≤ cε
δ(M1)

‖ut‖s−2,u ≤ c
δ(M1)

|||u|||s,u,ε,W ≤ cM3
δ(M1)

with the final constant c independent of the W and hence of M2, because the weights W do
not appear in the terms of |||u|||s,u,ε,W involving at most s − 1 space and time derivatives.
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Hence defining M2 := cM3
δ(M1)

ensures that (64) holds as long as (63) and (73) hold. Finally,
since it is only necessary to bound ε‖u‖L∞ , in similar fashion to the proof of Theorem 2.7,

ε‖u‖L∞ ≤ m1 + εt sup
[0,t]

‖ut‖L∞ ≤ m1 + ctM2,

so (63) holds for some positive time T1. Since that estimate and (73) show that ε‖u‖L∞ and
|||u|||2u,s,ε,W satisfy smaller bounds for times, all the claimed results hold for the minimum
of T := min(T1, T3) and Tu .

Now assume that the conditions of the second part hold. Proceed as for the first case,
but multiply (38) by the factors of ε corresponding to those in definition (62). Since the
terms were all estimated in the proof of Theorem 2.7, in order to obtain (75) it suffices to
verify that the powers of ε balance appropriately. In the estimates (39), (46), and (49) the
only expressions on the right sides involving time derivatives have the same number of time
and space derivatives as appear on the left sides, so the powers of ε balance exactly. In (50)
the factor of ‖∂m−1

t u‖2
H |α|+1 on the right side requires at least one power less of ε than the

equation was multiplied by, because the fact that the estimate is only used when |α|+m = s
implies that the equation was multiplied by ε when m = 1. Indeed, that factor is used in the
terms involving spatial derivatives of order s − 1 of ut precisely for this reason. This factor
of ε balances the factor utt that is also present on the right side of (50), so that estimate is
also ε-balanced. This leaves only (45), which is more complicated and will be separated into
a number of cases. Note that the ratio of the power of ε to the number of time derivatives in
the weights in Qs,u,ε,W ,alt is nondecreasing as a function of the number of time derivatives,
even when the weight of ut is taken to be 1

2 as it is in the terms with s − 1 space derivatives.
Hence splitting the time derivative ∂mt over several factors of u never increases the power of
ε needed to balance the result. That implies that the powers of ε in the terms in (45) arising
from the A j , H , or the D j,k balance properly when either m �= 1 or m = 1 and |α| = s − 1.
The case when m = 1 and |α| < s − 1 must be considered separately because the powers of
ε only balance in that case if the number of spatial derivatives applied to ut in the estimate
is at most s − 1 so no power of ε is needed for balance. That indeed holds for the terms
in (45) arising from the A j or H since at most one derivative is added by the PDE and the
derivatives are split over at least two factors. The terms in (45) arising from A0 have one
more time derivative and one less spatial derivative than the terms arising from A j , but also
have an extra power of ε since A0 is always differentiated, and that ensures that the terms
balance since adding a time derivative to Dγ ∂kt u increases the required power of ε by at
most one. This leaves to consider only the terms in (45) with m = 1 and |α| ≤ s − 2 that
arise from D j,k . For those terms, the product g

∏
Dα�∂

ml
t ui� appearing in (40) comes from

Dα∂t (D j,k∂x j ∂xk u). Suppose that the time derivative is applied to D j,k . If ∂t is applied to the
explicit time dependence in D j,k then there are no factors of ut so no power of ε is needed.
If ∂t is applied to u in D j,k then define v = ∂xk u and apply Lemma A.1 with s∗ := s − 1 and
r := 1 to obtain the bound ‖ut‖Hs∗−1‖v‖Hs∗ ‖u‖L−2

Hs∗ , which equals ‖ut‖Hs−2‖u‖Hs‖u‖L−2
Hs−1

and so does not require a power of ε to balance it since the number of spatial derivatives
applied to ut is less that s − 1. The case when ∂t is applied to ∂x j ∂xk u but either |α| ≤ s − 4
or else |α| = s − 3 and at least one spatial derivative is applied to D j,k can be estimated
similarly. The case when |α| = s − 2 and all derivatives are applied to ∂x j ∂xk u is always
estimated by (17) with v := Dα∂mt u rather than by (45), since Dα∂x j ∂xk ∂t u has more than s
derivatives applied to u. The case when |α| = s−3 and all derivatives are applied to ∂x j ∂xk u
can also be estimated by (17) with v := Dα∂mt u, and as already noted that estimate is ε-
balanced. Finally, the case when |α| = s−2 and only one spatial derivative is applied to D j,k

can be estimated by (49), which is also ε-balanced. Since all terms have now been estimated
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in balanced fashion, choosing weights wm(M2) to satisfy (67), adding the estimates, and
moving the time derivative term from (50) to the left side of the result yields (75) provided
(63) and (66) hold. Those bounds can be shown similarly to the proof of the first part.

Finally, let the additional conditions of the final part hold. Since A0 in (2) depends on εu,
and in the commutator term [Dα, A0]ut at least one derivative is applied to A0, that term
contains a factor ε. Solving (2) for ut and multiplying the result by ε yields an expression that
is bounded uniformly in ε, so after substituting for εut the resulting terms can be estimated
as for (1), which yields the desired bounds. Also, solving the PDE (2) for ut and using the
bound (78) to estimate the result yields the required bound (64) for ε‖ut‖L∞ after defining
M2 appropriately. ��

4 Existence and convergence results

Theorem 4.1 Under the conditions of any part of Theorem 2.7 or Theorem 3.1, there exists
a unique solution of the PDE (1) or (2), respectively, with a specified initial value u(0, x) =
u0(x), for at least a time T or T̃ as determined in those theorems, satisfying the bounds
specified there.

Idea of the proof The solution to the initial value problem for (1) can be obtained as the limit
as δ → 0+ of the solution uδ of

A0(t, x, Jδu
δ)(uδ)t + Jδ

d∑

j=1

A j (t, x, Jδu)(Jδu)x j

= Jδ

d∑

j,k=1

D j,k(t, x, Jδu)∂x j ∂xk (Jδu) + Jδ [φδF(t, x, Jδu)] ,

uδ(0, ·) = Jδu0,

with an analogous formula holding for (2). Here u0 is the initial data for (1) or (2) that belongs
to a Sobolev space with sufficiently high index as detailed in the assumptions of Theorem 2.7,
Jδ is a symmetric spatialmollification operator tending to the identity as δ → 0,φδ is a smooth
compactly-supported function equal to one for δ|x | ≤ 1 whose derivatives all tend uniformly
to zero as δ → 0, and the mollification parameter has been denoted δ rather than ε as in [13,
Section 5.2, Section 7.1] to avoid confusion with the singular perturbation parameter of (2).
Since the mollified equations are ODEs in Hilbert spaces, the existence of solutions to the
initial-value problem for them follows from the ODE existence theorem, for as long as the
solutions remain finite in an appropriate norm.

The energy estimates derived in Theorems 2.7 and 3.1 remain valid for the mollified
equations, since the spatial cutoff applied to the undifferentiated term ensures that it is rapidly
decaying. The energy estimate for the mollified equations ensures that the solutions exist
and are bounded in the appropriate norm for a time and with a bound independent of the
mollification parameter δ and, for (2), also independent of the small parameter ε. As in [13,
Section 5.2, Section 7.1], the convergence of uδ to the solution u of (1) or (2) satisfying the
same bound for the same time then follows provided that sufficiently smooth solutions of (1)
and (2) having specified initial values are unique.

As for symmetric hyperbolic systems [19, Theorem 2.1] and many other PDEs, in order
to prove the uniqueness of sufficiently smooth solutions to the initial-value problem for (1)
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and (2) it suffices to obtain an L2 energy estimate

d
dt

∫
vT A0v dx ≤ C

∫
vT A0v dx (79)

for the difference v := u(1) − u(2) of two solutions having the same initial data, where C
depends on a norm of u(1) and u(2) whose boundedness is known, since (79) plus the fact that∫

vT A0v vanishes at time zero implies that v ≡ 0. The fact that the hyperbolic terms in the
PDEs yield estimates of the form (79) is standard, so it suffices to estimate the second-order
terms in (1) or (2). The difference D j,k(t, x, u(1))∂x j ∂xk u

(1) − D j,k(t, x, u(2))∂x j ∂xk u
(2) can

be written as the sum of the terms
[
D j,k(t, x, u(2) + v) − D: j, k(t, x, u(2))

]
∂x j ∂xk u

(1) and
D( j,k(t, x, u(2))∂x j ∂xkv. Since the first term is O(|v|) and the estimates obtained for the u( j)

bound theirC2 norms, the first termmakes a contribution of the desired form to the L2 energy
estimate. By (17) with u replaced by u(2), the second term above also yields a contribution
of the desired form. Hence (79) indeed holds. ��
Theorem 4.2 1. If part 2 of Theorem 3.1 holds then as ε → 0 the solution of (2) with initial

data converging in Hs tends to the unique solution of the limit equation

A0(0)ut +
d∑

j=1

A j (t, x, u)ux j +
d∑

j=1

C jVx j =
d∑

j,k=1

D j,k(t, x, u)∂x j ∂xk u

+ F(t, x, u),

d∑

j=1

C jux j = 0

(80)

having the limit initial data, where V is the Lagrange multiplier variable that enforces
the constraint in the second equation of (80).

2. Suppose that part 1 or part 3 of Theorem 3.1 holds, that the spatial domain is periodic,
and that the initial data converges to u0(x) in Hs as ε → 0. As in [14, Section 2], make
the following definitions: First normalize the matrix A0 to satisfy A0(0) = I by making
the change of variables u �→ (A0(0))−1/2u and multiplying the resulting equation by
(A0(0))−1/2. LetS(τ )be the solution operator of the fast equation uτ +∑d

j=1 C
jux j = 0,

which can be written in Fourier space as

̂[S(τ )u](t, τ, k) = e−iτ
∑d

j=1 k jC
j
û(t, τ, k).

Define the averaging operator

[M(g)](t, x) := lim
τ→∞

1

τ

∫ τ

0
g(t, τ1, x) dτ1

and the projection operator

E := S(τ )M(S(−τ)·),
which is the orthogonal projection with respect to the inner product [u, v] :=
limτ→∞ 1

τ

∫ τ

0 u · v dτ1 onto terms f (t, τ, x) having the form S(τ )g(t, x). Then

u(t, x) = v0(t, τ, x)|τ= t
ε

+ o(1) in Hs−1, (81)

where v0 is the unique solution of the limit profile equations

v0 = Ev0, v0(0, τ, x) = S(τ )u0(x),
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v0t + E
{
(v0 · A0

u(0))v
0
τ +

d∑

j=1

A j (t, x, v0)v0x j

−
d∑

j,k=1

D j,k(t, x, v0)∂x j ∂xkv
0 − F(t, x, v0)

}
= 0. (82)

The proof of the first part of Theorem 4.2 is essentially the same as the proof of [20, Theorem
2], and the proof of the second part is essentially the same as the proof of the convergence part
of [14, Theorem 2.1], since that proof uses only the uniform bounds, some general results
on averaging, and the fact that an L2 estimate for the difference of two solutions of the limit
profile equations can be shown in similar fashion to the L2 estimate for the difference of two
solutions of the original system.

Acknowledgements This research was supported by the ISF-NSFC joint research program (grant No.
2519/17).

Appendix A: Calculus estimate

The estimate derived in [17, (3.13) through paragraph after (3.22)] is

∫ L∏

�=1

[Dα�∂
m�
t v(�)]2 ≤ C

L∏

�=1

‖∂m�
t v(�)‖2

Hs0+1−m�
(A1)

provided that

m� + |α�| ≤ s0 + 1 for all � and
L∑

�=1

m� + |α�| ≤ s0 + 2, (A2)

where as usual s0 := � d
2 � + 1 is the Sobolev embedding index. Although (A1) is only

stated there for the case when all the v(�) are equal, the proof there first estimates the
left side of (A1) by using the multi-factor Hölder’s inequality

∫ ∏L
�=1[Dα�∂

m�
t v(�)]2 ≤

∏L
�=1

[∫ |Dα�∂
m�
t v(�)|2P�

] 1
P� for appropriate P� and then estimates each factor on the right

side, so there is no need to assume that the v(�) are the same. In addition, it was assumed
in [17] that m� + |α�| ≥ 1 and L ≥ 2 because when applied to commutators those always
hold, but any undifferentiated factors can be pulled out in L∞ norm and then bounded by the
Hs0 norm, and the case L = 1 is trivial on account of the first condition in (A2), so those
assumptions have also been omitted.

The estimate (A1)–(A2) implies a more general estimate:

Lemma A.1 Suppose that

s∗ ≥ s0 + r for some integer r ≥ 1, max
�

(m� + |α�|) ≤ s∗,

and
∑

{�| |α�|+m�≥s∗−s0}
m� + |α�| ≤ s∗ + r .

(A3)

Then
∫ L∏

�=1

[Dα�∂
m�
t v(�)]2 ≤ C

L∏

�=1

‖∂m�
t v(�)‖2Hs∗−m�

(A4)
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Proof Pull out in L∞ norm all factors that do not satisfy

|α�| + m� ≥ s∗ − s0, (A5)

except that if no factors satisfy that condition then leave one factor

[Dα�∂
m�
t v(�)]2 (A6)

inside the integral. The Sobolev embedding theorem ensures that the L∞ norm of each factor
pulled out can be estimated by the corresponding factor on the right side of (A4), and if only
one factor remains inside the integral then the integral is the square of the L2 norm of a
factor (A6), which can be trivially estimated by its corresponding factor on the right side of
(A4) in view of the middle assumption in (A3), whether (A5) holds or not. This leaves only
the case when at least two factors remain inside the integral, all of which satisfy (A5). For
each factor (A6) remaining in the integral divide α and k into parts such that

α� = β� + γ� and m� = p� + q�, where |γ�| + q� = s∗ − s0 − 1 (A7)

and hence

|β�| + p� ≤ s0 + 1 (A8)

by the middle inequality in (A3). After defining

w(�) = Dγ�∂
q�
t v(�) (A9)

the left side of (A4) becomes
∫ ∏

�

[Dβ�∂
p�
t w(�)]2. (A10)

By the last inequality in (A3), the last equation in (A7), the fact that at least two factors are
present, and the first inequality in (A3),

∑

�

(|β�| + p�) =
∑

�

(|α�| + m�) −
∑

�

(|γ�| + q�)

≤ s∗ + r − 2(s∗ − s0 − 1) = s0 + 2 + (s0 + r − s∗) ≤ s0 + 2.

(A11)

Since (A8) and (A11) say that (A2) holds, (A1) can be applied to (A10), which together with
(A9) and (A7) yields

∫ L∏

�=1

[Dα�∂
m�
t v(�)]2 =

∫ ∏

�

[Dβ�∂
p�
t w(�)]2

≤ C
∏

�

‖∂ p�
t w(�)‖2

Hs0+1−p�
= C

∏

�

‖∂ p�
t Dγ�∂

q�
t v(�)‖2

Hs0+1−p�

= C
∏

�

‖∂m�
t Dγ�v(�)‖2

Hs0+1−p�
≤ C1

∏

�

‖∂m�
t v(�)‖2

Hs0+1+|γ� |−p�

= C1

∏

�

‖∂m�
t v(�)‖2

Hs0+1+[|γ� |+q�]−m�
= C1

∏

�

‖∂m�
t v(�)‖2Hs∗−m�

.

��
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Appendix B: Classical results for degenerate equations are inherently
linear

Linear degenerate elliptic second-order equations and systems have the form

d∑

j,k=d0

A j,k(x)ux j xk +
d∑

j=d0

B j (x)ux j + C(x)u = F(x), where d0 ∈ {0, 1}. (B12)

Equation (B12) includes equations of the form (1) in which the coefficients do not depend
on the dependent variable u, because the time variable t in (1) can be relabeled as x0 and the
non-strict Legendre-Hadamard condition

∑

j,k

ξ jξkw
T A j,kw ≥ 0 for all real numbers {ξ j } and vectors w (B13)

assumed for the coefficients of the second-order terms in most of the work discussed below
allows A j,k to vanish when at least one of j or k equals 0, i.e., allows the second-order terms
to include only spatial derivatives.

The results for linear degenerate elliptic equations and systems that have at least a slight
resemblance to results in this paper appeared in [6, Section 9.2], and are also presented in [8,
Section 1.9]. In particular [6, Theorem 6, p. 486], an Hm space-time estimate is obtained for
solutions to the initial-value problem for linear systems of the form (1), where the index m
of the Sobolev space depends on the smoothness of the coefficients, inhomogeneous term,
and initial data. The proof uses [6, Lemma 3.1, p. 460], whose proof is in turn based on
the identities [6, (3.4)–(3.5)]. In those identities the operator applied to u on the left side
of (B12) is expressed as the product M∗L of two first-order differential operators, whose
coefficients therefore contain the coefficients appearing in (B12). The identity [6, (3.5)]
that re-expresses two terms on the right side of [6, (3.4)] contains the double commutator
[[L, A], A], where in the proof of [6, Theorem 6] the operator A is a differential operator of
order m. The analogous identity for the remaining two terms on the right side of [6, (3.4)],
which is not written explicitly, contains the similar expression [[M, A], A]. Thus, the Hm

estimate for the solution requires a C2m estimate for the coefficients, or at the very least
an H2m estimate for those coefficients if estimates for Sobolev norms of products are used.
Hence if the coefficients depended on the solution then the bound obtained for the Hm norm
of the solution would depend on the H2m norm of that solution, so no closed estimate is
obtained in the nonlinear case. This shows that the limitation to linear systems is inherent in
the results of [6].

Since [6, Lemma 3.1, p. 460] or its consequences are used to obtain the results in [7], the
limitation to linear systems is inherent in those results as well. Similarly, the C1 estimate
of Oleĭnik (e.g. [8, Theorem 1.8.1, pp. 76-77]) requires a bound on the C2 norm of the
coefficients, which again restricts the result to linear equations. Both these results are also
limited to single equations rather than systems. Earlier results of Fichera (e.g. [8, Section 1.2-
3]) only obtained L p bounds, and so are also limited to linear equations. Finally, although
strictly parabolic systems of the form B12 can be expressed as symmetric positive linear
differential equations [21, p. 338], the strict parabolicity is essential in order to satisfy the
positivity requirement, so the results there do not apply to the degenerate equations considered
in this paper.

I thank the anonymous reviewer of a previous version of this paper for pointing out some
of the references discussed in this section.
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