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Abstract
In this paper we study the regularity properties of the cubic biharmonic Schrödinger equation
posed on the right half line. We prove local well-posedness and obtain a smoothing result in
the low-regularity spaces on the half line. In particular we prove that the nonlinear part of the
solution on the half line is smoother than the initial data obtaining a full derivative gain in
certain cases.Moreover, in the defocusing case,we establish globalwell-posedness andglobal
smoothing in the higher order regularity spaces by making use of the global-wellposedness
result of Özsarı and Yolcu (Commun Pure Appl Phys 18(6):3285–3316, 2019) in the energy
space. Also this paper improves the well-posedness result of Özsarı and Yolcu (Commun
Pure Appl Phys 18(6):3285–3316, 2019) in the case of cubic nonlinearity.

Keywords Initial boundary value problem · Local wellposedness · Global wellposedness ·
Smoothing
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1 Introduction

This paper aims to study the initial boundary value problem (IBVP) for the cubic biharmonic
nonlinear Schrödinger equations (biharmonic NLS) on the half line

⎧
⎪⎨

⎪⎩

iut + ∂4x u + μ|u|2u = 0, x ∈ R
+, t ∈ R

+,

u(0, t) = h1(t), ux (0, t) = h2(t),

u(x, 0) = g(x)

(1)
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where μ = ±1 and the data (g, h1, h2) are taken in the space Hs
x (R

+) × H
2s+3
8

t (R+) ×
H

2s+1
8

t (R+) with the compatibility conditions g(0) = h1(0) when 1
2 < s ≤ 3

2 , and g(0) =
h1(0), g′(0) = h2(0) when 3

2 < s ≤ 9
2 . These compatibility conditions are necessary since

the solutions we are concerned with have continuous L2 traces for s > 1
2 . For the notion of

traces of functions in Hs(R), we assume, for our throughout discussion, that s �= n+ 1
2 for n =

0, 1, 2, . . .. Note that choosing data triples (g, h1, h2) ∈ Hs
x (R

+)×H
2s+3
8

t (R+)×H
2s+1
8

t (R+)

is due to the local smoothing inequalities of [32,34]:
∥
∥
∥∂kx e

it∂4x g
∥
∥
∥
L∞
x H

2s+3−2k
8

t∈(0,T )

� ‖g‖Hs ,

for k = 0, 1 and these inequalities are sharp in the sense that the numbers 2s+3
8 and 2s+1

8
cannot be replaced by any bigger number and hence taking such data makes sense. We also
verify the appropriateness of the selected spaces in our computations.

Fourth order NLS with power-type nonlinearity

iut + �u + λ�2u + |u|pu = 0, x ∈ R
n, t ∈ R

was introduced by Karpman and Shagalov [30,31] to consider the effect of the small fourth
order dispersion terms in the propagation of intense laser beams in a bulk medium with Kerr
nonlinearity. Indeed, when λ < 0, they studied the stability/instability of solutions depending
on certain restrictions on the parameters λ, p. When Laplacian is removed, the equation

iut + λ�2u + μ|u|pu = 0, x ∈ R
n, t ∈ R (2)

is called biharmonic NLS, in addition it is said to be defocusing if λμ > 0, and focusing
if λμ < 0. From a physical point of view, as a model equation, biharmonic NLS arises in
many context such as deep water wave dynamics [11], vortex filaments [19], solitary waves
[30,31]. Furthermore it was used as a model equation in [29], [38] to study the stability of
solitons in magnetic materials once the effective quasi particle mass becomes infinite. Fourth
order NLS with various nonlinearities have been extensively studied on the well-posed in
the periodic and non-periodic settings. As half line problems are relavent to the initial value
problems posed in the non-periodic setting, here it is better to review some of those posed
on R

d . So we write
{
iut + κ�u + λ�2u + F(u) = 0,

u(x, 0) = g(x).
(3)

The initial value problem (IVP) (3) on R
n × (0,∞) with κ = 0, λ = 1 and nonlinearities

F(u) = ∂x (|u|p−1u), 2 ≤ p ∈ N have been studied in [25] in terms of well-posedness and
scattering of the solution. In particular, it turns out that when n = 1 and p = 3, the authors
obtained the local well-posedness of (3) in the Sobolev spaces Hs(R) for s ≥ 0. Furthermore
this result is almost sharp in the sense that the flow map from Hs(R) to C(R, Hs(R)) is not
C3. The local and global well-posedness for the IVP (3) on R × R with κ = 0, λ = −1 and
F(u) = ±|u|2u, were established in [36] for data g ∈ Hs(R)with s ≥ − 1

2 , also the equation
was shown to be ill-posed below this range (s < − 1

2 ), by proving that the flow map is not
uniform continuous. In [28], the IVP (3) on R × R with κ = 1, λ �= 0 and the nonlinearity

F(u) = −1

2
|u|2u + c1|u|4u + c2(∂xu)2ū + c3|∂xu|2 + c4u

2∂2x ū + c5|u|2∂2x u (4)
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(with certain restrictions on the constants) was proved to be locally well-posed in Hs(R),
s ≥ 1

2 by the restricted norm method. For higher dimensions, Pausader [35] showed that the
Eq. (3) with κ = 0, λ = 1 and F(u) = |u|2u is globally well-posed for n ≤ 8, and ill-posed
for n ≥ 9. For the other well-posedness results related to Eq. (3) see for instance [1,10,20–
24]. Initial boundary value problems for the fourth order NLS have been recently started
to be addressed. In the case of the half line, Hu etal [27] obtained a solution of some form
of the Eq. (3) in the IBVP setting (with a similar nonlinearity as in (4)) after reformulating
the problem as a Riemann-Hilbert problem. Özsarı-Yolcu [34] studied the IBVP of the Eq.
(2) with λ = 1, μ ∈ C and the inhomogeneous Dirichlet-Neumann boundary data on the
half line where they make use of the unified transform method in obtaining the solution.
By making some assumptions on the relation of s and p, the authors obtained the local
well-posedness in Hs(R+) for s ∈ ( 12 ,

9
2 ), s �= 3

2 , and s ∈ [0, 1
2 ) separately. Moreover,

for the defocussing problem they established the global well-posedness in the energy space
H2(R+). It is remarkable to note that [34] is the first treatment of the fourth order Schrödinger
equations on a half line subject to the inhomogeneous boundary conditions. Lastly, more
recently Filho–Cavalcante–Gallego [18] addressed the IBVP of the cubic biharmonic NLS
(2) when λ = −1 with the same set of initial-boundary data as in [34]. The authors proved
the local well-posedness in Hs(R+) for 0 ≤ s < 1

2 by the Fourier restriction norm method
and using the Duhamel boundary forcing operator for the corresponding linear equation.

In this paper we continue the program initiated in [16] that establishes the regularity
properties of cubic NLS on a half line using the tools available in the case of the full line.
Biharmonic cubic NLS is higher order dispersive PDE version of cubic NLS, so as expected,
we obtain well-posedness in a less regular space by adapting the estimates of [16]. We will
use Laplace transformmethods proposed by Bona–Sun–Zhang [2] to divide the problem into
a linear IBVP on the half line and nonlinear IVP on the full line after extending the data into
R. By this method we can write the explicit solution for a linear IBVP and then using it,
we set up an equivalent integral equation on R × R for the full solution. We then examine
the integral equation with the Xs,b method, see [3,4]. To state our theorems we begin with a
definition.

Definition 1.1 We say that the biharmonic NLS Eq. (1) is locally well-posed in Hs(R+) if for

any data (g, h1, h2) ∈ Hs
x (R

+)×H
2s+3
8

t (R+)×H
2s+1
8

t (R+)with the additional compatibility
conditions discussed above, the integral equation (8) has a unique solution in

Xs,b(R × [0, T ]) ∩ C0
t H

s
x ([0, T ] × R) ∩ C0

x H
2s+3
8

t (R × [0, T ])
for some b < 1

2 and sufficiently small T = T (‖g‖Hs (R+) , ‖h1‖
H

2s+3
8 (R+)

, ‖h2‖
H

2s+1
8 (R+)

).

Furthermore, if u1 and u2 are two such solutions coming from different extensions ge1 and
ge2, then their restriction to R

+ × [0, T ] are the same. In addition, if gn → g in Hs(R+),

hn1 → h1 in H
2s+3
8 (R+) and hn2 → h2 in H

2s+1
8 (R+), then un → u in the space above.

We state our local result below and note that it improves the result for the cubic biharmonic
NLS in [34] which establishes the well-posedness for s ≥ 0. As already mentioned [34]
utilizes the uniform transform method of Fokas to obtain the local well-posedness for the
biharmonic NLS with power nonlinearities. The method is based on inverse-scattering tech-
niques and used to obtain representation formula for the solution of the linear biharmonic
Schrödinger equation. In order to establish the local theorywewill need to obtain some essen-
tial estimates regarding the linear and nonlinear terms of the integral equation representation
for the solution in Sect. 4 below.
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Theorem 1.2 For any s ∈ (− 1
3 ,

9
2 ), s �= 1

2 ,
3
2 , the Eq. (1) is locally well-posed in Hs(R+)

with the local existence time T satisfying T ≈ (
C + ‖g‖Hs (R+)

)− 8
2s+3 where the constant C

depends on ‖g‖L2 + ‖h1‖
H

2s+3
8 (R+)

+ ‖h2‖
H

2s+1
8 (R+)

.

Next theorem is concerned with the smoothing result of the Eq. (1) that is, it demonstrates
that the nonlinear part of the solution is smoother than the initial data. It reads that smoothing
vanishes at the upper end point s = 9

2 , nevertheless, the gain of a derivative at the lower end
point s = − 1

3 is still 1
3 . The proof of the smoothing theorem below will be based on the

restricted norm method of Bourgain [3,4] and in the sequel, we will denote the operator Wt
0

as the linear part of the solution of the Eq. (1).

Theorem 1.3 Fix s ∈ (− 1
3 ,

9
2 ), s �= 1

2 ,
3
2 , (g, h1, h2) ∈ Hs

x (R
+)×H

2s+3
8

t (R+)×H
2s+1
8

t (R+)

with the compatibility conditions given for the Eq. (1). Then for a < min(1, 2s + 1, 9
2 − s)

and t in the local existence interval [0, T ], we have
u(x, t) − Wt

0(g, h1, h2) ∈ C0
t H

s+a
x ([0, T ] × R

+).

The smoothing estimates of this sort were obtained for NLS in certain papers in the
periodic, see [7,9,12,14] and non-periodic cases, see [5,33]. The first smoothing result related
to the initial boundary value problem is established for cubic NLS, [16]. Also using the same
approach as in [16], the papers [8,17] establish the regularity properties of the Boussinesq
equation and the Zakharov system on the half line respectively. In order to prove the above
theorems we take advantage of the Duhamel formulation by which we run a fixed point
argument. With this formulation we express the solution as a superposition of the linear
evolutions which incorporate the boundary term and the initial data with the nonlinearity.
Also to estimate the terms coming from Duhamel formula, we first solve the corresponding
linear problem by taking Laplace transform of the equation in the temporal variable and
inverting back by the Mellin transform so that we obtain an explicit formula for the linear
evolution after extending the initial data to the whole line. Afterwards the nonlinear part of
the formula will be treated by the Xs,b method. Note that in the boundary value problems
b < 1

2 is necessary in order to carry out the contraction argument, while b > 1
2 is required on

the full line. As for the uniqueness, the solution we constructed is the unique fixed point of
the Duhamel operator (18) by the contraction argument, yet it is not clear if the restriction of
the fixed point of (18) to the half line is independent of the different extensions of the initial
data. In this regard, the proof of uniqueness in our case proceeds in two steps: one is for the
case s > 1

2 where we exploit the Sobolev embedding and well-known Gronwall’s inequality
on R

+, and the other is for the low regularity case − 1
3 < s < 1

2 where we make use of
the uniqueness obtained for s > 1

2 and the smoothing estimate of Theorem 1.3 to establish
the uniqueness in this range, also in contrast to the case s > 1

2 , it is not immediate to
exhibit that different extensions produce the same solution. In particular, in order to establish

uniqueness down to the local theory threshold H− 1
3 (R+), we require smoothing estimate

of Theorem 1.3.
When μ = 1 in (1) (the defocusing case), the following theorem provides bounds for

higher order Sobolev norms. This is based on smoothing result obtained in Theorem 1.3 and
a priori estimate at the energy level, Lemma 7.1.

Theorem 1.4 Let μ = 1 in the Eq. (1). In the case s ∈ [2, 5
2 ), g ∈ Hs(R+), h1 ∈

H
2s+3
8 (R+) ∩ H1(R+) and h2 ∈ H

2s+1
8 (R+) ∩ H1(R+), the associated local solution is
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global and the smoothing result holds globally. Furthermore, for 2 < s < 5
2 the solution has

the growth bound

‖u(t)‖Hs (R+) � 〈T 〉.
Here we note that the Eq. (1) does not satisfy the mass and energy conservations once the
boundary data h1 and h2 are nonzero. Hence the global well-posedness at the energy level,
H2, for the Eq. (1) is a nontrivial problem in the presence of inhomogeneous boundary
conditions, see Theorem 1.3 of [34]. The Lemma 7.1, which is the key to obtaining the
growth bound in Theorem 1.4, results from the proof of Theorem 1.3 of [34].

As far as we know this work is the first treatment of the fourth order biharmonic
Schrödinger equation subject to the inhomogeneous boundary conditions where well-posed
solutions are constructed below the L2 space.

Nowwe outline the organization of the paper. In Sect. 2, we define the notion of a solution.
To be more precise we reformulate (1) as an integral equation (Duhamel’s formula) and set
this to be a solution map which we then show is a contraction in a suitable metric space. Thus
by using the Duhamel’s formula, the solution we constructed is a superposition of a linear and
a nonlinear evolutions. We also introduce the space Hs(R+) and discuss whenever one can
extend the initial and boundary data. In Sect. 3 we illustrate, by an application of the Laplace
transform on the half line, how to find the explicit solution formula for the linear problem
with zero initial data. In Sect. 4, we state and prove linear and nonlinear a priori estimates.
Linear estimates relate to two separate processes one is for a solution to a free fourth order
Schrödinger equation and the other is for a solution to IBVP subject to the inhomogeneous
boundary data. The estimates for the latter also clarify the regularity level of the boundary
data h1, h2 and the selection of the spaces they are taken. In the remaining part of the Sect. 4,
we prove the multilinear estimates associated to the nonlinear term coming from the integral
part of the solution representation. In Sect. 5, we prove Theorem 1.2 by establishing the local
well-posedness theory via the contraction argument and argue the dependence of the local
existence time to the initial and boundary data. Theorems 1.3 and 1.4 are proved in Sect. 6
and the uniqueness is proved in Sect. 5.1. Lastly Sect. 7 is an appendix that involves some
inequalities that will be needed repeatedly in the text.

1.1 Notation

We define the one dimensional Fourier transform as

f̂ (ξ) = F f (ξ) =
∫

R

e−i xξ f (x)dx

similarly the space time Fourier transform

f̂ (ξ, τ ) = F f (ξ, τ ) =
∫

R2
e−i xξ−i tτ f (x, t)dxdt .

Sobolev space Hs(R) is defined via the norm

‖g‖Hs = ‖g‖Hs (R) = ‖〈ξ 〉s ĝ(ξ)‖L2(R)

where 〈ξ 〉 = √
1 + |ξ |2 (or equivalently 1+|ξ |). For s > − 1

2 , Sobolev spaces H
s(R) on the

half line are defined as

Hs(R+) = {
g ∈ D(R+) : ∃ g̃ ∈ Hs(R) such that g̃χ(0,∞) = g

}

123
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with the norm

‖g‖Hs (R+) = inf
{ ‖g̃‖Hs (R) : g̃χ(0,∞) = g

}
.

The restriction s > − 1
2 is necessary because multiplication with the characteristic function

χ(0,∞) is not well-defined for Hs distributions when s ≤ − 1
2 . Moreover we write Wtg for

the linear biharmonic Scrödinger propagator

Wtg(x, t) = eit�
2
g =

∫

eixξ+i tξ4 ĝ(ξ, t)dξ.

For a space time function f , the notation D0 means the evaluation at the boundary x = 0,
that is

D0
(
f (x, t)

) = f (0, t).

Throughout we write η for a smooth compactly supported function that is equal to 1 on
[−1, 1] and supp η ⊂ [−2, 2]. Also let ρ ∈ C∞ be a cut-off function satisfying ρ = 1 on
[0,∞) and supp ρ ⊂ [−1,∞). Lastly we use the notation a � b meaning that a ≤ Cb for
some absolute constant C , we define a � b likewise and write a ∼ b for a � b � a.

2 Notion of a solution

In order to find solutions of (1) we start with constructing the solution of the linear IBVP
⎧
⎪⎨

⎪⎩

iut + uxxxx = 0

u(0, t) = h1(t), ux (0, t) = h2(t),

u(x, 0) = g(x),

(5)

with the compatibility conditions g(0) = h1(0) for 1
2 < s ≤ 3

2 and g(0) = h1(0), g′(0) =
h2(0) for 3

2 < s ≤ 9
2 . We shall denote the solution of (5) by Wt

0(g, h1, h2). This solution
can be written as

Wt
0(g, h1, h2) = Wt

0(0, h1 − p1, h2 − p2) + Wtge

where ge is an extension of g to the full line R such that ‖ge‖Hs (R) � ‖g‖Hs (R+) and
the traces p1(t) = η(t)D0(Wtge), p2(t) = η(t)D0

(
∂x

[
Wtge

])
are well well-defined and

belong to the spaces H
2s+3
8 (R+), H

2s+1
8 (R+) respectively, by Lemma 4.1 below. As a result

we decomposed the solution operator as a sum of free biharmonic Scrödinger evolution and
the boundary operator corresponding to the zero initial data. Therefore we consider

⎧
⎪⎨

⎪⎩

iut + uxxxx = 0, (x, t) ∈ R
+ × R

+

u(0, t) = h1(t), ux (0, t) = h2(t),

u(x, 0) = 0

(6)

where Wt
0(0, h1, h2) denotes the solution to this problem. By an application of the Laplace

transform described in the next section, we obtain explicit representation for Wt
0(0, h1, h2).

Lemma 2.1 Assume that h1 and h2 are Schwartz functions. The solution of (6) can explicitly
be written in the form

u(x, t) = −1 + i

π

[
W1h2 − iW2h1 − W3h1 − W4h2

]

123
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−
√
2i

π

[
W5h2 +

(√
2

2
+ i

√
2

2

)
W6h1 +

(−√
2

2
+ i

√
2

2

)
W7h1 − W8h2

]

where

W1h2(x, t) =
∫ ∞

0
eiβ

4t−βxβ2 ĥ2(β
4)ρ(βx)dβ,

W2h1(x, t) =
∫ ∞

0
eiβ

4t−βxβ3 ĥ1(β
4)ρ(βx)dβ,

W3h1(x, t) =
∫ ∞

0
eiβ

4t+iβxβ3 ĥ1(β
4)dβ,

W4h2(x, t) =
∫ ∞

0
eiβ

4t+iβxβ2 ĥ2(β
4)dβ,

W5h2(x, t) =
∫ ∞

0
e−iβ4t e[−

√
2
2 +i

√
2
2 ]βxβ2 ĥ2(−β4)ρ(βx)dβ,

W6h1(x, t) =
∫ ∞

0
e−iβ4t e[−

√
2
2 +i

√
2
2 ]βxβ3 ĥ1(−β4)ρ(βx)dβ,

W7h1(x, t) =
∫ ∞

0
e−iβ4t e[−

√
2
2 −i

√
2
2 ]βxβ3 ĥ1(−β4)ρ(βx)dβ,

W8h2(x, t) =
∫ ∞

0
e−iβ4t e[−

√
2
2 −i

√
2
2 ]βxβ2 ĥ2(−β4)ρ(βx)dβ.

Here by an abuse of notation we take

ĥ j (ξ) = F(
χ(0,∞)h j

)
(ξ) =

∫ ∞

0
e−iξ t h j (t)dt . (7)

We use this explicit form to obtain bounds on Wt
0(0, h1, h2) in Sect. 4 below. Next, by

the Duhamel formulation, we consider the integral equation equivalent to (1) on [0, T ],
t ≤ T < 1:

u(t) = η(t)Wtge + η(t)
∫ t

0
Wt−t ′ F(u)dt ′ + η(t)Wt

0

(
0, h1 − p1 − q1, h2 − p2 − q2

)
(t),

(8)

where

F(u) = η(t/T )|u|2u, p1(t) = η(t)D0(W
tge), p2(t) = η(t)D0

(
∂x

[
Wtge

])
,

q1(t) = η(t)D0

( ∫ t

0
Wt−t ′ F(u)dt ′

)
, q2(t) = η(t)D0

(
∂x

[ ∫ t

0
Wt−t ′ F(u)dt ′

])
.

In the following, we want to prove that the integral equation (8) has a unique solution in a
suitable function space (given by Definition1.1) on R×R for sufficiently small T . Note that
the restriction of u toR

+ ×[0, T ] is a distributional solution of (1) whereas smooth solutions
of the Eq. (8) are classical solutions of (1).

We implement contraction argument in Xs,b(R × R) spaces:

‖u‖Xs,b =
∥
∥
∥〈ξ 〉s〈τ − ξ4〉bû(ξ, τ )

∥
∥
∥
L2

τ L
2
ξ

. (9)

123



52 Page 8 of 37 Partial Differential Equations and Applications (2021) 2 :52

In order to carry out the contraction argument in the local theory we will need the following
standard results from [37]

for any s ∈ R and b >
1

2
, we have Xs,b ⊂ Ct

0H
s
x . (10)

For any s, b ∈ R,
∥
∥η(t)Wtg

∥
∥
Xs,b � ‖g‖Hs . (11)

For T < 1 and − 1
2 < b1 < b2 < 1

2 we have

‖η(t/T )F‖Xs,b1 � T b2−b1 ‖F‖Xs,b2 . (12)

We also need the following estimate whose proof can be obtained by adapting the proof of
Lemma 3.12 in [15]. For any s ∈ R, 0 ≤ b1 < 1

2 and b2 = 1 − b1, we have
∥
∥
∥
∥η(t)

∫ t

0
Wt−t ′ Fdt ′

∥
∥
∥
∥
Xs,b2

� ‖F‖Xs,−b1 . (13)

Next for the boundary data h1 and h2, we need estimates on the sizes of
∥
∥χ(0,∞)h1

∥
∥
H

2s+3
8 (R)

and
∥
∥χ(0,∞)h2

∥
∥
H

2s+1
8 (R)

which is the content of the next lemma.

Lemma 2.2 (See [16]) Assume h ∈ Hs(R+) for some s ∈ (− 1
2 ,

5
2 ).

1. If − 1
2 < s < 1

2 , then
∥
∥χ(0,∞)h

∥
∥
Hs (R)

� ‖h‖Hs (R+).

2. If 1
2 < s < 3

2 and h(0) = 0, then
∥
∥χ(0,∞)h

∥
∥
Hs (R)

� ‖h‖Hs (R+).

3. If 1
2 < s < 3

2 , then ‖heven‖Hs (R) � ‖h‖Hs (R+).

4. If 1
2 < s < 5

2 , s �= 3
2 and h(0) = 0, then ‖hodd‖Hs (R) � ‖h‖Hs (R+).

where heven(x) = h(|x |) and hodd(x) =
{

h(|x |) if x ≥ 0

−h(|x |) if x ≤ 0
.

As a final note following will be useful in establishing the Theorem 1.4.

Remark 2.3 By the definition of linear flow Wt and the Lemma 2.1 we may write

Wt
0(g, h1, h2) − Wt

0(g̃, h1, h2) = Wt
0(g − g̃, 0, 0).

Moreover, by writing Wt
0(g, 0, 0) with the method of odd extension and then utilizing

Lemma 4.3, Lemma 4.1 below and 4. of Lemma 2.2 we obtain the bound
∥
∥Wt

0(g, 0, 0)
∥
∥
Hs (R+)

�
∥
∥Wtgodd

∥
∥
Hs (R)

= ‖godd‖Hs (R) � ‖g‖Hs (R+) .

3 Proof of Lemma 2.1: boundary term

In this sectionwe obtain explicit solution formula for the linear problem (6) by the application
of the Laplace transform. So taking the Laplace transform of the Eq. (6) in t leads to the
initial value problem in the spatial variable x

{
ũxxxx + iλũ = 0

ũ(0, λ) = h̃1(λ), ũx (0, λ) = h̃2(λ)
(14)
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where

ũ(x, λ) =
∫ ∞

0
e−λt u(x, t)dt, h̃ j (x, λ) =

∫ ∞

0
e−λt h j (t)dt, j = 1, 2.

The solution of (14) can be written as follows

ũ(x, λ) = c1(λ)er1(λ)x + c2(λ)er2(λ)x

where r1(λ) and r2(λ) are solutions of the characteristic equation r4(λ) + iλ = 0 for which
Re r1 < 0, Re r2 < 0. Employing the initial conditions and suppressing the λ dependence of
r1(λ) and r2(λ) we have

c1(λ) = h̃2(λ) − r2h̃1(λ)

r1 − r2
, c2(λ) = r1h̃1(λ) − h̃2(λ)

r1 − r2
.

Then by Mellin inversion we can express the solution as

u(x, t) = 1

2π i

∫ γ+i∞

γ−i∞
eλt

r1 − r2

[(
h̃2(λ) − r2h̃1(λ)

)
er1x + (

r1h̃1(λ) − h̃2(λ)
)
er2x

]
dλ

for x, t > 0 and where γ > 0 is fixed. Letting γ → 0 we have

u(x, t) = 1

2π

∫ ∞

−∞
eiβt

r1 − r2

[(
h̃2(iβ) − r2h̃1(iβ)

)
er1(iβ)x + (

r1h̃1(iβ) − h̃2(iβ)
)
er2(iβ)x

]
dβ

= 1

2π

∫ 0

−∞
eiβt

i
√
2 4
√−β

[
h̃2(iβ) +

(√
2

2
+ i

√
2

2

)
4
√−β h̃1(iβ)

]
e
(
−

√
2
2 +i

√
2
2

)
4√−βxdβ

+ 1

2π

∫ 0

−∞
eiβt

i
√
2 4
√−β

[ (
−

√
2

2
+ i

√
2

2

)
4
√−β h̃1(iβ) − h̃2(iβ)

]
e
(
−

√
2
2 −i

√
2
2

)
4√−βxdβ

+ 1

2π

∫ ∞

0

eiβt

−(1 + i) 4
√

β

[
h̃2(iβ) − i 4

√
β h̃1(iβ)

]
e− 4√βxdβ

+ 1

2π

∫ ∞

0

eiβt

−(1 + i) 4
√

β

[
− 4

√
β h̃1(iβ) − h̃2(iβ)

]
ei

4√βxdβ

= 1

2π

∫ ∞

0

e−iβ4t

i
√
2β

[
h̃2(−iβ4) +

(√
2

2
+ i

√
2

2

)
β h̃1(−iβ4)

]
e
(
−

√
2
2 +i

√
2
2

)
βx4β3dβ

+ 1

2π

∫ ∞

0

e−iβ4t

i
√
2β

[ (
−

√
2

2
+ i

√
2

2

)
β h̃1(−iβ4) − h̃2(−iβ4)

]
e
(
−

√
2
2 −i

√
2
2

)
βx4β3dβ

+ 1

2π

∫ ∞

0

eiβ
4t

−(1 + i)β

[
h̃2(iβ

4) − iβh̃1(iβ
4)

]
e−βx4β3dβ

+ 1

2π

∫ ∞

0

eiβ
4t

−(1 + i)β

[
− β h̃1(iβ

4) − h̃2(iβ
4)

]
eiβx4β3dβ,

by a slight abuse of notation after writing ĥ j instead of h̃ j to denote the Fourier transform
of χ(0,∞)h j , j = 1, 2, we obtain

u(x, t) = −
√
2

π
i
∫ ∞

0
e−iβ4t e

(
−

√
2
2 +i

√
2
2

)
βx

[
ĥ2(−β4) +

(√
2

2
+ i

√
2

2

)
β ĥ1(−β4)

]
β2dβ

−
√
2

π
i
∫ ∞

0
e−iβ4t e

(
−

√
2
2 −i

√
2
2

)
βx

[(
−

√
2

2
+ i

√
2

2

)
β ĥ1(−β4) − ĥ2(−β4)

]
β2dβ
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+−1 + i

π

∫ ∞

0
eiβ

4t−βx [ ĥ2(β
4) − iβĥ1(β

4)
]
β2dβ

+−1 + i

π

∫ ∞

0
eiβ

4t+iβx [ − β ĥ1(β
4) − ĥ2(β

4)
]
β2dβ.

Finally, we add the cut-off function ρ in the above integrals except the last one to extend the
solution to all x . Note that with this choice the integrals converge for all x .

4 A priori estimates

4.1 Estimates for the linear terms

In this section we justify that the linear terms in (8) stay in the function space given in
the Definition 1.1. First we begin with the Kato smoothing inequality depicting interaction
between the space and time derivatives. Note that this affirms the selection of the spaces that
the data g, h1 and h2 reside in.

Lemma 4.1 (Kato smoothing inequality) For any s ∈ R, g ∈ Hs(R), we have η(t)Wtg ∈
C0
x H

2s+3
8

t (R × R) and η(t)∂x [Wtg] ∈ C0
x H

2s+1
8

t (R × R), moreover,
∥
∥η(t)Wtg

∥
∥
L∞
x H

2s+3
8

t

� ‖g‖Hs
x

∥
∥η(t)∂x [Wtg]∥∥

L∞
x H

2s+1
8

t

� ‖g‖Hs
x
.

Proof We start by writing that

Ft (ηW
tg)(τ ) =

∫

eixξ η̂(τ − ξ4)ĝ(ξ)dξ

=
∫

|ξ |<1
eixξ η̂(τ − ξ4)ĝ(ξ)dξ +

∫

|ξ |≥1
eixξ η̂(τ − ξ4)ĝ(ξ)dξ.

Using the fact that η is a Schwarz function, the contribution of the H
2s+3
8

t norm of the first
term above is bounded by

∫

|ξ |<1

∥
∥
∥〈τ 〉 2s+3

8 η̂(τ − ξ4)

∥
∥
∥
L2

τ

|̂g(ξ)|dξ �
∫

|ξ |<1

∥
∥
∥〈τ 〉 2s+3

8 η̂(τ − ξ4)

∥
∥
∥
L2

τ

〈ξ 〉s |̂g(ξ)|dξ

�
∫

|ξ |<1
〈ξ 〉s |̂g(ξ)|dξ � ‖g‖Hs .

Next by the inequality 〈x + y〉r � 〈x〉|r |〈y〉r for any r ∈ R, and a change of variable, the
contribution for the second term is estimated by

∥
∥
∥
∥

∫

|ξ |≥1
〈τ 〉 2s+3

8 |̂η(τ − ξ4)||̂g(ξ)|dξ

∥
∥
∥
∥
L2

τ

�
∥
∥
∥
∥

∫

|ξ |≥1
〈τ − ξ4〉 |2s+3|

8 〈ξ 〉 2s+3
2 |̂η(τ − ξ4)||̂g(ξ)|dξ

∥
∥
∥
∥
L2

τ

�
∥
∥
∥
∥

∫

|ρ|≥1
〈τ − ρ〉 |2s+3|

8 〈ρ〉 2s−3
8 |̂η(τ − ρ)||̂g(±ρ

1
4 )|dρ

∥
∥
∥
∥
L2

τ
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�
∥
∥
∥〈·〉 |2s+3|

8 η̂(·)
∥
∥
∥
L1

∥
∥
∥ρ

2s−3
8 ĝ(±ρ

1
4 )

∥
∥
∥
L2

ρ≥1

�
∥
∥
∥ρ

2s−3
8 ĝ(±ρ

1
4 )

∥
∥
∥
L2

ρ≥1

where we have used Young’s inequality in the third inequality. Changing variable back to ξ

this is bounded by

( ∫ ∞

1
〈ξ 〉2s−3 |̂g(±ξ)|2ξ3dξ

) 1
2 �

( ∫

〈ξ 〉2s |̂g(ξ)|2dξ
) 1

2 = ‖g‖Hs .

From these and the dominated convergence theorem continuity statement follows. Using the
same argument we estimate

∥
∥η(t)∂x [Wtg]∥∥

H
2s+1
8

t

likewise. ��

Proposition 4.2, Lemmas 4.3, and 4.4 below verify that the boundary operator belongs to
the space from Definition 1.1.

Proposition 4.2 For any s ≥ − 1
2 , b ≤ 1

2 and h1, h2 satisfyingχ(0,∞)h1 ∈ H
2s+3
8 ,χ(0,∞)h2 ∈

H
2s+1
8 we have

∥
∥η(t)Wt

0(0, h1, h2)
∥
∥
Xs,b �

∥
∥χ(0,∞)h1

∥
∥
H

2s+3
8

t

+ ∥
∥χ(0,∞)h2

∥
∥
H

2s+1
8

t

.

Proof First recall that

Wt
0(0, h1, h2) = −1 + i

π

[
W1h2 − iW2h1 − W3h1 − W4h2

]

−
√
2i

π

[
W5h2 +

(√
2

2
+ i

√
2

2

)
W6h1 +

(−√
2

2
+ i

√
2

2

)
W7h1 − W8h2

]

where the terms W1h2, W2h1, W3h1, W4h2, W5h2, W6h1, W7h1 and W8h2 are given in
Lemma 2.1, also recall the notation of expressing ĥ as Ft (χ(0,∞)h). Note that

W3h1 = Wtψ3 and W4h2 = Wtψ2

where

ψ̂3(β) = β3ĥ1(β
4)χ(0,∞)(β) and ψ̂4(β) = β2ĥ2(β

4)χ(0,∞)(β). (15)

By change of variables we have

‖ψ3‖Hs = ∥
∥〈β〉sψ̂3(β)

∥
∥
L2

β
=

( ∫ ∞

0
〈β〉2sβ6 |̂h1(β4)|2dβ

) 1
2

�
( ∫ ∞

0
〈ρ〉 2s+3

4 |̂h1(ρ)|2dρ
) 1

2 �
∥
∥χ(0,∞)h1

∥
∥
H

2s+3
8

(16)

and similarly

‖ψ4‖Hs = ∥
∥〈β〉sψ̂4(β)

∥
∥
L2

β
=

( ∫ ∞

0
〈β〉2sβ4 |̂h2(β4)|2dβ

) 1
2

�
( ∫ ∞

0
〈ρ〉 2s+1

4 |̂h2(ρ)|2dρ
) 1

2 �
∥
∥χ(0,∞)h2

∥
∥
H

2s+1
8

. (17)

Then using (11) together with the bounds (16) and (17) we have

‖η(t)W3h1‖Xs,b = ∥
∥ηWtψ3

∥
∥
Xs,b � ‖ψ3‖Hs �

∥
∥χ(0,∞)h1

∥
∥
H

2s+3
8

t (R)
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and

‖η(t)W4h2‖Xs,b = ∥
∥ηWtψ4

∥
∥
Xs,b � ‖ψ4‖Hs �

∥
∥χ(0,∞)h2

∥
∥
H

2s+1
8

t (R)
.

For W1h2 and W2h1, set f (x) = e−xρ(x). Note that f is a Schwarz function. Assume
s ∈ 4N, we can write

∂sxW1h2 = η

∫ ∞

0
eiβ

4t f (s)(βx)βs+2ĥ2(β
4)dβ

= (−i)s/4η
∫ ∞

0
eiβ

4t f (s)(βx)β2Ft [χ(0,∞)∂
(s/4)
t h2](β4)dβ

and

∂sxW2h1 = (−i)s/4η
∫ ∞

0
eiβ

4t f (s)(βx)β3Ft [χ(0,∞)∂
(s/4)
t h1](β4)dβ.

Then using these with the interpolation it suffices to prove the bounds for s = 0. We have

η̂W1h2(ξ, τ ) = Ft

(
η(t)

∫ ∞

0
eiβ

4tβ2ĥ2(β
4)Fx ( f (βx))dβ

)
(τ )

=
∫ ∞

0
η̂(τ − β4)βĥ2(β

4) f̂ (ξ/β)dβ

and

η̂W2h1(ξ, τ ) =
∫ ∞

0
η̂(τ − β4)β2ĥ1(β

4) f̂ (ξ/β)dβ.

Since f is a Schwarz function,

| f̂ (ξ/β)| � 1

〈ξ/β〉4 � 1

1 + (ξ/β)4
= β4

β4 + ξ4

and as η is a compact supported C∞ function we may write

|̂η(τ − β4)| � 〈τ − β4〉−3

as well. Therefore

‖ηW1h2‖X0,b �
∥
∥
∥
∥
∥
〈τ − ξ4〉b

∫ ∞

0
〈τ − β4〉−3 β5

β4 + ξ4
|̂h2(β4)|dβ

∥
∥
∥
∥
∥
L2

ξ,τ

.

We separate the integral into regions where β4 + ξ4 ≤ 1 and β4 + ξ4 > 1. In the first case,
we have
∥
∥
∥
∥
∥

∫ 1

0
〈τ 〉b−3 β5

β4 + ξ4
|̂h2(β4)|dβ

∥
∥
∥
∥
∥
L2|ξ |≤1L

2
τ

�
∥
∥
∥〈τ 〉b−3

∥
∥
∥
L2

τ

∫ 1

0

∥
∥
∥
∥
∥

β5

β4 + ξ4

∥
∥
∥
∥
∥
L2|ξ |≤1

|̂h2(β4)|dβ

�
∫ 1

0
β

3
2 |̂h2(β4)|dβ

=
∫ 1

0
ρ− 3

8 |̂h2(ρ)|dρ

�
∥
∥χ(0,∞)h2

∥
∥
L2(R)

≤ ∥
∥χ(0,∞)h2

∥
∥
H

1
8 (R)
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where we have used Minkowski’s and Cauchy-Schwarz inequalities in the first and third
bounds respectively. For the other casewhereβ4+ξ4 > 1,making use of relations 〈τ −ξ4〉 �
〈τ − β4〉〈β4 + ξ4〉 and β4 + ξ4 ∼ 〈β4 + ξ4〉 we have the bound

∥
∥
∥
∥
∥

∫ ∞

0
〈τ − β4〉b−3 β5

(β4 + ξ4)1−b
|̂h2(β4)|dβ

∥
∥
∥
∥
∥
L2

ξ,τ

�

∥
∥
∥
∥
∥
∥

∫ ∞

0
〈τ − β4〉b−3

∥
∥
∥
∥
∥

β5

(β4 + ξ4)1−b

∥
∥
∥
∥
∥
L2

ξ

|̂h2(β4)|dβ

∥
∥
∥
∥
∥
∥
L2

τ

�
∥
∥
∥
∥

∫ ∞

0
〈τ − β4〉b−3β

3
2+4b |̂h2(β4)|dβ

∥
∥
∥
∥
L2

τ

�
∥
∥
∥
∥

∫ ∞

0
〈τ − ρ〉b−3ρb− 3

8 |̂h2(ρ)|dρ

∥
∥
∥
∥
L2

τ

�
∥
∥
∥〈τ 〉b−3

∥
∥
∥
L1

τ

∥
∥
∥〈ρ〉 1

8 ĥ2(ρ)

∥
∥
∥
L2

ρ

�
∥
∥χ(0,∞)h2

∥
∥
H

1
8 (R)

where we have used Minkowski’s and Young inequalities and note that we require b ≤ 1
2 in

the fourth inequality so that b − 3
8 ≤ 1

8 . Accordingly, using the similar arguments, we have

‖ηW2h1‖X0,b �
∫ 1

0
β

5
2 |̂h1(ρ)|dβ +

∥
∥
∥
∥

∫ ∞

0
〈τ − β4〉b−3β

5
2+4b |̂h1(β4)|dβ

∥
∥
∥
∥
L2

τ

�
∫ 1

0
ρ− 1

8 |̂h1(ρ)|dβ +
∥
∥
∥
∥

∫ ∞

0
〈τ − ρ〉b−3ρb− 1

8 |̂h1(ρ)|dρ

∥
∥
∥
∥
L2

τ

�
∥
∥χ(0,∞)h1

∥
∥
L2

ρ
+

∥
∥
∥〈τ 〉b−3

∥
∥
∥
L1

τ

∥
∥
∥〈ρ〉b− 1

8 ĥ1(ρ)

∥
∥
∥
L2

ρ

�
∥
∥χ(0,∞)h1

∥
∥
H

3
8 (R)

+
∥
∥
∥〈ρ〉 3

8 ĥ1(ρ)

∥
∥
∥
L2

ρ

�
∥
∥χ(0,∞)h1

∥
∥
H

3
8 (R)

.

For the remaining terms of Wt
0(0, h1, h2), estimates are similar; for W5h2 and W6h1 we let

f1(x) = e(−√
2/2+i

√
2/2)xρ(x) and for W7h1 and W8h2 set f2(x) = e(−√

2/2−i
√
2/2)xρ(x)

both of which are clearly Schwarz functions. So we adapt the previous estimates by swapping
f with f1 and f2 for the terms W5h2, W6h1 and W7h1, W8h2 respectively. Eventually we
have the bounds

∥
∥ηWjh2

∥
∥
X0,b �

∥
∥χ(0,∞)h2

∥
∥
H

1
8 (R)

for j = 5, 8,
∥
∥ηWjh1

∥
∥
X0,b �

∥
∥χ(0,∞)h1

∥
∥
H

3
8 (R)

for j = 6, 7.

As before interpolating between the integers s ∈ 4N we obtain the bounds for any s ≥ 0. To

treat the s < 0 case we define the Fourier multiplier operator 〈D〉−
1
2

x given by 〈ξ 〉− 1
2 on the

Fourier side. In this case,

〈D〉−
1
2

x
[
ηW1h2

]
(x, t) = η(t)

∫ ∞

0
eiβ

4tβ2ĥ2(β
4)〈D〉−

1
2

x
[
f (βx)

]
dβ
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with similar formulas for the other terms of Wt
0(0, h1, h2) other than W3h1 and W4h2. Note

that

Fx,t

(
〈D〉−

1
2

x
[
ηW1h2

])
(ξ, τ ) =

∫ ∞

0
η̂(τ − β4)β2ĥ2(β

4)Fx
(〈D〉−

1
2

x
[
f (βx)

])
dβ

=
∫ ∞

0
η̂(τ − β4)β2ĥ2(β

4)Fx
([〈D〉−

1
2

x f
]
(βx)

)
(ξ)〈ξ/β〉 1

2 〈ξ〉− 1
2 dβ.

As 〈D〉−
1
2

x f is a Schwarz function, we are free to establish the bounds

∣
∣
∣Fx

([〈D〉−
1
2

x f
]
(βx)

)
(ξ)

∣
∣
∣ =

∣
∣
∣
1

β

̂〈D〉−
1
2

x f (ξ/β)

∣
∣
∣ � 1

|β| 〈ξ/β〉− 9
2

and

|̂η(τ − β4)| � 〈τ − β4〉−3.

This leads to the bound
∥
∥
∥
∥〈D〉−

1
2

x ηW1h2

∥
∥
∥
∥
X0,b

�
∥
∥
∥
∥〈τ − ξ4〉b

∫ ∞

0
〈τ − β4〉−3β〈ξ/β〉−4〈ξ 〉− 1

2 |̂h2(β4)|dβ

∥
∥
∥
∥
L2

ξ,τ

�
∥
∥
∥
∥
∥
〈τ − ξ4〉b

∫ ∞

0
〈τ − β4〉−3 β5

β4 + ξ4
|̂h2(β4)|dβ

∥
∥
∥
∥
∥
L2

ξ,τ

which has been treated above. Thus interpolation between s = − 1
2 and s = 0 yields the

result. Other terms are handled similarly. ��
Lemma 4.3 For s ≥ −1 and boundary data (h1, h2) satisfying (χ(0,∞)h1, χ(0,∞)h2) ∈
H

2s+3
8 (R) × H

2s+1
8 (R), we have

Wt
0(0, h1, h2) ∈ C0

t H
s
x (R × R).

Proof We begin by showing thatW3h1 andW4h2 belong toC0
t H

s
x (R×R). SinceWt = eit�

2

is unitary in Hs , we have

‖W3h1‖Hs
x

= ∥
∥Wtψ3

∥
∥
Hs
x

= ‖ψ3‖Hs
x

�
∥
∥χ(0,∞)h1

∥
∥
H

2s+3
8 (R)

and

‖W4h2‖Hs
x

= ∥
∥Wtψ4

∥
∥
Hs
x

= ‖ψ4‖Hs
x

�
∥
∥χ(0,∞)h2

∥
∥
H

2s+1
8 (R)

where we have used (16) and (17) in the above inequalities respectively, and ψ3, ψ4 are
defined as in (15). Continuity in the temporal variable follows from these bounds and the
continuity of the linear group Wt in Hs . To show that the remaining terms of W 0

t (0, h1, h2)
lie in C0

t H
s
x (R × R), recalling the explicit form of the boundary operator from Lemma 2.1,

we rewrite the remaining terms as follows

W1h2(x, t) =
∫

R

f (βx)Fx (e
it�2

ψ1)(β)dβ, ψ̂1(β) = β2ĥ2(β
4)χ(0,∞)(β),

W2h1(x, t) =
∫

R

f (βx)Fx (e
it�2

ψ2)(β)dβ, ψ̂2(β) = β3ĥ1(β
4)χ(0,∞)(β),

W5h2(x, t) =
∫

R

f1(βx)Fx (e
−i t�2

ψ5)(β)dβ, ψ̂5(β) = β2ĥ2(−β4)χ(0,∞)(β),
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W6h1(x, t) =
∫

R

f1(βx)Fx (e
−i t�2

ψ6)(β)dβ, ψ̂6(β) = β3ĥ1(−β4)χ(0,∞)(β),

W7h1(x, t) =
∫

R

f2(βx)Fx (e
−i t�2

ψ7)(β)dβ, ψ̂7(β) = β3ĥ1(−β4)χ(0,∞)(β),

W8h2(x, t) =
∫

R

f2(βx)Fx (e
−i t�2

ψ8)(β)dβ, ψ̂8(β) = β2ĥ2(−β4)χ(0,∞)(β),

where f (x) = e−xρ(x), f1(x) = e(−√
2/2+i

√
2/2)xρ(x) and f2(x) = e(−√

2/2−i
√
2/2)xρ(x).

Note that following the same computations done in (16) and (17), we have
∥
∥ψ j

∥
∥
Hs
x

�
∥
∥χ(0,∞)h1

∥
∥
H

2s+3
8 (R)

for j = 2, 6, 7,
∥
∥ψ j

∥
∥
Hs
x

�
∥
∥χ(0,∞)h2

∥
∥
H

2s+1
8 (R)

for j = 1, 5, 8.

Using these and the continuity of the group e±i t�2
on Hs it suffices to show that the maps

g �→ Tg =
∫

R

f (βx)ĝ(β)dβ, g �→ T1g =
∫

R

f1(βx)ĝ(β)dβ, g �→ T2g =
∫

R

f2(βx)ĝ(β)dβ

are bounded in Hs . We show this for the map g �→ Tg only as each f , f1 and f2 are Schwarz
functions leading to the same result. Consider first s = 0, we rewrite Tg(x) by using the
change of variable βx → β as follows

Tg(x) =
∫

R

f (β)ĝ(x−1β)x−1dβ.

Therefore,

‖Tg‖L2
x

≤
∫

R

| f (β)| ∥∥x−1ĝ(x−1β)
∥
∥
L2
x
dβ =

∫

R

| f (β)|
( ∫

x−2 |̂g(x−1β)|2dx
) 1

2
dβ

=
∫

R

| f (β)|
( ∫

β−1 |̂g(z)|2dz
) 1

2
dβ = ‖g‖L2

∫

R

| f (β)|√
β

dβ � ‖g‖L2 .

Since f is a Schwarz function, the verification of the final inequality can be made as follows
∫

R

| f (β)|√
β

dβ �
∫

R

dβ

〈β〉 1
2+√

β
�

∫

|β|≤1

dβ√
β

+
∫

|β|>1

dβ

〈β〉1+ � 1.

Note that for any s ∈ N we write

∂sx T g(x) =
∫

R

f (s)(βx)βs ĝ(β)dβ.

This with s = 0 result implies that ‖Tg‖Hs � ‖g‖Hs , s ∈ N. Hence by interpolation, s ≥ 0
case follows. As for s = −1, we pick ρ such that

∫
f dx = 0 so that ∂−1

x f belongs to the
Schwarz space. Then we write

∂−1
x T g(x) =

∫

R

∂−1
x

(
f (βx)

)
ĝ(β)dβ =

∫

R

∂−1
x f (βx)β−1ĝ(β)dβ.

Entegrating this with s = 0 result and then applying the interpolation argument we get the
bound for s ≥ −1. ��
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Lemma 4.4 For s ≥ −1 and boundary data (h1, h2) satisfying (χ(0,∞)h1, χ(0,∞)h2) ∈
H

2s+3
8 (R) × H

2s+1
8 (R), we have

η(t)Wt
0(0, h1, h2) ∈ C0

x H
2s+3
8

t (R × R).

Proof RecallingW3h2 = Wtψ3 andW4h1 = Wtψ4, the claim for these terms follows by (7),
(16), (17), the continuity of Wt and the Kato smoothing inequality (Lemma 4.1). With the
notations of the previous lemma we rewrite the remaining terms of Wt

0(0, h1, h2) as follows

W1h2(x, t) =
∫

R

Fβ

(
f (βx)

)
(z)Wtψ1(z)dz, W2h1(x, t) =

∫

R

Fβ

(
f (βx)

)
(z)Wtψ2(z)dz,

W5h2(x, t) =
∫

R

Fβ

(
f1(βx)

)
(z)W−tψ5(z)dz, W6h1(x, t) =

∫

R

Fβ

(
f1(βx)

)
(z)W−tψ6(z)dz,

W7h1(x, t) =
∫

R

Fβ

(
f2(βx)

)
(z)W−tψ7(z)dz, W8h2(x, t) =

∫

R

Fβ

(
f2(βx)

)
(z)W−tψ8(z)dz.

We show only η(t)W1h2 ∈ C0
x H

2s+3
8

t (R × R) since the estimates for the other terms follow
by the same arguments. Hence

W1h2(x, t) =
∫

R

Fβ

(
f (βx)

)
(z)Wtψ1(z)dz

=
∫

R

1

x
f̂
( z

x

)
Wtψ1(z)dz

=
∫

R

f̂ (z)Wtψ1(xz)dz.

Then Minkowski’s and Kato smoothing inequalities lead to the bound

‖ηW1h2‖
H

2s+3
8

t

≤
∫

R

| f̂ (z)| ∥∥ηWtψ1(xz)
∥
∥
H

2s+3
8

t

dz

≤ ‖ f̂ ‖L1

∥
∥ηWtψ1(xz)

∥
∥
H

2s+3
8

t L∞
z

� ‖ψ1‖Hs
z

�
∥
∥χ(0,∞)h2

∥
∥
H

2s+1
8

t (R)

since f̂ ∈ L1. Finally, continuity in the spatial variable follows from the dominated conver-
gence theorem. ��

4.2 Estimates for the nonlinear term

This section discusses the estimates for the nonlinear term in (8). These estimates will play
crucial role in establishing the smoothing theorem and closing the fixed point argument.

Proposition 4.5 For any compactly supported smooth function η and 1
2 − b > 0 sufficiently

small, we have
∥
∥
∥
∥η(t)

∫ t

0
Wt−t ′ Fdt ′

∥
∥
∥
∥
C0
x H

2s+3
8

t (R×R)

+
∥
∥
∥
∥η(t)∂x

( ∫ t

0
Wt−t ′ Fdt ′

)∥
∥
∥
∥
C0
x H

2s+1
8

t (R×R)

�
{‖F‖Xs,−b if − 1

2 ≤ s ≤ 1
2

‖F‖Xs,−b + ‖F‖
X

1
2 +, 2s−5

8
if s > 1

2 .
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Proof Assume first that − 1
2 ≤ s ≤ 1

2 , then
∫ t

0
Wt−t ′ Fdt ′ =

∫ t

0

∫

R

eixξ ei(t−t ′)ξ4 F̂(ξ, t ′)dξdt ′

=
∫

R

∫ t

0
eixξ ei(t−t ′)ξ4

( ∫

R

eit
′τ F̂(ξ, τ )dτ

)
dt ′dξ

=
∫

R

∫

R

eixξ eitξ
4
( ∫ t

0
eit

′(τ−ξ4)dt ′
)
F̂(ξ, τ )dξdτ

=
∫

R

∫

R

eixξ
eitτ − eitξ

4

i(τ − ξ4)
F̂(ξ, τ )dξdτ.

First we wish to bound
∥
∥
∥
∥
∥
η

∫

R

∫

R

eixξ
eitτ − eitξ

4

i(τ − ξ4)
F̂(ξ, τ )dξdτ

∥
∥
∥
∥
∥
H

2s+3
8

t

.

Let ϕ be a smooth cut-off function such that ϕ = 1 on [−1, 1] and suppϕ ⊂ {x : |x | ≤ 2}
and let ϕc = 1 − ϕ. We will proceed by writing

η(t)
∫ t

0
Wt−t ′ Fdt ′ = η(t)

∫

R

∫

R

eixξ
(
eitτ − eitξ

4)
ϕ(τ − ξ4)

i(τ − ξ4)
F̂(ξ, τ )dξdτ

+ η(t)
∫

R

∫

R

eixξ
eitτ ϕc(τ − ξ4)

i(τ − ξ4)
F̂(ξ, τ )dξdτ

− η(t)
∫

R

∫

R

eixξ
eitξ

4
ϕc(τ − ξ4)

i(τ − ξ4)
F̂(ξ, τ )dξdτ

=: I + II + III.

By Taylor expansion, we write

eitτ − eitξ
4

i(τ − ξ4)
= ieitτ

1

τ − ξ4

(
e−i t(τ−ξ4) − 1

) = ieitτ
∞∑

k=1

(−i t)k

k! (τ − ξ4)k−1.

For I, using Lemma 7.3, we have the bound

‖I‖
H

2s+3
8 (R)

�
∞∑

k=1

∥
∥tkη

∥
∥
H1

k!
∥
∥
∥
∥

∫

R

∫

R

eixξ eitτ (τ − ξ4)k−1ϕ(τ − ξ4)F̂(ξ, τ )dξdτ

∥
∥
∥
∥
H

2s+3
8

t (R)

�
∞∑

k=1

1

(k − 1)!
∥
∥
∥
∥〈τ 〉 2s+3

8

∫

R

eixξ (τ − ξ4)k−1ϕ(τ − ξ4)F̂(ξ, τ )dξdτ

∥
∥
∥
∥
L2

τ

�
∥
∥
∥
∥〈τ 〉 2s+3

8

∫

|τ−ξ4|<1
F̂(ξ, τ )dξ

∥
∥
∥
∥
L2

τ

where we have used
∥
∥
∥tkη

∥
∥
∥
H1

∼
∥
∥
∥tkη

∥
∥
∥
L2

+
∥
∥
∥∂t (t

kη)

∥
∥
∥
L2

� k
∥
∥
∥tk−1η

∥
∥
∥
L2

+
∥
∥
∥tkη′

∥
∥
∥
L2

� k.

Using Cauchy-Schwarz inequality in ξ , this is bounded by

[ ∫

R

〈τ 〉 2s+3
4

( ∫

|τ−ξ4|<1
〈ξ 〉−2sdξ

)( ∫

|τ−ξ4|<1
〈ξ 〉2s |F̂(ξ, τ )|2dξ

)
dτ

] 1
2

123



52 Page 18 of 37 Partial Differential Equations and Applications (2021) 2 :52

� sup
τ

(
〈τ 〉 2s+3

4

∫

|τ−ξ4|<1
〈ξ 〉−2sdξ

) 1
2 ‖F‖Xs,−b

� ‖F‖Xs,−b .

For |τ | � 1, the supremum is apparently bounded whereas for |τ | � 1, by the change of
variable ρ = ξ4, it is bounded by

〈τ 〉 2s+3
4

∫ |τ |+1

|τ |−1
〈ρ〉 −s

2
1

|ρ| 34
dρ � 〈τ 〉 2s+3

4

∫ |τ |+1

|τ |−1
〈ρ〉 −2s−3

4 dρ � 1

since |ρ| ∼ |τ | � 1. Next we consider II. By using Lemma 7.3 we have

‖II‖
H

2s+3
8 (R)

� ‖η‖H1

∥
∥
∥
∥〈τ 〉 2s+3

8

∫

|τ−ξ4|≥1

|F̂(ξ, τ )|
〈τ − ξ4〉 dξ

∥
∥
∥
∥
L2

τ

�
[ ∫

R

〈τ 〉 2s+3
4

( ∫
dξ

〈ξ 〉2s〈τ − ξ4〉2−2b

)( ∫

〈ξ 〉2s〈τ − ξ4〉−2b|F̂(ξ, τ )|2dξ
)
dτ

] 1
2

� sup
τ

[
〈τ 〉 2s+3

4

∫
dξ

〈τ − ξ4〉2−2b〈ξ 〉2s
] 1
2 ‖F‖Xs,−b

� ‖F‖Xs,−b

where we have applied Cauchy–Schwarz inequality in the second line. To see that the supre-
mum above is finite we write

〈τ 〉 2s+3
4

[ ∫

|ξ |<1

dξ

〈τ − ξ4〉2−2b〈ξ 〉2s +
∫

|ξ |≥1

dξ

〈τ − ξ4〉2−2b〈ξ 〉2s
]

� 〈τ 〉 2s+3
4

[
〈τ 〉2b−2

∫

|ξ |<1

dξ

〈ξ 〉2s +
∫

|ρ|≥1

dρ

〈τ − ρ〉2−2b〈ρ〉 2s+3
4

]

� 〈τ 〉 2s+3
4 +2b−2 + 〈τ 〉 2s+3

4 〈τ 〉 −2s−3
4 � 1

where we have used Lemma 7.4 in the ρ−integral and 1
2 ≤ 2s+3

4 ≤ 1 with b < 1
2 . Next for

III, we divide the region of integration into two pieces |ξ | < 1 and |ξ | ≥ 1. For |ξ | < 1 using
Minkowski’s inequality and then Cauchy–Schwarz inequality we have

∥
∥III|ξ |<1

∥
∥
H

2s+3
8 (R)

:=
∥
∥
∥
∥
∥
η(t)

∫ ∫

|ξ |<1

eixξ eitξ
4

i(τ − ξ4)
ϕc(τ − ξ4)|F̂(ξ, τ )|dξdτ

∥
∥
∥
∥
∥
H

2s+3
8

t

≤
∫ ∫

|ξ |<1

∥
∥
∥η(t)eitξ

4
∥
∥
∥
H

2s+3
8

t

ϕc(τ − ξ4)

|τ − ξ4| |F̂(ξ, τ )|dξdτ

�
∫ ∫

|ξ |<1

|F̂(ξ, τ )|
〈τ − ξ4〉 dξdτ

�
[ ∫ ∫

|ξ |<1
〈τ 〉2b−2dξdτ

] 1
2
[ ∫∫

〈ξ 〉2s〈τ − ξ4〉−2b|F̂(ξ, τ )|dξdτ
] 1
2

� ‖F‖Xs,−b

since 2b − 2 < −1 for b < 1
2 . To treat the case regarding the region |ξ | ≥ 1, we use change

of variable ρ = ξ4 as before

∥
∥III|ξ |≥1

∥
∥
H

2s+3
8 (R)

:=
∥
∥
∥
∥
∥
η(t)

∫ ∫

|ξ |≥1

eixξ eitξ
4

i(τ − ξ4)
ϕc(τ − ξ4)|F̂(ξ, τ )|dξdτ

∥
∥
∥
∥
∥
H

2s+3
8

t
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� ‖η‖H1

∥
∥
∥
∥
∥

∫

|τ−ρ|>1

∫

|ρ|>1

eix 4√ρeitρ

|τ − ρ| F̂( 4
√

ρ, τ)
1

|ρ| 34
dρdτ

∥
∥
∥
∥
∥
H

2s+3
8

t

�
∥
∥
∥
∥
∥
〈ρ〉 2s+3

8 Ft ◦ F−1
ρ

( ∫

|τ−ρ|>1, |ρ|>1

eix 4√ρ

|τ − ρ| F̂( 4
√

ρ, τ)
1

|ρ| 34
dτ

)
(ρ)

∥
∥
∥
∥
∥
L2

ρ

�
∥
∥
∥
∥
∥
〈ρ〉 2s+3

8

∫
F̂( 4

√
ρ, τ)

〈τ − ρ〉|ρ| 34
dτ

∥
∥
∥
∥
∥
L2|ρ|≥1

�
[ ∫

〈ρ〉 2s+3
4 〈ρ〉 −3

4

( ∫
dτ

〈τ − ρ〉2−2b

)( ∫ |F̂( 4
√

ρ, τ)|2
〈τ − ρ〉2b dτ

) 1

|ρ| 34
dρ

] 1
2

�
[ ∫∫

〈ρ〉 s
2 〈τ − ρ〉−2b|F̂( 4

√
ρ, τ)|2 1

|ρ| 34
dρdτ

] 1
2

� ‖F‖Xs,−b

where we used Cauchy-Schwarz inequality in the fifth line and changed variables back to ξ

in the last line. This finishes the proof for − 1
2 ≤ s ≤ 1

2 . Next we consider s > 1
2 , in which

case, instead of Lemma 7.3, proof makes use of algebra property of Sobolev spaces

‖ f g‖Hs � ‖ f ‖Hs ‖g‖Hs

in order to extract the Sobolev norm of η. As η is a smooth compactly supported function,
the proof proceeds along the same lines as with the case − 1

2 ≤ s ≤ 1
2 except for the one

for II just because we needed s ≤ 1
2 to obtain the bound ‖II‖

H
2s+3
8 (R)

� ‖F‖Xs,−b . Thus to

estimate II, we use the identity

〈τ 〉 2s+3
8 � 〈τ − ξ4〉 2s+3

8 + |ξ | 2s+3
2

to write

‖II‖
H

2s+3
8 (R)

� ‖η‖H1

∥
∥
∥
∥〈τ 〉 2s+3

8

∫ |F̂(ξ, τ )|
〈τ − ξ4〉 dξ

∥
∥
∥
∥
L2

τ

�
∥
∥
∥
∥

∫

〈τ − ξ4〉 2s−5
8 |F̂(ξ, τ )|dξ

∥
∥
∥
∥
L2

τ

+
∥
∥
∥
∥
∥

∫ |ξ | 2s+3
2

〈τ − ξ4〉 |F̂(ξ, τ )|dξ

∥
∥
∥
∥
∥
L2

τ

.

Using the Cauchy-Schwarz inequality in the ξ–integral, the second term is bounded by

∥
∥
∥
∥
∥

∫ |ξ | 2s+3
2

〈τ − ξ4〉 |F̂(ξ, τ )|dξ

∥
∥
∥
∥
∥
L2

τ

�
[ ∫ ( ∫ |ξ |3

〈τ − ξ4〉2−2b dξ
)( ∫ |ξ |2s

〈τ − ξ4〉2b |F̂(ξ, τ )|2dξ
)
dτ

] 1
2

� sup
τ

[ ∫ |ξ |3
〈τ − ξ4〉2−2b dξ

] 1
2 ‖F‖Xs,−b

� sup
τ

[ ∫
1

〈τ − ρ〉2−2b dρ
] 1

2 ‖F‖Xs,−b � ‖F‖Xs,−b .

since 2 − 2b > 1. Applying the Cauchy-Schwarz inequality in the ξ–integral for the first
term in this case

∥
∥
∥
∥

∫

〈τ − ξ4〉 2s−5
8 |F̂(ξ, τ )|dξ

∥
∥
∥
∥
L2

τ

�
[ ∫ ( ∫

dξ

〈ξ 〉+1

)( ∫

〈ξ 〉+1〈τ − ξ4〉 2s−5
4 |F̂(ξ, τ )|2dξ

)
dτ

] 1
2
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� ‖F‖
X

1
2 +, 2s−5

8
.

As a result we have obtained

∥
∥
∥
∥η(t)

∫ t

0
Wt−t ′ Fdt ′

∥
∥
∥
∥
C0
x H

2s+3
8

t (R×R)

�
{‖F‖Xs,−b if − 1

2 ≤ s ≤ 1
2

‖F‖Xs,−b + ‖F‖
X

1
2 +, 2s−5

8
if s > 1

2
.

Nowwemove to the estimate on the derivative term where we take less time derivatives 2s+1
8

while we have additional iξ factor coming from the spatial derivative. As before we divide
the Duhamel integral into three pieces as follows

η(t)∂x
( ∫ t

0
Wt−t ′ Fdt ′

)
= η(t)

∫ t

0
∂x

(
Wt−t ′ F

)
dt ′

= η(t)
∫

R

∫

R

ξeixξ
(
eitτ − eitξ

4)
ϕ(τ − ξ4)

τ − ξ4
F̂(ξ, τ )dξdτ

+ η(t)
∫

R

∫

R

ξeixξ
eitτ ϕc(τ − ξ4)

τ − ξ4
F̂(ξ, τ )dξdτ

− η(t)
∫

R

∫

R

ξeixξ
eitξ

4
ϕc(τ − ξ4)

τ − ξ4
F̂(ξ, τ )dξdτ

=: Ix + IIx + IIIx .

To bound Ix , note that on the region of integration we have |τ | ≈ ξ4 hence the additional

factor ξ leads to the situation 〈τ 〉 2s+1
8 |ξ | � 〈τ 〉 2s+3

8 which was examined before for the
integral I. In order to estimate IIIx we divide the region of integration as before into pieces
|ξ | < 1 and |ξ | ≥ 1. For the former case, the bounds are identical to those obtained for III,
for the latter case, we make the same change of variable ρ = ξ4 as done for III so that the

additional factor of ξ contributes the additional factor of |ρ| 14 to the integral IIIx that brings us
back to the situation handled in bounding III. Nevertheless estimation for the term IIx needs
verification. When − 1

2 ≤ s ≤ 1
2 , using Cauchy-Schwarz inequality we have the bound:

∥
∥IIx

∥
∥

H
2s+1
8 (R)

� ‖η‖H1

∥
∥
∥
∥〈τ 〉 2s+1

8

∫

|τ−ξ4|≥1

ξ

〈τ − ξ4〉 |F̂(ξ, τ )|dξ

∥
∥
∥
∥
L2τ

�
[ ∫

〈τ 〉 2s+1
4

( ∫
ξ2

〈ξ〉2s 〈τ − ξ4〉2−2b
dξ

)( ∫

〈ξ〉2s 〈τ − ξ4〉−2b|F̂(ξ, τ )|2dξ
)
dτ

] 1
2

� sup
τ

(
〈τ 〉 2s+1

4

∫
ξ2

〈ξ〉2s 〈τ − ξ4〉2−2b
dξ

)
‖F‖Xs,−b .

To see that the supremum above is bounded, we write the integral as

〈τ 〉 2s+1
4

[ ∫

|ξ |<1

ξ2

〈τ − ξ4〉2−2b〈ξ 〉2s dξ +
∫

|ξ |≥1

ξ2

〈τ − ξ4〉2−2b〈ξ 〉2s dξ
]

� 〈τ 〉 2s+1
4

[
〈τ 〉2b−2 +

∫

|ρ|≥1

|ρ| 12
〈τ − ρ〉2−2b〈ρ〉 2s+3

4

dρ
]

� 〈τ 〉 2s+1
4 +2b−2 + 〈τ 〉 2s+1

4 〈τ 〉 −2s−1
4 � 1
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where we have used Lemma 7.4 in the ρ-integral and the fact that 0 ≤ 2s+1
4 ≤ 1

2 with b < 1
2 .

In the case s > 1
2 , we estimate IIx by

∥
∥IIx

∥
∥
H

2s+1
8 (R)

�
∥
∥
∥
∥〈τ 〉 2s+1

8

∫ |ξ |
〈τ − ξ4〉 |F̂(ξ, τ )|dξ

∥
∥
∥
∥
L2

τ

.

We consider the cases |τ | � ξ4 and |τ | � ξ4, in the first case, the above integral is bounded
by

∥
∥
∥
∥〈τ 〉 2s+3

8

∫ |F̂(ξ, τ )|
〈τ − ξ4〉 dξ

∥
∥
∥
∥
L2

τ

which was addressed before for II. For the second case notice that |τ − ξ4| ≈ ξ4 with which
one has |ξ | � 〈τ − ξ4〉 1

4 . Thus we bound the integral by
∥
∥
∥
∥
∥
〈τ 〉 2s+1

8

∫

|τ |�ξ4

|F̂(ξ, τ )|
〈τ − ξ4〉 3

4

dξ

∥
∥
∥
∥
∥
L2

τ

.

On the region where |τ | � ξ4, we have the relation

〈τ 〉 2s+1
8 � 〈τ − ξ4〉 2s+1

8 + |ξ | 2s+1
2 � 〈τ − ξ4〉 2s+1

8

through which we bound the above integral by
∥
∥
∥
∥

∫

〈τ − ξ4〉 2s−5
8 |F̂(ξ, τ )|dξ

∥
∥
∥
∥
L2

τ

which was handled in bounding II. ��

Proposition 4.6 For fixed s > − 1
3 with a < min{2s+1, 1} and 1

2 −b > 0 sufficiently small,
we have

‖u1u2u3‖Xs+a,−b �
3∏

j=1

∥
∥u j

∥
∥
Xs,b .

Proof Expressing the space time Fourier transform of u1u2u3 as a convolution

Fx,t (u1u2u3)(ξ, τ ) =
∫

ξ1,ξ2

∫

τ1,τ2

û1(ξ1, τ1)̂u2(ξ2, τ2 )̂u3(ξ − ξ1 + ξ2, τ − τ1 + τ2)

and then using the definition of Xs,b norm we write

‖u1u2u3‖2Xs+a,−b =
∥
∥
∥
∥
∥

∫

ξ1,ξ2

∫

τ1,τ2

〈ξ〉s+a û1(ξ1, τ1 )̂u2(ξ2, τ2 )̂u3(ξ − ξ1 + ξ2, τ − τ1 + τ2)

〈τ − ξ4〉b
∥
∥
∥
∥
∥

2

L2
ξ,τ

.

Now define

f j (ξ, τ ) = 〈ξ 〉s〈τ − ξ4〉b |̂u j (ξ, τ )| for j = 1, 2, 3.

Thus the desired bound is equivalent to showing that
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∥
∥
∥
∥

∫

ξ1,ξ2

∫

τ1,τ2

M(ξ, ξ1, ξ2, τ, τ1, τ2) f1(ξ1, τ1) f2(ξ2, τ2) f3(ξ − ξ1 + ξ2, τ − τ1 + τ2)

∥
∥
∥
∥

2

L2
ξ,τ

�
∏

j=1

∥
∥ f j

∥
∥2
L2 =

∏

j=1

∥
∥u j

∥
∥2
Xs,b

where

M(ξ, ξ1, ξ2, τ, τ1, τ2) = 〈ξ 〉s+a〈ξ1〉−s〈ξ2〉−s〈ξ − ξ1 + ξ2〉−s

〈τ − ξ4〉〈τ1 − ξ41 〉〈τ2 − ξ42 〉〈τ − τ1 + τ2 − (ξ − ξ1 + ξ2)4〉
.

By an application of the Cauchy-Schwarz inequality in the ξ1, ξ2, τ1, τ2 integrals and then
using Hölder’s and Young’s inequalities respectively the norm above is majorized by

∥
∥
∥
∥
∥

( ∫

ξ1,ξ2

∫

τ1,τ2

M2
) 1
2
( ∫

ξ1,ξ2

∫

τ1,τ2

f 21 (ξ1, τ1) f
2
2 (ξ2, τ2) f

2
3 (ξ − ξ1 + ξ2, τ − τ1 + τ2)

) 1
2

∥
∥
∥
∥
∥

2

L2
ξ,τ

=
∥
∥
∥
∥
∥

( ∫

ξ1,ξ2

∫

τ1,τ2

M2
)( ∫

ξ1,ξ2

∫

τ1,τ2

f 21 (ξ1, τ1) f
2
2 (ξ2, τ2) f

2
3 (ξ − ξ1 + ξ2, τ − τ1 + τ2)

)
∥
∥
∥
∥
∥
L1

ξ,τ

≤ sup
ξ,τ

( ∫

ξ1,ξ2

∫

τ1,τ2

M2
)

∥
∥
∥
∥
∥

∫

ξ1,ξ2

∫

τ1,τ2

f 21 (ξ1, τ1) f
2
2 (ξ2, τ2) f

2
3 (ξ − ξ1 + ξ2, τ − τ1 + τ2)

∥
∥
∥
∥
∥
L1

ξ,τ

= sup
ξ,τ

( ∫

ξ1,ξ2

∫

τ1,τ2

M2
) ∥

∥
∥ f 21 ∗ f 22 ∗ f 23

∥
∥
∥
L1

ξ,τ

� sup
ξ,τ

( ∫

ξ1,ξ2

∫

τ1,τ2

M2
) ∏

j=1

∥
∥ f j

∥
∥2
L2 .

Therefore, it suffices to show that the supremum above is finite. Application of Lemma 7.4
in the τ1, τ2 integrals bounds the supremum by

sup
ξ,τ

∫ 〈ξ 〉2s+2a〈ξ1〉−2s〈ξ2〉−2s〈ξ − ξ1 + ξ2〉−2s

〈τ − ξ4〉2b〈τ − ξ41 + ξ42 − (ξ − ξ1 + ξ2)4〉6b−2
dξ1dξ2.

Implementing the identity 〈α − β〉 � 〈τ − α〉〈τ − β〉 and then using Lemma 7.2, this is
bounded by

sup
ξ

∫ 〈ξ 〉2s+2a〈ξ1〉−2s〈ξ2〉−2s〈ξ − ξ1 + ξ2〉−2s

〈ξ4 − ξ41 + ξ42 − (ξ − ξ1 + ξ2)4〉6b−2
dξ1dξ2

� sup
ξ

∫ 〈ξ 〉2s+2a〈ξ1〉−2s〈ξ2〉−2s〈ξ − ξ1 + ξ2〉−2s

〈(ξ21 + ξ22 + ξ2)(ξ1 − ξ)(ξ1 − ξ2)〉1−
dξ1dξ2.

We divide the integration region into two pieces

R1 = {(ξ1, ξ2) : |ξ1 − ξ | � 1 or |ξ1 − ξ2| � 1} and
R2 = {(ξ1, ξ2) : |ξ1 − ξ | � 1 and |ξ1 − ξ2| � 1}

to control the supremum.
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Clearly we have ξ21 + ξ22 + ξ2 � 1 on R2, so the supremum on this region is estimated by

∫

R2

〈ξ 〉2s+2a〈ξ1〉−2s〈ξ2〉−2s〈ξ − ξ1 + ξ2〉−2s

〈(ξ21 + ξ22 + ξ2)(ξ1 − ξ)(ξ1 − ξ2)〉1−
dξ1dξ2

�
∫ 〈ξ 〉2s+2a〈ξ1〉−2s〈ξ2〉−2s〈ξ − ξ1 + ξ2〉−2s

〈ξ21 + ξ22 + ξ2〉1−〈ξ1 − ξ 〉1−〈ξ1 − ξ2〉1−
dξ1dξ2.

Since the sign of the Sobolev index s affects the way we follow in the proof, we begin with
considering the case s > 0 first. In this case, there are three separate cases to examine:

i) |ξ − ξ1 + ξ2| � |ξ |
∫ 〈ξ 〉2s+2a〈ξ1〉−2s〈ξ2〉−2s〈ξ − ξ1 + ξ2〉−2s

〈ξ21 + ξ22 + ξ2〉1−〈ξ1 − ξ 〉1−〈ξ1 − ξ2〉1−
dξ1dξ2

�
∫ 〈ξ 〉2a−2+〈ξ1〉−2s〈ξ2〉−2s

〈ξ1 − ξ 〉1−〈ξ2 − ξ1〉1− dξ2dξ1

� 〈ξ 〉2a−2+
∫

φmax(2s,1−)(ξ1)

〈ξ1 − ξ 〉1−〈ξ1〉2s+min(2s,1−)
dξ1

where we have used the Lemma 7.4 in the last line above. For s ≥ 1
2 , using the Lemma 7.4,

this is bounded by

〈ξ 〉2a−2+
∫

log(1 + 〈ξ1〉)
〈ξ1 − ξ 〉1−〈ξ1〉2s+1− dξ1 � 〈ξ 〉2a−3+ � 1

provided that a < 3
2 . As for 0 < s < 1

2 , the Lemma 7.4 yields the bound

〈ξ 〉2a−2+
∫

dξ1

〈ξ1 − ξ 〉1−〈ξ1〉4s− �
{

〈ξ 〉2a−2−4s+ for 0 < s ≤ 1
4

〈ξ 〉2a−3+ for 1
4 < s < 1

2

which is finite as long as a < min{2s + 1, 3
2 }.

ii) |ξ1| � |ξ |
∫ 〈ξ 〉2s+2a〈ξ1〉−2s〈ξ2〉−2s〈ξ − ξ1 + ξ2〉−2s

〈ξ21 + ξ22 + ξ2〉1−〈ξ1 − ξ 〉1−〈ξ1 − ξ2〉1−
dξ1dξ2

�
∫ 〈ξ 〉2a−2+〈ξ − ξ1 + ξ2〉−2s〈ξ2〉−2s

〈ξ1 − ξ 〉1−〈ξ1 − ξ2〉1− dξ2dξ1.

From the substitutions x1 = ξ − ξ1 + ξ2 and x2 = ξ2 the integral above is replaced by

∫ 〈ξ 〉2a−2+〈x1〉−2s〈x2〉−2s

〈x1 − ξ 〉1−〈x2 − x1〉1− dx2dx1

which is identical to the integral estimated in the previous case.
iii) |ξ2| � |ξ |

∫ 〈ξ 〉2s+2a〈ξ1〉−2s〈ξ2〉−2s〈ξ − ξ1 + ξ2〉−2s

〈ξ21 + ξ22 + ξ2〉1−〈ξ1 − ξ 〉1−〈ξ1 − ξ2〉1−
dξ1dξ2

�
∫ 〈ξ 〉2a−2+〈ξ − ξ1 + ξ2〉−2s〈ξ1〉−2s

〈ξ1 − ξ 〉1−〈ξ1 − ξ2〉1− dξ2dξ1.
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In this case after making change of variables x1 = ξ1 and x2 = ξ − ξ1 + ξ2 in the above
integral and then applying the Lemma 7.4 we have the bound

∫ 〈ξ 〉2a−2+〈x1〉−2s〈x2〉−2s

〈x1 − ξ 〉1−〈x2 − ξ 〉1− dx1dx2 = 〈ξ 〉2a−2+( ∫
dx

〈x − ξ 〉1−〈x〉2s
)2

� 〈ξ 〉2a−2−2min(2s,1−)φ2
max(2s,1−)(ξ) �

{
〈ξ 〉2a−2−4s+ for 0 < s < 1

2

〈ξ 〉2a−4+ for s ≥ 1
2

which is bounded provided that a < min{2s+1, 2}. Next we focus on the case − 1
3 < s ≤ 0.

In this case, since 〈ξ1〉−2s〈ξ2〉−2s〈ξ − ξ1 + ξ2〉−2s � 〈ξ21 + ξ22 + ξ2〉−3s

∫

R2

〈ξ 〉2s+2a〈ξ1〉−2s〈ξ2〉−2s〈ξ − ξ1 + ξ2〉−2s

〈(ξ21 + ξ22 + ξ2)(ξ1 − ξ)(ξ1 − ξ2)〉1−
dξ1dξ2

�
∫ 〈ξ 〉2s+2a

〈ξ21 + ξ22 + ξ2〉1+3s−〈ξ1 − ξ 〉1−〈ξ1 − ξ2〉1−
dξ1dξ2

�
∫ 〈ξ 〉2s+2a

〈ξ2 + ξ2〉1+3s−〈ξ1 − ξ 〉1−〈ξ1 − ξ2〉1− dξ1dξ2.

Since 1
2 −b > 0 was taken sufficiently small, using Lemma 7.4 twice this integral is bounded

by

〈ξ 〉2s+2a
∫

dξ1

〈ξ1 + ξ2〉1+3s−〈ξ1 − ξ 〉1− � 〈ξ 〉2a−4s−2+ � 1

provided that a < 2s + 1. Next we move on estimating the supremum on the region R1. In
this region notice that

〈ξ − ξ1 + ξ2〉〈ξ1〉 ≈ 〈ξ2〉〈ξ 〉,
thus

∫

R1

〈ξ 〉2s+2a〈ξ1〉−2s〈ξ2〉−2s〈ξ − ξ1 + ξ2〉−2s

〈(ξ21 + ξ22 + ξ2)(ξ1 − ξ)(ξ1 − ξ2)〉1−
dξ1dξ2

�
∫ 〈ξ 〉2a〈ξ2〉−4s

〈(ξ22 + ξ2)(ξ1 − ξ)(ξ1 − ξ2)〉1−
dξ1dξ2.

Note that on R1 the relation ξ22 + ξ2 � 1 implies that |ξ | � 1, |ξ j | � 1 for j = 1, 2 in which
case the integral above turns out to be finite at once. So for a nontrivial situation we assume
that ξ22 + ξ2 � 1. Then making substitution x = (ξ22 + ξ2)(ξ1 − ξ2)(ξ1 − ξ) in the ξ1 integral
and using the relations

2ξ1 = ξ + ξ2 ± (ξ22 + ξ2)−
1
2

√

4x + (ξ − ξ2)2(ξ
2
2 + ξ2) and

dx

ξ22 + ξ2
= (2ξ1 − ξ2 − ξ)dξ1

along with the Lemma 7.5, we have the bound
∫ 〈ξ 〉2a〈ξ2〉−4s

〈ξ22 + ξ2〉 1
2 〈x〉1−

√

|4x + (ξ2 − ξ)2(ξ22 + ξ2)|
dxdξ2

�
∫ 〈ξ 〉2a〈ξ2〉−4s

〈ξ22 + ξ2〉 1
2 〈(ξ2 − ξ)2(ξ22 + ξ2)〉 1

2− dξ2.
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We estimate the integral in the separate regions |ξ2| � 1 and |ξ2| � 1. In the former region
this is bounded by

∫

|ξ2|�1

〈ξ 〉2a〈ξ2〉−4s

〈ξ22 + ξ2〉 1
2 〈(ξ2 − ξ)2(ξ22 + ξ2)〉 1

2− dξ2 � 〈ξ 〉2a−3+ � 1

provided that a < 3
2 . As regards to the latter region, we use the relation (ξ2 − ξ)2(ξ22 + ξ2) �

(ξ22 − ξ2)2, and then making the change of variable x = ξ22 we obtain the bound

∫

|ξ2|�1

〈ξ 〉2a〈ξ2〉−4s

〈ξ22 + ξ2〉 1
2 〈(ξ2 − ξ)2(ξ22 + ξ2)〉 1

2− dξ2 �
∫

|ξ2|�1

〈ξ 〉2a
〈ξ22 〉2s+ 1

2 〈ξ22 − ξ2〉1−
dξ2

≈
∫

|x |�1

〈ξ 〉2a
〈x〉2s+ 1

2 〈x − ξ2〉1−|x | 12
dx �

∫ 〈ξ 〉2a
〈x〉2s+1〈x − ξ2〉1− dx

�
{

〈ξ 〉2a−2−4s+ for − 1
2 < s < 0

〈ξ 〉2a−2+ for s ≥ 0

which is finite provided that a < min{1, 2s + 1}. ��

We take 2s+2a−1
8 − b = 2s+2a−5

8 + ( 12 − b) rather than 2s+2a−5
8 in the Proposition 4.7 so

as to extract a positive power of T in the contraction argument below in the local theory.

Proposition 4.7 For fixed − 1
3 < s < 9

2 , 0 ≤ a < min{1, 2s + 1, 9
2 − s}, and 1

2 − b > 0
sufficiently small, we have

for − 1

3
< s + a ≤ 1

2
, ‖u1u2u3‖Xs+a,−b �

3∏

j=1

∥
∥u j

∥
∥
Xs,b ,

for
1

2
< s + a <

9

2
, ‖u1u2u3‖

X
1
2 +, 2s+2a−1

8 −b �
3∏

j=1

∥
∥u j

∥
∥
Xs,b .

Proof When − 1
3 < s + a ≤ 1

2 , given statement follows from Proposition 4.6. So we only
take account of the case 1

2 < s + a ≤ 9
2 here. In this case, using the fact that a < 2s + 1 we

take s > − 1
6 all along. Next let

I :=
∫ 〈τ − ξ4〉 2s+2a−8b−1

4 〈ξ 〉1+〈ξ1〉−2s〈ξ2〉−2s〈ξ − ξ1 + ξ2〉−2s

〈τ − ξ41 + ξ42 − (ξ − ξ1 + ξ2)4〉6b−2
dξ1dξ2.

Thus using the arguments of Proposition 4.6 we are required to show that

sup
ξ,τ

I < ∞.

We will demonstrate this in the separate cases 1
2 < s + a < 5

2 and 5
2 ≤ s + a < 9

2 .
Case1) 12 < s + a < 5

2 .

Note that taking 1
2 − b > 0 sufficiently small we infer that 1

2 (s + a) − 2b − 1
4 < 0, also

s + a > 1
2 implies that 2b + 1

4 − 1
2 (s + a) < 6b − 2. Hence using these, the identity

〈τ − a〉〈τ − b〉 � 〈a − b〉 and then Lemma 7.2 we have

123



52 Page 26 of 37 Partial Differential Equations and Applications (2021) 2 :52

I �
∫ 〈ξ〉1+〈ξ1〉−2s 〈ξ2〉−2s 〈ξ−ξ1+ξ2〉−2s

〈ξ4−ξ41 +ξ42−(ξ−ξ1+ξ2)4〉2b+
1
4 − 1

2 (s+a)
dξ1dξ2

�
∫ 〈ξ〉1+〈ξ1〉−2s 〈ξ2〉−2s 〈ξ−ξ1+ξ2〉−2s

〈(ξ21 +ξ22 +ξ2)(ξ1−ξ)(ξ1−ξ2)〉2b+
1
4 − 1

2 (s+a)
dξ1dξ2

which is easily estimated, for s > 1
2 , by

∫ 〈ξ 〉1+
〈ξ1〉2s〈ξ2〉2s〈ξ − ξ1 + ξ2〉2s dξ1dξ2 �

∫ 〈ξ 〉1+
〈ξ2〉2s〈ξ + ξ2〉2s dξ2 � 〈ξ 〉1−2s+ � 1

by using Lemma 7.4 twice. It is left to treat the case − 1
6 < s ≤ 1

2 . For this case, we
will analyze the integral on the sets R1 = {(ξ1, ξ2) : |ξ1 − ξ | � 1 or |ξ1 − ξ2| � 1} and
R2 = {(ξ1, ξ2) : |ξ1 − ξ | � 1 and |ξ1 − ξ2| � 1} as before.

Recalling the identity 〈ξ − ξ1 + ξ2〉〈ξ1〉 ≈ 〈ξ 〉〈ξ2〉 that holds on the set R1, we have the
bound

∫

R1

〈ξ〉1+〈ξ1〉−2s 〈ξ2〉−2s 〈ξ−ξ1+ξ2〉−2s

〈(ξ21 +ξ22 +ξ2)(ξ1−ξ)(ξ1−ξ2)〉2b+
1
4 − 1

2 (s+a)
dξ1dξ2

�
∫ 〈ξ〉1−2s+〈ξ2〉−4s

〈(ξ22 +ξ2)(ξ1−ξ)(ξ1−ξ2))〉2b+
1
4 − 1

2 (s+a)
dξ1dξ2.

Making substitution x = (ξ2+ξ22 )(ξ1−ξ)(ξ1−ξ2) in the ξ1 integral and assuming ξ2+ξ22 � 1
as in the Proposition 4.6, the integral above is bounded by

∫ 〈ξ 〉1−2s+〈ξ2〉−4s

〈ξ2 + ξ22 〉 1
2 〈x〉2b+ 1

4− 1
2 (s+a)

√

|4x + (ξ − ξ2)2(ξ2 + ξ22 )|
dxdξ2

�
∫ 〈ξ 〉1−2s+〈ξ2〉−4s

〈ξ2 + ξ22 〉 1
2 〈(ξ − ξ2)2(ξ2 + ξ22 )〉2b− 1

4− 1
2 (s+a)

dξ2

where we have used Lemma 7.4 which is applicable due to the fact that 1
2 − b > 0 is

sufficiently small, and a < min{2s + 1, 1}. So we estimate this by
∫ 〈ξ 〉1−2s+〈ξ2〉−4s

〈ξ2 + ξ22 〉 1
2 〈(ξ − ξ2)2(ξ + ξ2)2〉2b− 1

4− 1
2 (s+a)

dξ2

�
∫ 〈ξ 〉1−2s+〈ξ22 〉−2s

〈ξ2 + ξ22 〉 1
2 〈ξ22 − ξ2〉4b− 1

2−s−a
dξ2.

In the case |ξ2| � 1, the integral is bounded by

〈ξ 〉1+2a−8b+ � 1

provided that a < 3
2 , whereas for the other case |ξ2| � 1, we change variable x = ξ22 to

bound the integral, using Lemma 7.4, by
∫ 〈ξ 〉1−2s+

〈x〉1+2s〈x − ξ2〉4b− 1
2−s−a

dx �
{

〈ξ 〉2+2a−8b+ for 0 ≤ s ≤ 1
2

〈ξ 〉2−4s+2a−8b+ for − 1
6 < s < 0

which is bounded since a < min{2s + 1, 1} and 1
2 − b > 0 is sufficiently small. Next we

estimate the integral on the set R2 by
∫ 〈ξ 〉1+〈ξ1〉−2s〈ξ2〉−2s〈ξ − ξ1 + ξ2〉−2s

〈ξ21 + ξ22 + ξ2〉2b+ 1
4− 1

2 (s+a)〈ξ1 − ξ 〉2b+ 1
4− 1

2 (s+a)〈ξ1 − ξ2〉2b+ 1
4− 1

2 (s+a)
dξ1dξ2.
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We bound this in the separate cases − 1
6 < s ≤ 0 and 0 < s ≤ 1

2 . In the former case, using
the identity

〈ξ1〉−2s〈ξ2〉−2s〈ξ − ξ1 + ξ2〉−2s � 〈ξ21 + ξ22 + ξ2〉−3s,

we obtain the bound

∫ 〈ξ〉1+
〈ξ1〉2b+

1
4+ 1

2 (5s−a)〈ξ − ξ1 + ξ2〉2b+
1
4+ 1

2 (5s−a)〈ξ1 − ξ〉2b+ 1
4− 1

2 (s+a)〈ξ1 − ξ2〉2b+
1
4− 1

2 (s+a)
dξ1dξ2.

By a change of variable ξ2 → ξ1 + ξ2, ξ1 → ξ1 + ξ , it suffices to estimate

〈ξ 〉1+
( ∫

dξ1

〈ξ1 + ξ 〉2b+ 1
4+ 1

2 (5s−a)〈ξ1〉2b+ 1
4− 1

2 (s+a)

)2
.

Nothing that 2b + 1
4 − 1

2 (s + a) < 1 and 2b + 1
4 + 1

2 (5s − a) < 1 and then applying
Lemma 7.4 this is bounded by

〈ξ 〉2−8b−4s+2a+,

which is finite for a < min{2s + 1, 1} and 1
2 − b > 0 sufficiently small. Now for the latter

case 0 < s ≤ 1
2 , after using the bound 〈ξ1〉−2s〈ξ2〉−2s〈ξ −ξ1+ξ2〉−2s � 〈ξ 〉−2s and applying

the same change of variables as above, the integral is bounded by
∫ 〈ξ 〉1−2s+

〈ξ1〉2b+ 1
4− 1

2 (s+a)〈ξ1 + ξ 〉2b+ 1
4− 1

2 (s+a)〈ξ2〉2b+ 1
4− 1

2 (s+a)〈ξ2 + ξ 〉2b+ 1
4− 1

2 (s+a)
dξ1dξ2

� 〈ξ 〉1−2s+( ∫
dξ1

〈ξ1〉2b+ 1
4− 1

2 (s+a)〈ξ1 + ξ 〉2b+ 1
4− 1

2 (s+a)

)2
� 〈ξ 〉2−8b+2a+ � 1

by using the Lemma 7.4, a < min{2s+1, 1} and the assumption that 12 −b > 0 is sufficiently
small.

Case2) 5
2 ≤ s + a < 9

2
Note in this case 0 ≤ 1

2 (s + a) − 2b − 1
4 < 6b − 2. Making use of the proof of Lemma 7.2,

we write

ξ4 − ξ41 + ξ42 − (ξ − ξ1 + ξ2)
4

= (ξ − ξ1)(ξ1 − ξ2)
[5

2
(ξ + ξ2)

2 + ξ2 + ξ22 + 2(ξ1 − 1

2
ξ − 1

2
ξ2)

2
]

=: g(ξ, ξ1, ξ2).

Therefore, we have

〈τ − ξ4〉 = 〈τ − ξ41 + ξ42 − (ξ − ξ1 + ξ2)
4 − g(ξ, ξ1, ξ2)〉

� 〈τ − ξ41 + ξ42 − (ξ − ξ1 + ξ2)
4〉 + 〈g(ξ, ξ1, ξ2)〉

� 〈τ − ξ41 + ξ42 − (ξ − ξ1 + ξ2)
4〉 + 〈ξ1〉2〈ξ2〉2〈ξ 〉2〈ξ1 − ξ 〉〈ξ1 − ξ2〉.

From this identity we obtain

I �
∫ 〈ξ1 − ξ 〉 1

2 (s+a)− 1
4−2b〈ξ1 − ξ2〉 1

2 (s+a)− 1
4−2b〈ξ 〉 1

2+s+a−4b+

〈ξ1〉s−a+ 1
2+4b〈ξ2〉s−a+ 1

2+4b〈ξ − ξ1 + ξ2〉2s
dξ1dξ2.
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Substitutions ξ2 → ξ2 + ξ1 and ξ1 → ξ1 + ξ in the above integral lead to

〈ξ 〉 1
2+s+a−4b+

∫ 〈ξ1〉 1
2 (s+a)− 1

4−2b〈ξ2〉 1
2 (s+a)− 1

4−2b

〈ξ1 + ξ 〉s−a+ 1
2+4b〈ξ1 + ξ2 + ξ 〉s−a+ 1

2+4b〈ξ + ξ2〉2s
dξ1dξ2

� 〈ξ 〉 1
2+s+a−4b+

∫ 〈ξ1〉 1
2 (s+a)− 1

4−2b〈ξ2〉 1
2 (s+a)− 1

4−2b

〈ξ1 + ξ 〉s−a+ 1
2+4b〈ξ1 + ξ2 + ξ 〉s−a+ 1

2+4b〈ξ + ξ2〉s−a+ 1
2+4b

dξ1dξ2

where we have used s + a − 4b − 1
2 ≥ 0 in the last line above. Since a < min{2s + 1, 1},

we note that s > 3
2 . Now by symmetry we have two cases to consider |ξ + ξ1 + ξ2| � |ξ |

and |ξ + ξ1| � |ξ |. For the first one, using 〈ξ1〉 � 〈ξ1 + ξ 〉〈ξ 〉 we have the bound

〈ξ 〉2a−8b+( ∫

〈ξ1〉 1
2 (s+a)− 1

4−2b〈ξ1 + ξ 〉−s+a− 1
2−4bdξ1

)2
� 〈ξ 〉3a+s− 1

2−12b+ � 1

owing to the the restrictions on a, b and s. For the second one, the integral is bounded by

〈ξ〉2a−8b+
∫

〈ξ1〉
1
2 (s+a)− 1

4−2b〈ξ2〉
1
2 (s+a)− 1

4−2b〈ξ2 + ξ〉−s+a− 1
2−4b〈ξ1 + ξ2 + ξ〉−s+a− 1

2−4bdξ1dξ2.

The inequalities 〈ξ1〉 � 〈ξ1 + ξ2 + ξ 〉〈ξ2 + ξ 〉 and 〈ξ2〉 � 〈ξ2 + ξ 〉〈ξ 〉 give rise to the bound

〈ξ 〉 s
2+ 5a

2 − 1
4−10b+

∫

〈ξ2 + ξ 〉2a−8b−1〈ξ1 + ξ2 + ξ 〉− s
2+ 3a

2 − 3
4−6bdξ1dξ2

which can be easily verified to be finite by the restrictions on a, b and s.
��

5 Local theory: the Proof of Theorem 1.2

In this section, we establish the local existence of solutions to (18). Firstly we aim to show
that � defined by

�u(t) = η(t)Wtge + η(t)
∫ t

0
Wt−s F(u)ds + η(t)Wt

0(0, h1 − p1 − q1, h2 − p2 − q2)

(18)

has a fixed point in the space Xs,b, and recall where ge ∈ Hs(R) is the extension of g such
that ‖ge‖Hs (R) � ‖g‖Hs (R+) and

F(u) = η(t/T )|u|2u, p1(t) = η(t)D0(W
tge), p2(t) = η(t)D0

(
∂x

(
Wtge

))
,

q1(t) = η(t)D0

( ∫ t

0
Wt−t ′ F(u)dt ′

)
, q2(t) = η(t)D0

(
∂x

[ ∫ t

0
Wt−t ′ F(u)dt ′

])
.

We also recall that s ∈ (− 1
3 ,

9
2 ), s �= 1

2 ,
3
2 and 1

2 − b > 0 is sufficiently small. We start with
showing that � is a bounded operator on Xs,b. To do so, we gather necessary bounds we have
so far. Using (11) we have

∥
∥η(t)Wtge

∥
∥
Xs,b � ‖ge‖Hs (R) � ‖g‖Hs (R+) .
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Next by (13), (12) followed by Proposition 4.6 we obtain
∥
∥
∥
∥η

∫ t

0
Wt−s F(u)ds

∥
∥
∥
∥
Xs,b

≤
∥
∥
∥
∥η

∫ t

0
Wt−s F(u)ds

∥
∥
∥
∥
Xs, 12 +

� ‖F(u)‖
Xs,− 1

2 +

� T
1
2−b− ∥

∥|u|2u∥
∥
Xs,−b � T

1
2−b− ‖u‖3Xs,b .

By using Proposition 4.2 and Lemma 2.2
∥
∥η(t)Wt

0(0, h1 − p1 − q1, h2 − p2 − q2)
∥
∥
Xs,b �

∥
∥χ(0,∞)(h1 − p1 − q1)

∥
∥
H

2s+3
8

t (R)

+ ∥
∥χ(0,∞)(h2 − p2 − q2)

∥
∥
H

2s+1
8

t (R)
� ‖h1 − p1‖

H
2s+3
8

t (R+)
+ ‖h2 − p2‖

H
2s+1
8

t (R+)

+‖q1‖
H

2s+3
8

t (R+)
+ ‖q2‖

H
2s+1
8

t (R+)

� ‖h1‖
H

2s+3
8

t (R+)
+ ‖h2‖

H
2s+1
8

t (R+)
+ ‖p1‖

H
2s+3
8

t (R)

+‖p2‖
H

2s+1
8

t (R)
+ ‖q1‖

H
2s+3
8

t (R)
+ ‖q2‖

H
2s+1
8

t (R)

by the Kato smoothing estimate

‖p1‖
H

2s+3
8

t (R)
+ ‖p2‖

H
2s+1
8

t (R)
� ‖ge‖Hs (R) � ‖g‖Hs (R+) .

To bound the qi norms we use Proposition 4.5, (12) and Proposition 4.7

‖q1‖
H

2s+3
8

t (R)

+ ‖q2‖
H

2s+1
8

t (R)

�

⎧
⎪⎨

⎪⎩

‖F‖
Xs,− 1

2+ for − 1
3 < s ≤ 1

2

‖F‖
Xs,− 1

2+ + ‖F‖
X

1
2+, 2s−5

8 + for 1
2 < s < 9

2

� T
1
2−b−

⎧
⎨

⎩

∥
∥
∥|u|2u

∥
∥
∥
Xs,−b

for − 1
3 < s ≤ 1

2∥
∥
∥|u|2u

∥
∥
∥
Xs,−b

+
∥
∥
∥|u|2u

∥
∥
∥
X

1
2+, 2s−1

8 −b
for 1

2 < s < 9
2

� T
1
2−b− ‖u‖3

Xs,b

putting these estimates together in estimating (18) we have

‖�u‖Xs,b � ‖g‖Hs (R+) + ‖h1‖
H

2s+3
8

t (R+)
+ ‖h2‖

H
2s+1
8

t (R+)
+ T

1
2−b− ‖u‖3Xs,b .

Having shown that � is bounded, our next objective is to reveal that� is indeed a contraction.
To achieve this we implement the similar calculations for the difference �u −�ũ as follows

‖�u − �ũ‖Xs,b ≤
∥
∥
∥
∥η

∫ t

0
Wt−s [F(u) − F (̃u)]ds

∥
∥
∥
∥
Xs,b

+ ∥
∥ηWt

0(0, q̃1 − q1, q̃2 − q2)
∥
∥
Xs,b

�
∥
∥
∥
∥η

∫ t

0
Wt−s [F(u) − F (̃u)]ds

∥
∥
∥
∥
Xs, 12 +

+
∥
∥
∥
∥η

∫ t

0
Wt−s [F(u) − F (̃u)]ds

∥
∥
∥
∥
L∞
x H

2s+3
8

t

+
∥
∥
∥
∥η∂x

( ∫ t

0
Wt−s[F(u) − F (̃u)]ds

)∥
∥
∥
∥
L∞
x H

2s+1
8

t

� T
1
2−b−( ∥

∥|u|2u − |̃u|2ũ∥
∥
Xs,−b + χ( 12 , 92 )(s)

∥
∥|u|2u − |̃u|2ũ∥

∥
X

1
2 +, 2s−1

8 −b

)

� T
1
2−b−( ‖u‖2Xs,b + ‖ũ‖2Xs,b

) ‖u − ũ‖Xs,b .
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In the last line we have used Proposition 4.7 along with the inequality

|| f |α f − |g|αg| ≤ C(| f |α + |g|α)| f − g|
for absolute constant C and α ≥ 0. Therefore taking 0 < T < 1 sufficiently small, � is
a contraction on the ball B = {

u ∈ Xs,b : ‖u‖Xs,b ≤ C
( ‖g‖Hs (R+) + ‖h1‖

H
2s+3
8 (R+)

+
‖h2‖

H
2s+1
8 (R+)

)}
with radius depending on the initial and boundary data. Hence by the

Banach fixed point theorem, this ensures the existence of a solution to (1) in Xs,b spaces.
Next we establish that the fixed point of � lies in C0

t H
s
x ([0, T ] × R). Since the operator

Wt = eit�
2
is unitary on Hs(R) we have

∥
∥ηWtge

∥
∥
C0
t Hs

x
� ‖ge‖Hs (R) � ‖g‖Hs (R+) .

By the embedding (10) and the contraction argument
∥
∥
∥
∥η

∫ t

0
Wt−s F(u)ds

∥
∥
∥
∥
C0
t Hs

x

�
∥
∥
∥
∥η

∫ t

0
Wt−s F(u)ds

∥
∥
∥
∥
Xs, 12 +

� · · · � T
1
2−b− ‖u‖3Xs,b .

Next from Lemma 4.3 and the previous estimates in the contraction argument
∥
∥ηWt

0(0, h1 − p1 − q1, h2 − p2 − q2)
∥
∥
C0
t Hs

x

�
∥
∥χ(0,∞)(h1 − p1 − q1)

∥
∥
H

2s+3
8

t (R)

+ ∥
∥χ(0,∞)(h2 − p2 − q2)

∥
∥
H

2s+1
8

t (R)

� · · · � ‖g‖Hs (R+) + ‖h1‖
H

2s+3
8

t (R+)
+ ‖h2‖

H
2s+1
8

t (R+)
+ T

1
2−b− ‖u‖3Xs,b .

We also show that u = �u belongs to the space C0
x H

2s+3
8

t ([0, T ] × R). We have already
obtained the following bounds in the contraction argument

∥
∥ηWtge

∥
∥
C0
x H

2s+3
8

t

� ‖ge‖Hs (R) � ‖g‖Hs (R+)

and
∥
∥
∥
∥η

∫ t

0
Wt−s F(u)ds

∥
∥
∥
∥
C0
x H

2s+3
8

t

� T
1
2−b− ‖u‖3Xs,b .

For the remaining term of � we exploit the Lemma 4.4 and the contraction argument to get
∥
∥ηWt

0(0, h1 − p1 − q1, h2 − p2 − q2)
∥
∥
C0
x H

2s+3
8

t

� ‖g‖Hs (R+) + ‖h1‖
H

2s+3
8

t (R+)

+ ‖h2‖
H

2s+1
8

t (R+)
+ T

1
2−b− ‖u‖3Xs,b .

As a result we have established that u = �u lies in the Banach space of the definition 1.1.
Therefore this finishes the proof of local existence of solutions to (1). The uniqueness of these
solutions will be treated in the subsequent Sect. 5.1 below. The continuous dependence of
these local solutions on the initial and boundary data follows from the fixed point argument
and the a priori estimates as well. To see this let u and un be solutions of (1) with initial
and boundary data g, h1, h2 and gn, hn1, hn2 respectively. Then from what we have already
shown in the contraction argument, we have
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‖u − un‖Xs,b ≤ C0
( ‖g − gn‖Hs (R+) + ‖h1 − hn1‖

H
2s+3
8

t (R+)
+ ‖h2 − hn2‖

H
2s+1
8

t (R+)

)

+ C1T
1
2−b− ‖u − un‖Xs,b

whereC0 > 0 is a positive constant andC1 depends on the radius of the ball in the fixed point
argument and hence on the initial and boundary data. By means of contraction argument, we

may take existence time T < 1 so that C1T
1
2−b− < 1. So by the inequality

‖u − un‖Xs,b ≤ C0(
1−C1T

1
2 −b−)

( ‖g − gn‖Hs (R+) + ‖h1 − hn1‖
H

2s+3
8

t (R+)

+‖h2 − hn2‖
H

2s+1
8

t (R+)

)

the continuous dependence in Xs,b follows. In a similar manner we prove the continuous

dependence in the spaces C0
t H

s
x and C0

x H
2s+3
8

t as well. In order to complete the proof of the
Theorem 1.2, it is left to establish the quantification of the dependence of existence time T
to the initial and boundary data. By a scaling argument, we easily see that if u solves the Eq.
(1) with data g, h1 and h2 on [0, λ−4], then uλ(x, t) = λ−2u(λ−1x, λ−4t) solves the Eq. (1)
with data gλ(x) = λ−2g(λ−1x), hλ

1(t) = λ−2h1(λ−4t) and hλ
2(t) = λ−3h1(λ−4t) on [0, 1].

Therefore for λ > 1,
∥
∥hλ

1

∥
∥
H

2s+3
8 (R+)

� ‖h1‖
H

2s+3
8 (R+)

,

∥
∥hλ

2

∥
∥
H

2s+1
8 (R+)

� ‖h2‖
H

2s+1
8 (R+)

,

∥
∥gλ

∥
∥
Hs (R+)

≤ ∥
∥gλ

∥
∥
L2(R+)

+ ∥
∥gλ

∥
∥
Ḣ s (R+)

≤ λ− 3
2 ‖g‖L2(R+) + λ− 3

2−s ‖g‖Ḣ s (R+) ≤ ‖g‖L2 + λ− 3
2−s ‖g‖Hs (R+) .

Then for λ− 3
2−s ‖g‖Hs (R+) ≈ 1, the solution is defined up to the local existence time

T ≈ (
C + ‖g‖Hs (R+)

)− 8
2s+3

where the constant C depends on ‖g‖L2 + ‖h1‖
H

2s+3
8 (R+)

+ ‖h2‖
H

2s+1
8 (R+)

. Moreover, in

order to have local existence interval without implicit dependence on ‖g‖L2 (to be used later
in Sect. 6), we make use of the following bound

∥
∥gλ

∥
∥
Hs ≤ ∥

∥gλ
∥
∥
L2 + ∥

∥gλ
∥
∥
Ḣ s ≤ λ− 3

2 ‖g‖L2 + λ− 3
2−s ‖g‖Ḣ s ≤ λ− 7

6 ‖g‖Hs

that gives rise to the local existence time T ≈ (
C + ‖g‖Hs

)− 24
7 , in this case, with constant

C dependent to ‖h1‖
H

2s+3
8 (R+)

+ ‖h2‖
H

2s+1
8 (R+)

.

5.1 Uniqueness of solutions

In this section, we exhibit that the solutions to the Eq. (1) constructed above are unique.
The uniqueness statement of the Theorem 1.2 for s > 1

2 follows from an energy argument
which we want to illustrate next, and then using the smoothing theorem we will extend
the uniqueness argument to the whole well-posedness range. Hence first consider the smooth
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solutions u and v of (1) with sufficient decay. Then using u(x, 0) = v(x, 0), u(0, t) = v(0, t)
and ux (0, t) = vx (0, t), we compute

∂t‖u − v‖2L2(R+)
= 2Re iμ

∫ ∞

0

(|u|2u − |v|2v)
(u − v)dx,

hence, for any t > 0, integrating this and then using Sobolev embedding Hs(R+) ⊂
L∞(R+), s > 1

2 we obtain

‖(u − v)(t)‖2L2
x (R

+)
≤ 2|μ|( ‖u‖2L∞

t∈[0,T ]L∞
x (R+)

+ ‖v‖2L∞
t∈[0,T ]L∞

x (R+)

)
∫ t

0
‖(u − v)(s)‖2L2

x (R
+)

ds

�
( ‖u‖2L∞

t∈[0,T ]Hs
x (R+)

+ ‖v‖2L∞
t∈[0,T ]Hs

x (R+)

)
∫ t

0
‖(u − v)(s)‖2L2

x (R
+)

ds.

Since, by the local theory, the solutions u and v belong to C0
t H

s
x ([0, T ] × R

+), this with
the Gronwall’s inequality imply that u = v. The uniqueness of rougher solutions follows
from taking convolution of u − v with smooth approximate identities and then carrying out
a limiting argument as usual, see for instance [26]. Also since the norms are taken on R

+
in the energy estimate above, the restriction of solution to the right half line is independent
of the choice of extension of the initial data. Next we will prove the uniqueness of the local
solutions in the case s ∈ (− 1

3 ,
1
2 ) by utilizing the uniqueness obtained above for s > 1

2 and
the smoothing estimates from Theorem 1.3. Here we follow the arguments of [8]. We get

started by considering data (g, h1, h2) ∈ Hs
x (R

+)×H
2s+3
8

t (R+)×H
2s+1
8

t (R+) for s ∈ (0, 1
2 ).

Let ge and g̃e be two Hs(R) extensions of g ∈ Hs(R+). Associated to these extensions let

u and ũ be the fixed points of � defined in (18). Next pick a sequence gk ∈ H
1
2+(R+)

converging to g in Hs(R+). Then, by Lemma 5.1 below, we may assume that gke and g̃e
k are

H
1
2+(R) extensions of gk that converge respectively to ge and g̃e in Hr (R) for r < s < 1

2 .
Running a contraction argument on the set B1 ∩ B2 where

B1 = {
u : ‖u‖

X
1
2 +,b ≤ C

( ∥
∥
∥gk

∥
∥
∥
H

1
2 +

(R+)
+ ‖h1‖

H
1
2 +

(R+)
+ ‖h2‖

H
1
4 +

(R+)

)}

and

B2 = {
u : ‖u‖Xs,b ≤ C

( ‖g‖Hs (R+) + ‖h1‖
H

2s+3
8 (R+)

+ ‖h2‖
H

2s+1
8 (R+)

)}

we construct H
1
2+(R) solutions uk and ũk to the Eq. (1) associated to the extensions gke and

g̃ek respectively. At this juncture we make use of the smoothing estimate of Theorem 1.3 to
obtain local existence time T = T

( ‖g‖Hs (R+) , ‖h1‖
H

2s+3
8 (R+)

, ‖h2‖
H

2s+1
8 (R+)

)
for s < 1

2 .

By the uniqueness of H
1
2+ solutions obtained above, the restrictions of solutions uk and ũk

to R
+ are the same. Since, by the fixed point argument, uk → u and ũk → ũ in Hs−(R), we

then have u|R+ = ũ|R+ . Iterating this argument the uniqueness for s > − 1
3 follows.

Lemma 5.1 (See [17]) Fix − 1
2 < s < 1

2 and k > s. Let f ∈ Hs(R+) and g ∈ Hk(R+). Let
f e be an Hs extension of f to R. Then there is an Hk extension ge of g to R such that

∥
∥ f e − ge

∥
∥
Hr (R)

� ‖ f − g‖Hs (R+) for r < s.
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6 Proofs of Theorem 1.3 and Theorem 1.4

Proof of Theorem 1.3 By (18), for t ∈ [0, T ] we write the difference of nonlinear and linear
solutions as

u(t) − Wt
0(0, h1 − p1, h2 − p2)(t) = η(t)

∫ t

0
Wt−t ′η(t ′/T )|u|2udt ′ − η(t)Wt

0(0, q1, q2)(t)

where

q1(t) = η(t)D0

( ∫ t

0
Wt−t ′η(t ′/T )|u|2udt ′

)
, q2(t) = η(t)D0

(
∂x

[ ∫ t

0
Wt−t ′η(t ′/T )|u|2udt ′

])
.

Therefore using the embedding Xs, 12+ ⊂ C0
t H

s
x in (10), (13), Lemma 4.3 and then Proposi-

tion 4.5, we have

∥
∥u − Wt

0(0, h1 − p1, h2 − p2)
∥
∥
C0
t∈[0,T ]H

s+a
x∈R+

�
∥
∥
∥
∥η

∫ t

0
Wt−t ′η(t ′/T )|u|2udt ′

∥
∥
∥
∥
Xs+a, 12 +

+ ∥
∥Wt

0(0, q1, q2)
∥
∥
C0
t H

s+a
x

�
∥
∥η|u|2u∥

∥
Xs+a,− 1

2 + + ‖q1‖
H

2s+2a+3
8

t

+ ‖q2‖
H

2s+2a+1
8

t

�
∥
∥η|u|2u∥

∥
Xs+a,− 1

2 + +
⎧
⎨

⎩

∥
∥η|u|2u∥

∥
Xs+a,− 1

2 + for − 1
3 < s + a ≤ 1

2
∥
∥η|u|2u∥

∥
Xs+a,− 1

2 + + ∥
∥η|u|2u∥

∥
X

1
2 +, 2s+2a−5

8
for 1

2 < s + a < 9
2

.

By Propositions 4.6, Proposition 4.7 and Theorem 1.2 along with the local theory, this is
bounded by

‖u‖3Xs,b �
( ‖g‖Hs (R+) + ‖h1‖

H
2s+3
8 (R+)

+ ‖h2‖
H

2s+1
8 (R+)

)3
,

so the claim follows. ��

Proof of Theorem 1.4 Fix T > 0 and assume the growth bound ‖u‖Hs (R+) ≤ f (T ) for f
depending on ‖g‖Hs (R+), ‖h1‖Hs1 (R+) and ‖h2‖Hs2 (R+), for some s1 ≥ 2s+3

8 , s2 ≥ 2s+1
8 .

Using the final claim of the proof of Theorem 1.2, we may pick the local existence time

based on f (T ): δ ≈ (C + f (T ))− 24
7 where C is a constant proportional to ‖h1‖

H
2s+3
8 (R+)

+
‖h2‖

H
2s+1
8 (R+)

. Therefore for J ≈ T /δ

∥
∥
∥u(Jδ) − W Jδ

0 (g, h1, h2)
∥
∥
∥
Hs+a
x∈R+

=
∥
∥
∥
∥
∥

J∑

k=1

W Jδ
kδ (u(kδ), h1, h2) − W Jδ

(k−1)δ(u((k − 1)δ), h1, h2)

∥
∥
∥
∥
∥
Hs+a
x∈R+

≤
J∑

k=1

∥
∥
∥W Jδ

kδ (u(kδ), h1, h2) − W Jδ
(k−1)δ(u((k − 1)δ), h1, h2)

∥
∥
∥
Hs+a
x∈R+
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≤
J∑

k=1

∥
∥
∥W Jδ

kδ

([u(kδ) − Wkδ
(k−1)δ(u((k − 1)δ), h1, h2)], 0, 0

)∥∥
∥
Hs+a
x∈R+

≤
J∑

k=1

∥
∥
∥u(kδ) − Wkδ

(k−1)δ(u((k − 1)δ), h1, h2)
∥
∥
∥
Hs+a
x∈R+

� J f (T )3 � 〈T 〉 f (T )
45
7

where we have used Remark 2.3 in the second and third inequalities. Also the implicit
constants just depend on ‖h1‖

H
2s+3
8 (R+)

, ‖h2‖
H

2s+1
8 (R+)

. Then we have

‖u(T )‖Hs+a(R+) � 〈T 〉 f (T )
45
7 +

∥
∥
∥WT

0 (g, h1, h2)
∥
∥
∥
Hs+a(R+)

.

To bound this, first recall that

WT
0 (g, h1, h2) = WT ge + WT

0 (g, h1 − p1, h2 − p2)

where p1(t) = η(t/〈T 〉)D0(Wtge), p2(t) = η(t/〈T 〉)D0(∂x [Wtge]). Then by Lemma 2.2
∥
∥
∥WT

0 (g, h1, h2)
∥
∥
∥
Hs (R)

� ‖ge‖Hs (R) + ∥
∥χ(0,∞)(h1 − p1)

∥
∥
H

2s+3
8 (R)

+ ∥
∥χ(0,∞)(h2 − p2)

∥
∥
H

2s+1
8 (R)

� ‖g‖Hs (R+) + ‖h1‖
H

2s+3
8 (R+)

+ ‖h2‖
H

2s+1
8 (R+)

+ ‖p1‖
H

2s+3
8 (R)

+‖p2‖
H

2s+1
8 (R)

.

We estimate p1 and p2 by writing η(t/〈T 〉) = ∑〈T 〉
j=1 η j (t) and then using Kato smoothing

inequality (Lemma 4.1) as follows

‖p1‖
H

2s+3
8 (R)

+ ‖p2‖
H

2s+1
8 (R)

� 〈T 〉 ‖ge‖Hs (R) � 〈T 〉 ‖g‖Hs (R+) .

So then we have
∥
∥
∥WT

0 (g, h1, h2)
∥
∥
∥
Hs (R+)

� 〈T 〉 ‖g‖Hs (R+) + ‖h1‖
H

2s+3
8 (R+)

+ ‖h2‖
H

2s+1
8 (R+)

which leads to the bound

‖u(T )‖Hs+a(R+) � 〈T 〉[ f (T )
45
7 + ‖g‖Hs+a(R+)

] + ‖h1‖
H

2s+2a+3
8 (R+)

+ ‖h2‖
H

2s+2a+1
8 (R+)

.

When s = 2 and s1 = s2 = 1, Lemma 7.1 below implies that f (t) ≈ 1. As a result this and
above bound yield that ‖u(t)‖Hs (R+) � 〈T 〉 for 2 < s < 5

2 . ��
Acknowledgements The author would like to thank his Ph.D advisor T. Burak Gürel for many helpful sug-
gestions and comments also thank Eduardo Teixeira for careful reading of the manuscript and many helpful
comments.

7 Appendix

In this section, we reserve some useful inequalities to be used in the text when necessary.
Firstly we start with the lemma which is a consequence of the proof of Theorem 1.3 in [34].
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Lemma 7.1 when μ = 1 (defocusing nonlinearity), the solutions of the Eq. (1) satisfy the
following a priori estimate

‖u‖H2(R+) ≤ C(‖g‖H2 , ‖h1‖H1 , ‖h2‖H1).

Next Lemma is useful in the proofs of Proposition 4.6 and Proposition 4.7.

Lemma 7.2 For m, n, k ∈ R we have

|m4 − n4 + k4 − (m − n + k)4| � |m − n||n − k|(m2 + n2 + k2).

Proof Let g(m, n, k) := m4 − n4 + k4 − (m − n + k)4. Then

g(m, n, k) = (m − n)
[
(m2 + n2)(m + n) − (m − n)3 − 4(m − n)2k − 6(m − n)k2 − 4k3

]

= (m − n)(n − k)
[
4m2 + 2n2 + 4k2 − 2mn − 2nk

]

= (m − n)(n − k)
[5

2
(m + n)2 + m2 + k2 + 2(n − 1

2
m − 1

2
k)2

]

which gives the desired estimate. ��
Lemma 7.3 (See [6]) For − 1

2 ≤ s ≤ 1
2 , we have

‖ f g‖Hs � ‖ f ‖
H

1
2 + ‖g‖Hs

Finally we have the following lemmas we use throughout the text. For proofs of the first
and the second of these, see [13] and [16] respectively.

Lemma 7.4 If β ≥ γ ≥ 0 and β + γ > 1 then
∫

R

dx

〈x − a1〉β〈x − a2〉γ � 〈a1 − a2〉−γ ϕβ(a1 − a2)

where

ϕβ(a) =
∑

|n|≤|a|

1

〈n〉β ∼
⎧
⎨

⎩

1 β > 1
log(1 + 〈a〉) β = 1
〈a〉1−β β < 1.

Lemma 7.5 For fixed ρ ∈ ( 12 , 1), we have
∫

1

〈x〉ρ√|x − a|dx � 1

〈a〉ρ− 1
2

.
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12. Erdoğan, M.B., Tzirakis, N.: Global smoothing for the periodic KdV evolution. Int. Math. Res. Not. 20,
4589–4614 (2013)
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