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Abstract
In functional analysis, there are different notions of limit for a bounded sequence of L1

functions. Besides the pointwise limit, that does not always exist, the behaviour of a

bounded sequence of L1 functions can be described in terms of its weak-H limit or by

introducing a measure-valued notion of limit in the sense of Young measures. Working in

Robinson’s nonstandard analysis, we show that for every bounded sequence fzngn2N of L1

functions there exists a function of a hyperfinite domain (i.e. a grid function) that repre-

sents both the weak-H and the Young measure limits of the sequence. This result has

relevant applications to the study of nonlinear PDEs. We discuss the example of an ill-

posed forward–backward parabolic equation.

Keywords Generalized functions � Nonstandard analysis � Nonlinear ill-posed problems

Mathematics Subject Classification 46F30 � 46S20 � 47J06 � 35K55

1 Introduction

The lack of a nonlinear theory of distributions, first established by Schwartz [37], poses

some limitations in the study of nonlinear PDEs: while some nonlinear problems can be

solved by studying the limit of suitable regularized problems, other are ill-posed in the

sense that they do not allow for solutions in the space of distributions. For some of these

problems, the notion of admissible solution can be meaningfully extended to include

measure-valued solutions (we refer to [23] for a theoretical discussion on the issue, and to

[10, 13, 21, 32, 35, 38, 39] for some examples of measure valued solutions to ill-posed

PDEs). These measure-valued solutions are obtained as suitable limits of approximate

solution in the presence of some estimates. For instance, a uniformly bounded sequence of

integrable functions has a weak-H limit that corresponds to a Radon measure and has also

limit in the sense of Young measures. For some PDEs, both limits must be considered in
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order to obtain a measure-valued solution. An example is studied in detail in [39], see also

Sect. 4 of this paper.

In order to overcome the absence of a nonlinear theory for distributions, some authors

have embedded the space of distributions in a differential algebra with a good nonlinear

theory. A pioneer of this line of research is Colombeau, that in 1983 proposed an organic

approach to a nonlinear theory of distributions [17, 26]. Colombeau’s idea is to embed the

distributions in a differential algebra of equivalence classes of smooth maps. This algebra

allows for a good nonlinear theory via a canonical extension of classical operations.

Colombeau’s approach has been met with interest and has proved to be a prolific field of

research.

Colombeau algebras, however, lack some features with respect to more classical

mathematical objects. For instance, according to Giordano, Kunziger and Vernaeve they do

not yet have ‘‘general existence theorems, comparable to the functional-analytic founda-

tions of distribution theory’’ [24]. Another drawback is that the ring of scalars of the

algebra is a non-Archimedean extension of R that however includes zero-divisors.

In order to improve on the first limitation, Giordano, Kunziger and Vernaeve introduced

a new notion generalized functions, namely generalized smooth functions, that can be seen

as a generalization of Colombeau functions to general domains and that allow for better

set-theoretical properties [24].

The second drawback has been addressed by Todorov et al. with the introduction of

algebras of asymptotic functions defined over a Robinson field of asymptotic numbers [35].

The algebras of asymptotic functions can be seen as generalized Colombeau algebras

where the set of scalars is an algebraically closed field rather than a ring with zero divisors

[43]. In this setting, it is possible to study generalized solutions to differential equations,

and in particular to those with nonsmooth coefficient and distributional initial data

[20, 33, 42].

The asymptotic functions are only one of the many algebras of generalized functions

that can be defined in the setting of Robinson’s nonstandard analysis. Possibly the earliest

results in this field are the proofs by Robinson that the distributions can be represented by

smooth functions of nonstandard analysis and by polynomials of a hyperfinite degree

[36, 41]. Other algebras of nonstandard functions that are expressive enough for the

representation of distributions have been studied in [28, 30].

In the last decade, Benci and Luperi Baglini developed a new theory of generalized

functions oriented towards the applications in the field of partial differential equations and

of the calculus of variations. In [4] and subsequent papers [5–8], the authors introduced

spaces of ultrafunctions, i.e. nonstandard vector spaces of a hyperfinite dimension that

extend the space of distributions. The space of real distributions can be embedded in an

algebra of ultrafunctions V such that the following inclusions hold: DðRÞ0 � V � �C1ðRÞ
[7]. This can be seen as a variation on a result by Robinson and Bernstein, that in [9]

showed that any Hilbert space H can be embedded in a hyperfinite dimensional subspace of
�H. In the setting of ultrafunctions, some partial differential equations can be formulated

coherently by a Galerkin approximation, while the problem of finding the minimum of a

functional can be turned to a minimization problem over a formally finite-dimensional

vector space. For a discussion of the applications of ultrafunctions to functional analysis,

we refer to [4, 6, 8].

Recently, we proposed another algebra of generalized solutions for the study of partial

differential equations: the algebra of grid functions GðXÞ defined from an open domain
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X � Rk [12]. This algebra seem particularly suitable for this purpose, mainly due to the

following results (proved in [12]).

1. There exists an embedding from the space of distributions over X to the algebra of grid

functions that satisfies the following conditions:

– the pointwise product of grid functions extends the product over C0 functions;

– D, the discrete derivative of grid functions, extends the distributional derivative;

– the following product rule holds:

Dðu � vÞðxÞ ¼ ðDuÞðxÞ � vðxÞ þ uðxþ eÞ � ðDvÞðxÞ, where e is an infinitesimal of a

hyperreal field of Robinson’s nonstandard analysis.

2. It is possible to determine a real vector subspace DXðXXÞ0 � GðXÞ and a surjective

homomorphism of vector spaces p : DXðXXÞ0 ! DðXÞ0 which is coherent with the

above embedding.

3. Each grid function corresponds to a measurable function m : X ! MðRÞ, where MðRÞ
is the space of positive Radon measures over R. This correspondence is also coherent

with the homomorphism p.

Thus the algebra of grid functions provides a generalization both of the space of distri-

butions and the space of Young measures, two spaces of generalized functions customarily

used for the study of linear and nonlinear PDEs. As an initial application of grid functions

to the study of ill-posed PDEs, in [13] we studied an ill-posed forward–backward parabolic

equation. By exploiting the strength of the nonstandard formulation, we were able to

characterize the asymptotic behaviour of the solutions and to prove that they satisfy a

conjecture formulated by Smarrazzo for the measure-valued solutions to the ill-posed

problem [39].

In this paper we will prove that a single grid function simultaneously represents two

different limits (namely, the weak-H and the Young measure limit) of a sequence of

integrable functions. Thus a number of classical concepts (such as different notions of

limits and of generalized solutions) can be successfully unified in a relatively elementary

but nontrivial hyperfinite setting. Conversely, grid functions of a finite L1 norm can be

described by the weak-H and the Young measure limit of a sequence of integrable

functions. This provides a classic interpretation of grid functions that can be further

exploited in the study of PDEs. As an application of these results, we study a more general

version of the problem already discussed in [13] and provide a novel definition of solution

for such a generalized problem. Moreover, we discuss the interplay between the classical

formulation of this problem and the one obtained with grid functions.

We believe that many results relating grid functions and parametrized measures, such as

the correspondence between grid functions and parametrized measures or the main theo-

rems of this paper, might be suitably adapted also to spaces of ultrafunctions. So far,

however, we are not aware of any research on the connections between these different

notions of generalized functions.

2 Terminology and preliminary notions

In this section, we will define the notation and recall some results on grid functions and on

Young measures that will be useful in the rest of the paper.
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2.1 Terminology

We assume that X � Rk is an open set.

We will often reference the following real vector spaces:

– C0
bðRÞ ¼ ff 2 C0ðRÞ : f is bounded and limjxj!1 f ðxÞ ¼ 0g.

– C0
c ðXÞ ¼ ff 2 C0

bðXÞ : supp f �� Xg.

– DðXÞ ¼ ff 2 C1ðXÞ : supp f �� Xg.

– The duality between a vector space X and its dual X0 is denoted by h�; �iX .

– A real distribution over X is an element of DðXÞ0, i.e. a continuous linear functional

T : DðXÞ ! R. If T is a distribution and u is a test function, according to the notation

introduced above we denote the action of T over u by hT;uiDðXÞ. The distributional

derivative is denoted by D, so that DT is the distribution defined by

hDT ;uiDðXÞ ¼ �hT;u0iDðXÞ.

– MðRÞ ¼ fm : m is a Radon measure over R satisfying jmjðRÞ\þ1g.

– MPðRÞ ¼ fm 2 MðRÞ : m is a probability measureg.

– Following [2, 3, 44] and others, measurable functions m : X ! MPðRÞ will be called

Young measures. Measurable functions m : X ! MðRÞ will be called parametrized

measures, even though in the literature the term parametrized measure is used as a

synonym for Young measure. If m is a parametrized measure and if x 2 X, we will write

mx instead of mðxÞ.
– A Young measure is Dirac if for every x 2 X there exists r 2 R such that mx ¼ dr. In

other words, if a Young measure is Dirac there exists a function f : X ! R such that

mx ¼ df ðxÞ. Thus a Dirac Young measure can be identified with a measurable function.

2.2 Grid functions

Throughout the paper, we will work with a jDðXÞ0j-saturated hyperreal field �R, and we

will assume familiarity with the basics of Robinson’s nonstandard analysis. For an intro-

duction on the subject, we refer for instance to Goldblatt [25], but see also

[1, 19, 29, 31, 36].

For any x; y 2 �R we will write x � y to denote that x� y is infinitesimal, we will say

that x is finite if there exists a standard M 2 R satisfying jxj\M, and we will say that x is

infinite whenever x is not finite. We will denote by �Rfin the set of finite numbers in �R, i.e.
�Rfin ¼ fx 2 �R : x is finiteg.

The notion of infinite closeness and of finiteness can be extended componentwise to

elements of �Rk whenever k 2 N. For any X ��Rk, �X will denote the set of the standard

parts of the finite elements of X.

The set of all hyperreal numbers infinitesimally close to a hyperreal number x is called

the monad of x and is denoted by lðxÞ.
We will now recall the definition and some properties of grid functions studied in [12].

Grid functions over X are functions defined over a hyperfinite domain that represents X.

The hyperfinite domain is obtained as the intersection of �X with a hyperfinite grid of a

uniform step. We have chosen to work with a uniform grid for a matter of convenience in

the representation of the derivative and of the integral (see Definitions 4 and 6). The

relation between finite differences and derivatives have been studied also for some non-
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uniform grids (see for instance [15, 16]), but we wanted to avoid the complications that

arise due to the non-uniform spacing of adjacent elements of the grid.

Definition 1 (The hyperfinite grid) Let N0 2 �N be an infinite hypernatural number. Set

N ¼ N0! and e ¼ 1=N, and define

X ¼ fne : n 2 ½�N2;N2	 \ �Zg:

The choice of working with a hyperfinite grid with endpoints instead of a hypercount-

able grid fne : n 2 Zg allows for a hyperfinite representation of both bounded and

unbounded sets. The results presented in the next sections and in other papers on grid

functions [12, 13] do not depend upon the choice of endpoints �N and N, since we will see

that the grid function representation of distributions and Young measures is uniquely

determined by the behaviour of the grid function at the finite points of the grid (for more

details see Definition 8 and Theorem 3).

Definition 2 (The hyperfinite domain XX) Define XX ¼ �X \Xk.

We will say that x 2 XX is nearstandard in X iff there exists y 2 X such that x � y.

Notice that, since XX is an internal subset of Xk, it is hyperfinite.

Since no uniform hyperfinite grid includes all the real numbers and since X is open,

X 6� XX. This is in contrast to other hyperfinite representations of uncountable sets that

properly include the original standard set. As already mentioned, a theory of grid functions

based on a non-uniform grid that contains all the real numbers would need suitable ad-

justments at least for the definition of the grid derivative and of the grid integral.

Proposition 2.5 of [12] and the hypothesis that X is open ensure that �XX ¼ X. Indeed,

this is a consequence of the fact that for every set X, not necessarily open, �XX is equal to

the closure of X n fx 2 X \ oX : x 62 Qkg (oX denotes the boundary of X; we are grateful

to an anonymous referee for pointing out this more general result).

Grid functions over X are internal functions over XX.

Definition 3 (Grid functions over X) We will say that a grid function over X is an internal

function f : XX !�R. The space of grid functions over X is defined as

GðXÞ ¼ Intl �RXX
� �

¼ ff : XX !�R and f is internalg:

Since grid functions are defined on a discrete domain, the derivative can be represented by

suitable finite difference operators of an infinitesimal step.

Definition 4 (Some grid derivatives) For a grid function f 2 GðXÞ, we define the i-th
forward finite difference of step e as
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Dþ
i ¼ Dif ðxÞ ¼

f ðxþ eeiÞ � f ðxÞ
e

:

If n 2 �N, Dn
i is recursively defined as DiðDn�1

i Þ and, if a is a multi-index, then Da is

defined as expected:

Daf ¼ Da1

1 Da2

2 . . .Dan
n f :

It is also possible to represent the derivative using backward and centred finite differences

of step e. We will denote the i-th backward finite difference by D�
i . Other finite difference

operators that represent the distributional derivative will be discussed in [14].

By using these operators it is possible to define some grid functions counterparts of the

gradient and of the divergence.

Definition 5 (Grid gradient and grid divergence) If f 2 GðXÞ, we define the forward and

backward grid gradient of f as r

Xf ¼ ðD


1 f ; . . .;D


i ; . . .;D



k f Þ: In a similar way, if

f : XX !�Rk, we define the forward and backward grid divergence as

div

Xf ¼

Pk
i¼1 D



i fi:

For a discussion of the relevance of the operators D
, r

X and div


X in the theory of grid

functions we refer to [12].

In the same spirit, integrals can be replaced by suitable hyperfinite sums.

Definition 6 (Grid integral and inner product) Let f ; g : �X !�R and let A � XX � Xk be

an internal set. We define
Z

A

f ðxÞdXk ¼ ek �
X

x2A
f ðxÞ

and

hf ; gi ¼
Z

Xk
f ðxÞgðxÞdXk ¼ ek �

X

x2Xk

f ðxÞgðxÞ;

with the convention that, if x 62 �X, f ðxÞ ¼ gðxÞ ¼ 0.

For further details about the properties of the grid derivative and the grid integral, we refer

to [12, 15, 16, 29, 31].

By using the grid derivative D, it is possible to introduce a grid function counterpart of

the space of test functions.

Definition 7 We say that a function f 2 GðXÞ is of class S0ðXÞ iff f(x) is finite for some

nearstandard x 2 XX and for every nearstandard x; y 2 XX, x � y implies f ðxÞ � f ðyÞ. We

say that f is of class S1ðXÞ if Daf 2 S0ðXÞ for any standard multi-index a.

We define the algebra of grid test functions as follows:

DXðXÞ ¼ f 2 S1ðXÞ :� supp f �� Xf g:
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In Lemma 3.2 of [12] it is proved that the algebra of test function is the grid function

counterpart of the space of standard test functions DðXÞ in the following sense:

– if u 2 DXðXÞ, then �u 2 DðXÞ;
– if u 2 DðXÞ, then the restriction of �u to XX belongs to DXðXÞ.
The duality with grid test functions allows for the definition of a meaningful equivalence

relation on the algebra of grid functions.

Definition 8 Let f ; g 2 GðXÞ. We say that f � g iff hf ;ui � hg;ui for all u 2 DXðXÞ.
We will denote by [f] the equivalence class of f with respect to �.

In [12] it is proved that the space of grid functions generalizes the space of distributions. In

particular, there exists a real subspace of GðXÞ= � that is isomorphic to the space of

distributions.

Theorem 1 Let DXðXXÞ0 ¼ f 2 GðXÞ j hf ;uiis finite for all u 2 DXðXÞf g: The func-

tion U : ðDXðXXÞ0= �Þ ! DðXÞ0 defined by

hUð½f 	Þ;uiDðXÞ ¼ �h f ; �ui

is an isomorphism of real vector spaces.

Proof See Theorem 3.10 of [12].

In addition to the above result, in Theorem 3.16 of [12] it is also proved that the finite

difference operators Dþ and D� induces the distributional derivative on the quotient

DXðXXÞ0= �. Similar results are valid also for the other algebras of generalized functions

mentioned in the introduction.

In Theorem 3.19 of [12] it is shown how the grid derivative can be used to obtain a non-

canonical embedding of the space DðRÞ0 in DXðXÞ0. The embedding is not canonical since

it depends on the choice of a partition of unity and of a Hamel basis for the space of

distributions. Such embeddings are common for algebras of generalized functions: for

Colombeau algebras, see e.g. [26], for asymptotic functions see Section 5 of [34], for

ultrafunctions see Theorem 1 of [7].

In the setting of grid functions, sometimes it is more convenient to use other repre-

sentations than the one provided by the embedding of [12]. As an example, we discuss

some grid function counterparts of the Dirac distribution.

Example 1 (Grid functions that represent the Dirac distribution) Let dr be the real Dirac

distribution centred at some r 2 R. This distribution is represented forinstance by any non-

negative grid function fr satisfying

– frðxÞ� 0 for every x 2 X;

– supp ðf Þ � lðrÞ;
–
P

x2X f ðxÞ ¼ 1.

The first and second conditions are not necessary, since there are also some grid functions

that assume negative values and whose support is not included in the monad of that

nevertheless represent the Dirac distribution centred at (for one of such grid functions, see

Example 2). Moreover, the second and third conditions alone are not sufficient, since there
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are grid functions supported in the monad of and of a null mean that nevertheless represent

some nonzero distribution.

However, a more explicit representation is obtained by noticing that, if we define the

Heaviside function centred at r 2 R as Hr : R ! R,

HrðxÞ ¼
0 if x
 r

1 if x[ r;

�

then dr ¼ DHr. From this representation and by using the grid derivative instead of the

distributional derivative we obtain that a grid function representative of the Dirac distri-

bution dr is dr ¼ Dð �HrjXÞ. This grid function can be written explicitly by introducing the

number r� ¼ maxx2Xfx
 rg:

drðxÞ ¼
0 if x 6¼ r�

e�1 if x ¼ r�:

�

Similar representations can be obtained by using the backward or centred finite differences

instead of the forward finite difference D.

2.3 Grid functions of a finite L1 norm

In the sequel, we will use the following Lp norms over the space of grid functions.

Definition 9 (Lp norms for grid functions) For all f 2 GðXÞ, define

kfkpp ¼ ek
X

x2XX

jf ðxÞjp if 1
 p\1; and kfk1 ¼ max
x2XX

jf ðxÞj:

In Lemma 4.1 of [12] it is proved that if kfkp 2 �Rfin for some p, then f 2 DXðXXÞ0, i.e. [f]

is a well-defined distribution. In this paper we will use also the following property: if

kf k1 2 �Rfin, then [f] is an element of the dual of C0
c ðXÞ.

Proposition 1 If f 2 GðXÞ satisfies kfk1 2 �Rfin, then ½f 	 2 C0
c ðXÞ

0
, i.e. it can be identified

with a continuous linear functional over C0
c ðXÞ, that we will still denote by [f], defined by

h½f 	;uiC0
c ðXÞ ¼

�h f ; �ui

for every u 2 C0
c ðXÞ.

Proof Let u 2 C0
c ðXÞ: then u 2 L1ðXÞ, so that kuk1 � k �uk1 2 �Rfin. By the discrete

Hölder’s inequality,

jhf ; �uij 
 kfk1k �uk1 2 �Rfin:

This estimate and linearity of the hyperfinite sum over XX allow to conclude that [f] is a

linear functional over C0
c ðXÞ.

In order to prove continuity it is sufficient to notice that if u;w 2 S0ðXÞ satisfy

ku� wk1 � 0, then
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jhf ;u� wij 
 kfk1ku� wk1 � 0:

As a consequence, [f] is a continuous linear functional over C0
c ðXÞ, as desired.

2.4 Young measures

We find it useful to recall some definitions and results on Young measures.

Definition 10 Let m : X ! MPðRÞ be a Young measure. If g 2 C0
bðRÞ, the composition

gðmÞ is defined by

gðmðxÞÞ ¼
Z

R

gdmx:

It is well-known that Young measures are able to express the weak-H limit in L1 of the

composition between a bounded sequence of L1 functions with a function in C0
bðRÞ. This

result is a consequence of the fundamental theorem of Young measures.

Theorem 2 For every bounded sequence of L1ðXÞ functions fzngn2N, there exists a

subsequence fznkgk2N of fzngn2N and a Young measure m such that for all g 2 C0
bðRÞ and

for all u 2 C0
c ðXÞ,

lim
k!1

Z

X
gðznkðxÞÞuðxÞdx ¼

Z

X

Z

R

gdmx

� �
uðxÞdx

¼
Z

X
gðmxÞuðxÞdx:

In other words, gðznÞ*
H

gðmÞ in L1ðXÞ for all g 2 C0
bðRÞ.

Proof See e.g. [2, 3, 11] and references therein.

In the last statement of Theorem 2, we have used density of C0
c ðXÞ in L1ðXÞ.

Definition 11 If fzngn2N is a bounded sequence of L1ðXÞ functions and if m is a Young

measure that satisfies Theorem 2, we will say that fzngn2N converges to m in the sense of

Young measure and we will write zn*
Y
m.

The relations between grid functions and parametrized measures (including Young mea-

sures), are studied in depth in [12]. We recall the main results that will be useful for this

paper.

Theorem 3 For every f 2 GðXÞ, there exists a parametrized measure mf : X ! MðRÞ
such that for all g 2 C0

bðRÞ and for all u 2 C0
c ðXÞ

�h �gðf Þ; �ui ¼
Z

X

Z

R

gdmfx

� �
uðxÞdx: ð1Þ
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Moreover,

1. for every Young measure m over X there exists a grid function f such that mf ¼ m;
2. for all x 2 X and for all Borel A � R, 0
 mfxðAÞ
 1;

3. if kfkp 2 �Rfin for some 1
 p
1, then mf is a Young measure.

Proof For the proof of point (1), see Theorem 2.9 of [18]. The other statements are proved

in Theorem 4.12, Theorem 4.14 and Proposition 4.17 of [12].

The difference between mfxðRÞ and 1 is due to f assuming infinite values in some non-

negligible fraction of lðxÞ \Xk. Point 3 of Theorem 2 can be rephrased in the following

way: if kfkp 2 �Rfin for some 1
 p
1, then f assumes infinite values only on a (possibly

empty) set Xin f � XX of Loeb measure 0.

Corollary 1 For every f 2 GðXÞ and for every g 2 C0
bðRÞ,

R
R
gðsÞdmf ¼

R
R
sdm

�gðf Þ.

Proof By Theorem 3,

�h �gðf Þ; �ui ¼
Z

X

Z

R

gdmfx

� �
uðxÞdx

and, since the hypothesis g 2 C0
bðRÞ entails k �gðf Þk1 2 �Rfin, we have also

�h �gðf Þ; �ui ¼
Z

X

Z

R

sdm
�gðf Þ
x

� �
uðxÞdx:

Lemma 1 For every f 2 GðXÞ, let mf : X ! MðRÞ the parametrized measure satisfying
Theorem 3, and let fb : X ! R be its barycentre, defined by

fbðxÞ ¼
Z

R

sdmfx:

Then fb is a measurable function. Moreover, if kfk1 2 �Rfin, then fb 2 L1ðXÞ and

kfbk1 
kfk1.

Proof See Corollary 3.15 of [13].

3 The main results

We are now ready to prove that grid functions are expressive enough to describe simul-

taneously both the weak-H limit and the Young measure limit of bounded sequences of

integrable functions.

Theorem 4 For every bounded sequence fzngn2N in L1ðXÞ such that

– zn*
H

z1 in C0
c ðXÞ

0 and
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– zn*
Y
m,

there exists a (non unique) function z 2 GðXÞ such that

1. for all u 2 C0
c ðXÞ

hz; �ui � hz1ðxÞ;uðxÞiC0
c ðXÞ;

2. for all g 2 C0
bðRÞ and for all u 2 C0

c ðXÞ

h �gðzÞ; �ui �
Z

X
gðmðxÞÞuðxÞdx:

Proof Since DðXÞ � C0
c ðXÞ, recall that z1 2 C0

c ðXÞ
0 � DðXÞ0 can be identified with a

distribution (that we will still denote by z1) by posing

hz1;uiDðXÞ ¼ hz1;uiC0
c ðXÞ

for every u 2 DðXÞ.
Let also b : X ! R be the barycentre of m: bðxÞ ¼

R
R
sdmx. The hypotheses over m are

sufficient to entail b 2 L1ðXÞ (see e.g. Corollary 3.13 of [44]). Thus the function b can be

identified with a distribution (that we will still denote by b) by posing

hb;uiDðXÞ ¼
Z

X
bðxÞuðxÞdx

for every u 2 DðXÞ.
Thanks to Theorem 1, there exists a grid function zD 2 GðXÞ that corresponds to the

distribution z1. The grid function zD might not correspond to the Young measure m;

however mz
D

and m have the same barycentre b.

To see that this is the case, consider the grid functions

zDn ðxÞ ¼
zDðxÞ if jzDðxÞj 
 n;

0 if jzDðxÞj[ n:

�

defined for every n 2 N, and let bn be the barycentre of mz
D
n : bnðxÞ ¼

R
R
sdmz

D
n . By this

definition it is easy to see that bnðxÞ ¼ bðxÞ for every x 2 X such that jzDðyÞj 
 n for every

y 2 XX, y � x. We have already observed that the hypothesis kzDk1 2 �Rfin ensures that the

set Xinf ¼ fx : zDðxÞ is infiniteg has Loeb measure 0. As a consequence, limn!1 bnðxÞ ¼
bðxÞ for a.e. x 2 X.

Now let gn 2 C0
bðRÞ with gðsÞ ¼ s for every s 2 ½�n; n	. By Theorem 3, we have that

for all u 2 C0
c ðXÞ

h �gðzDÞ; �ui �
Z

X

Z

R

gdmz
D

x

� �
uðxÞdx

¼
Z

X

Z

½�n;n	
sdmz

D

x

 !

uðxÞdxþ
Z

X

Z

fx2R:jxj[ ng
gdmz

D

x

 !

uðxÞdx

¼
Z

X
bnðxÞuðxÞdxþ

Z

X

Z

fx2R:jxj[ ng
gdmz

D

x

 !

uðxÞdx:
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From the previous equalities we obtain

Z

X

Z

R

gdmz
D

x

� �
uðxÞdx�

Z

X
bnðxÞuðxÞdx

����

���� ¼
Z

X

Z

fx2R:jxj[ ng
gdmz

D

x

 !

uðxÞdx:
�����

�����
ð2Þ

Since g 2 C0
bðRÞ entails that g is bounded, supjxj[ n jgðxÞ is well-defined. Thus

Z

fx2R:jxj[ ng
gdmz

D

x

�����

�����

 sup

jxj[ n

jgðxÞj

and

Z

X

Z

fx2R:jxj[ ng
gdmz

D

x

 !

uðxÞdx
�����

�����

 sup

jxj[ n

jgðxÞjkuk1:

From the last estimate and from equation (2) we obtain

Z

X

Z

R

gdmz
D

x

� �
uðxÞdx�

Z

X
bnðxÞuðxÞdx

����

����
kuk1 sup
jxj[ n

jgðxÞj: ð3Þ

Since limjxj!1 gðxÞ ¼ 0, limn!1 supjxj[ n jgðxÞj
� 	

¼ 0. As a consequence, taking the limit

as n ! 1 in equation (3) and taking into account the arbitrariness of u, we obtain that the

barycentre of mz
D

is limn!1 bn ¼ b, as desired.

By Theorem 3, there exists a grid function z0 2 GðXÞ that corresponds to the Young

measure m� mz
D
. By the previous part of the proof, this Young measure has null barycentre,

i.e.
Z

R

sdmz0
x ¼

Z

R

sdðm� mz
DÞx ¼ 0

for every x 2 R.

We claim that the grid function z ¼ zD þ z0 satisfies the desired properties. In fact, for

all u 2 DðXÞ

hz; �ui ¼hzD; �ui þ hz0;
�ui

�hz1;uiDðXÞ þ
Z

X

Z

R

sdmz0

x udx

¼hz1;uiDðXÞ þ
Z

X

Z

R

sdðm� mz
DÞxudx

¼hz1;uiDðXÞ:

Then, since DðXÞ is dense in C0
c ðXÞ, we conclude that also hz; �ui � hz1;uiC0

c ðXÞ for every

u 2 C0
c ðXÞ.

Similarly, for all u 2 C0
c ðXÞ,

h �gðzÞ; �ui �
Z

X

Z

R

gdðmzD þ m� mz
DÞx

� �
uðxÞdx

¼
Z

X

Z

R

gdmx

� �
uðxÞdx;
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as desired.

The possibility of representing simultaneously these two limits of a bounded sequence of

integrable functions is particularly relevant when the sequence features both concentrations

and oscillations. Classically, the behaviour of such sequences can only by described by the

combination of the weak-H limit, describes concentrations but not oscillations, and the

Young measure limit, that describes oscillations but not concentrations. Instead, we are

able to express both behaviours with a unique grid function.

Example 2 Let z : R ! R be the function of period 2 satisfying

zðxÞ ¼
�1 if � 1
 x\0

1 if 0
 x\1:

�

Let zn : ð�1; 1Þ ! R defined by znðxÞ ¼ zðnxÞ þ nv½�n�1;n�1	. Notice that kznk1 ¼ 4 for all

n 2 N, zn*
H

2d0 and zn*
Y 1

2
d�1 þ d1ð Þ. As already observed, the concentration is described

only by the weak-H limit and the oscillation only by the Young measure limit.

A grid function representative of this sequence is

f ðneÞ ¼
N � 1 if n ¼ �1

N þ 1 if n ¼ 0

�1n otherwise.

8
><

>:

To see that this is the case, consider at first mf , the Young measure corresponding to f. By

Corollary 4.15 of [12], this is equal to m ~f , the Young measure corresponding ~f ðneÞ ¼ �1n,

since the set fx 2 X : f ðxÞ 6¼ ~f ðxÞg has null Loeb measure. By Proposition 4.17 of [12],

m ~f ¼ 1
2
d�1 þ d1ð Þ. Notice that this Young measure is constant and its barycentre fb is null.

In order to determine the distribution corresponding to f we can evaluate the product

hf ; �ui for every u 2 C0ðRÞ. We have

hf ; �ui ¼ 1

e
N �uð�eÞ þ N �uð0Þ þ

XN

n¼�N

�1nuðneÞ
 !

¼ �uð�eÞ þ �uð0Þ þ 1

e

XN

n¼�N

�1nuðneÞ:

By Theorem 3,

1

e

XN

n¼�N

�1nuðneÞ �
Z

R

fbðxÞuðxÞdx ¼ 0:

Thus, taking into account that u 2 C0ðRÞ entails �uð�eÞ � �uð0Þ ¼ uð0Þ,

hf ; �ui ¼ �uð�eÞ þ �uð0Þ � 2uð0Þ;

i.e. ½f 	 ¼ 2d0.

In conclusion, fzngn2N*
H ½f 	 and fzngn2N*

Y
mf , as claimed.

The following result is an immediate consequence of Theorem 1 and of Theorem 4.
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Theorem 5 Let L1ðXÞ ¼ ff 2 GðXÞ : kfk1 2 �Rfing. The function W : L1ðXÞ=� ! C0
c ðXÞ

0

defined by

hWð½f 	Þ;uiC0
c ðXÞ ¼

�h f ; �ui

is an isomorphism of real vector spaces.

Proof The function W is well-posed: let f ; g 2 L1ðXÞ satisfy f � g. Then

�hf ; �ui ¼ �hg; �ui

for every u 2 DðXÞ. Since DðXÞ is dense in C0
c ðXÞ, we deduce that Wð½f 	Þ ¼ Wð½g	Þ also

in C0
c ðXÞ

0
.

Similarly, injectivity of W is a consequence of the injectivity of U (see Theorem 1) and

of density of DðXÞ in C0
c ðXÞ.

Finally, surjectivity of W is a consequence of Theorem 4 and of the fact that L1ðXÞ is

dense in C0
c ðXÞ

0
with respect to the weak-H topology, so that every l 2 C0

c ðXÞ
0

can be

obtained as the weak-H limit of a sequence of functions in L1ðXÞ.

We will now prove the converse of Theorem 4, namely that every grid function with a

finite L1 norm corresponds simultaneously to the weak-H limit and the Young measure

limit of a sequence of integrable functions.

Theorem 6 For every grid function z 2 GðXÞ, if kzk1 2 �Rfin, there exists a sequence

fzngn2N in L1ðXÞ such that

1. zn*
H ½z	 in C0

c ðXÞ
0
,

2. zn*
Y
mz.

Proof The proof is based upon the following results on distributions and Young measures,

respectively.

(d) For every distribution T there is a sequence fdngn2N in C1
c ðXÞ such that for every

u 2 DðXÞ

lim
n!1

Z

X
dnudx ¼ hT ;uiDðXÞ:

See e.g. Section 6.6 of [40]. Notice that, since C1
c ðXÞ � L1ðXÞ, fdngn2N is also

weakly-H convergent in C0
c ðXÞ

0
to a continuous linear functional, still denoted by T,

defined by

hT ;uiC0
c ðXÞ ¼ lim

n!1

Z

X
dnudx:

(Y) For every Young measure m there is a sequence fyngn2N in L1ðXÞ such that for every

g 2 C0
b and for all u 2 DðXÞ

lim
n!1

Z

X
gðynÞudx ¼

Z

X

Z

R

gdmx

� �
uðxÞdx:
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See e.g. Theorem 1.1 of [11] and references therein.

Let fdngn2N be a sequence in DðXÞ satisfying condition (d) with T ¼ ½z	. Denote by md the

Young measure limit of fdngn2N, i.e. dn*
Y
md . Notice that it is not necessary that md ¼ mz.

However, an argument similar to that of the proof of Theorem 4 allows to conclude that the

Young measures mz and md have the same barycentre. For the purposes of this proof, it is

more convenient to rephrase this result by saying that the barycentre of mz � md is null.

Let fyngn2N be a sequence in DðXÞ satisfying condition (Y) with m ¼ mz � md . Finally,

define zn ¼ dn þ yn for every n 2 N. We claim that fzngn2N satisfies the desired condi-

tions.

(1) Let u 2 DðXÞ: by defintion of fzngn2N, by linearity of the limit and by recalling that

the Young measure limit of fyngn2N has a null barycentre,

lim
n!1

hzn;uiDðXÞ ¼ lim
n!1

hbn;uiDðXÞ þ lim
n!1

hyn;uiDðXÞ

¼ h½z	;uiDðXÞ þ 0

� hz; �ui:

This equality and density of DðXÞ in C0
c ðXÞ allow to conclude that fzngn2N is also weakly-

H convergent in C0
c ðXÞ

0
to [z].

(2) By definition, zn*
Y
md þ mz � md ¼ mz, as desired.

The proof of Theorem 6 provides an interpretation of the infinite and finite part of a grid

function f 2 GðXÞ with kfk1 2 �Rfin:

– the finite part of f corresponds to a Young measure mf over X; the barycentre fb of mf

belongs to L1ðXÞ;
– the infinite part of f, that corresponds to the distribution ½f 	 � fb, is a grid function

representative of a Radon measure whose support is a null subset of X.

Theorem 6 gives also a classical interpretation of grid functions of a finite L1 norm. Its

importance can be appreciated by taking into account that, in order to better understand

some results obtained with nonstandard techniques, it is useful to have functions that act as

bridges between classical and nonstandard mathematics. In one direction, the operator � is

sufficient to turn classical object into standard ones. In the opposite direction, the most

common of such bridges is the notion of standard part of a number, that can be extended

also to functions. However, this extension is well-defined only for continuous functions.

Thus it is fundamental to devise other relevant extensions of the standard part that can be

applied also when the target set is a space of generalized functions. In the setting of grid

functions, these extensions are provided by results such as Theorems 1, 3 and the new

Theorems 5 and 6.

The usefulness of these novel results will become more evident in Section 4, where we

will show how a grid formulation of a class of ill-posed PDEs can be used to define a

classical measure-valued solution that coherently extends other notions of solution already

introduced for particular instances of this problem. Moreover, as we will discuss explicitly

in Sect. 4.4, Theorem 6 also suggests that the grid function formulation of a PDE corre-

sponds to a suitable family of classical regularized problems.
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4 An application of Theorems 4 and 6 to the study of a class of ill-
posed nonlinear PDEs

As an application of Theorems 4 and 6, i.e. of the correspondence between grid functions

and the two measure-valued limits of integrable functions, consider the Neumann initial

value problem

otu ¼ D/ðuÞ in X

o/ðuÞ
on̂

¼ 0 in ½0; T	 � oX

uð0; xÞ ¼ u0ðxÞ

8
>><

>>:
ð4Þ

with a non-monotone / : R ! R and on a domain X that is open, bounded and with a

smooth boundary oX. The hypothesis that / is non-monotone entails that problem (4) is ill-

posed forward in time in the intervals where / is decreasing. Consequently, problem (4)

only has measure-valued solutions. For a comprehensive discussion of problem (4) and of

its relevance for some applications we refer to [13, 35, 39].

In [13], we have provided the following grid function formulation for problem (4).

Begin by defining Iþx ¼ fi : xþ eei 62 XXg and I�x ¼ fi : x� eei 62 XXg. Then, for u 2
GðXXÞ let

DX
�/ðuðt; xÞÞ ¼ � e�1

X

i2Iþx

D�
i

�/ðuðt; xÞÞ þ e�1
X

i2I�x

Dþ
i

�/ðuðt; xÞÞþ

þ
X

i 62Iþx [I�x

Dþ
i D

�
i

�/ðuðt; xÞÞ:

As argued in Section 4 of [13], this is a first-order discrete approximation of the Laplacian

with Neumann boundary conditions. The corresponding grid function formulation of

problem (4) is

ut ¼ DX
�/ðuÞ

u 0; xð Þ ¼ Pðu0ÞðxÞ;

�
ð5Þ

where Pðu0Þ is the L2 projection of �u0 to the closed subspace GðXXÞ (see Definition 4.4 of

[12] or Definition 3.11 of [13]).

Problem 4 is usually studied assuming that

1. / 2 C1ðRÞ;
2. /ðxÞ� 0 for all x� 0 and /ð0Þ ¼ 0;

3. there exists u�; uþ 2 R with 0\u�\uþ such that /0ðuÞ[ 0 if u 2 ð0; u�Þ [
ðuþ;þ1Þ and /0ðuÞ\0 for u 2 ðu�; uþÞ, or

4. there exists u� 2 R with 0\u� such that /0ðuÞ[ 0 if u 2 ð0; u�Þ and /0ðuÞ\0 for

u 2 ðu�;þ1Þ and limx!þ1 /ðxÞ ¼ 0;

5. u0 2 L1ðXÞ and u0ðxÞ� 0 for all x 2 X.

Under these hypotheses we have shown that the solution to the grid function formulation

corresponds to the sum of the weak-H limit and the Young measure limit of a sequence of

L1 solutions of a regularized problem. For a more precise statement, we refer to Theo-

rem 5.7 of [13].

To the best of our knowledge, problem (4) has only been studied under the hypotheses

(1)–(5) above; however, the grid function formulation (5) has a unique global solution with
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good physical properties even if one drops assumptions (3) or (4) and replaces (1) and (5)

with the weaker

(1’) / is Lipschitz continuous;

(5’) uð0; xÞ� 0 for all x 2 XX, uð0; �Þ 2 L1ðXÞ and, if / 62 L1ðRÞ, kuð0; �Þk1 2 �Rfin.

In light of Theorems 3, 4 and 6, the weaker hypothesis (5’) allows for the representation

of measure-valued initial data obtained from sequences of integrable functions. As already

argued, these measure-valued initial data correspond to the sum of a Young measure and of

a non-negative Radon measure.

Despite these weaker hypotheses, many results obtained in [13] are still valid.

Proposition 2 Consider problem (5) under the hypoteses (1’), (2) and (5’) above.

– Problem (5) has a unique global solution u 2 �C1ð �½0;þ1Þ;GðXXÞÞ.
– kuðt; �Þk1 ¼ kuð0; �Þk1 for all t� 0.

– For any g 2 C1ðRÞ with g0 � 0, define Gðuðt; xÞÞ ¼
R uðt;xÞ

0
gð/ðsÞÞds: Then, u satisfies

the entropy condition

�GðuÞt ¼ div�
Xðð �gð/ðuÞÞrþ

Xð/ðuÞÞÞ � r�
X

�gð/ðuÞÞ � r�
X/ðuÞ: ð6Þ

– ½u	 2 D0ðR� XÞ, ½ �/ðuÞ	 2 L1ðR� XÞ, and [u] and ½ �/ðuÞ	 satisfy
Z T

0

h½u	;uti þ h½ �/ðuÞ	;Duidt þ h½u	ð0; xÞuð0; xÞiC0ðXÞ ¼ 0 ð7Þ

For almost every initial data uð0; �Þ, u(t) converges to a steady state ~u satisfying
�/ð~uÞ ¼ 0 for every x 2 XX and �/0ð~uðxÞÞ\0 for at most one x 2 XX.

Proof These assertions can be obtained from the corresponding results in [13], whose

proofs do not depend on hypotheses (3), (4) and (5) over /.

In order to prove (7) we need to prove that k �/ðuÞk1 2 �Rfin regardless of the behaviour

of /. To see that this is the case, if k/k1\þ1 then the desired result is trivially true,

since k �/ðuÞk1 
k �/k1 2 �Rfin. If k/k1 ¼ þ1, hypothesis (2) entails

limx!þ1 /ðxÞ ¼ þ1. Then the hypothesis kuð0; �Þk1 2 �Rfin and an argument similar to

that of point 2. of Proposition 4.6 of [13] entails kuk1 2 �Rfin, so that also

k �/ðuÞk1 2 �Rfin.

The entropy condition (6) is the grid function counterpart of an entropy condition that is

classically used to single out physically relevant solutions to problem (4). Equation (7)

states that [u] and ½ �/ðuÞ	 are a very weak solution to problem (4) (for the notion of very

weak solution, see Lemma 5.3 of [13]).

Remark 1 Numerical explorations of problem (5) suggest that its solution u satisfies

further regularity conditions. In particular, we conjecture that

– if /0ðxÞ[ 0 for every x� 0, then for every initial data m
�/ðuÞ
ðt;xÞ is Dirac for a.e.

ðt; xÞ 2 ð0;þ1Þ � X;

– if �/0ðuð0; xÞÞ[ 0 for a.e. x 2 XX, then m
�/ðuÞ
ðt;xÞ is Dirac for a.e. ðt; xÞ 2 ð0;þ1Þ � X;
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– for almost every initial data, there exists t� 0 such that m
�/ðuÞ
ðt;xÞ is Dirac for a.e. ðt; xÞ 2

ðt;þ1Þ � X (this is a trivial consequence of the previous point and of the asymptotic

analysis carried out in Section 6 of [13]);

– the L2 norm of D
 �/ðuðt; �ÞÞ is nonincreasing in time.

However, at this moment we only have been able to prove the first property. We sketch the

proof of the first property and we discuss briefly the difficulties we encountered in the

proof of the second. Denote by lL the Loeb measure induced by the product of the
�Lebesgue measure over �½0;þ1Þ and the hyperfinite counting measure on X. The desired

property is a consequence of monotony of / and of the fact that for almost every x 2 XX

kL ft 2 �½0;þ1Þ \ �Rfing : utðt; xÞ is infiniteg
� �

¼ 0: ð8Þ

Taking into account that kuk1 2 �Rfin, in order to prove (8) it is sufficient to prove that

uð�; xÞ does not have an infinite amount of oscillations in a finite time.

The absence of such oscillations is a consequence of the smoothing properties of

problem (5) under the hypothesis that /0ðxÞ[ 0 for every x 2 R. In the context of non-

standard analysis, we can prove this assertion as follows. Let l ¼ minx2XX

�/ðuð0; xÞÞ and

L ¼ maxx2XX

�/ðuð0; xÞÞ. By monotonicity of /, utðt; xÞ[ 0 implies

0\luðt; xÞ
 utðt; xÞ
Luðt; xÞ and utðt; xÞ\0 implies Luðt; xÞ
 utðt; xÞ
 luðt; xÞ\0.

These estimates and the properties of the grid function formulation of the heat equation,

discussed in Remark 5.6 of [13], are sufficient to conclude that for every x 2 XX uð�; xÞ
does not feature an infinite amount of oscillations in a finite time.

Once we have shown that utðt; xÞ is finite for a.e. finite (t, x), we have that also

DX
�/ðuðt; xÞÞ is finite for a.e. finite (t, x). By Corollary II.9 of [27], for every i
 k and for

a.e. finite (t, x), if ðt0; x0Þ � ðt; xÞ then D�
i

�/ðuðt; xÞÞ � D�
i

�/ðuðt0; x0ÞÞ. The hypothesis

that / is Lipschitz continuous entails that / is a.e. of class C1, i.e. that /0 is a.e. continuous

over R. This property and monotonicity of / entail that for a.e. finite (t, x), if ðt0; x0Þ �
ðt; xÞ then uðt; xÞ � uðt0; x0Þ. As a consequence ½u	 2 C0ð½0;þ1Þ;C0ðXÞÞ and m

�/ðuÞ
ðt;xÞ ¼

d/ð½u	ðt;xÞÞ for a.e. ðt; xÞ 2 ½0;þ1Þ � X.

With a careful analysis, aided also by the study of the Riemann problem analysed in

Section 7 of [13], it is similarly possible to prove that (8) is true also if if �/0ðuð0; xÞÞ[ 0

for a.e. x 2 XX. Thus for a.e. finite (t, x), if ðt0; x0Þ � ðt; xÞ then

D�
i

�/ðuðt; xÞÞ � D�
i

�/ðuðt0; x0ÞÞ. However, the argument based upon monotonicity of /
used in the previous case cannot be applied.

In Section 5 of [13] we have shown how equation (7) can be further sharpened under

suitable hypotheses on the regularity of / and of the solution u. However notice that, under

hypotheses (3) and (4), problem (4) has different notions of solutions depending on the

value of uþ:

– if uþ\þ1, then the solution to problem (4) is a Young measure that is the

superposition of three Dirac measures centred at each branch of /;

– if uþ ¼ þ1, then the solution to problem (4) is the sum of a non-negative Radon

measure and of a Young measure that is the superposition of two Dirac measures

centred at each branch of /.

A priori, we expect that the classical solution to problem (4) without these hypotheses still

depends on the asymptotic behaviour of /. However, the analysis enabled by the grid

function formulation will lead to a general definition of solution that is independent on the
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behaviour of /. Nevertheless, in order to reach this goal we still need to discuss two

different asymptotic behaviours of /: namely, / is eventually decreasing and / is not

eventually decreasing. We will see that the latter case is the counterpart of hypothesis (3),

while the former is a general counterpart of hypothesis (4). We start our analysis with the

easiest of the two.

4.1 / is not eventually decreasing

If / is not eventually decreasing, an analysis similar to the one carried out in Section 6 of

[13] leads to the conclusion that mu is a Young measure, i.e. that the solution to problem (5)

features only oscillations but no concentrations.

Proposition 3 If / is not eventually decreasing, kuk1 2 �Rfin.

Proof The desired bound over kuk1 can be obtained with an argument similar to that of

point 2. of Proposition 4.6 of [13].

Moreover, if /�1ðrÞ is finite for every r 2 R and if m
�/ðuÞ
ðt;xÞ is Dirac for every

ðt; xÞ 2 ð0;þ1Þ � X, muðt;xÞ can be decomposed as a sum of at most /�1 ½/ðuÞ	ðt; xÞð Þ
�� ��

Dirac measures.

Corollary 2 Suppose that / is not eventually decreasing, /�1ðrÞ is finite for every r 2 R

and m
�/ðuÞ
ðt;xÞ is Dirac for every ðt; xÞ 2 ð0;þ1Þ � X. Define i : ½0;þ1Þ � X N by

iðt; xÞ ¼ /�1 ½/ðuÞ	ðt; xÞð Þ
�� ��. Then there exist k1; . . .; kiðt;xÞ; r1; . . .; riðt;xÞ 2 R such that

–
Piðt;xÞ

i¼1 ki ¼ 1;

– /ðriÞ ¼ /ðrjÞ for every i; j
 iðt; xÞ;
– muðt;xÞ ¼

Piðt;xÞ
i¼1 kidri for a.e. ðt; xÞ 2 ½0;þ1Þ � X.

4.2 / is eventually decreasing

Under the hypotheses that / is eventually decreasing, taking into account also hypothesis

(2) we have limx!þ1 /ðxÞ 2 R. In analogy to the case uþ ¼ þ1 discussed in [13], if

kuð0; �Þk1 is sufficiently large, then eventually u(t, x) is infinite for some x 2 XX. This

property can be obtained from the discussion in Section 6.4 of [13], that does not rely on

the hypothesis that limx!þ1 /ðxÞ ¼ 0, but only on the property that eventually /0ðxÞ\0.

In other words, the solution to problem (5) features both oscillations and concentrations.

Thus u can only be represented by the sum of a positive Radon measure ½u	 � ub and a

Young measure mu, as discussed in the comments to Theorem 6.

If one further assumes that /�1ðrÞ is finite for every r 2 R and that m
�uðuÞ
t;x is Dirac for

every ðt; xÞ 2 ð0;þ1Þ � X, the behaviour of the Young measure mu is analogous to the one

described in Corollary 2.

Despite this representation of the solution to problem (5), there is no suitable notion of

measure-valued solution for problem (4), since the composition between a continuous
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function g and a Young measure is meaningful only under the hypothesis g 2 C0
bðRÞ, i.e.

limjxj!þ1 gðxÞ ¼ 0. In particular, we cannot apply Theorem 3 for the interpretation of the

term �uðuÞ, since limx!þ1 /ðxÞ 6¼ 0. Instead, we need to generalize that result as follows.

Proposition 4 For every f 2 GðXÞ, let mf be the parametrized measure satisfying Theo-

rem 3. If g 2 C0ðRÞ satisfies limjxj!þ1 gðxÞ ¼ l 2 R, then for all u 2 C0
c ðXÞ

�h �gðf Þ; �ui ¼
Z

X

Z

R

gdmfx

� �
uðxÞdxþ 1 � mf ðRÞ

� �
l

Z

X
uðxÞdx:

Proof If g 2 C0ðRÞ satisfies limjxj!þ1 gðxÞ ¼ l, then ~g ¼ g� l 2 C0
bðRÞ and, by Theo-

rem 3, for all u 2 C0
c ðXÞ

�h �~gðf Þ; �ui ¼
Z

X

Z

R

~gdmfx

� �
uðxÞdx ¼

Z

X

Z

R

g� ldmfx

� �
uðxÞdx

As a consequence,

�h �gðf Þ; �ui ¼ � h �~gðf Þ þ l; �ui

¼
Z

X

Z

R

~gdmfx

� �
uðxÞdxþ l

Z

X
uðxÞdx:

¼
Z

X

Z

R

~gþ ldmfx

� �
uðxÞdxþ 1 � mf ðRÞ

� �
l

Z

X
uðxÞdx:

¼
Z

X

Z

R

gdmfx

� �
uðxÞdxþ 1 � mf ðRÞ

� �
l

Z

X
uðxÞdx:

Proposition 4 features some analogies with the generalized Young measures of DiPerna

and Majda [22]. We believe that it can be suitably extended to vector-valued grid functions

f : XX !�Rm and continuous functions g : Rm ! Rn of a more general asymptotic

behaviour.

4.3 A general notion of measure-valued solution for problem (4)

Proposition 4 enables a novel definition of measure-valued solution for problem (4) under

the very general hypotheses (1’), (2) and (5’). Notice that if u is a solution to problem (5),

Proposition 2 and Theorem 3 ensure that mu is a Young measure, i.e. muðRÞ ¼ 1. Hence,

according to Proposition 4 the contribution of �/ðuÞ when u is infinite is negligible. Thus

we get the following definition of measure-valued solution of problem (4).

Definition 12 An entropy measure-valued solution of problem (4) consists of a Young

measure m over ½0; T 	 � X and of a positive Radon measure l 2 Mð½0; T 	 � XÞ, satisfying

the conditions:

1. the barycentre b(t, x) of m satisfies b 2 L1ð½0; T 	 � XÞ;
2. the function vðt; xÞ ¼

R
R
/ðsÞdmðt;xÞ satisfies v 2 L1ð½0; T 	 � XÞ \ L2ð½0; T 	;H1ðXÞÞ;
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3. ðbþ lÞt ¼ Dv in the the sense that

Z T

0

hl;utiC0ðXÞdt þ
Z T

0

Z

X
but �rv � rudxdt þ

Z

X
u0ðxÞuð0; xÞdx ¼ 0; ð9Þ

for all u 2 C1ð½0; T 	 � XÞ with uðT; xÞ ¼ 0 for all x 2 X;

4. for all g 2 C1ðRÞ with g0 � 0, define

GðxÞ ¼
Z x

0

gð/ðsÞÞds and GHðmÞ ¼
Z

R

GðsÞdm:

Then m and v satisfy the entropy inequality

Z T

0

Z

X
GHðmÞut � gðvÞr � vru� g0ðvÞjrvj2udxdt� 0 ð10Þ

for all u 2 Dð½0; T 	 � XÞ with uðt; xÞ� 0 for all ðt; xÞ 2 ½0; T 	 � X.

The solution is global if in the above formulas we can replace the interval [0, T] with

½0;þ1Þ.

Remark 2 The notion of solution defined by Plotnikov in [35] under hypothesis (3) and the

the notion of solution defined by Smarrazzio in [39] under hypothesis (4) can both be

recovered by defining uðt; xÞ ¼ bðt; xÞ and vðt; xÞ ¼
R
R
/ðsÞdmðt;xÞ.

As expected, if the solution to the grid function formulation is regular enough then it is an

entropy measure-valued solution to problem (4) in the sense of the above definition.

Proposition 5 Let u be the solution to the grid function formulation (5). If m
�/ðuÞ
ðt;xÞ is Dirac

for a.e. ðt; xÞ 2 ð0;þ1Þ � X and its barycentre vðt; xÞ ¼
R
R
sdm

�/ðuÞ
ðt;xÞ satisfies

v 2 L2ðð0;þ1Þ;H1ðXÞÞ, then problem (4) has a global entropy measure-valued solution
in the sense of Definition 12.

Proof If u is a solution to the grid function formulation (5) satisfying the hypotheses, we

claim that m ¼ mu and l ¼ ½u	 � b are an entropy measure-valued solution of problem (4).

(0) Notice that Corollary 1 entails that vðt; xÞ ¼
R
R
/ðsÞdmuðt;xÞ ¼

R
R
sdm

�/ðuÞ
ðt;xÞ .

(1) b 2 L1ð½0;þ1Þ � XÞ by hypothesis (5’), by Proposition 2 and by the fact that

kbk1 
kuk1. The latter inequality is a consequence of Proposition 4.3 of [12].

(2) The fact that v 2 L1ð½0;þ1Þ � XÞ is a consequence of the estimate

k �/ðuÞk1 2 �Rfin, argued in the proof of Proposition 2. Moreover, v 2
L2ð½0;þ1Þ;H1ðXÞÞ is one of our hypotheses.

(3) The validity of (9) is a consequence of (7) and of our hypotheses on the regularity of

u. The proof is analogous to that of Theorem 5.7 of [13].

(4) The validity of the entropy inequality (10) is a consequence of (6) and of our

hypotheses on the regularity of u. The proof is analogous to that of point 1. of

Theorem 5.4 of [13].
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In order to show that problem (4) has an entropy measure-valued solution in the sense of

Definition 12 for a particular choice of /, it is possible to show that the solution to the

corresponding grid function formulation (5) is regular enough to satisfy the hypotheses of

Proposition 5. As we have acknowledged in Remark 1, we suspect that this is indeed the

case for a large class of initial data, but we have not been successful in proving this

conjecture.

4.4 The correspondence between the grid function formulation and a sequence
of approximating problems

By Theorem 6, the measure-valued solution to problem (4) induced by a solution u of the

grid function formulation can be obtained as the limit of a bounded sequence in L1ðXÞ.
This leads to the conjecture that such a measure-valued solution corresponds to the solution

obtained via a sequence of well-posed approximating problems. Previous works by Plot-

nikov [35] and Smarrazzo [39] on problem (4) and the validity of the nonstandard entropy

estimate (6) suggest that such approximating problems might be the pseudoparabolic

regularizations

otu ¼ D/ðuÞ þ gDut in X

o/ðuÞ þ gut
on̂

¼ 0 in ½0; T 	 � oX

uð0; xÞ ¼ u0ðxÞ

8
>><

>>:

with g 2 R, g[ 0.

If / is not eventually decreasing, the classical counterparts to the general existence

result provided by our Propositions 2 and 5 might be obtained by adapting the techniques

of [35]. Instead, if / is eventually decreasing, the desired results can be obtained by

adapting the argument of Section 2 of [39] under the hypothesis that uþ ¼ þ1. However,

one has to take into account that limx!þ1 /ðxÞ might be positive and adapt the corre-

sponding limiting arguments in a suitable way.

This example suggests another interpretation of Theorem 6: if the grid function for-

mulation of a PDE has a solution in L1ðXÞ, then the grid function formulation corresponds

to a sequence of classical regularized problems. Both the grid function formulation and the

classical regularization have advantages and disadvantages. As we have seen in this sec-

tion, the grid function formulation allows to easily obtain existence results of very weak

solutions for a broad class of problems that classically must be approached with different

techniques. The unifying nature of this approach is worthwhile on its own; moreover, the

grid function formulation enabled a uniform definition of solution that does not depend

upon additional hypotheses (in the case of problem (4), these additional hypotheses are the

ones regarding the behaviour of /). Finally, as discussed in [13], the hyperfinite dis-

cretization in space enables the study of the asymptotic behaviour with techniques from

dynamical systems. A drawback of the grid function formulation is that currently it seems

harder to provide sharp results on the regularity of the grid solutions. However, this

problem might be caused by a weakness of the author rather than by a flaw of the approach.

Conversely, the use of approximating problems for the study of problem (4) requires

different techniques that depend upon the asymptotic behaviour of /. This has caused a

delay of almost fifteen years between the discussion of the cases uþ\þ1 and uþ ¼ þ1;

moreover, more general hypotheses over / have not yet be studied. However, for problem
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(4) it appears to be easier to prove that the solution obtained via some approximating

problems is regular enough to satisfy Definition 12.

Such interplay between the classic techniques of analysis of PDEs and an approach

based on a grid function formulation, enabled by Theorem 6, might allow for a combined

strategy for the study of ill-posed PDEs that exploits the strengths of each approach.

Further applications of grid functions to PDEs will be discussed in [14].
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