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Abstract

We study a fractional in time weakly coupled reaction-diffusion system in a bounded
domain with the Dirichlet boundary condition. The domain is imbedded in an N-dimen-
sional space and it has C? boundary, and fractional derivatives are meant in a generalized
Caputo sense. The system can be referred to as a standard reaction-diffusion system in two
components with polynomial growth. We obtain integrability conditions on the initial state
functions which determine the existence/nonexistence of a local in time mild solution.
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1 Introduction

Let Q be a bounded domain in RN, N> 1, with C2 boundary. We study existence and
nonexistence of a local in time solution of the fractional in time weakly coupled reaction-
diffusion system

0f'u = Au+ fi(x,,v) in Qx (0,7),
6;‘2\/:Av+f2(x,t,u) in Q X (O,T)7 (1 1)
u(x,r) =v(x,t) =0 on 0Q x (0,7), '

u(x,0) = up(x),v(x,0) = vo(x) in Q,

where 0 <oy <ap <1 and T > 0. The fractional derivatives 0} and 07 are meant in a
generalized Caputo sense, i.e.,
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u(r) =

t

1 t
m/o (r—s5)"Ou(s)ds for 0<a<l,

where I" denotes the usual Gamma function. In the present paper we suppose the following:

Assumption A Let 1<p;,pa<oo, qi1,42 € (1,00]N —,oo}, my € [0,0)andm, €

2
[0,02) be given constants. There exist nonnegative functions ¢; € L (Q) and ¢; € L(Q)
such that the following hold:

(F1) fori=1,2,fi(x,1,-) : R — R is a measurable function such that

Ifi(x, 2, &) <ci(x) - 7™ (1 + |€])7 for & € R, ae. (x,1) € QX (0,00),

(F2) fori= 1,2, f; satisfies the local Lipschitz condition

(. 1,€) = filw, tom)| < cilw) -7 (U4 [+ ()" E — ) for & € R,
ae. (x,1) € Qx (0,00).

Let us start with classical equations, « = 1. We consider the scalar problem

Ou=Au+f(u) inQx(0,T),
ulx,t) =0 on 0Q x (0,7T), (1.2)
u(x,0) =up(x) inQ,
where f € C' and Q is a (possibly unbounded) smooth domain. It is well known that the
problem (1.2) possesses a local in time classical solution for a general nonlinear term f if

ug € L*(Q) (cf. [7, 16]). On the other hand, in the case where uy ¢ L>(Q), the existence
of solutions heavily depends on the balance between the growth rate of f'and the singularity

of ug (cf. [7]). In Weissler [20], (1.2) was studied when f(u) = |u|p71u, p>1,and Qis

N
bounded. A local in time solution was constructed when uy € L"(Q) for r > 3 (p—1)and

N N
r>1,orr= E(I) — 1) and r > 1. It was also shown that if 1 <r< E(p — 1), then there

exists a nonnegative initial function uy € L'(Q) such that, for every T > 0, (1.2) admits no
nonnegative solution.
Next, we consider the reaction-diffusion system

O = Au—+ fi(u,v) in Qx (0,7),
v =Av+fo(u,v) in Qx (0,7), (13)
u(x,t) = v(x,t) =0 on 0Q x (0,7), '

u(x,0) = up(x),v(x,0) = vo(x) in Q.

Quittner-Souplet  [15] studied (1.3), where fi(u,v) = /" v, flu,v) = |ul*'u
(p1,p2 > 0) and Q is bounded. This is called a weakly coupled system. The existence

(resp. nonexistence) of a local in time solution was proved when (ug,vg) € L™ (Q) X
L”(Q) and
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ma ,
rp rn.nrn n

X{———,— —— }Sl,pl,p2>landr1,r2>l

(resp. ]Xmax{lﬂ — l,& — l} > 1, p1,p2 >0 and ry,r, > 1). Moreover, weakly and
2 r ry n r

strongly coupled variants of system (1.3) were studied in [4-6, 11, 13, 19]. They assumed

that initial functions may have singularities.

We obtain integrability conditions of (ug,vy) which determine the existence/nonexis-
tence of a local in time solution of (1.1). In the proof we combine methods of Gal-Warma
[9] and Quittner—Souplet [15, 16].

To define a mild solution, we recall the Wright type function [10] defined by

o0 n
(=2)
D = ——————— for O<a<1 and C.
«(2) nz:on!l"(—om—i— 1 —o) orf<a<tandze

This is also sometimes called the Mainardi function and studied in [14, 18, 22]. It follows
from [2, 10] that

@, (1) >0 for >0 and / @, (r)dr = 1. (1.4)
0
We prove our nonexistence result using (1.4). It is a key point that the function ®,(z) is
nonnegative and integrable. Moreover, it is well known ([10]) that

o0
/0 t”@m(t)dt:% forp> —1and O<a<l. (L.5)
Next, we consider functional spaces. Let 1 <r<oo. We denote by W*(Q) the Sobolev
space (resp. the Sobolev—Slobodeckii space) if k is an integer (resp. if k is not an integer).
We also denote by D(Q) the space of C*-functions with compact support in Q. Put
Xo(r) == L"(Q) and X, (r) := W' (Q) N Wy (Q), where W, (Q) is the closure of D(Q) in
WL (Q). Let A be the Laplace operator with the domain D(A) = X, (r). Then A generates a
CY analytic semigroup in Xy by [16, Examples 51.4 (i)]. Let X_;(r) be the completion of
Xo(r) endowed with the norm [xy ) = |(w+A)7'x|X0(r>, where o € R satisfies that
o+ A : X, (r) — Xo(r) is an isomorphism ([16, p.466, 467]). For 0<0<1, set Xy(r) :=
(Xo(r),X1(r))yand X_1.9(r) := (X_1(r), Xo(r))y, where (-, ), is the complex interpolation

1
functor if 0 = 3 and the real interpolation functor (-,-),, otherwise. Due to [16, Theo-
rem 51. 1 (i) and Examples 51.4 (i)], we have Xy, (r)—Xp,(r) if —1<6, <0, <1,

Xo(r)—=W*"(Q) if 0>0, and Xy(r) = (X_o('))" if <0, (1.6)

1 1
where 7 is the conjugate exponent of r, i.e., — + — = 1. We denote X' by the (topological)
r r

dual space if X is a Banach space. We write XY if X is continuously embedded in Y.
Moreover, X=Y means that X<—Y and Y—X.

We are ready to introduce some operators related to fractional derivatives. Let 0 <0 <1
and 1 <r<oo. We observe from [16, Theorem 51.1 (iv)] that the operator A also generates
a C” analytic semigroup in Xy(r), which is denoted by S(¢). For 0<a <1 and t > 0, we
define
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Su(t) : Xo(r) — Xo(r), Pu(t) : Xo(r) — Xo(r)

by

W= 2 (T)S(tt*)wdr,
{P (tw : —&“ lfo r<D )S(rt“)wd‘t (1.7)

for w € Xy(r). Note that if w € L"(Q) for some 1 <r<oo, then we can also define in the
same way as (1.7) (cf.[9]). Moreover, by definition the operator S, is strongly continuous,
ie.,

lin(}HSx(t)w—wHX =0forweX, (1.8)
t—

where X = Xy(r), 0<0<1and 1<r<oo,or X =L"(Q), 1 <r<oo.

Definition 1.1 (Mild solution) By a mild solution of (1.1) on [0, 7) we mean that the

measurable functions (u, v) have the following properties:

@ u(t) = u(-1) € L'(Q) and v(r) = v(-,1) € L'(Q) for t € (0,T),

®)  filt,v(®) =fi(,1,v(, 1) € LN(Q) and f5(¢, u(t)) = fo (-, ¢, u(-,t)) € L' (Q) for almost
all t € (0,7),

©  JollAi (s, ()| ds <o and [gllfa(s, u(s))l| ds <oo for 1 € (0,T),
(d) the functions (u, v) satisfy

u(t) = Sy, (H)uo + /Ot Py, (t — 5)fi(s,v(s))ds in Q x (0,7),
v(t) = S, (t)vo + /Ot ,(t = $)fa(s,u(s))ds in Q x (0,7),

where the integral terms are absolutely converging Bochner integrals in L'(Q),
(e) the initial functions (ug,vo) satisfy

llu(t) = uollpn @) — 0 (£ — 0) and [|v(2) — vol|niq) — O (£ —0)
for (ug,vo) € L"(Q) x L(Q), if 1 <r(,rp<oo.
It follows from (1.8) and [9, Remark 3.1.2] that the property of Definition 1.1 (e) holds if
and only if
tim [l(s) = S, ()t gy = O and. lim [v(1) = Sss (ol =0, (1.9)

which are equivalent to the convergence in the norms of the integral terms in Defini-
tion 1.1 (d) to 0.
We are ready to state our main results.

Theorem 1.2 (Local in time existence) Let N>1, O<a; <o <1, 1<p|,p; <o,

N
q1,92 € (1,00 N <E,oo}, l<ri,m<oo, my €[0,01) and my € [0,02). Suppose that

Assumption A holds. Put
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N 1 1 N
p::_(&__+ >+@, oV
2

o

2\n n @

R;:E &7l+i +@+ 12t ],E 1,1 )
2 r r q1 [0%) [0%) 2 r

Suppose that one of the following holds:

(a) max{P,Q,R}<I,

(b) o =0y and max{P,Q, R} =1,

(¢c) oy<op and max{P,Q, R} =1, where we also suppose that m; € (0,01) when
P=1

Then for any (ug,vo) € L' (Q) x L'>(Q), there exist T > 0 and a unique local in time mild
solution (u, v) of (1.1) in the sense of Definition 1.1 on the interval [0, T).

We also obtain the following nonexistence result.

Theorem 1.3 (Local in time nonexistence) Let N> 1, O<a; <o <1, 0<py,p; <o,
q1,q2 € [1,00], 1 <rj,rp <00, my € [0,01) and my € [0,0). Put

No 1 1 m N [ 1 1 m
le—_1<&__+ >+_2and92;:_<ﬂ__+ >_|__2

20 \r1 @ o2 2\ory @ o

Put P and R in the same way as in Theorem 1.2. Suppose that max{P, Q;, Q>, R} > 1.
Then there exist nonnegative functions (cy,c2,up,vo) € LT (Q) x L2(Q) x L' (Q) x
L(Q) such that, for every T > 0, the problem (1.1) with fi(x,t,v) = ¢ (x) - ™" and
flx,t,u) = ca(x) - £ ™uP? admits no local in time nonnegative mild solution (u, v) in the
sense of Definition 1.1 on the interval [0, T).

If 1<pi,pr<oo, then the nonlinear terms fi(x,#,v) = ci(x) - ™V and fio(x,t,u) =
ca(x) - ™ uP? mentioned in Theorem 1.3 satisfy Assumption A with R replaced by [0, c0).
We deduce the following corollary from Theorems 1.2 and 1.3.

Corollary 1.4 Let N> 1 and 0<oy = ap <1. Then the following are true:

N
(i) Let 1<pi,pa<o0, q1,92 € (1,00]N (E,oo}, l<ri,rp<oco, m €[0,01) and

my € [0, 07). Suppose that Assumption A holds. Put P and Q in the same way as in
Theorem 1.2. If max{P, Q} <1, then for any (up,vo) € L' (Q) x L"(Q), there
exist T > 0 and a unique local in time mild solution (u, v) of (1.1).

(ii) Let 0<pi,p2<00, q1,q2 € [1,00], 1 <rj,rp<oo, my € [0,01) and my € [0, ). If
max{P, Q} > 1, then there exist nonnegative functions (cy, cz, up,vo) € L7 (Q) x
L2 (Q) x L' (Q) x L™(Q) such that, for every T >0, the problem (1.1) with
filx,t,v) = ci(x) - 7"V and fo(x,t,u) = ca(x) - 7™ u”* admits no local in time
nonnegative mild solution (u, v).

Corollary 1.4 implies that when o) = op, we can explicitly determine the existence/
nonexistence of a solution. Our conditions cover all the cases (py,p2,q1, g2, my,n1) in
Assumption A. Moreover, Corollary 1.4 leads to the following pure power case result,
which corresponds to [15].
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Corollary 1.5 Let N> 1 and 0<oy = ap <1. Then the following are true:

(i) Let 1<pi,pa<ocoand 1<ri,rp<oo. Put

~ N 1 ~ N 1
fp::7<&,7) and Q::—(&f—).
2 r I 2 I r

If max{P, Q} <1, then for any (uo,vo) € L" (Q) x L"(Q), there exist T > 0 and

a unique local in time mild solution (u, v) of (1.1) with fi(x,t,v) = |v|p'71v and
flxtu) = [uf” '

(ii) Let 0<p|,pr<ooand 1<r|,r;<oo. 1fmax{7~3, é} > 1, then there are nonneg-
ative functions (up,vo) € L'(Q) x L(Q) such that, the problem (1.1) with
Silx,2,v) = VP and f>(x, t,u) = u”* has no local in time nonnegative mild solution

on any time interval.

Let us recall fundamental properties of scalar problems. Fractional in time parabolic
equations with nonlinear terms have not been well studied until recently. Gal-Warma [9]
has studied the fractional in time scalar problem

{af‘u =Au+f(x,t,u) in Qx (0,7),

u(x,0) = up(x) in Q, (1.10)

where A is a differential operator which generates a strongly continuous semigroup on
L2(Q). Detailed results can be found in [1, 3, 8, 12]. Let 1 <p<oo and ¢y, g, € [1,00] be
given constants. In [9] the authors assumed that there exists a nonnegative function ¢ €
L, 4, such that the following hold:

(F1’) f(x,t,-) : R — R is a measurable function such that

[f(x,2, &) <clx, 1) (1+|E]) for & € R, ae.(x,1) € Q x (0,00),
(F2’) f satisfies the local Lipschitz condition

(1, 8) = v tm)| < el 1) (14 [€] + |n)"~"|& = n| for &n € R,
ae. (x,1) € Qx (0,00).

Here L, ,, denotes the Banach space defined by

1
15) n
Ly g =14 ¢:Qx (0,00) = R measurable, HCHLqm = sup (/ lle(, 9)|I72, (Q)ds> <00
t1,6,€(0,00), n
0<n-—n<I

for ¢; € [1,00] and g, € [1,00) with the obvious modifications when g, = co. Proposi-
tion 2.2.2 of [9, p.21, 22] states the following existence result. Let 0<a <1, 1 <p<oo,

1 . .
q1 € [1,00] N (f4,00] and g, € (&700]. The constant 3, is related to the I”-L? estimate

of the semigroup generated by A. Assume (F1°) and (F2’). If
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-1 1 1
ﬁA(p —|——)+—<1and1§p,r<oo, or
r q1 xq2

-1 1 1
BA(p +—)+—:landl<p7r<oo,
r q1 g2

then for any ug € L(Q), there exist T > 0 and a unique local in time solution of (1.10).

Note that if Q is a bounded domain in RY, N>1, with C? boundary, A = A and
_ N .

O, t,u) = |ul’'u, p > 1, then f, = == and hence this result corresponds to

the existence part in [20].
In [9, Remark 5.0.2], based on [20, 21], they conjectured the nonexistence of a local in
time solution of (1.10) in the super-critical case

p—1 1) 1
+— ) +—>1 1.11
f( (1)

We give an affirmative answer to the conjecture when A = A. Sect. 5 is devoted to this
nonexistence result.

Let us explain a sketch of the proofs. The main points of the proofs are Cauchy
sequences for the existence part, including

n(1) = S, ()1to + /0 Pt — )5,V 1 (5))ds, (1.12)

V(1) = Sy, (1)vo + /OtPaz(t — ) (s, un_1(5))ds (1.13)

for n>2, uy =v; =0, and the contradiction argument for the nonexistence part.

For the existence part by induction method we can show that if 7 > 0 is sufficiently
small, then {u,}~, and {v,} -, are Cauchy sequences. Then limits u and v of the
sequences exist and (u, v) is a mild solution of (1.1) in the sense of Definition 1.1. In order
to show that these are indeed Cauchy sequences, it is crucial to find various exponents
including 01, 0, and 03. However, it is not obvious how to find these exponents. Section 3
addresses this aspect.

For the nonexistence part we construct initial data (uo, vo). Assume that (1.1) has a local
in time nonnegative mild solution (u, v). Since the singularity of the constructed functions
are strong, the norm of at least one integral term in Definition 1.1 (d) diverges as t — 0,
which follows from estimates of S,(¢) and P,(¢). This is a contradiction. It is known (cf.
[16, p.440]) that there exists a positive C*®-function Gg : Q X Q X (0,00) — R (Dirichlet
heat kernel) such that

(S(1))(x) = /Q Galx,y, ) d()dy

for ¢ € L'(Q), 1 <r<oo. After that, we abbreviate Gg as G. Since G has a lower bound
with respect to f, we obtain estimates of S,(¢) and P,(r) from (1.7).

This paper is organized as follows. In Sect. 2 we give and recall some properties of
S,(t), P,(t) and the Dirichlet heat kernel. In Sects. 3 and 4 we use these properties and
prove Theorems 1.2 and 1.3, respectively. In Sect. 5 we give a nonexistence result for
scalar problems. In Sect. 6 we discuss our results and explain possible future problems
ensuing from the current analysis.
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2 Preliminaries

For any set X’ and the mappings a = a(x) and b = b(x) from X to [0, 00), we say
a(x) < b(x) forall x € X

if there exists a positive constant C such that a(x) < Cb(x) for all x € X.

Proposition 2.1 Let O<a<1, 1<r<oo and —1<0;<0,<1. Then the following are
true:

(i) If 0, — 0, <1, then there exists C > 0 such that
|Sa(’)w‘x()2(r) < Cfa<0'702)|w‘x(,l (r)

fort>0and w € Xy, (r).
(ii) If 0 > — 1 or O, <1, then there exists C > 0 such that

- 0,0
|t1 1P1(I)W|X02(r> < 2)|W|x01 0

Sfort>0and w € Xp, (r).

Proof We prove (i) in a similar manner to [9, Proposition 2.2.2]. Using (1.5), (1.7) and
[15, Theorem 51.1 (iv)], we have

o0
0wl < [ @RS,
> 0,—0 0,—0
5/0 O, (1) 020 2)|W|x(,l ndt

o0
:t“(o‘fl)z)\wuol(,)/o @, ()" dr

F(l + 0, — 02) t“(01_02>‘
F(l + 06(91 — 02))

W|X01 (r)-

We can obtain the assertion (ii) in the same way as the assertion (i). O

Lemma 2.2 LetO<o <ap<land 0<T<oo. Fori=1,2,let0<0;<1, 1 <r;<oo and
II; € Xo(ry) (= L(Q)). Suppose that for i = 1,2,

k(I := {”|"‘|);01(r,-) ruelly, u# 0}

is precompact in Xo(r;). Then there exists a continuous and nondecreasing function g :
(0,T) — (0,00), depending on o;, 0;, r; and I1; (i = 1,2) such that the following are true:

(i) Fori=1,2, the following is true:

IS5, (I)”‘Xo,(n) < g(0) -t_“20i|u|xo(,i) for 0<r<T and u € I1,.

(ii)  We have lim,_ g(t) = 0. For i = 1,2, the function w; = w;(t) defined by

(wi(1)) " = (1) - 17

has the properties
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min{0y,0p} min{0},0,}

. . mini01.0¢ 1—mini0p.0p7
hng w;(t) = 0 and mln{z, £ } <wi() <t 00T,
—

Proof Define
hl(tv ”) = ‘Sil (t)u‘X(;] ()‘1)C()71t1191 |u‘)_(01(r1) for (ta u) € (07 T) X Hl\{o}a
hi(t) := sup{h(s,u) : s € (0,1], u € I[;\{0}} fort € (0,T),

where Co(=C) >0 is the constant from Proposition 2.1 (i). We observe from
[9, Lemma A.0.2] that 0 <7, <1, lim, ok (z) = 0 and

IS, (z)u|X01 ) < Coh (1) - ol [t x, )
< Cohy (1) - 1720 |ulxy () for 0<t<T and u € I;.

Put /1, in the same way. We set
g(t) == max{h_l(t)7 h_g(t), 00201 , 150202 },

min{@l, 02}
here § := —————.
where 2max{6;,0,}
It suffices to prove the estimates of w;(r) for i = 1,2. Since g(t) > 1°2"1, we obtain

wi (1) = g(t) =7 -1 <19 for 1 > 0.
On the other hand, let 0<¢< min{7,1}. Due to &,/ <1, we have g(f) <1 and hence

wi(f)>1. If 1> 1, then g(r) = 1*2™2{%.0:} Thus it follows that

smax{f; 0} | _min{6 05

1 o — 0,

wi(t) =1t
Therefore, we deduce the desired estimate of w (f). We can obtain the estimate of w, () in

the same way. |

Proposition 2.3 ([16, Proposition 49.10]) Let N > 1 and Q be an arbitrary domain in R".
There exist constants ¢y > 0 and cy > 2 depending only on N, such that the Dirichlet heat
kernel G(x, y, t) in Q satisfies

G(x,y,0) > 1t
for t >0 and x,y € Q such that

dist(x,0Q) > ¢/t and |x — y| < V1.

3 Existence result

N
Proposition 3.1 Ler N> 1, O<oy <op <1, 1<py,pa<o0, q1,42 € (1,00 N (5700},

l<ri,rp,<oo, my € [0,01) and my € [0,05). Put P, Q and R in the same way as in
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Theorem 1.2. If max{P, Q, R} <1, then there exist (s1,02,71,22), (52,01,23,24) € (0,1) x

(0,1) x (1,00) x (1,00) such that
1 2 1 1 p 1 1 2 1

——Z(1=-s5)=—, —4+==—and ——=0,<—,
21 N( 2 rnoq 2 n N7z

osp — my — progly 4 (o — a)0y >0,

I’I’L]+p10(202<17
0|<S],
1 2 1 1 1 1 2 1
———(1—52):—,—+&:—and —— =0, < —,
3 N rnoq 3 r N 24

tasy — my — oty >0,

92 <$32.

(3.6)

(3.7)

Moreover, if max{P, Q,R} = 1, then there exist (s1,02,21,22), (52,01,23,24) € (0,1) x
(0,1) x (1,00) x (1,00) such that (3.1)~(3.7) hold with (3.2) and (3.6) replaced by o;s1 —

my — p1020z + (02 — o1)01 >0 and axsy — my — proaly > 0, respectively.

N

2 I

1
Proof Suppose that max{P,Q,R}<1. For 1-—— (1 — —> <s< min{l, 1-—

0a(s) ::% (ﬂ—i+i> ~La-y,
1

o qi P1
2 1
=—(1—-s)+— and
Z](S) N( ) I
1

1 (1 1 2
) :p—l{ra*ﬁ“‘s)}'

We see that

1 1 1 1 /1 1 1 1
maxs —,— < ——<land max — [ ——— ), 0, < —— < —
q1 N z1(s) P \" qi 2(s) pi

N

2

Hence, z;(s) € (1,00) and z(s) € (1,00). Let (s1,02,21,22) = (s, 02(5),21(5),22(5)). By
direct calculation we have (3.1). In the same way we derive (3.5) with

(52,01,23,24) = (S, 01(5), 23(5), 24(5)), where
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N 1 1 1
o X)L
2pp\r1 @) p2

1 2 1
=—(1—-5)+— and
o0 y{1=9 -

1

N 1 N /1 1
for 1 —— (1 — —> <5< min{l7 1—— (— ——) } Moreover, we see that (3.3) and
2 r @ n

(3.6) follow from P <1 and Q <1, respectively.
Substituting (sy, 02,52, 01) = (s, 02(s), 5, 01(5)) into (3.4) and (3.7), we obtain

N 1 1 1
_(’i——+—) ~La-y<s, (3:8)
2p1\r2 1 q 4
N (pp 1 1) 1
— ) ——(1=§<s. 39
2p> <r1 o q2 Pz( j ( )

N 1
We  show that (3.8) holds with (s,9) = <max{l -— <1 - —) ,ﬂ},

2 It 4]
min{l,l —IX (L—l)}) Since P <1, we have
2\q2 1n

N 1 N 1 1 1
—<’ﬂ— 1 +—> <—<Iﬂ——+—)<—(1 —@> <1.
2p1 \n2 a) 2pm\n n q) p ol
N N 1 N
Moreover, it follows from gi,q, € (1,00] N (—,oo} that — (p—' -1+ —) < —
2 2p1 \ qi) 2n
N/l 1 N 1
<l——=(——=—. Thus (3.8) holds when s=1——(1——]. Since P<1, the left
2 q2 r 2 r
hand side of (3.8) is negative when s= @. Therefore, (3.8) holds with
o

1
1 N /1 1
(s,5) = | max I—E 1—— ,ﬂ ,ming 1,1 ————— . In the same way
2 r o 2\q2 n
1 1 1
(3.9) holds with (s,§) = ( min l,l—ﬁ — —— ] p,max I—E 1 —— ,ﬂ .
2 q1 r 2 I 2%

We divide the possibilities into two cases: o = oy and o <op.
Let oy = . Since P <1, we obtain (3.2). Put

1 1 1
I := | max I—E 1 —— 7@ ,min l,l—]X ——— ,
2 r o 2 q1 I
N 1 N /(1 1
L= |maxq1l——(1—— 7}72 ymind 1,1 ——(——— and R:=1, x I,.
2 r Olp 2 q2 rn

The area of (s, §) satisfying (3.8) and (3.9) is the shaded portion on the graphs. See Fig. 1.
Due to the above calculation results, the position of R is as shown in the left figure, but not
as shown in the right one. Thus there exists (s,$) € R such that (3.8) and (3.9) hold.

It remains to consider 0; and 0,. We observe from (3.8) and (3.9) that 0,(s) <1 and
01(5) <1. If 0,(s) <0, then we replace 0, = 0,(s) with 8, = ¢ > 0, where ¢ is sufficiently
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Rl
i > / >

S [

Fig. 1 Possible relative positions of the rectangle R and sector defined by (3.8)—(3.9)

small such that o;s1 — m; — pyope > 0 and e <s. We see that (3.1), (3.2), (3.3) and (3.7)
hold. If 0;(5) <0, then we can replace 0;(s) with 0; € (0,1) in the same way.
Let oy <on. We recall that

(51702,Z17ZZ) = (S, HZ(S)aZI(S)aZZ(S)) and (S2,917Z3,Z4) = (5, 01(5)7Z3(§)>Z4(§))'

1 1 1 1

We divide the possibilities into two cases: (i) P2 4+ — > 0 and (ii) p2_ +— <0.
rnorn q . rn q

We prove (i). It follows that (3.1), (3.3), (3.5) and (3.6) hold. The inequality (3.2) is

equivalent to

E(IA_L+L) Lm o
ﬁ(&,l+i),i(1,5)>s+2 nTnTa) e (3.10)
2p> D2 1=

r rn  q
N 1 N1 1
which holds with (5,5) = (maxd1—~ (1= )" U mind 1,1 -2 (—— =)L),
2 r) o 2\ n

Indeed, the right hand side of (3.10) is negative when =21 (resp. when
o1

N 1
s=1-— > (1 - —) ), since P<1 (resp. since R<1). On the other hand, since
r

P2 _ l + i > 0, the left hand side of (3.10) is positive.
o rn o q

The area of (s, 5) satisfying (3.8), (3.9) and (3.10) is the shaded portion on the graphs.
See Fig. 2. Here, R is defined in the same way as when o; = ;. Due to the above
calculation results, the position of R is as shown in the left figure, but not as shown in the
right one. Thus there exists (s,5) € R such that (3.8), (3.9) and (3.10) hold.

It remains to consider 6, and 0,. We observe from (3.8) and (3.9) that 0,(s) <1 and
01(8) < L. If B5(s) <0 or 6, (5) <0, then it is sufficient to replace it/them in the same way as
when o; = .

We prove (ii). Let ¢ > 0 be sufficiently small. Put

N 1 N1 1
si=maxdl—~(1—=—),"Vhser and §=mind 1,1 -2 (—— )\ —eep
2 ) o 2\qx 1n
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SA / /

=

.. _J .
/ /

Fig. 2 Possible relative positions of the rectangle R and the strip defined by (3.8)—(3.10)

Due to 6, (s) <0 in this case, we replace 0, = 0,(s) with 6; = &. It follows that (3.1), (3.3)

and (3.5) hold. Since 0; = ¢ is sufficiently small, s >¢ > 0 and § > @, we obtain (3.4)
o
and (3.6). The inequality (3.2) is equivalent to (3.10) with the left hand side replaced by e.

Then by max{P,R}<1 we deduce (3.2). Moreover, since (3.8) holds with

N 1 N1 1
5,9 = (maxd 1=~ (1==)," 0 mind 1,1 =2 (== =) L), (3.8) also holds with
1 1
2 r o 2\q2 n
N 1 N1 1

It remains to consider 0,. We observe from (3.8) that 0,(s) <1. If 0,(s) <0, then it is
sufficient to replace it in the same way as when o; = .

Since we can prove the case where max{P, Q, R} = 1 in a similar way, we omit the
proof. (l

Lemma 3.2 Suppose that oy <oy and max{P,Q,R}<1 hold in particular in the
assumptions of Proposition 3.1. Let s1 € (0,1) be chosen in Proposition 3.1. Put

_N(pi_ 1 1) _m
1 2(r2 r1+q1) o

If s1 > S, then the following are true:

N 1
(i) There exists s3 € (0,1) such that 1— > <1 — —) <s53<S8S and that 03 :=
r

02(s3) > 0, where 0,(s) is defined in the proof of Proposition 3.1.
(ll) 92(.&‘1) > 0.

Proof By direct calculation we have p0p0,(S) = 0y S — my. It follows from P <1 that

N 1
§> "L Then 0,(S) > 0 holds. Note that R <1 yields 1 -3 <1 - —> <. Choosing
o r

N 1
max{l -5 (1 — —> ,@} <s3 <S8 sufficiently large, we obtain 0,(s3) > 0. Moreover,
o

we see that
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N 1
max{l——<1——) m1}<S3<S<S1<1
2 rt o

Thus s3 € (0,1) holds. Since 0,(s) is increasing with respect to s, we have
02(s1) > 02(s3) > 0. The proof is complete. O

Proof of Theorem 1.2 Set u; := 0 and v, := 0. For n > 2, define the functions u, and v, by
(1.12) and (1.13), respectively. We introduce the Banach space defined by

Y(),r,T = {M € LZO)(r((OaT]vxl)(r)) : ||uHY0_,,T ‘= Ssup tazelu(t)|Xg(r)<oo}
' t€(0,T)

for0<0<1, 1<r<ooand T > 0.
We prove the case (a). Choose (s1, 02,21,22) and (s2,01,z3,24) as in Proposition 3.1.
We consider the existence part. Let T > 0. Assume that (u,—1,V,—1) € Yo, 5,7 X Yo, 0.7
We obtain from Proposition 2.1 that for 0<¢<T,

t
(2201 |”n|xnl m < (2201 NG |X“] s (201 / [Py, (1 — $)fi (s, Vn—l(s))‘x,;l(rl)ds
0 (3.11)

t
0 o (s1—01)—1
< luolx, ) + 1" / (0 =) A (5,1 (), 5

It follows from (1.6) and the first equality of (3.1) that X;_ (r’l)<—>Lz/1 (Q), which implies
that L3 (Q)—X,,_1(r1). By the last inequality of (3.1) we have Xy, (r2)—L>(Q). Then we
can deduce from Assumption A and (3.1) that for 0 <s<t,

(s vt (D, ) S A Vi1 ()l @ < llev s (1 + vt (91 |21 @)
<™ letll g @ 1+ a1 (D] 2

u’l(Q
=" lerlln @I+ aa ()12 L2(Q) o1
S5 lleillin @+ P (91, )
A Y 11/ [ I iy,

which yields

t
20 / (t—s)oq(s]fa])—llfl(s,v,,,,(s))|x‘r](,])ds
A .

Yo,.15, T

t
stc{zl][/(tis)ll(sl 01)-1 —ml—]?ln()z_”C]”m Q)”] + V]|
0

<lerlln @11+ Pt -0t

1
~ / (l _ S)“I(SI*HI)*ls—lnl—plotzozds
0

(3.13)

for 0<r<T. Here we use a;(s; — 0;) — 1 > — 1 and 0<m; + pyon6, < 1, which follow
from (3.4) and (3.3), respectively. Combining (3.2), (3.11) and (3.13), we have
u, € Yy, r, v We can obtain v, € Yy, ,, r in the same way. By induction we derive
(thn, V) € Yo, 1,7 X Yo, 7 fOr n>1.
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We divide the possibilities into two cases: (i) a; = ap, or o) <o, and 51 <8 and (ii)
oy <op and s1>S. In the case (ii) we also choose s;3 and put 03 as in Lemma 3.2.
Moreover, let us introduce the Banach space defined by

o s = {1 € LL(O1) X0, () 0 X 02) ey,

= max . luly, , } <oo

In a similar way to (3.11), (3.12) and (3.13) we obtain

0
l‘“z 3 |V”|X(;3 (r2>

t
< P18, (1ol 1 + 1 /0 Pt = 85,1001 (9) g, s
t
2 6
Sl + % [ 0= s a9, s

t
S Wolxy ) + 17" /O (1 = )2 eyl g 1+ a1, d

< ‘V0|XO (r) + HCQ”UZ(Q ||1 + |u,, 1|| Yooz . pr2s2—ma—prea by

1
% / (1 _ s)“Z(SZ*GS)*ls*mzfpzmz()] ds.
0

(3.14)

Here we apply s, > 0, = 0,(s1) > 0,(s3) = 03, which follows from (3.7) and Lemma 3.2.
Then u,_| € Yy, ,, r leads not only to v, € Yy, ,, v but also to v, € Yy, ,, 7. Thus v, €
Yo, 0,57 for n>1.

We consider the rest of the existence part only in the case (i). In the case (ii) it can be
proved by replacing Yy, ,, r and Yy, ,, 7. with Yy, o, , 7 and Yy, g, ,, 1., TESPECtively.

In a similar way there exist C; > 0 and C, > 0 such that for n > 2,

p1—1

Hun+l _ u"”Y”lJ‘ ; < ClTozm7m1*l)mz202+(012711)01 HCI oo an — Vg ||Yllz.r2.7'7

Lo @I+ [val + [vaall
S2—my—patir 0 -1
Vs = vally,, , SC TP leal o 11 + fun] + [ua—s[IY;, ) Motn = nally, -

(3.15)

Put U := 211121);{|\1,t2||y0I o Hv2||Y()2 ,ﬂz,r} and choose a sufficiently small time 7, > 0 such
that

Cl T*Q(lAT]_ml_PIOf202+(°‘2_O‘1)01 ||cl ”qu (Q)(l + 2U)p1
(3.16)

N'—‘N\’—‘

CzT 0282 —ny P2d291||62

@y (1 +20)" 7 <

Note that T, is independent of n. By induction together with (3.15) and (3.16) we have
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H”n”)/(,l.,].n <U forn>1,
vally,,,,.. <U for n>1,

1 3.17
i =l . < 300 =il fornz2, G147

1
HV"+1 - VnHY(, T <5 Hu" — Un—1 HY() 1T for n>2.
272 1:1

By iteration in (3.17) the sequences {u, }r-, and {v, } '~ are Cauchy in the Banach spaces
Yy, ». 1. and Yy, ,, 1., respectively. Consequently, there exist limits u € Yy, ,, 7. and v €
Yy, ,.1. such that

nlLHOlO ||Lt,, o u”Y()l,rl.l; =0 and nll,rgc HV” o v||Y02,r2,l; =0. (318)

We show that the limits u and v have all the properties of Definition 1.1 on [0,T,).
Property (a) immediately follows from u € Yy, ,, r. and v € Yy, ,, 7.. We obtain in the same
way as we deduce (3.12) that

T, T,
/0 1 (5, V() 1 )5S / 135, v(5)) 2 oy s

T
—imy—pyad
S [ el gl + I, d

B (T*)l—ml—m%z()z

C1—m —pionb,

letllza (Q)Hl + vl Q)m,ry

Here we use m; + p10p6, <1 by (3.3). Since the same is true for f>, (u, v) satisfies the
properties (b) and (c).

We mention the properties (d) and (e). We divide the possibilities into the same two
cases as in the existence part.

In the case (i) it follows that

oS — mp —plf){zez > 0. (319)

Indeed, when 0, = 0,(s1), (3.19) follows from P<1 (resp. 51 <8) if oy = ap (resp. if
oy <0op). On the other hand, when 0, = ¢, i.e., 0,(s;) <0, (3.19) follows from the choice of
¢ in the proof of Proposition 3.1. Then in the same way as (3.15) with 0; replaced by 0 we
can evaluate

/ Pyt — ) (5, va5)) — fi (5, v(s)))ds

(@) (3.20)
s1—my—, [ p1—1
< UL 1L+ ol + DB e =l

Yo,y

which converges to zero as n — oo, by (3.18).
In the case (ii) it follows from Lemma 3.2 (ii) that 0, = 0,(s1). Since s3 <8, we have

a1s3 — my — proals = oys3 — my — pranbdy(s3) > 0. (3.21)

Then we obtain in the same way as (3.11), (3.12) and (3.13) with (s1,0,,71,22) =
(s1,02(s1),21(51),22(s1)) and 0, replaced by (s3, 03,z1(s3),22(s3)) and 0, respectively that
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[ttt — u”|Xol ()

< CUT) T et 11+ 1l A+ Waea [ I5) v = vy,

Yoy, 7 32, T
—mi—p1ay0 1
< T P ey 1+ ol I o = vl
which implies that
H / =0 ] -
L(Q 322
—my— 0 —1
< T P ey 1+ bl WIS o=Vl

Both (3.18) and (3.20) (or (3.22)) enable us to take the limit of (1.12) as n — oo in L! (Q).
Since we can take the limit of (1.13) in a similar way, we deduce the integral system in
Definition 1.1 (d). For the last property (e), it suffices to prove (1.9). In the case (i) it
follows from (3.13) with 0; and v,_; replaced by 0 and v, respectively and (3.19) that

() = Sy ()u0][ 11 (@)

< t(t — )" (s, v(s))| ()8
/0 i (3.23)

1
Sletlln a1+ DI, Pt [ g tmonntig
) 0

—0 (t—0).

In the case (ii) we observe from considering (3.13) and (3.19) that (3.23) also holds with s;
and 0, replaced by s3 and 03, respectively. Moreover, in both cases (i) and (ii) since we can
obtain lim,—o [[v(#) — Sw, ()voll12(q) = 0 in a similar way, (1.9) holds. Thus (u, v) pos-
sesses the desired properties of Definition 1.1.

We consider the uniqueness of the mild solution only in the case (i). In the case (ii) it
can be proved by replacing Yy, ,, 7 with Yy, 4, ,, 7. We can derive the uniqueness from
calculations similar to (3.15). Indeed, let T € (0, 7] and let (u,v), (if,V) € Yo, r.7 X Yo, 0,7
be any two mild solutions of (1.1) with the same initial data (ug,vo). In a similar way to
deduce (3.15) it follows that

- 1 -
= dlly, < CurmmpEt e e o ] B = Bl
~ S S — 1T — 0 - 1 ~
Iy = lly,, , < CaT> ™22 |y o 1+ [+ Lallf ! e =il -
(3.24)

We see that there exists a sufficiently small time T € (0, 7] such that

o151 —my —p1 o0+ (o —o )0 1 1
T 1 W I <5
087 —Np —proia 0 - -1 1
.7 el 11 + b+ JallE ! < 5.

By this together with (3.24) we have u(-,7) = ii(-, 1) and v(-,1) = v(-,1) for t € [0, T]. We
obtain from a standard continuation argument (cf.[17]) that the uniqueness over the whole
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interval [0, 7.] holds.

We prove the cases (b) and (c). Choose (s1,62,z1,22) and (s2,01,23,24) as in Propo-
sition 3.1. We divide the possibilities into two cases: (i) o) = o, or o) <o and 57 < S and
(ii) oy <op and s; > S.

We consider the existence part in the case (i). Set ITj :={up} C L"(Q) and
I, := {vo} C L?(Q). Let 0<T <oo. We can apply Lemma 2.2 and consider the con-
structed functions g and w; (i = 1,2). For i = 1,2, put

YW:-,giy”in = {M € L;);c((oa T]7X91(ri)) : ||M| u(’)ngi(r,v) <OO}

(3.25)

Lemma 2.2 (ii) implies that the spaces Y,,, g, .1, i = 1,2, are Banach spaces. Note that for
i=1,2, Y051 C Yo7 follows if 0<T <oo. Define the functions (u,,v,) in the same
way as in the case (a). Assume that (u,—1,Vy—1) € Yy, 0,17 X Yis, 0,07 In the same way
as (3.11) and (3.13) we have for 0<t<T,

Y07 - SUP (Wi([))“zo[
o 1€(0,T)

t
010" i, 1y < 000" 15 (Wl 1+ 09 O |12 (0= 5053015,
o [ (s1-01)—1
S luoly) + (w1 (1) /0 (=" (s 1 )l

and

t
(Wl([))ath / ([—S)ml(x]il)])il{fl (S’vﬂ—l(s))|XS]71(r1)ds

0

t
< (1)) / (1 — )05 (4 () P02 e,

o @11+ [Va-i] W

2.0y.r).T

<ler

t
@I+ il - (@Y 220 / e
0

i

w3099, T

1
. (g(t))mfl . s =mi—=p1920x+(n e )0y / (1- s)“l(51*91)*|s—m1—11101202ds.
0

= lletll g @11 + a1l

(3.26)

We recall that lim,0g(r) =0 and oys; —my — p1oply + (02 — o1)0y > 0. Hence,
u, € Yy, 0,-,7- We can obtain v, € Y, 9, , 7 in the same way. By induction we derive

(n, V) € Y, 0007 X Yy 05,7 for n>1. In a similar way there exist C3 > 0 and C4 > 0
such that for n> 2,

SN Partial Differential Equations and Applications
A SPRINGER NATURE journal



SN Partial Differ. Equ. Appl. (2021) 2:2 Page 19 of 27 2

<G (g(T))PI*I TS —p102 02+ (0 —011)0;

Yo 001 =

Hun+l — Uy

1—1

' ||Cl||qu (Q)Hl |Vn| + |V,, 1|||p“2 ()mTHV” Vn— l”y

)
wp.00,rp,T

<G (g(T) )Pz*l T“zsz—mz—pﬂz@l

HVn-H - Vn”Yz,;z,zT >

lleall o @11+ lun] + [ [IIF

Uy — Uy— .
Y0, r]TH n n=111Y,, 0,17

Put V := 2max{||u2|
such that

Yoy oy ||v2||Yw2_02_r2_T} and choose a sufficiently small time T, > 0

1
C3(g(T**))P1*1T**otm—ml—pmtzOz-%—(otz—oq)Ol Hcl ||L41 (Q)(l + 2V)P171 < 5

Calg(Tu)) T2 0 oy g (1 2V) <

We deduce the analogue of (3.17) in Y, g, r,.7.. X Yi,.0,, 7., instead of Yy, ,, 7. X Yy,
Therefore, there exist limits u € Y,,, 9, r,,7.. and v € Y,,, 9, », 7., such that

2, T

lim [|u, — ufly, =0and lim ||v, — ||y =0.
n—oo n—oo

w101,y Tex Ww).,03.ry Tix

We consider the case (ii). Let s3 = S and 03 = 0,(s3), where 0,(s) is defined in the proof
of Proposition 3.1. It follows from P <1, or P = 1 and m; > 0 that s3 > 0 and 05 > 0 hold.
By this together with S<s; <1 and 0(s;) <1 we have s3 € (0,1) and 03 € [0,1). Let
0<T <oo. In a similar way to Lemma 2.2 we can construct a continuous and nonde-
creasing function g : (0,7) — (0, 00) such that

0 —a0,
|S°‘l ([)MO|X01 () ’S g([) o 1|MO|X0 (r)? |S°‘2 (t)v0|Xz)2 (rz)sfg(t) e ‘V0|Xo(rz) and

1S, (V0lx,, () S 8(1) - 1% w0y, ) FOrO<I<T,

lim, o g(r) = 0, and lim,_ow;(t) = 0 for i = 1,2, 3, where (w,‘(t))f"v‘ze" = g(t) - 7%, Put
Yo, 0000, Yus 00,07 @and Yy, g, 7 in the same way as (3.25). Then it follows that (u,,v,) €
Y, 00,7 X Y, 0,7 for n>1. Let us introduce the Banach space defined by

<.
Y3031

We observe from a similar manner to (3.14) that u,,_; € Y,,, 9, .7 leads not only to v, €
Yy, 0,07 DUt alsoto v, € Y. g, », 7. Thus v, € Yoy, 0, 105 05.00.7 for n>1. We omit the rest of
the existence part, since it can be proved by replacing Y, r and Y, 0, 7. With
Y, 00 03,0507 A0d Y, 0, w0 04, T, , TESPECtiveEly.

We can obtain in a similar way to the case (a) that # and v have the properties (a)—(d) of
Definition 1.1 on [0, T..). In the case (i) it follows that o;s1 — m; — po0, > 0. Then we
deduce from (3.26) by replacing 6; and v,_; with O and v, respectively that

Yw2,02 w3,03,r2,T

= {ueL,,,L((O,TLon(Vz)ﬁXog(Vz)) flly,

Yoy 0y 03,0300, = max ”u”Yw 0.1 ,,7” |
2:02.w3,03.r2, 2:02:m2

2,02,12,
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(1) = 8oy (Dtto| 1 g

t
S [a=9 GO, s

Sllerllzon @ lIT + I,

Wwy.0p.ry T

. pi—1 | oysi—m—pioa0; : _ asi—l —mi—pio0s

(g(n) t (I—y5) s ds
0

—0 (t—0).

(3.27)

In the same way it follows that lim, o [|[v(t) — Su, (t)vo|[;r2(q) = 0. In the case (i) we
observe from considering (3.26) that (3.27) also holds with sy, 0, and Y,,, 4, ,, 7., Teplaced
by s3, 03 and Y., ¢, , 1.., respectively. Thus (u, v) is a mild solution of (1.1) in the sense of
Definition 1.1 on [0, T...).

Note that in the case of (ii) how to derive the limit corresponding to (3.27) differs
between when R <1 and when R = 1. When R <1, by considering (3.11) and (3.12) we
can evaluate

t

1) = Su (ol @) < / (1= 9 i (5)) s
t

< / (1 = 99 i (5, v(5)) s s,

where z; = z;(s3) € (1,00). On the other hand, when R = 1, since z; = z;(s3) = 1, the
inequality [fl(s,v(s))|xwl(,l>§ i (s,v(s))ll 1 (@) does not hold. Then we use the L/-L?

estimate of the heat semigroup ([16, Proposition 48.4 (c)-(e)]) and deduce that
[[Poy (2 = $)fi (5, V()| 1 0
<onfe= 5" [ @S(ele = 9 Vils19(6)) i s
0

N 1

Son(r—s5)"! / R RN GO RGO R e

=t =5 sy e [ ", (1)de

. OC]F(S3 + l)

T(ons3 + 1) (t— )" A, vl q)-

N 1
Here we apply (1.5) and S =1 — 2 <1 — —) , which follows from R = 1. Thus we have
r

t
1) = Su (Dol @) S / (= ) i (5, v(5)) sy -

We also obtain the uniqueness of the mild solution in the space Y, 9, r,.7.. X Yi,.00,.7..
through an argument similar to (3.24). We omit the details. (I
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4 Nonexistence result

Proof of Theorem 1.3 Without loss of generality, we suppose that 0 € Q. Choose p > 0
such that B(0, p) C Q, where B(0, p) denotes the ball of radius p > 0 centered at 0.

N
We prove the case where max{P, R} > 1. Let 0</< —if | <gy <oo,l=0if g = 00
q1

N

and 0 <k < —. Note that k is chosen to be sufficiently large and the same is valid for / when
r

1 <gq) <oo. Put

c1(x) == |x\717 ca(x) =1, up(x) := 0 and vo(x) := \x|7k;{3(07p)(x),

where g, is a characteristic function. Then (ci,c2,up,v0) € L7 (Q) x L%(Q) x
L"(Q) x L(Q) holds.

The proof is by contradiction. Assume that there exists 7 > 0 such that the problem
(L.1) with fi(x,2,v) = ci(x) - """ and fo(x,1,u) = ca(x) - 724" possesses a local in
time nonnegative mild solution (u, v) in the sense of Definition 1.1 on [0, 7). Let 1 <t<2

Vs - _
R where o = o or & = op. Then we can

and let s > 0 be sufficiently small. Let |x| <
apply Proposition 2.3 and obtain

<ﬂm%wxw=/ Gm%mmm*@z/’ Glx,y, 15y dy
{Iyl <p} {ly—x|<Vrs2}

= / (152) 2|y FdyzsHn / |y
(v <) v <7}

-~ —k
vV s* ~
237%“2 Vs + il / dstiéa.
2 {ly—| <V}

Due to (1.4) and (1.7), we have

2 2
<%wmwzﬁ®amwwmmwzj®dw«ﬁf

and hence

Sl = (@)

for sufficiently small s > 0.

0l

t t
Let > 0 be sufficiently small and let 3 <s< > |x] < and 1 <t<?2. Then for

v

<
| >

|x—y|<\/ST'§\/(t—s)“‘<\/r(t—s)“'.

Using Proposition 2.3, we obtain
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Glx,y,t(t — ) ) 2t 3 (t — 5) P 25 (4.2)

Ei
\/zs_. It follows from (4.1) and (4.2) that

for |y| <

(S(x(t = )™ )i (s, S (5)v0)) (x) = /QG(XJ,T(I* $) TS (S (5)v0) (7)) dy

zs*'”"é"‘i/ G,y ot = 5)™)[y| dy
o) )l

2

e
!

2

ls ky 5 Ny 4 Ng
>S—§O€—m1—§1719¢—70¢1+70¢
~ )

which yields

2
(P (1 = )1 (5, S, (5)v0)) (¥) Z o1 (1 = )"~ /1 @y, (1) (S(x(r = $)™ )fi (5, Sz, (5)v0)) (x)dT

_ s ky 7 Ny Nz
Z (l o s)ou ls—ioc—ml—iplm—7m+5oz

) ky G Ny (N7
> (f _ S)Otl 1t7717m172p1177a1+7o<'

t . .
Here we use s < > By direct calculation we have

L
2

/0 (P (= $)Fi (5, Sy (5)90)) (x)dls > / (P (1 = )1 (5, 5o (5)v0)) (x)dls 2 ¢~ mm—bpua— s

and
. .. N . N
Taking the limit as / — — (if 1 <g; <o0) and k — —, we deduce that
q1

Ll

ls kp 5 Ny, (N5
r (oc —50—my —3p1 =50 +—oc)
1\ 1 =P 10—=3%1 75 d

> X

m@ /{<“_}

N Ly ky G Ny (N&
2 ﬁocl +r (oq —50—my —5p10—5u] +3m) .

/0 Pt — $)fi(5, Sy, ()v0)ds

3
r

N ) {alrl(l—P) when & = a;,
2 —_—

Noc + o lo? k o Noc +—a
— r — =4 —m —=p1& — = —
2! "\ Lo ' opri(1—R) when & = o.

n

Thus we obtain || [ Py, (t — 5)fi (s, Sx, (s)vo)ds| ), @
we have v(t) > S, (f)vo in Q x (0, T), which yields

This contradicts the property of Definition 1.1 (e).

— 00 as t — 0. By Definition 1.1 (d)

— oot — 0).
Q)

/ ot = ) (s v(5)ds / Pyt — (5, Sun(s)v0)ds
0 0

Z ‘

L' (Q)

- N -
We prove the case where max{Q;, @} > 1. Let O<l< — if 1 <gp<oo, =0 if
q2

SN Partial Differential Equations and Applications
A SPRINGER NATURE journal



SN Partial Differ. Equ. Appl. (2021) 2:2 Page 23 of 27 2

_ N -
q» = oo and 0 <k < —. Note that k is chosen to be sufficiently large and the same is valid
n

for [ when 1 < gr<oo. Put
c1(x) =1, eax) = |x|_l, up(x) := |x|_ka(0.[,) (x) and vo(x) := 0.

Then (C] ,C2, U, V()) e L (Q) x L% (Q) X LM (Q) x L' (Q) holds.

The proof is also by contradiction. As in the case where max{P, R} > 1, we assume
that there exists a local in time nonnegative mild solution (u, v) in the sense of Defini-
tion 1.1. We obtain in the same way as we deduce (4.1) that

_k,
Sl 2 (43)

for sufficiently small s > 0.

t t
We prove the case where Q; > 1. Let 7 > 0 be sufficiently small and let 3 <s< >

o

and 1 <t<2. It follows from Proposition 2.3 and (4.3) that

<
(e =575 (5900)) ) = | G, =)ol 57 (5 (o))
s ~lgm Soy ($)u 2 g
< /{r} Y757 (S ($)ut0) () dly

> g3 —m—tpaon / dy
{ly—x <Vs72}

[ K
> S*jtxl —my—3p20y
= .

Vo
3 7 2

Note that we apply |y| <|y — x| + |x| <V/Ts% + , since s is sufficiently small.

t
Then by s < 5 we have

2
(Pay (1 = 8)f2(s, 52, (8)u0)) (x) 20620-8)“2”/1 @y, (7)(S(x(t = 9) )i (s, Suy (5)0)) (x)d

_ [ K,
> (t _ S)“Z ls_j(xl_mz_ipzil

(t _ s)lz—lt*%dlfmz%ma].

4%

By direct calculation we get

(P (t = )fa(s5, Sa, (5)0)) (x)ds 2 22 #0 —ma—tpn

[ Pate= 5165, ) s>

S~
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and

r
2|
L’Z(Q) {‘x‘<£}

> ﬁaq +r2(xz ——011 —n —’%szll)

I k,
t"z (12*59‘1 —Mmy—3p20 )dx

H/otpxz(t = $)fa(s, Sz (s)uo)ds

- N - N
Taking the limit as /| — — (if 1 <¢g; <o0) and k — —, we deduce that
q2 r

N I k
EO(] +r2(oc2 —EOCI — —ipzo(l) — 0627‘2(1 — Q])<0

Thus we obtain || [; Pu, (t — s)f>(s, Sy, (s)uo)ds UZ(Q)—> oo as r — 0. This contradicts the

property of Definition 1.1(e) in a similar way to the case where max{P, R} > I.

t t
We prove the case where Q, > 1. Let t > 0 be sufficiently small and let 3 <s< =

N

)

<,
Iyl 3

|x—y|<\/s72§\/(t—s)“2<\/r(t—s)°‘2.

Due to Proposition 2.3, we have

Gy, 1(t —5)) 2T 3 (1 —5) P 250 (4.4)

for
obtain from (4.3) and (4.4) that

in the case where max{P, R} > 1, we

(S(e(t = )" a5, 2 (o) ) (x) 2~ H

which yields

(Pt = $)fa(5, S, (5)u0)) () 2 (1 — )7 ¢ mipn,
Moreover, this leads to

) ~ -
N Ly s —k
thfszrfz(dz S0 —Mm2 2172(11)‘

2(Q)

H/ oo (1 — 5)Fa(5, 52y (5)ut)ds

- N - N
Taking the limit as / — — (if 1 < g <o0) and k — —, we deduce that
q2 ry

N ] k
EOCQ —+ 1 (OCZ —EOCZ —nm —§p2d1> — O(zrz(l — Q2)<0

Thus we obtain Hf(; Py, (t — s)fa(s, Sy, (S)Mo)dSHZZ(Q)H oo as t — 0. This contradicts the

property of Definition 1.1 (e). Therefore, the proof is complete. (I
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5 Nonexistence result for scalar problems

In this section we apply our study to the nonexistence of a local in time solution of the
scalar problem

O'u=Au+f(x,t,u) in Qx (0,7),
ulx,t) =0 on 0Q x (0,7T), (5.1
u(x,0) = up(x) in Q.

We obtain the following nonexistence theorem.

1
Theorem 5.1 Let N> 1, 0<oa<1, 0<p<oo, g1 € [1,0], ¢2 € (&,oo} and 1 <r<oo.

N
Suppose that (1.11) holds with 4 = EX Then there exist nonnegative functions c(x,t) €

Ly g and uy € L'(Q) such that, for every T >0, the problem (5.1) with f(x,t,u) =
c(x,t) - u” admits no local in time nonnegative mild solution u in the sense of Definition 1.1
(more precisely, in the sense of [9, Definition 3.1.1]) on the interval [0, T).

Since we can prove in the same way as in the proof of Theorem 1.3, we leave the proof to
readers. Note that we only solve the nonexistence conjecture in [9] when the nonlinear
term f is separable with respect to x, ¢ and u.

Remark that if 1 <r< > (p — 1), then there exists a nonnegative initial function uy €

L"(Q) such that, the problem (5.1) with f(x,#,u) = u” has no local in time nonnegative
mild solution on any time interval. Hence, our nonexistence result corresponds to [20]. In
conclusion, for scalar problems and systems with pure power nonlinear terms, the exis-
tence/nonexistence results correspond to [20] and [15], respectively.

6 Discussion

In this paper we consider a local in time solution of a time fractional weakly coupled
reaction-diffusion system in two components with possibly distinct fractional orders. In
Theorems 1.2 and 1.3 we derive the integrability conditions on the initial state functions
for the local in time existence and nonexistence results. The parameters P, Q, Q;, Q, and
‘R describe the balance between the factors: the growth rates (resp. the singularities) of the
nonlinear terms with respect to u or v (resp. x and f), the singularities of the initial data, and
the fractional exponents. For instance, the larger the growth rates p; and p, become, the
larger these five parameters become. Then Theorems 1.2 and 1.3 imply that the existence
result is less likely to hold, and that the nonexistence result is more likely to hold. The
integrability is determined by max{P, Q, R} and max{P, Q, Q,, R} in the existence and
nonexistence part, respectively.

When o = o, the equalities P =R and Q = Q; = Q, hold. Therefore, as seen in
Corollary 1.4, we can explicitly determine the existence/nonexistence of a solution. The
threshold integrability condition on initial data, which is a pair (ry,r;), is defined by
max{P, Q} = 1. When m; > 0 and m, > 0, the larger oy and o, become, the wider the
space of initial data for the existence result becomes. On the other hand, when o; <oy, the
inequalities max{Q;, @} <1<Q and max{P,R} <1 can occur. In this case since
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Theorems 1.2 and 1.3 cannot be applied, we cannot determine whether the problem (1.1)
possesses a local in time solution or not. We mention the following points:

1. In Theorem 1.3 even if we assume Q > 1, we cannot obtain the nonexistence result,
since the inequality (4.3) does not hold with o replaced by o, on the right hand side. If
this is true, we can evaluate (S(z(¢ — 5)™)f(s, Sy, (s)up))(x) in the same way as in the
case where max{P, R} > 1. Hence, we can get the nonexistence result even if Q > 1.

2. If we assume max{Q;, Q,} <1 instead of Q < 1, then Proposition 3.1 does not hold. In
particular, the inequality max{Q;, Q>} <1 does not lead to (3.6) and (3.9) with

N/1 1 1
(s,8) = [min< 1,1 — —( ———) p, max l—g 1—— ,@ . Thus we cannot
2\q1 n 2 r) o

obtain the existence result under this assumption.

The author conjectures that the nonexistence result does not hold in the above case, since
the former point is a greater reason. In the existence result it seems that the solvability of
the problem (1.1) in the above case may hold by using a functional space different from the
Banach spaces introduced in the proof of Theorem 1.2.

Possible future problems ensuing from the current analysis are as follows:

1. What are the consequences of the problem (1.1) with a different boundary condition or
situation, e.g. the Neumann boundary condition, the boundary condition where u and
v are non-zero positive bounded functions, and the situation where the boundary is
broken into parts with a condition of a different type set on each?

2. What happens to a local in time solution of (1.1) as « — 17?7 Given that (1.3) is the
limit of (1.1) as o — 17, is it possible to show that the estimates obtained by this paper
approach those known for (1.3)? If not, which is more conservative and why?

3. For the problem (1.1), what is the solvability when one equation has an integer in time
derivative and the other has a fractional in time derivative?
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