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Abstract
We study a fractional in time weakly coupled reaction-diffusion system in a bounded

domain with the Dirichlet boundary condition. The domain is imbedded in an N-dimen-

sional space and it has C2 boundary, and fractional derivatives are meant in a generalized

Caputo sense. The system can be referred to as a standard reaction-diffusion system in two

components with polynomial growth. We obtain integrability conditions on the initial state

functions which determine the existence/nonexistence of a local in time mild solution.
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1 Introduction

Let X be a bounded domain in RN , N� 1, with C2 boundary. We study existence and

nonexistence of a local in time solution of the fractional in time weakly coupled reaction-

diffusion system

oa1

t u ¼ Duþ f1ðx; t; vÞ in X� ð0; TÞ;
oa2

t v ¼ Dvþ f2ðx; t; uÞ in X� ð0; TÞ;
uðx; tÞ ¼ vðx; tÞ ¼ 0 on oX� ð0; TÞ;
uðx; 0Þ ¼ u0ðxÞ; vðx; 0Þ ¼ v0ðxÞ in X;

8
>><

>>:

ð1:1Þ

where 0\a1 � a2\1 and T [ 0. The fractional derivatives oa1

t and oa2

t are meant in a

generalized Caputo sense, i.e.,
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oat uðtÞ ¼
1

Cð1 � aÞ

Z t

0

ðt � sÞ�a
osuðsÞds for 0\a\1;

where C denotes the usual Gamma function. In the present paper we suppose the following:

Assumption A Let 1\p1; p2\1, q1; q2 2 ð1;1� \ N

2
;1

� �

, m1 2 ½0; a1Þ andm2 2

½0; a2Þ be given constants. There exist nonnegative functions c1 2 Lq1ðXÞ and c2 2 Lq2ðXÞ
such that the following hold:

(F1) for i ¼ 1; 2, fiðx; t; �Þ : R ! R is a measurable function such that

jfiðx; t; nÞj � ciðxÞ � t�mið1 þ jnjÞpi for n 2 R; a.e. ðx; tÞ 2 X� ð0;1Þ;

(F2) for i ¼ 1; 2, fi satisfies the local Lipschitz condition

jfiðx; t; nÞ � fiðx; t; gÞj � ciðxÞ � t�mið1 þ jnj þ jgjÞpi�1jn� gj for n; g 2 R;

a.e. ðx; tÞ 2 X� ð0;1Þ:

Let us start with classical equations, a ¼ 1. We consider the scalar problem

otu ¼ Duþ f ðuÞ in X� ð0; TÞ;
uðx; tÞ ¼ 0 on oX� ð0; TÞ;
uðx; 0Þ ¼ u0ðxÞ in X;

8
><

>:
ð1:2Þ

where f 2 C1 and X is a (possibly unbounded) smooth domain. It is well known that the

problem (1.2) possesses a local in time classical solution for a general nonlinear term f if

u0 2 L1ðXÞ (cf. [7, 16]). On the other hand, in the case where u0 62 L1ðXÞ, the existence

of solutions heavily depends on the balance between the growth rate of f and the singularity

of u0 (cf. [7]). In Weissler [20], (1.2) was studied when f ðuÞ ¼ jujp�1u, p[ 1, and X is

bounded. A local in time solution was constructed when u0 2 LrðXÞ for r[
N

2
ðp� 1Þ and

r� 1, or r ¼ N

2
ðp� 1Þ and r[ 1. It was also shown that if 1� r\

N

2
ðp� 1Þ, then there

exists a nonnegative initial function u0 2 LrðXÞ such that, for every T [ 0, (1.2) admits no

nonnegative solution.

Next, we consider the reaction-diffusion system

otu ¼ Duþ f1ðu; vÞ in X� ð0; TÞ;
otv ¼ Dvþ f2ðu; vÞ in X� ð0; TÞ;
uðx; tÞ ¼ vðx; tÞ ¼ 0 on oX� ð0; TÞ;
uðx; 0Þ ¼ u0ðxÞ; vðx; 0Þ ¼ v0ðxÞ in X:

8
>>><

>>>:

ð1:3Þ

Quittner–Souplet [15] studied (1.3), where f1ðu; vÞ ¼ jvjp1�1v, f2ðu; vÞ ¼ jujp2�1u
ðp1; p2 [ 0Þ and X is bounded. This is called a weakly coupled system. The existence

(resp. nonexistence) of a local in time solution was proved when ðu0; v0Þ 2 Lr1ðXÞ �
Lr2ðXÞ and
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N

2
max

p1

r2

� 1

r1

;
p2

r1

� 1

r2

� �

� 1; p1; p2 [ 1 and r1; r2 [ 1

(resp.
N

2
max

p1

r2

� 1

r1

;
p2

r1

� 1

r2

� �

[ 1, p1; p2 [ 0 and r1; r2 � 1). Moreover, weakly and

strongly coupled variants of system (1.3) were studied in [4–6, 11, 13, 19]. They assumed

that initial functions may have singularities.

We obtain integrability conditions of ðu0; v0Þ which determine the existence/nonexis-

tence of a local in time solution of (1.1). In the proof we combine methods of Gal–Warma

[9] and Quittner–Souplet [15, 16].

To define a mild solution, we recall the Wright type function [10] defined by

UaðzÞ :¼
X1

n¼0

ð�zÞn

n!Cð�anþ 1 � aÞ for 0\a\1 and z 2 C:

This is also sometimes called the Mainardi function and studied in [14, 18, 22]. It follows

from [2, 10] that

UaðtÞ� 0 for t� 0 and

Z 1

0

UaðtÞdt ¼ 1: ð1:4Þ

We prove our nonexistence result using (1.4). It is a key point that the function UaðtÞ is

nonnegative and integrable. Moreover, it is well known ([10]) that

Z 1

0

tpUaðtÞdt ¼
Cðpþ 1Þ
Cðapþ 1Þ for p[ � 1 and 0\a\1: ð1:5Þ

Next, we consider functional spaces. Let 1\r\1. We denote by Wk;rðXÞ the Sobolev

space (resp. the Sobolev–Slobodeckii space) if k is an integer (resp. if k is not an integer).

We also denote by DðXÞ the space of C1-functions with compact support in X. Put

X0ðrÞ :¼ LrðXÞ and X1ðrÞ :¼ W2;rðXÞ \W1;r
0 ðXÞ, where W1;r

0 ðXÞ is the closure of DðXÞ in

W1;rðXÞ. Let D be the Laplace operator with the domain DðDÞ ¼ X1ðrÞ. Then D generates a

C0 analytic semigroup in X0 by [16, Examples 51.4 (i)]. Let X�1ðrÞ be the completion of

X0ðrÞ endowed with the norm jxjX�1ðrÞ :¼ jðxþ DÞ�1xjX0ðrÞ, where x 2 R satisfies that

xþ D : X1ðrÞ ! X0ðrÞ is an isomorphism ([16, p.466, 467]). For 0\h\1, set XhðrÞ :¼
ðX0ðrÞ;X1ðrÞÞh and X�1þhðrÞ :¼ ðX�1ðrÞ;X0ðrÞÞh, where ð�; �Þh is the complex interpolation

functor if h ¼ 1

2
and the real interpolation functor ð�; �Þh;r otherwise. Due to [16, Theo-

rem 51. 1 (i) and Examples 51.4 (i)], we have Xh1
ðrÞ,!Xh2

ðrÞ if �1� h2 � h1 � 1,

XhðrÞ,!W2h;rðXÞ if h� 0; and XhðrÞ ¼: ðX�hðr0ÞÞ0 if h\0; ð1:6Þ

where r0 is the conjugate exponent of r, i.e.,
1

r
þ 1

r0
¼ 1. We denote X0 by the (topological)

dual space if X is a Banach space. We write X,!Y if X is continuously embedded in Y.

Moreover, X¼: Y means that X,!Y and Y,!X.

We are ready to introduce some operators related to fractional derivatives. Let 0� h� 1

and 1\r\1. We observe from [16, Theorem 51.1 (iv)] that the operator D also generates

a C0 analytic semigroup in XhðrÞ, which is denoted by S(t). For 0\a\1 and t[ 0, we

define
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SaðtÞ : XhðrÞ ! XhðrÞ; PaðtÞ : XhðrÞ ! XhðrÞ

by

SaðtÞw :¼
R1

0
UaðsÞSðstaÞwds;

PaðtÞw :¼ ata�1
R1

0
sUaðsÞSðstaÞwds

�

ð1:7Þ

for w 2 XhðrÞ. Note that if w 2 LrðXÞ for some 1� r\1, then we can also define in the

same way as (1.7) (cf.[9]). Moreover, by definition the operator Sa is strongly continuous,

i.e.,

lim
t!0

kSaðtÞw� wkX ¼ 0 for w 2 X; ð1:8Þ

where X ¼ XhðrÞ, 0� h� 1 and 1\r\1, or X ¼ LrðXÞ, 1� r\1.

Definition 1.1 (Mild solution) By a mild solution of (1.1) on [0, T) we mean that the

measurable functions (u, v) have the following properties:

(a) uðtÞ ¼ uð�; tÞ 2 L1ðXÞ and vðtÞ ¼ vð�; tÞ 2 L1ðXÞ for t 2 ð0; TÞ,
(b) f1ðt; vðtÞÞ ¼ f1ð�; t; vð�; tÞÞ 2 L1ðXÞ and f2ðt; uðtÞÞ ¼ f2ð�; t; uð�; tÞÞ 2 L1ðXÞ for almost

all t 2 ð0; TÞ,
(c)

R t
0
f1ðs; vðsÞÞk kL1ðXÞds\1 and

R t
0
f2ðs; uðsÞÞk kL1ðXÞds\1 for t 2 ð0; TÞ,

(d) the functions (u, v) satisfy

uðtÞ ¼ Sa1
ðtÞu0 þ

Z t

0

Pa1
ðt � sÞf1ðs; vðsÞÞds in X� ð0; TÞ;

vðtÞ ¼ Sa2
ðtÞv0 þ

Z t

0

Pa2
ðt � sÞf2ðs; uðsÞÞds in X� ð0; TÞ;

where the integral terms are absolutely converging Bochner integrals in L1ðXÞ,
(e) the initial functions ðu0; v0Þ satisfy

kuðtÞ � u0kLr1 ðXÞ ! 0 ðt ! 0Þ and kvðtÞ � v0kLr2 ðXÞ ! 0 ðt ! 0Þ

for ðu0; v0Þ 2 Lr1ðXÞ � Lr2ðXÞ, if 1� r1; r2\1.

It follows from (1.8) and [9, Remark 3.1.2] that the property of Definition 1.1 (e) holds if

and only if

lim
t!0

kuðtÞ � Sa1
ðtÞu0kLr1 ðXÞ ¼ 0 and lim

t!0
kvðtÞ � Sa2

ðtÞv0kLr2 ðXÞ ¼ 0; ð1:9Þ

which are equivalent to the convergence in the norms of the integral terms in Defini-

tion 1.1 (d) to 0.

We are ready to state our main results.

Theorem 1.2 (Local in time existence) Let N� 1, 0\a1 � a2\1, 1\p1; p2\1,

q1; q2 2 ð1;1� \ N

2
;1

� �

, 1\r1; r2\1, m1 2 ½0; a1Þ and m2 2 ½0; a2Þ: Suppose that

Assumption A holds. Put
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P :¼ N

2

p1

r2

� 1

r1

þ 1

q1

� �

þ m1

a1

; Q :¼ N

2

p2

r1

� 1

r2

þ 1

q2

� �

þ m2

a2

and

R :¼ N

2

p1

r2

� 1

r1

þ 1

q1

� �

þ m1

a2

þ 1 � a1

a2

� �

1 � N

2
1 � 1

r1

� �� �

:

Suppose that one of the following holds:

(a) maxfP;Q;Rg\1,

(b) a1 ¼ a2 and maxfP;Q;Rg ¼ 1,

(c) a1\a2 and maxfP;Q;Rg ¼ 1; where we also suppose that m1 2 ð0; a1Þ when
P ¼ 1.

Then for any ðu0; v0Þ 2 Lr1ðXÞ � Lr2ðXÞ, there exist T [ 0 and a unique local in time mild
solution (u, v) of (1.1) in the sense of Definition 1.1 on the interval [0, T).

We also obtain the following nonexistence result.

Theorem 1.3 (Local in time nonexistence) Let N� 1, 0\a1 � a2\1, 0\p1; p2\1,

q1; q2 2 ½1;1�, 1� r1; r2\1, m1 2 ½0; a1Þ and m2 2 ½0; a2Þ: Put

Q1 :¼ Na1

2a2

p2

r1

� 1

r2

þ 1

q2

� �

þ m2

a2

and Q2 :¼ N

2

a1p2

a2r1

� 1

r2

þ 1

q2

� �

þ m2

a2

:

Put P and R in the same way as in Theorem 1.2. Suppose that maxfP;Q1;Q2;Rg[ 1.
Then there exist nonnegative functions ðc1; c2; u0; v0Þ 2 Lq1ðXÞ � Lq2ðXÞ � Lr1ðXÞ �
Lr2ðXÞ such that, for every T[ 0; the problem (1.1) with f1ðx; t; vÞ ¼ c1ðxÞ � t�m1vp1 and
f2ðx; t; uÞ ¼ c2ðxÞ � t�m2up2 admits no local in time nonnegative mild solution (u, v) in the
sense of Definition 1.1 on the interval [0, T).

If 1\p1; p2\1, then the nonlinear terms f1ðx; t; vÞ ¼ c1ðxÞ � t�m1vp1 and f2ðx; t; uÞ ¼
c2ðxÞ � t�m2up2 mentioned in Theorem 1.3 satisfy Assumption A with R replaced by ½0;1Þ.

We deduce the following corollary from Theorems 1.2 and 1.3.

Corollary 1.4 Let N� 1 and 0\a1 ¼ a2\1: Then the following are true:

(i) Let 1\p1; p2\1, q1; q2 2 ð1;1� \ N

2
;1

� �

, 1\r1; r2\1, m1 2 ½0; a1Þ and

m2 2 ½0; a2Þ: Suppose that Assumption A holds. Put P and Q in the same way as in
Theorem 1.2. If maxfP;Qg� 1; then for any ðu0; v0Þ 2 Lr1ðXÞ � Lr2ðXÞ; there
exist T[ 0 and a unique local in time mild solution (u, v) of (1.1).

(ii) Let 0\p1; p2\1, q1; q2 2 ½1;1�, 1� r1; r2\1, m1 2 ½0; a1Þ and m2 2 ½0; a2Þ: If
maxfP;Qg[ 1; then there exist nonnegative functions ðc1; c2; u0; v0Þ 2 Lq1ðXÞ �
Lq2ðXÞ � Lr1ðXÞ � Lr2ðXÞ such that, for every T [ 0; the problem (1.1) with
f1ðx; t; vÞ ¼ c1ðxÞ � t�m1vp1 and f2ðx; t; uÞ ¼ c2ðxÞ � t�m2up2 admits no local in time
nonnegative mild solution (u, v).

Corollary 1.4 implies that when a1 ¼ a2, we can explicitly determine the existence/

nonexistence of a solution. Our conditions cover all the cases ðp1; p2; q1; q2;m1;m2Þ in

Assumption A. Moreover, Corollary 1.4 leads to the following pure power case result,

which corresponds to [15].
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Corollary 1.5 Let N� 1 and 0\a1 ¼ a2\1: Then the following are true:

(i) Let 1\p1; p2\1 and 1\r1; r2\1. Put

eP :¼ N

2

p1

r2

� 1

r1

� �

and eQ :¼ N

2

p2

r1

� 1

r2

� �

:

If maxfeP ; eQg� 1; then for any ðu0; v0Þ 2 Lr1ðXÞ � Lr2ðXÞ, there exist T[ 0 and

a unique local in time mild solution (u, v) of (1.1) with f1ðx; t; vÞ ¼ jvjp1�1v and

f2ðx; t; uÞ ¼ jujp2�1u.

(ii) Let 0\p1; p2\1 and 1� r1; r2\1. If maxfeP ; eQg[ 1; then there are nonneg-
ative functions ðu0; v0Þ 2 Lr1ðXÞ � Lr2ðXÞ such that, the problem (1.1) with
f1ðx; t; vÞ ¼ vp1 and f2ðx; t; uÞ ¼ up2 has no local in time nonnegative mild solution
on any time interval.

Let us recall fundamental properties of scalar problems. Fractional in time parabolic

equations with nonlinear terms have not been well studied until recently. Gal–Warma [9]

has studied the fractional in time scalar problem

oat u ¼ Auþ f ðx; t; uÞ in X� ð0; TÞ;
uðx; 0Þ ¼ u0ðxÞ in X;

�

ð1:10Þ

where A is a differential operator which generates a strongly continuous semigroup on

L2ðXÞ. Detailed results can be found in [1, 3, 8, 12]. Let 1� p\1 and q1; q2 2 ½1;1� be

given constants. In [9] the authors assumed that there exists a nonnegative function c 2
Lq1;q2

such that the following hold:

(F1’) f ðx; t; �Þ : R ! R is a measurable function such that

jf ðx; t; nÞj � cðx; tÞ ð1 þ jnjÞp for n 2 R; a.e.ðx; tÞ 2 X� ð0;1Þ;

(F2’) f satisfies the local Lipschitz condition

jf ðx; t; nÞ � f ðx; t; gÞj � cðx; tÞ ð1 þ jnj þ jgjÞp�1jn� gj for n; g 2 R;

a.e. ðx; tÞ 2 X� ð0;1Þ:

Here Lq1;q2
denotes the Banach space defined by

Lq1;q2
:¼ c : X� ð0;1Þ ! R measurable; kckLq1 ;q2

:¼ sup
t1;t22ð0;1Þ;
0� t2�t1 � 1

Z t2

t1

kcð�; sÞkq2

Lq1 ðXÞds

� � 1
q2

\1

8
><

>:

9
>=

>;

for q1 2 ½1;1� and q2 2 ½1;1Þ with the obvious modifications when q2 ¼ 1. Proposi-

tion 2.2.2 of [9, p.21, 22] states the following existence result. Let 0\a\1, 1� p\1,

q1 2 ½1;1� \ ðbA;1� and q2 2 1

a
;1

� �

. The constant bA is related to the Lp-Lq estimate

of the semigroup generated by A. Assume (F1’) and (F2’). If
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bA
p� 1

r
þ 1

q1

� �

þ 1

aq2

\1 and 1� p; r\1; or

bA
p� 1

r
þ 1

q1

� �

þ 1

aq2

¼ 1 and 1\p; r\1;

then for any u0 2 LrðXÞ, there exist T[ 0 and a unique local in time solution of (1.10).

Note that if X is a bounded domain in RN , N� 1, with C2 boundary, A ¼ D and

f ðx; t; uÞ ¼ jujp�1u, p[ 1, then bA ¼ N

2
, q1 ¼ q2 ¼ 1 and hence this result corresponds to

the existence part in [20].

In [9, Remark 5.0.2], based on [20, 21], they conjectured the nonexistence of a local in

time solution of (1.10) in the super-critical case

bA
p� 1

r
þ 1

q1

� �

þ 1

aq2

[ 1: ð1:11Þ

We give an affirmative answer to the conjecture when A ¼ D. Sect. 5 is devoted to this

nonexistence result.

Let us explain a sketch of the proofs. The main points of the proofs are Cauchy

sequences for the existence part, including

unðtÞ ¼ Sa1
ðtÞu0 þ

Z t

0

Pa1
ðt � sÞf1ðs; vn�1ðsÞÞds; ð1:12Þ

vnðtÞ ¼ Sa2
ðtÞv0 þ

Z t

0

Pa2
ðt � sÞf2ðs; un�1ðsÞÞds ð1:13Þ

for n� 2, u1 ¼ v1 ¼ 0, and the contradiction argument for the nonexistence part.

For the existence part by induction method we can show that if T [ 0 is sufficiently

small, then fung1n¼1 and fvng1n¼1 are Cauchy sequences. Then limits u and v of the

sequences exist and (u, v) is a mild solution of (1.1) in the sense of Definition 1.1. In order

to show that these are indeed Cauchy sequences, it is crucial to find various exponents

including h1, h2 and h3. However, it is not obvious how to find these exponents. Section 3

addresses this aspect.

For the nonexistence part we construct initial data ðu0; v0Þ. Assume that (1.1) has a local

in time nonnegative mild solution (u, v). Since the singularity of the constructed functions

are strong, the norm of at least one integral term in Definition 1.1 (d) diverges as t ! 0,

which follows from estimates of SaðtÞ and PaðtÞ. This is a contradiction. It is known (cf.

[16, p.440]) that there exists a positive C1-function GX : X� X� ð0;1Þ ! R (Dirichlet

heat kernel) such that

SðtÞ/ð ÞðxÞ ¼
Z

X
GXðx; y; tÞ/ðyÞdy

for / 2 LrðXÞ, 1� r�1. After that, we abbreviate GX as G. Since G has a lower bound

with respect to t, we obtain estimates of SaðtÞ and PaðtÞ from (1.7).

This paper is organized as follows. In Sect. 2 we give and recall some properties of

SaðtÞ, PaðtÞ and the Dirichlet heat kernel. In Sects. 3 and 4 we use these properties and

prove Theorems 1.2 and 1.3, respectively. In Sect. 5 we give a nonexistence result for

scalar problems. In Sect. 6 we discuss our results and explain possible future problems

ensuing from the current analysis.
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2 Preliminaries

For any set X and the mappings a ¼ aðxÞ and b ¼ bðxÞ from X to ½0;1Þ, we say

aðxÞ . bðxÞ for all x 2 X

if there exists a positive constant C such that aðxÞ�CbðxÞ for all x 2 X .

Proposition 2.1 Let 0\a\1; 1\r\1 and �1� h1 � h2 � 1: Then the following are
true:

(i) If h2 � h1\1; then there exists C[ 0 such that

jSaðtÞwjXh2
ðrÞ �Ctaðh1�h2ÞjwjXh1

ðrÞ

for t[ 0 and w 2 Xh1
ðrÞ:

(ii) If h1 [ � 1 or h2\1; then there exists C[ 0 such that

jt1�aPaðtÞwjXh2
ðrÞ �Ctaðh1�h2ÞjwjXh1

ðrÞ

for t[ 0 and w 2 Xh1
ðrÞ.

Proof We prove (i) in a similar manner to [9, Proposition 2.2.2]. Using (1.5), (1.7) and

[15, Theorem 51.1 (iv)], we have

jSaðtÞwjXh2
ðrÞ �

Z 1

0

UaðsÞjSðstaÞwjXh2
ðrÞds

.

Z 1

0

UaðsÞsh1�h2 taðh1�h2ÞjwjXh1
ðrÞds

¼ taðh1�h2ÞjwjXh1
ðrÞ

Z 1

0

UaðsÞsh1�h2ds

¼ Cð1 þ h1 � h2Þ
Cð1 þ aðh1 � h2ÞÞ

taðh1�h2ÞjwjXh1
ðrÞ:

We can obtain the assertion (ii) in the same way as the assertion (i). h

Lemma 2.2 Let 0\a1 � a2\1 and 0\T\1: For i ¼ 1; 2; let 0\hi\1, 1\ri\1 and
Pi � X0ðriÞ ð¼ LriðXÞÞ: Suppose that for i ¼ 1; 2,

jðPiÞ :¼ ujuj�1
X0ðriÞ : u 2 Pi; u 6¼ 0

n o

is precompact in X0ðriÞ: Then there exists a continuous and nondecreasing function g :
ð0; TÞ ! ð0;1Þ; depending on ai, hi, ri and Pi ði ¼ 1; 2Þ such that the following are true:

(i) For i ¼ 1; 2; the following is true:

jSaiðtÞujXhi ðriÞ
. gðtÞ � t�a2hi jujX0ðriÞ for 0\t\T and u 2 Pi:

(ii) We have limt!0 gðtÞ ¼ 0. For i ¼ 1; 2; the function wi ¼ wiðtÞ defined by

ðwiðtÞÞ�a2hi ¼ gðtÞ � t�a2hi

has the properties
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lim
t!0

wiðtÞ ¼ 0 and min t; t
1�minfh1 ;h2g

2hi

� �

�wiðtÞ� t
1� minfh1 ;h2g

2 maxfh1 ;h2g:

Proof Define

h1ðt; uÞ :¼ jSa1
ðtÞujXh1

ðr1ÞC
�1
0 ta1h1 juj�1

X0ðr1Þ for ðt; uÞ 2 ð0; TÞ �P1nf0g;

h1ðtÞ :¼ sup h1ðs; uÞ : s 2 ð0; t�; u 2 P1nf0gf g for t 2 ð0; TÞ;

(

where C0ð¼ CÞ[ 0 is the constant from Proposition 2.1 (i). We observe from

[9, Lemma A.0.2] that 0� h1 � 1, limt!0 h1ðtÞ ¼ 0 and

jSa1
ðtÞujXh1

ðr1Þ � C0h1ðtÞ � t�a1h1 jujX0ðr1Þ

. C0h1ðtÞ � t�a2h1 jujX0ðr1Þ for 0\t\T and u 2 P1:

Put h2 in the same way. We set

gðtÞ :¼ max h1ðtÞ; h2ðtÞ; tda2h1 ; tda2h2
� �

;

where d :¼ minfh1; h2g
2 maxfh1; h2g

.

It suffices to prove the estimates of wiðtÞ for i ¼ 1; 2. Since gðtÞ� tda2h1 , we obtain

w1ðtÞ ¼ gðtÞ�
1

a2h1 � t� t1�d for t[ 0:

On the other hand, let 0\t\minfT; 1g. Due to h1; h2 � 1, we have gðtÞ� 1 and hence

w1ðtÞ� t. If t� 1, then gðtÞ ¼ tda2 maxfh1;h2g. Thus it follows that

w1ðtÞ ¼ t
1�dmaxfh1 ;h2g

h1 ¼ t
1�minfh1 ;h2g

2h1 :

Therefore, we deduce the desired estimate of w1ðtÞ. We can obtain the estimate of w2ðtÞ in

the same way. h

Proposition 2.3 ([16, Proposition 49.10]) Let N� 1 and X be an arbitrary domain in RN.
There exist constants c1 [ 0 and c2 � 2 depending only on N, such that the Dirichlet heat
kernel G(x, y, t) in X satisfies

Gðx; y; tÞ� c1t
�N

2

for t[ 0 and x; y 2 X such that

distðx; oXÞ� c2

ffiffi
t

p
and jx� yj �

ffiffi
t

p
:

3 Existence result

Proposition 3.1 Let N� 1, 0\a1 � a2\1, 1\p1; p2\1, q1; q2 2 ð1;1� \ N

2
;1

� �

,

1\r1; r2\1, m1 2 ½0; a1Þ and m2 2 ½0; a2Þ. Put P, Q and R in the same way as in
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Theorem 1.2. If maxfP;Q;Rg\1; then there exist ðs1; h2; z1; z2Þ, ðs2; h1; z3; z4Þ 2 ð0; 1Þ �
ð0; 1Þ � ð1;1Þ � ð1;1Þ such that

1

z1

� 2

N
ð1 � s1Þ ¼

1

r1

;
1

q1

þ p1

z2

¼ 1

z1

and
1

r2

� 2

N
h2 �

1

z2

; ð3:1Þ

a1s1 � m1 � p1a2h2 þ ða2 � a1Þh1 [ 0; ð3:2Þ

m1 þ p1a2h2\1; ð3:3Þ

h1\s1; ð3:4Þ

1

z3

� 2

N
ð1 � s2Þ ¼

1

r2

;
1

q2

þ p2

z4

¼ 1

z3

and
1

r1

� 2

N
h1 �

1

z4

; ð3:5Þ

a2s2 � m2 � p2a2h1 [ 0; ð3:6Þ

h2\s2: ð3:7Þ

Moreover, if maxfP;Q;Rg ¼ 1; then there exist ðs1; h2; z1; z2Þ, ðs2; h1; z3; z4Þ 2 ð0; 1Þ �
ð0; 1Þ � ð1;1Þ � ð1;1Þ such that (3.1)–(3.7) hold with (3.2) and (3.6) replaced by a1s1 �
m1 � p1a2h2 þ ða2 � a1Þh1 � 0 and a2s2 � m2 � p2a2h1 � 0; respectively.

Proof Suppose that maxfP;Q;Rg\1. For 1 � N

2
1 � 1

r1

� �

\s\min 1; 1 � N

2

�

1

q1

� 1

r1

� ��

, put

h2ðsÞ :¼
N

2p1

p1

r2

� 1

r1

þ 1

q1

� �

� 1

p1

ð1 � sÞ;

1

z1ðsÞ
:¼ 2

N
ð1 � sÞ þ 1

r1

and

1

z2ðsÞ
:¼ 1

p1

1

r1

� 1

q1

þ 2

N
ð1 � sÞ

� �

:

We see that

max
1

q1

;
1

r1

� �

\
1

z1ðsÞ
\1 and max

1

p1

1

r1

� 1

q1

� �

; 0

� �

\
1

z2ðsÞ
\

1

p1

1 � 1

q1

� �

:

Hence, z1ðsÞ 2 ð1;1Þ and z2ðsÞ 2 ð1;1Þ. Let ðs1; h2; z1; z2Þ ¼ ðs; h2ðsÞ; z1ðsÞ; z2ðsÞÞ. By

direct calculation we have (3.1). In the same way we derive (3.5) with

ðs2; h1; z3; z4Þ ¼ ð~s; h1ð~sÞ; z3ð~sÞ; z4ð~sÞÞ, where
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h1ð~sÞ :¼
N

2p2

p2

r1

� 1

r2

þ 1

q2

� �

� 1

p2

ð1 � ~sÞ;

1

z3ð~sÞ
:¼ 2

N
ð1 � ~sÞ þ 1

r2

and

1

z4ð~sÞ
:¼ 1

p2

1

r2

� 1

q2

þ 2

N
ð1 � ~sÞ

� �

for 1 � N

2
1 � 1

r2

� �

\~s\min 1; 1 � N

2

1

q2

� 1

r2

� �� �

. Moreover, we see that (3.3) and

(3.6) follow from P\1 and Q\1, respectively.

Substituting ðs1; h2; s2; h1Þ ¼ ðs; h2ðsÞ; ~s; h1ð~sÞÞ into (3.4) and (3.7), we obtain

N

2p1

p1

r2

� 1

r1

þ 1

q1

� �

� 1

p1

ð1 � sÞ\~s; ð3:8Þ

N

2p2

p2

r1

� 1

r2

þ 1

q2

� �

� 1

p2

ð1 � ~sÞ\s: ð3:9Þ

We show that (3.8) holds with ðs; ~sÞ ¼ max 1 � N

2
1 � 1

r1

� �

;
m1

a1

� �

;

�

min 1; 1 � N

2

1

q2

� 1

r2

� �� ��

. Since P\1, we have

N

2p1

p1

r2

� 1 þ 1

q1

� �

\
N

2p1

p1

r2

� 1

r1

þ 1

q1

� �

\
1

p1

1 � m1

a1

� �

\1:

Moreover, it follows from q1; q2 2 ð1;1� \ N

2
;1

� �

that
N

2p1

p1

r2

� 1 þ 1

q1

� �

\
N

2r2

\1 � N

2

1

q2

� 1

r2

� �

. Thus (3.8) holds when s ¼ 1 � N

2
1 � 1

r1

� �

. Since P\1, the left

hand side of (3.8) is negative when s ¼ m1

a1

. Therefore, (3.8) holds with

ðs; ~sÞ ¼ max 1 � N

2
1 � 1

r1

� �

;
m1

a1

� �

;min 1; 1 � N

2

1

q2

� 1

r2

� �� �� �

. In the same way

(3.9) holds with ðs; ~sÞ ¼ min 1; 1 � N

2

1

q1

� 1

r1

� �� �

;max 1 � N

2
1 � 1

r2

� �

;
m2

a2

� �� �

.

We divide the possibilities into two cases: a1 ¼ a2 and a1\a2.

Let a1 ¼ a2. Since P\1, we obtain (3.2). Put

I1 :¼ max 1 � N

2
1 � 1

r1

� �

;
m1

a1

� �

;min 1; 1 � N

2

1

q1

� 1

r1

� �� �� �

;

I2 :¼ max 1 � N

2
1 � 1

r2

� �

;
m2

a2

� �

;min 1; 1 � N

2

1

q2

� 1

r2

� �� �� �

and R :¼ I1 � I2:

The area of ðs; ~sÞ satisfying (3.8) and (3.9) is the shaded portion on the graphs. See Fig. 1.

Due to the above calculation results, the position of R is as shown in the left figure, but not

as shown in the right one. Thus there exists ðs; ~sÞ 2 R such that (3.8) and (3.9) hold.

It remains to consider h1 and h2. We observe from (3.8) and (3.9) that h2ðsÞ\1 and

h1ð~sÞ\1. If h2ðsÞ� 0, then we replace h2 ¼ h2ðsÞ with h2 ¼ e[ 0, where e is sufficiently
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small such that a1s1 � m1 � p1a2e[ 0 and e\~s. We see that (3.1), (3.2), (3.3) and (3.7)

hold. If h1ð~sÞ� 0, then we can replace h1ð~sÞ with h1 2 ð0; 1Þ in the same way.

Let a1\a2. We recall that

ðs1; h2; z1; z2Þ ¼ ðs; h2ðsÞ; z1ðsÞ; z2ðsÞÞ and ðs2; h1; z3; z4Þ ¼ ð~s; h1ð~sÞ; z3ð~sÞ; z4ð~sÞÞ:

We divide the possibilities into two cases: (i)
p2

r1

� 1

r2

þ 1

q2

[ 0 and (ii)
p2

r1

� 1

r2

þ 1

q2

� 0.

We prove (i). It follows that (3.1), (3.3), (3.5) and (3.6) hold. The inequality (3.2) is

equivalent to

N

2p2

p2

r1

� 1

r2

þ 1

q2

� �

� 1

p2

ð1 � ~sÞ[ sþ
N
2

p1

r2
� 1

r1
þ 1

q1


 �
þ m1

a2
� 1

1 � a1

a2

; ð3:10Þ

which holds with ðs; ~sÞ ¼ max 1 � N

2
1 � 1

r1

� �

;
m1

a1

� �

;min 1; 1 � N

2

1

q2

� 1

r2

� �� �� �

.

Indeed, the right hand side of (3.10) is negative when s ¼ m1

a1

(resp. when

s ¼ 1 � N

2
1 � 1

r1

� �

), since P\1 (resp. since R\1). On the other hand, since

p2

r1

� 1

r2

þ 1

q2

[ 0, the left hand side of (3.10) is positive.

The area of ðs; ~sÞ satisfying (3.8), (3.9) and (3.10) is the shaded portion on the graphs.

See Fig. 2. Here, R is defined in the same way as when a1 ¼ a2. Due to the above

calculation results, the position of R is as shown in the left figure, but not as shown in the

right one. Thus there exists ðs; ~sÞ 2 R such that (3.8), (3.9) and (3.10) hold.

It remains to consider h1 and h2. We observe from (3.8) and (3.9) that h2ðsÞ\1 and

h1ð~sÞ\1. If h2ðsÞ� 0 or h1ð~sÞ� 0, then it is sufficient to replace it/them in the same way as

when a1 ¼ a2.

We prove (ii). Let e[ 0 be sufficiently small. Put

s :¼ max 1 � N

2
1 � 1

r1

� �

;
m1

a1

� �

þ e 2 I1 and ~s :¼ min 1; 1 � N

2

1

q2

� 1

r2

� �� �

� e 2 I2

Fig. 1 Possible relative positions of the rectangle R and sector defined by (3.8)–(3.9)
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Due to h1ð~sÞ\0 in this case, we replace h1 ¼ h1ð~sÞ with h1 ¼ e. It follows that (3.1), (3.3)

and (3.5) hold. Since h1 ¼ e is sufficiently small, s� e[ 0 and ~s[
m2

a2

, we obtain (3.4)

and (3.6). The inequality (3.2) is equivalent to (3.10) with the left hand side replaced by e.
Then by maxfP;Rg\1 we deduce (3.2). Moreover, since (3.8) holds with

ðs; ~sÞ ¼ max 1 � N

2
1 � 1

r1

� �

;
m1

a1

� �

;min 1; 1 � N

2

1

q2

� 1

r2

� �� �� �

, (3.8) also holds with

ðs; ~sÞ ¼ max 1 � N

2
1 � 1

r1

� �

;
m1

a1

� �

þ e;min 1; 1 � N

2

1

q2

� 1

r2

� �� �

� e

� �

.

It remains to consider h2. We observe from (3.8) that h2ðsÞ\1. If h2ðsÞ� 0, then it is

sufficient to replace it in the same way as when a1 ¼ a2.

Since we can prove the case where maxfP;Q;Rg ¼ 1 in a similar way, we omit the

proof. h

Lemma 3.2 Suppose that a1\a2 and maxfP;Q;Rg\1 hold in particular in the
assumptions of Proposition 3.1. Let s1 2 ð0; 1Þ be chosen in Proposition 3.1. Put

S :¼
1 � N

2
p1

r2
� 1

r1
þ 1

q1


 �
� m1

a2

1 � a1

a2

:

If s1 �S; then the following are true:

(i) There exists s3 2 ð0; 1Þ such that 1 � N

2
1 � 1

r1

� �

\s3\S and that h3 :¼

h2ðs3Þ[ 0; where h2ðsÞ is defined in the proof of Proposition 3.1.
(ii) h2ðs1Þ[ 0.

Proof By direct calculation we have p1a2h2ðSÞ ¼ a1S � m1. It follows from P\1 that

S[
m1

a1

. Then h2ðSÞ[ 0 holds. Note that R\1 yields 1 � N

2
1 � 1

r1

� �

\S. Choosing

max 1 � N

2
1 � 1

r1

� �

;
m1

a1

� �

\s3\S sufficiently large, we obtain h2ðs3Þ[ 0. Moreover,

we see that

Fig. 2 Possible relative positions of the rectangle R and the strip defined by (3.8)–(3.10)
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max 1 � N

2
1 � 1

r1

� �

;
m1

a1

� �

\s3\S� s1\1:

Thus s3 2 ð0; 1Þ holds. Since h2ðsÞ is increasing with respect to s, we have

h2ðs1Þ[ h2ðs3Þ[ 0. The proof is complete. h

Proof of Theorem 1.2 Set u1 :¼ 0 and v1 :¼ 0. For n� 2, define the functions un and vn by

(1.12) and (1.13), respectively. We introduce the Banach space defined by

Yh;r;T :¼ u 2 L1locðð0; T�;XhðrÞÞ : kukYh;r;T :¼ sup
t2ð0;TÞ

ta2hjuðtÞjXhðrÞ\1
( )

for 0\h\1, 1\r\1 and T [ 0.

We prove the case (a). Choose ðs1; h2; z1; z2Þ and ðs2; h1; z3; z4Þ as in Proposition 3.1.

We consider the existence part. Let T [ 0. Assume that ðun�1; vn�1Þ 2 Yh1;r1;T � Yh2;r2;T .

We obtain from Proposition 2.1 that for 0\t\T ,

ta2h1 junjXh1
ðr1Þ � ta2h1 jSa1

ðtÞu0jXh1
ðr1Þ þ ta2h1

Z t

0

jPa1
ðt � sÞf1ðs; vn�1ðsÞÞjXh1

ðr1Þds

. ju0jX0ðr1Þ þ ta2h1

Z t

0

ðt � sÞa1ðs1�h1Þ�1jf1ðs; vn�1ðsÞÞjXs1�1ðr1Þds:

ð3:11Þ

It follows from (1.6) and the first equality of (3.1) that X1�s1
ðr01Þ,!Lz

0
1ðXÞ, which implies

that Lz1ðXÞ,!Xs1�1ðr1Þ. By the last inequality of (3.1) we have Xh2
ðr2Þ,!Lz2ðXÞ. Then we

can deduce from Assumption A and (3.1) that for 0\s\t,

jf1ðs; vn�1ðsÞÞjXs1�1ðr1Þ. kf1ðs; vn�1ðsÞÞkLz1 ðXÞ � kc1 � s�m1ð1 þ jvn�1ðsÞjÞp1kLz1 ðXÞ
� s�m1 � kc1kLq1 ðXÞkð1 þ jvn�1ðsÞjÞp1k

L
z2
p1 ðXÞ

¼ s�m1 � kc1kLq1 ðXÞk1 þ jvn�1ðsÞjkp1

Lz2 ðXÞ

. s�m1 � kc1kLq1 ðXÞj1 þ jvn�1ðsÞjjp1

Xh2
ðr2Þ

� s�m1�p1a2h2 � kc1kLq1 ðXÞk1 þ jvn�1jkp1

Yh2 ;r2 ;T
;

ð3:12Þ

which yields

ta2h1

Z t

0

ðt � sÞa1ðs1�h1Þ�1jf1ðs; vn�1ðsÞÞjXs1�1ðr1Þds

. ta2h1

Z t

0

ðt � sÞa1ðs1�h1Þ�1s�m1�p1a2h2 � kc1kLq1 ðXÞk1 þ jvn�1jkp1

Yh2 ;r2 ;T
ds

�kc1kLq1 ðXÞk1 þ jvn�1jkp1

Yh2 ;r2 ;T
� ta1s1�m1�p1a2h2þða2�a1Þh1

�
Z 1

0

ð1 � sÞa1ðs1�h1Þ�1s�m1�p1a2h2ds

ð3:13Þ

for 0\t\T . Here we use a1ðs1 � h1Þ � 1[ � 1 and 0\m1 þ p1a2h2\1, which follow

from (3.4) and (3.3), respectively. Combining (3.2), (3.11) and (3.13), we have

un 2 Yh1;r1;T . We can obtain vn 2 Yh2;r2;T in the same way. By induction we derive

ðun; vnÞ 2 Yh1;r1;T � Yh2;r2;T for n� 1.
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We divide the possibilities into two cases: (i) a1 ¼ a2, or a1\a2 and s1\S and (ii)

a1\a2 and s1 �S. In the case (ii) we also choose s3 and put h3 as in Lemma 3.2.

Moreover, let us introduce the Banach space defined by

Yh2;h3;r2;T : ¼
�

u 2 L1locðð0; T �;Xh2
ðr2Þ \ Xh3

ðr2ÞÞ : kukYh2 ;h3 ;r2 ;T
:

¼ max kukYh2 ;r2 ;T
; kukYh3 ;r2 ;T

n o
\1

�

:

In a similar way to (3.11), (3.12) and (3.13) we obtain

ta2h3 jvnjXh3
ðr2Þ

� ta2h3 jSa2
ðtÞv0jXh3

ðr2Þ þ ta2h3

Z t

0

jPa2
ðt � sÞf2ðs; un�1ðsÞÞjXh3

ðr2Þds

. jv0jX0ðr2Þ þ ta2h3

Z t

0

ðt � sÞa2ðs2�h3Þ�1jf2ðs; un�1ðsÞÞjXs2�1ðr2Þds

. jv0jX0ðr2Þ þ ta2h3

Z t

0

ðt � sÞa2ðs2�h3Þ�1s�m2�p2a2h1 � kc2kLq2 ðXÞk1 þ jun�1jkp2

Yh1 ;r1 ;T
ds

� jv0jX0ðr2Þ þ kc2kLq2 ðXÞk1 þ jun�1jkp2

Yh1 ;r1 ;T
� ta2s2�m2�p2a2h1

�
Z 1

0

ð1 � sÞa2ðs2�h3Þ�1s�m2�p2a2h1ds:

ð3:14Þ

Here we apply s2 [ h2 ¼ h2ðs1Þ[ h2ðs3Þ ¼ h3, which follows from (3.7) and Lemma 3.2.

Then un�1 2 Yh1;r1;T leads not only to vn 2 Yh2;r2;T but also to vn 2 Yh3;r2;T . Thus vn 2
Yh2;h3;r2;T for n� 1.

We consider the rest of the existence part only in the case (i). In the case (ii) it can be

proved by replacing Yh2;r2;T and Yh2;r2;T	 with Yh2;h3;r2;T and Yh2;h3;r2;T	 , respectively.

In a similar way there exist C1 [ 0 and C2 [ 0 such that for n� 2,

kunþ1 � unkYh1 ;r1 ;T
�C1T

a1s1�m1�p1a2h2þða2�a1Þh1kc1kLq1 ðXÞk1 þ jvnj þ jvn�1jkp1�1
Yh2 ;r2 ;T

kvn � vn�1kYh2 ;r2 ;T
;

kvnþ1 � vnkYh2 ;r2 ;T
�C2T

a2s2�m2�p2a2h1kc2kLq2 ðXÞk1 þ junj þ jun�1jkp2�1
Yh1 ;r1 ;T

kun � un�1kYh1 ;r1 ;T
:

ð3:15Þ

Put U :¼ 2 max ku2kYh1 ;r1 ;T
; kv2kYh2 ;r2 ;T

n o
and choose a sufficiently small time T	 [ 0 such

that

C1T	
a1s1�m1�p1a2h2þða2�a1Þh1kc1kLq1 ðXÞð1 þ 2UÞp1�1 � 1

2
;

C2T	
a2s2�m2�p2a2h1kc2kLq2 ðXÞð1 þ 2UÞp2�1 � 1

2
:

ð3:16Þ

Note that T	 is independent of n. By induction together with (3.15) and (3.16) we have
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kunkYh1 ;r1 ;T	
�U for n� 1;

kvnkYh2 ;r2 ;T	
�U for n� 1;

kunþ1 � unkYh1 ;r1 ;T	
� 1

2
kvn � vn�1kYh2 ;r2 ;T	

for n� 2;

kvnþ1 � vnkYh2 ;r2 ;T	
� 1

2
kun � un�1kYh1 ;r1 ;T	

for n� 2:

8
>>>>>>><

>>>>>>>:

ð3:17Þ

By iteration in (3.17) the sequences fung1n¼1 and fvng1n¼1 are Cauchy in the Banach spaces

Yh1;r1;T	 and Yh2;r2;T	 , respectively. Consequently, there exist limits u 2 Yh1;r1;T	 and v 2
Yh2;r2;T	 such that

lim
n!1

kun � ukYh1 ;r1 ;T	
¼ 0 and lim

n!1
kvn � vkYh2 ;r2 ;T	

¼ 0: ð3:18Þ

We show that the limits u and v have all the properties of Definition 1.1 on ½0; T	Þ.
Property (a) immediately follows from u 2 Yh1;r1;T	 and v 2 Yh2;r2;T	 . We obtain in the same

way as we deduce (3.12) that

Z T	

0

kf1ðs; vðsÞÞkL1ðXÞds.

Z T	

0

kf1ðs; vðsÞÞkLz1 ðXÞds

.

Z T	

0

s�m1�p1ah2 � kc1kLq1 ðXÞk1 þ jvjkp1

Yh2 ;r2 ;T	
ds

¼ ðT	Þ1�m1�p1a2h2

1 � m1 � p1a2h2

� kc1kLq1 ðXÞk1 þ jvjkp1

Yh2 ;r2 ;T	
:

Here we use m1 þ p1a2h2\1 by (3.3). Since the same is true for f2, (u, v) satisfies the

properties (b) and (c).

We mention the properties (d) and (e). We divide the possibilities into the same two

cases as in the existence part.

In the case (i) it follows that

a1s1 � m1 � p1a2h2 [ 0: ð3:19Þ

Indeed, when h2 ¼ h2ðs1Þ, (3.19) follows from P\1 (resp. s1\S) if a1 ¼ a2 (resp. if

a1\a2). On the other hand, when h2 ¼ e, i.e., h2ðs1Þ� 0, (3.19) follows from the choice of

e in the proof of Proposition 3.1. Then in the same way as (3.15) with h1 replaced by 0 we

can evaluate

Z t

0

Pa1
ðt � sÞ f1ðs; vnðsÞÞ � f1ðs; vðsÞÞð Þds

�
�
�
�

�
�
�
�
Lr1 ðXÞ

�C1ðT	Þa1s1�m1�p1a2h2kc1kLq1 ðXÞk1 þ jvnj þ jvjkp1�1
Yh2 ;r2 ;T	

kvn � vkYh2 ;r2 ;T	
;

ð3:20Þ

which converges to zero as n ! 1, by (3.18).

In the case (ii) it follows from Lemma 3.2 (ii) that h2 ¼ h2ðs1Þ. Since s3\S, we have

a1s3 � m1 � p1a2h3 ¼ a1s3 � m1 � p1a2h2ðs3Þ[ 0: ð3:21Þ

Then we obtain in the same way as (3.11), (3.12) and (3.13) with ðs1; h2; z1; z2Þ ¼
ðs1; h2ðs1Þ; z1ðs1Þ; z2ðs1ÞÞ and h1 replaced by ðs3; h3; z1ðs3Þ; z2ðs3ÞÞ and 0, respectively that
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junþ1 � unjXh1
ðr1Þ

�C1ðT	Þa1s3�m1�p1a2h3kc1kLq1 ðXÞk1 þ jvnj þ jvn�1jkp1�1
Yh3 ;r2 ;T	

kvn � vn�1kYh3 ;r2 ;T	

�C1ðT	Þa1s3�m1�p1a2h3kc1kLq1 ðXÞk1 þ jvnj þ jvn�1jkp1�1
Yh2 ;h3 ;r2 ;T	

kvn � vn�1kYh2 ;h3 ;r2 ;T	
;

which implies that

Z t

0

Pa1
ðt � sÞ f1ðs; vnðsÞÞ � f1ðs; vðsÞÞð Þds

�
�
�
�

�
�
�
�
Lr1 ðXÞ

�C1ðT	Þa1s3�m1�p1a2h3kc1kLq1 ðXÞk1 þ jvnj þ jvjkp1�1
Yh2 ;h3 ;r2 ;T	

kvn � vkYh2 ;h3 ;r2 ;T	
:

ð3:22Þ

Both (3.18) and (3.20) (or (3.22)) enable us to take the limit of (1.12) as n ! 1 in L1ðXÞ.
Since we can take the limit of (1.13) in a similar way, we deduce the integral system in

Definition 1.1 (d). For the last property (e), it suffices to prove (1.9). In the case (i) it

follows from (3.13) with h1 and vn�1 replaced by 0 and v, respectively and (3.19) that

kuðtÞ � Sa1
ðtÞu0kLr1 ðXÞ

.

Z t

0

ðt � sÞa1s1�1jf1ðs; vðsÞÞjXs1�1ðr1Þds

. kc1kLq1 ðXÞk1 þ jvjkp1

Yh2 ;r2 ;T	
� ta1s1�m1�p1a2h2

Z 1

0

ð1 � sÞa1s1�1s�m1�p1a2h2ds

! 0 ðt ! 0Þ:

ð3:23Þ

In the case (ii) we observe from considering (3.13) and (3.19) that (3.23) also holds with s1

and h2 replaced by s3 and h3, respectively. Moreover, in both cases (i) and (ii) since we can

obtain limt!0 kvðtÞ � Sa2
ðtÞv0kLr2 ðXÞ ¼ 0 in a similar way, (1.9) holds. Thus (u, v) pos-

sesses the desired properties of Definition 1.1.

We consider the uniqueness of the mild solution only in the case (i). In the case (ii) it

can be proved by replacing Yh2;r2;T with Yh2;h3;r2;T . We can derive the uniqueness from

calculations similar to (3.15). Indeed, let T 2 ð0; T	� and let ðu; vÞ; ð~u; ~vÞ 2 Yh1;r1;T � Yh2;r2;T

be any two mild solutions of (1.1) with the same initial data ðu0; v0Þ. In a similar way to

deduce (3.15) it follows that

ku� ~ukYh1 ;r1 ;T
�C1T

a1s1�m1�p1a2h2þða2�a1Þh1kc1kLq1 ðXÞk1 þ jvj þ j~vjkp1�1
Yh2 ;r2 ;T

kv� ~vkYh2 ;r2 ;T
;

kv� ~vkYh2 ;r2 ;T
�C2T

a2s2�m2�p2a2h1kc2kLq2 ðXÞk1 þ juj þ j~ujkp2�1
Yh1 ;r1 ;T

ku� ~ukYh1 ;r1 ;T
:

ð3:24Þ

We see that there exists a sufficiently small time bT 2 ð0; T� such that

C1
bT
a1s1�m1�p1a2h2þða2�a1Þh1kc1kLq1 ðXÞk1 þ jvj þ j~vjkp1�1

Yh2 ;r2 ;T
� 1

2
;

C2
bT
a2s2�m2�p2a2h1kc2kLq2 ðXÞk1 þ juj þ j~ujkp2�1

Yh1 ;r1 ;T
� 1

2
:

By this together with (3.24) we have uð�; tÞ 
 ~uð�; tÞ and vð�; tÞ 
 ~vð�; tÞ for t 2 ½0; bT �. We

obtain from a standard continuation argument (cf.[17]) that the uniqueness over the whole
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interval ½0; T	� holds.

We prove the cases (b) and (c). Choose ðs1; h2; z1; z2Þ and ðs2; h1; z3; z4Þ as in Propo-

sition 3.1. We divide the possibilities into two cases: (i) a1 ¼ a2, or a1\a2 and s1 �S and

(ii) a1\a2 and s1 [S.

We consider the existence part in the case (i). Set P1 :¼ fu0g � Lr1ðXÞ and

P2 :¼ fv0g � Lr2ðXÞ. Let 0\T\1. We can apply Lemma 2.2 and consider the con-

structed functions g and wi ði ¼ 1; 2Þ. For i ¼ 1; 2, put

Ywi;hi;ri;T :¼ u 2 L1locðð0; T �;XhiðriÞÞ : kukYwi ;hi ;ri ;T :¼ sup
t2ð0;TÞ

ðwiðtÞÞa2hi juðtÞjXhi ðriÞ
\1

( )

:

ð3:25Þ

Lemma 2.2 (ii) implies that the spaces Ywi;hi ;ri ;T , i ¼ 1; 2, are Banach spaces. Note that for

i ¼ 1; 2, Ywi;hi;ri;T � Yhi;ri;T follows if 0\T\1. Define the functions ðun; vnÞ in the same

way as in the case (a). Assume that ðun�1; vn�1Þ 2 Yw1;h1;r1;T � Yw2;h2;r2;T . In the same way

as (3.11) and (3.13) we have for 0\t\T ,

ðw1ðtÞÞa2h1 junjXh1
ðr1Þ � ðw1ðtÞÞa2h1 jSa1

ðtÞu0jXh1
ðr1Þ þ ðw1ðtÞÞa2h1

Z t

0

jPa1
ðt � sÞf1ðs; vn�1ðsÞÞjXh1

ðr1Þds

. ju0jX0ðr1Þ þ ðw1ðtÞÞa2h1

Z t

0

ðt � sÞa1ðs1�h1Þ�1jf1ðs; vn�1ðsÞÞjXs1�1ðr1Þds

and

ðw1ðtÞÞa2h1

Z t

0

ðt � sÞa1ðs1�h1Þ�1jf1ðs; vn�1ðsÞÞjXs1�1ðr1Þds

. ðw1ðtÞÞa2h1

Z t

0

ðt � sÞa1ðs1�h1Þ�1s�m1ðw2ðsÞÞ�p1a2h2 � kc1kLq1 ðXÞk1 þ jvn�1jkp1

Yw2 ;h2 ;r2 ;T
ds

�kc1kLq1 ðXÞk1 þ jvn�1jkp1

Yw2 ;h2 ;r2 ;T
� ðgðtÞÞp1�1 � ta2h1

Z t

0

ðt � sÞa1ðs1�h1Þ�1s�m1�p1a2h2ds

¼ kc1kLq1 ðXÞk1 þ jvn�1jkp1

Yw2 ;h2 ;r2 ;T

� ðgðtÞÞp1�1 � ta1s1�m1�p1a2h2þða2�a1Þh1

Z 1

0

ð1 � sÞa1ðs1�h1Þ�1s�m1�p1a2h2ds:

ð3:26Þ

We recall that limt!0 gðtÞ ¼ 0 and a1s1 � m1 � p1a2h2 þ ða2 � a1Þh1 � 0. Hence,

un 2 Yw1;h1;r1;T . We can obtain vn 2 Yw2;h2;r2;T in the same way. By induction we derive

ðun; vnÞ 2 Yw1;h1;r1;T � Yw2;h2;r2;T for n� 1. In a similar way there exist C3 [ 0 and C4 [ 0

such that for n� 2,
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kunþ1 � unkYw1 ;h1 ;r1 ;T
�C3ðgðTÞÞp1�1Ta1s1�m1�p1a2h2þða2�a1Þh1

� kc1kLq1 ðXÞk1 þ jvnj þ jvn�1jkp1�1
Yw2 ;h2 ;r2 ;T

kvn � vn�1kYw2 ;h2 ;r2 ;T
;

kvnþ1 � vnkYw2 ;h2 ;r2 ;T
�C4ðgðTÞÞp2�1Ta2s2�m2�p2a2h1

� kc2kLq2 ðXÞk1 þ junj þ jun�1jkp2�1
Yw1 ;h1 ;r1 ;T

kun � un�1kYw1 ;h1 ;r1 ;T
:

Put V :¼ 2 max ku2kYw1 ;h1 ;r1 ;T
; kv2kYw2 ;h2 ;r2 ;T

n o
and choose a sufficiently small time T		 [ 0

such that

C3ðgðT		ÞÞp1�1T		
a1s1�m1�p1a2h2þða2�a1Þh1kc1kLq1 ðXÞð1 þ 2VÞp1�1 � 1

2
;

C4ðgðT		ÞÞp2�1T		
a2s2�m2�p2a2h1kc2kLq2 ðXÞð1 þ 2VÞp2�1 � 1

2
:

We deduce the analogue of (3.17) in Yw1;h1;r1;T		 � Yw2;h2;r2;T		 instead of Yh1;r1;T	 � Yh2;r2;T	 .

Therefore, there exist limits u 2 Yw1;h1;r1;T		 and v 2 Yw2;h2;r2;T		 such that

lim
n!1

kun � ukYw1 ;h1 ;r1 ;T		
¼ 0 and lim

n!1
kvn � vkYw2 ;h2 ;r2 ;T		

¼ 0:

We consider the case (ii). Let s3 ¼ S and h3 ¼ h2ðs3Þ, where h2ðsÞ is defined in the proof

of Proposition 3.1. It follows from P\1, or P ¼ 1 and m1 [ 0 that s3 [ 0 and h3 � 0 hold.

By this together with S\s1\1 and hðs1Þ\1 we have s3 2 ð0; 1Þ and h3 2 ½0; 1Þ. Let

0\T\1. In a similar way to Lemma 2.2 we can construct a continuous and nonde-

creasing function g : ð0; TÞ ! ð0;1Þ such that

jSa1
ðtÞu0jXh1

ðr1Þ . gðtÞ � t�a2h1 ju0jX0ðr1Þ; jSa2
ðtÞv0jXh2

ðr2Þ. gðtÞ � t�a2h2 jv0jX0ðr2Þ and

jSa3
ðtÞv0jXh3

ðr2Þ . gðtÞ � t�a2h3 jv0jX0ðr2Þ for0\t\T ;

limt!0 gðtÞ ¼ 0, and limt!0 wiðtÞ ¼ 0 for i ¼ 1; 2; 3, where ðwiðtÞÞ�a2hi ¼ gðtÞ � t�a2hi . Put

Yw1;h1;r1;T , Yw2;h2;r2;T and Yw3;h3;r2;T in the same way as (3.25). Then it follows that ðun; vnÞ 2
Yw1;h1;r1;T � Yw2;h2;r2;T for n� 1. Let us introduce the Banach space defined by

Yw2;h2;w3;h3;r2;T

:¼ u 2 L1locðð0; T�;Xh2
ðr2Þ \ Xh3

ðr2ÞÞ : kukYw2 ;h2 ;w3 ;h3 ;r2 ;T
:¼ max kukYw2 ;h2 ;r2 ;T

; kukYw3 ;h3 ;r2 ;T

n o
\1

n o
:

We observe from a similar manner to (3.14) that un�1 2 Yw1;h1;r1;T leads not only to vn 2
Yw2;h2;r2;T but also to vn 2 Yw3;h3;r2;T . Thus vn 2 Yw2;h2;w3;h3;r2;T for n� 1. We omit the rest of

the existence part, since it can be proved by replacing Yw2;h2;r2;T and Yw2;h2;r2;T	 with

Yw2;h2;w3;h3;r2;T and Yw2;h2;w3;h3;r2;T	 , respectively.

We can obtain in a similar way to the case (a) that u and v have the properties (a)–(d) of

Definition 1.1 on ½0; T		Þ. In the case (i) it follows that a1s1 � m1 � p1a2h2 � 0. Then we

deduce from (3.26) by replacing h1 and vn�1 with 0 and v, respectively that
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kuð�; tÞ � Sa1
ðtÞu0kLr1 ðXÞ

.

Z t

0

ðt � sÞa1s1�1jf1ðs; vðsÞÞjXs1�1ðr1Þds

. kc1kLq1 ðXÞk1 þ jvjkp1

Yw2 ;h2 ;r2 ;T		
� ðgðtÞÞp1�1 � ta1s1�m1�p1a2h2

Z 1

0

ð1 � sÞa1s1�1s�m1�p1a2h2ds

! 0 ðt ! 0Þ:
ð3:27Þ

In the same way it follows that limt!0 kvðtÞ � Sa2
ðtÞv0kLr2 ðXÞ ¼ 0. In the case (ii) we

observe from considering (3.26) that (3.27) also holds with s1, h2 and Yw2;h2;r2;T		 replaced

by s3, h3 and Yw3;h3;r2;T		 , respectively. Thus (u, v) is a mild solution of (1.1) in the sense of

Definition 1.1 on ½0; T		Þ.
Note that in the case of (ii) how to derive the limit corresponding to (3.27) differs

between when R\1 and when R ¼ 1. When R\1, by considering (3.11) and (3.12) we

can evaluate

kuð�; tÞ � Sa1
ðtÞu0kLr1 ðXÞ .

Z t

0

ðt � sÞa1s3�1jf1ðs; vðsÞÞjXs3�1ðr1Þds

.

Z t

0

ðt � sÞa1s3�1kf1ðs; vðsÞÞkLz1 ðXÞds;

where z1 ¼ z1ðs3Þ 2 ð1;1Þ. On the other hand, when R ¼ 1, since z1 ¼ z1ðs3Þ ¼ 1, the

inequality jf1ðs; vðsÞÞjXs3�1ðr1Þ. kf1ðs; vðsÞÞkLz1 ðXÞ does not hold. Then we use the Lp-Lq

estimate of the heat semigroup ([16, Proposition 48.4 (c)-(e)]) and deduce that

kPa1
ðt � sÞf1ðs; vðsÞÞkLr1 ðXÞ

� a1ðt � sÞa1�1

Z 1

0

sUa1
ðsÞkSðsðt � sÞa1Þf1ðs; vðsÞÞkLr1 ðXÞds

. a1ðt � sÞa1�1

Z 1

0

sUa1
ðsÞ � s

�N
2

1� 1
r1


 �

ðt � sÞ
�N

2
a1 1� 1

r1


 �

kf1ðs; vðsÞÞkL1ðXÞds

¼ a1ðt � sÞa1s3�1kf1ðs; vðsÞÞkL1ðXÞ

Z 1

0

ss3Ua1
ðsÞds

¼ a1Cðs3 þ 1Þ
Cða1s3 þ 1Þ ðt � sÞa1s3�1kf1ðs; vðsÞÞkL1ðXÞ:

Here we apply (1.5) and S ¼ 1 � N

2
1 � 1

r1

� �

, which follows from R ¼ 1. Thus we have

kuð�; tÞ � Sa1
ðtÞu0kLr1 ðXÞ .

Z t

0

ðt � sÞa1s3�1kf1ðs; vðsÞÞkL1ðXÞds:

We also obtain the uniqueness of the mild solution in the space Yw1;h1;r1;T		 � Yw2;h2;r2;T		

through an argument similar to (3.24). We omit the details. h
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4 Nonexistence result

Proof of Theorem 1.3 Without loss of generality, we suppose that 0 2 X. Choose q[ 0

such that Bð0; qÞ � X, where Bð0; qÞ denotes the ball of radius q[ 0 centered at 0.

We prove the case where maxfP;Rg[ 1. Let 0\l\
N

q1

if 1� q1\1, l ¼ 0 if q1 ¼ 1

and 0\k\
N

r2

. Note that k is chosen to be sufficiently large and the same is valid for l when

1� q1\1. Put

c1ðxÞ :¼ jxj�l; c2ðxÞ :¼ 1; u0ðxÞ :¼ 0 and v0ðxÞ :¼ jxj�kvBð0;qÞðxÞ;

where vBð0;qÞ is a characteristic function. Then ðc1; c2; u0; v0Þ 2 Lq1ðXÞ � Lq2ðXÞ �
Lr1ðXÞ � Lr2ðXÞ holds.

The proof is by contradiction. Assume that there exists T [ 0 such that the problem

(1.1) with f1ðx; t; vÞ ¼ c1ðxÞ � t�m1vp1 and f2ðx; t; uÞ ¼ c2ðxÞ � t�m2up2 possesses a local in

time nonnegative mild solution (u, v) in the sense of Definition 1.1 on [0, T). Let 1\s\2

and let s[ 0 be sufficiently small. Let jxj �
ffiffiffiffi
s~a

p

2
, where ~a ¼ a1 or ~a ¼ a2. Then we can

apply Proposition 2.3 and obtain

Sðssa2Þv0ð ÞðxÞ ¼
Z

fjyj\qg
Gðx; y; ssa2Þjyj�kdy�

Z

fjy�xj\
ffiffiffiffiffiffi
ssa2

p
g
Gðx; y; ssa2Þjyj�kdy

� c1

Z

fjy�xj\
ffiffiffiffiffiffi
ssa2

p
g
ssa2ð Þ�

N
2 jyj�kdyJs�

N
2
a2

Z

fjy�xj\
ffiffiffiffiffiffi
ssa2

p
g
jyj�kdy

� s�
N
2
a2

ffiffiffiffiffiffiffiffi
ssa2

p
þ

ffiffiffiffi
s~a

p

2

 !�kZ

fjy�xj\
ffiffiffiffiffiffi
ssa2

p
g
dyJs�

k
2
~a:

Due to (1.4) and (1.7), we have

Sa2
ðsÞv0ð ÞðxÞ�

Z 2

1

Ua2
ðsÞ Sðssa2Þv0ð ÞðxÞdsJ

Z 2

1

Ua2
ðsÞds � s�k

2
~a

and hence

Sa2
ðsÞv0 J s�

k
2
~av

B 0;

ffiffiffi
s ~a

p
2


 �
ð4:1Þ

for sufficiently small s[ 0.

Let t[ 0 be sufficiently small and let
t

3
� s� t

2
, jxj\

ffiffiffiffiffiffi
sa1

p

2
and 1\s\2. Then for

jyj\
ffiffiffiffi
s~a

p

2
,

jx� yj\
ffiffiffiffiffiffi
sa1

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt � sÞa1

q

\
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðt � sÞa1

q

:

Using Proposition 2.3, we obtain
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Gðx; y; sðt � sÞa1ÞJs�
N
2ðt � sÞ�

N
2
a1Js�

N
2
a1 ð4:2Þ

for jyj\
ffiffiffiffi
s~a

p

2
. It follows from (4.1) and (4.2) that

Sðsðt � sÞa1Þf1ðs; Sa2
ðsÞv0Þð ÞðxÞ ¼

Z

X
Gðx; y; sðt � sÞa1Þjyj�ls�m1 ðSa2

ðsÞv0ÞðyÞð Þp1dy

Js�m1�k
2
p1 ~a
Z

jyj\
ffiffiffi
s ~a

p
2

n o Gðx; y; sðt � sÞa1Þjyj�ldy

Js�
l
2
~a�m1�k

2
p1 ~a�N

2
a1

Z

jyj\
ffiffiffi
s ~a

p
2

n o dy

Js�
l
2
~a�m1�k

2
p1 ~a�N

2
a1þN

2
~a;

which yields

Pa1
ðt � sÞf1ðs; Sa2

ðsÞv0Þð ÞðxÞ� a1ðt � sÞa1�1

Z 2

1

sUa1
ðsÞ Sðsðt � sÞa1Þf1ðs; Sa2

ðsÞv0Þð ÞðxÞds

Jðt � sÞa1�1s�
l
2
~a�m1�k

2
p1 ~a�N

2
a1þN

2
~a

Jðt � sÞa1�1t�
l
2
~a�m1�k

2p1 ~a�N
2a1þN

2
~a:

Here we use s� t

2
. By direct calculation we have

Z t

0

Pa1
ðt � sÞf1ðs; Sa2

ðsÞv0Þð ÞðxÞds�
Z t

2

t
3

Pa1
ðt � sÞf1ðs; Sa2

ðsÞv0Þð ÞðxÞdsJta1� l
2
~a�m1�k

2
p1 ~a�N

2
a1þN

2
~a

and

Z t

0

Pa1
ðt � sÞf1ðs; Sa2

ðsÞv0Þds
�
�
�
�

�
�
�
�

r1

Lr1 ðXÞ
J
Z

jxj\
ffiffiffiffi
sa1

p
2

n o tr1 a1� l
2
~a�m1�k

2
p1 ~a�N

2
a1þN

2
~að Þdx

Jt
N
2
a1þr1 a1� l

2
~a�m1�k

2
p1 ~a�N

2
a1þN

2
~að Þ:

Taking the limit as l ! N

q1

(if 1� q1\1) and k ! N

r2

, we deduce that

N

2
a1 þ r1 a1 �

l

2
~a� m1 �

k

2
p1~a�

N

2
a1 þ

N

2
~a

� �

!
a1r1ð1 � PÞ when ~a ¼ a1;

a2r1ð1 �RÞ when ~a ¼ a2:

�

Thus we obtain
R t

0
Pa1

ðt � sÞf1ðs; Sa2
ðsÞv0Þds

�
�

�
�r1

Lr1 ðXÞ! 1 as t ! 0. By Definition 1.1 (d)

we have vðtÞ� Sa2
ðtÞv0 in X� ð0; TÞ, which yields

Z t

0

Pa1
ðt � sÞf1ðs; vðsÞÞds

�
�
�
�

�
�
�
�
Lr1 ðXÞ

�
Z t

0

Pa1
ðt � sÞf1ðs; Sa2

ðsÞv0Þds
�
�
�
�

�
�
�
�
Lr1 ðXÞ

! 1ðt ! 0Þ:

This contradicts the property of Definition 1.1 (e).

We prove the case where maxfQ1;Q2g[ 1. Let 0\~l\
N

q2

if 1� q2\1, ~l ¼ 0 if
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q2 ¼ 1 and 0\ ~k\
N

r1

. Note that ~k is chosen to be sufficiently large and the same is valid

for ~l when 1� q2\1. Put

c1ðxÞ :¼ 1; c2ðxÞ :¼ jxj�~l; u0ðxÞ :¼ jxj� ~kvBð0;qÞðxÞ and v0ðxÞ :¼ 0:

Then ðc1; c2; u0; v0Þ 2 Lq1ðXÞ � Lq2ðXÞ � Lr1ðXÞ � Lr2ðXÞ holds.

The proof is also by contradiction. As in the case where maxfP;Rg[ 1, we assume

that there exists a local in time nonnegative mild solution (u, v) in the sense of Defini-

tion 1.1. We obtain in the same way as we deduce (4.1) that

Sa1
ðsÞu0 J s�

~k
2
a1v

B 0;

ffiffiffiffi
sa1

p
2


 �
ð4:3Þ

for sufficiently small s[ 0.

We prove the case where Q1 [ 1. Let t[ 0 be sufficiently small and let
t

3
� s� t

2
,

jxj\
ffiffiffiffiffiffi
sa1

p

3
and 1\s\2. It follows from Proposition 2.3 and (4.3) that

Sðsðt � sÞa2Þf2ðs; Sa1
ðsÞu0Þð ÞðxÞ ¼

Z

X
Gðx; y; sðt � sÞa2Þjyj�~ls�m2 ðSa1

ðsÞu0ÞðyÞð Þp2dy

Js�
N
2
a2

Z

fjy�xj\
ffiffiffiffiffiffi
ssa2

p
g
jyj�~ls�m2 ðSa1

ðsÞu0ÞðyÞð Þp2dy

Js�
N
2
a2� ~l

2
a1�m2� ~k

2
p2a1

Z

fjy�xj\
ffiffiffiffiffiffi
ssa2

p
g
dy

Js�
~l

2
a1�m2� ~k

2
p2a1 :

Note that we apply jyj � jy� xj þ jxj\
ffiffiffiffiffiffiffiffi
ssa2

p
þ

ffiffiffiffiffiffi
sa1

p

3
�

ffiffiffiffiffiffi
sa1

p

2
, since s is sufficiently small.

Then by s� t

2
we have

Pa2
ðt � sÞf2ðs; Sa1

ðsÞu0Þð ÞðxÞ� a2ðt � sÞa2�1

Z 2

1

sUa2
ðsÞ Sðsðt � sÞa2Þf1ðs; Sa1

ðsÞu0Þð ÞðxÞds

Jðt � sÞa2�1s�
~l

2a1�m2� ~k
2p2a1

Jðt � sÞa2�1t�
~l

2
a1�m2� ~k

2
p2a1 :

By direct calculation we get

Z t

0

Pa2
ðt � sÞf2ðs; Sa1

ðsÞu0Þð ÞðxÞds�
Z t

2

t
3

Pa2
ðt � sÞf2ðs; Sa1

ðsÞu0Þð ÞðxÞdsJta2� ~l
2a1�m2� ~k

2p2a1
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and

Z t

0

Pa2
ðt � sÞf2ðs; Sa1

ðsÞu0Þds
�
�
�
�

�
�
�
�

r2

Lr2 ðXÞ
J
Z

jxj\
ffiffiffiffi
sa1

p
3

n o tr2 a2� ~l
2
a1�m2� ~k

2
p2a1ð Þdx

Jt
N
2
a1þr2 a2� ~l

2
a1�m2� ~k

2
p2a1ð Þ:

Taking the limit as ~l ! N

q2

(if 1� q2\1) and ~k ! N

r1

, we deduce that

N

2
a1 þ r2 a2 �

~l

2
a1 � m2 �

~k

2
p2a1

� �

! a2r2ð1 �Q1Þ\0:

Thus we obtain
R t

0
Pa2

ðt � sÞf2ðs; Sa1
ðsÞu0Þds

�
�

�
�r2

Lr2 ðXÞ! 1 as t ! 0. This contradicts the

property of Definition 1.1(e) in a similar way to the case where maxfP;Rg[ 1.

We prove the case where Q2 [ 1. Let t[ 0 be sufficiently small and let
t

3
� s� t

2
,

jxj\
ffiffiffiffiffiffi
sa2

p

2
and 1\s\2. Then for jyj\

ffiffiffiffiffiffi
sa2

p

2
,

jx� yj\
ffiffiffiffiffiffi
sa2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðt � sÞa2

q

\
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðt � sÞa2

q

:

Due to Proposition 2.3, we have

Gðx; y; sðt � sÞa2ÞJs�
N
2ðt � sÞ�

N
2
a2Js�

N
2
a2 ð4:4Þ

for jyj\
ffiffiffiffiffiffi
sa2

p

2
. Considering in the same way as in the case where maxfP;Rg[ 1, we

obtain from (4.3) and (4.4) that

Sðsðt � sÞa2Þf2ðs; Sa1
ðsÞu0Þð ÞðxÞJs�

~l
2
a2�m2� ~k

2
p2a1 ;

which yields

Pa2
ðt � sÞf2ðs; Sa1

ðsÞu0Þð ÞðxÞJðt � sÞa2�1t�
~l

2
a2�m2� ~k

2
p2a1 :

Moreover, this leads to

Z t

0

Pa2
ðt � sÞf2ðs; Sa1

ðsÞu0Þds
�
�
�
�

�
�
�
�

r2

Lr2 ðXÞ
Jt

N
2
a2þr2 a2� ~l

2
a2�m2� ~k

2
p2a1ð Þ:

Taking the limit as ~l ! N

q2

(if 1� q2\1) and ~k ! N

r1

, we deduce that

N

2
a2 þ r2 a2 �

~l

2
a2 � m2 �

~k

2
p2a1

� �

! a2r2ð1 �Q2Þ\0:

Thus we obtain
R t

0
Pa2

ðt � sÞf2ðs; Sa1
ðsÞu0Þds

�
�

�
�r2

Lr2 ðXÞ! 1 as t ! 0. This contradicts the

property of Definition 1.1 (e). Therefore, the proof is complete. h
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5 Nonexistence result for scalar problems

In this section we apply our study to the nonexistence of a local in time solution of the

scalar problem

oat u ¼ Duþ f ðx; t; uÞ in X� ð0; TÞ;
uðx; tÞ ¼ 0 on oX� ð0; TÞ;
uðx; 0Þ ¼ u0ðxÞ in X:

8
><

>:
ð5:1Þ

We obtain the following nonexistence theorem.

Theorem 5.1 Let N� 1, 0\a\1, 0\p\1, q1 2 ½1;1�, q2 2 1

a
;1

� �

and 1� r\1.

Suppose that (1.11) holds with bA ¼ N

2
. Then there exist nonnegative functions cðx; tÞ 2

Lq1;q2
and u0 2 LrðXÞ such that, for every T[ 0; the problem (5.1) with f ðx; t; uÞ ¼

cðx; tÞ � up admits no local in time nonnegative mild solution u in the sense of Definition 1.1
(more precisely, in the sense of [9, Definition 3.1.1]) on the interval [0, T).

Since we can prove in the same way as in the proof of Theorem 1.3, we leave the proof to

readers. Note that we only solve the nonexistence conjecture in [9] when the nonlinear

term f is separable with respect to x, t and u.

Remark that if 1� r\
N

2
ðp� 1Þ, then there exists a nonnegative initial function u0 2

LrðXÞ such that, the problem (5.1) with f ðx; t; uÞ ¼ up has no local in time nonnegative

mild solution on any time interval. Hence, our nonexistence result corresponds to [20]. In

conclusion, for scalar problems and systems with pure power nonlinear terms, the exis-

tence/nonexistence results correspond to [20] and [15], respectively.

6 Discussion

In this paper we consider a local in time solution of a time fractional weakly coupled

reaction-diffusion system in two components with possibly distinct fractional orders. In

Theorems 1.2 and 1.3 we derive the integrability conditions on the initial state functions

for the local in time existence and nonexistence results. The parameters P, Q, Q1, Q2 and

R describe the balance between the factors: the growth rates (resp. the singularities) of the

nonlinear terms with respect to u or v (resp. x and t), the singularities of the initial data, and

the fractional exponents. For instance, the larger the growth rates p1 and p2 become, the

larger these five parameters become. Then Theorems 1.2 and 1.3 imply that the existence

result is less likely to hold, and that the nonexistence result is more likely to hold. The

integrability is determined by maxfP;Q;Rg and maxfP;Q1;Q2;Rg in the existence and

nonexistence part, respectively.

When a1 ¼ a2, the equalities P ¼ R and Q ¼ Q1 ¼ Q2 hold. Therefore, as seen in

Corollary 1.4, we can explicitly determine the existence/nonexistence of a solution. The

threshold integrability condition on initial data, which is a pair ðr1; r2Þ, is defined by

maxfP;Qg ¼ 1. When m1 [ 0 and m2 [ 0, the larger a1 and a2 become, the wider the

space of initial data for the existence result becomes. On the other hand, when a1\a2, the

inequalities maxfQ1;Q2g� 1\Q and maxfP;Rg� 1 can occur. In this case since
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Theorems 1.2 and 1.3 cannot be applied, we cannot determine whether the problem (1.1)

possesses a local in time solution or not. We mention the following points:

1. In Theorem 1.3 even if we assume Q[ 1, we cannot obtain the nonexistence result,

since the inequality (4.3) does not hold with a1 replaced by a2 on the right hand side. If

this is true, we can evaluate Sðsðt � sÞa2Þf2ðs; Sa1
ðsÞu0Þð ÞðxÞ in the same way as in the

case where maxfP;Rg[ 1. Hence, we can get the nonexistence result even if Q[ 1.

2. If we assume maxfQ1;Q2g\1 instead of Q\1, then Proposition 3.1 does not hold. In

particular, the inequality maxfQ1;Q2g\1 does not lead to (3.6) and (3.9) with

ðs; ~sÞ ¼ min 1; 1 � N

2

1

q1

� 1

r1

� �� �

;max 1 � N

2
1 � 1

r2

� �

;
m2

a2

� �� �

. Thus we cannot

obtain the existence result under this assumption.

The author conjectures that the nonexistence result does not hold in the above case, since

the former point is a greater reason. In the existence result it seems that the solvability of

the problem (1.1) in the above case may hold by using a functional space different from the

Banach spaces introduced in the proof of Theorem 1.2.

Possible future problems ensuing from the current analysis are as follows:

1. What are the consequences of the problem (1.1) with a different boundary condition or

situation, e.g. the Neumann boundary condition, the boundary condition where u and

v are non-zero positive bounded functions, and the situation where the boundary is

broken into parts with a condition of a different type set on each?

2. What happens to a local in time solution of (1.1) as a ! 1�? Given that (1.3) is the

limit of (1.1) as a ! 1�, is it possible to show that the estimates obtained by this paper

approach those known for (1.3)? If not, which is more conservative and why?

3. For the problem (1.1), what is the solvability when one equation has an integer in time

derivative and the other has a fractional in time derivative?
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