
ORIGINAL PAPER

Stochastic optimal transport revisited

Toshio Mikami1

Published online: 13 January 2021
� The Author(s), under exclusive licence to Springer Nature Switzerland AG part of Springer Nature 2021

Abstract
We prove the Duality Theorems for the stochastic optimal transportation problems with a

convex cost function without a regularity assumption that is often supposed in the proof of

the lower semicontinuity of an action integral. In our new approach, we prove that the

stochastic optimal transportation problems with a convex cost function are equivalent to a

class of variational problems for the Fokker–Planck equation, which lets us revisit them. It

is done by the so-called superposition principle and by an idea from the Mather theory. The

superposition principle is the construction of a semimartingale from the Fokker–Planck

equation and can be considered a class of the so-called marginal problems that construct

stochastic processes from given marginal distributions. It was first considered in stochastic

mechanics by Nelson, called Nelson’s problem, and was proved by Carlen first. The

semimartingale is called the Nelson process, provided it is Markovian. We also consider

the Markov property of a minimizer of the stochastic optimal transportation problem with a

nonconvex cost in a one-dimensional case. In the proof, the superposition principle and the

minimizer of an optimal transportation problem with a concave cost function play crucial

roles. Lastly, we prove the semiconcavity and the Lipschitz continuity of Schrödinger’s

problem that is a typical example of the stochastic optimal transportation problem.

Keywords Stochastic optimal transport � Superposition principle � Nelson process �
Marginal problem
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1 Introduction

The construction of a stochastic process from given marginal distributions is called a

marginal problem.
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Schrödinger’s problem is the construction of a Markov diffusion process on [0, 1] from

two endpoint marginal distributions at t ¼ 0; 1 by solving a variational problem on the

relative entropy. We describe it briefly (see VS in (1.19), (4.19), and also [28, 30, 44]). Let

r and n be, respectively, a d � d nondegenerate matrix-valued and an Rd-valued function

on ½0; 1� � Rd . Suppose that the following stochastic differential equation has a weak

solution fXðtÞg0� t� 1 with a positive transition probability density

pðs; x; t; yÞ; 0� s\t� 1; x; y 2 Rd:

dXðtÞ ¼ nðt;XðtÞÞdt þ rðt;XðtÞÞdWðtÞ; 0\t\1; ð1:1Þ

where W(t) denotes a d-dimensional Brownian motion defined on a probability space (see

Theorem 6 in Sect. 4). Let PðRdÞ denote the set of all Borel probability measures on Rd.

For any P0;P1 2 PðRdÞ, there exists a unique product measure m0ðdxÞm1ðdyÞ that satisfies

the following:

P1ðdyÞ ¼ m1ðdyÞ
Z
Rd

pð0; x; 1; yÞm0ðdxÞ; ð1:2Þ

P0ðdxÞ ¼ m0ðdxÞ
Z
Rd

pð0; x; 1; yÞm1ðdyÞ: ð1:3Þ

This is Euler’s equation of Schrödinger’s problem and is called Schrödinger’s functional

equation or the Schrödinger system (see [55, 56] and also [27] and Proposition 2.1 in [42]).

Under some assumptions on r and n (see, e.g. (A.5)–(A.6) in Sect. 4), if P1ðdyÞ � dy, then

there exists a unique weak solution fYðtÞg0� t� 1 to the following (see [28]) :

dYðtÞ ¼ faðt; YðtÞÞDy log hðt; YðtÞÞ þ nðt; YðtÞÞgdt ð1:4Þ

þ rðt; YðtÞÞdWðtÞ; 0\t\1;

PYð0Þ ¼ P0;
ð1:5Þ

where aðt; xÞ :¼ rðt; xÞrðt; xÞ�, rðt; xÞ� denotes the transpose of rðt; xÞ, Dy :¼ o=oyið Þdi¼1,

hðt; xÞ :¼
Z
Rd

pðt; x; 1; yÞm1ðdyÞ; 0� t\1; x 2 Rd;

and PYð0Þ denotes the probability law of Y(0). Besides, the following holds:

PðYð0Þ;Yð1ÞÞðdxdyÞ ¼ m0ðdxÞpð0; x; 1; yÞm1ðdyÞ; ð1:6Þ

which implies that PYð1Þ ¼ P1 from (1.2). fYðtÞg0� t� 1 is called the h-path process for

fXðtÞg0� t� 1 from two endpoint marginals P0;P1 at t ¼ 0; 1, respectively.

Remark 1 Schrödinger’s functional Eqs. (1.2)–(1.3) is equivalent to the following:

hð1; yÞ ¼
Z
Rd

pð0; x; 1; yÞ
Z
Rd

pð0; x; 1; zÞhð1; zÞ�1P1ðdzÞ
� ��1

P0ðdxÞ; ð1:7Þ
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m1ðdyÞ : ¼ hð1; yÞ�1P1ðdyÞ; ð1:8Þ

m0ðdxÞ : ¼
Z
Rd

pð0; x; 1; zÞm1ðdzÞ
� ��1

P0ðdxÞ: ð1:9Þ

In particular, one only has to find a solution hð1; �Þ in (1.7).

Motivated by Schrödinger’s quantum mechanics, Nelson proposed the problem of the

construction of a Markov diffusion process from the Fokker–Planck equation. We describe

it. Let a and b be, respectively, a d � d symmetric nonnegative definite matrix-valued and

an Rd-valued function on ½0; 1� � Rd , and let fPtg0� t� 1 	 PðRdÞ.
By ða; bÞ 2 AðfPtg0� t� 1Þ, we mean that a; b 2 L1ð½0; 1� � Rd; dtPtðdxÞÞ and the fol-

lowing Fokker-Planck equation holds: for any f 2 C1;2
b ð½0; 1� � RdÞ and t 2 ½0; 1�,Z

Rd
f ðt; xÞPtðdxÞ �

Z
Rd

f ð0; xÞP0ðdxÞ

¼
Z t

0

ds

Z
Rd

�
osf ðs; xÞ þ

1

2
haðs; xÞ;D2

xf ðs; xÞi

þ hbðs; xÞ;Dxf ðs; xÞi
�
PsðdxÞ:

ð1:10Þ

Here os :¼ o=os, D2
x :¼ o2=oxioxj

� �d
i;j¼1

, hx; yi denotes the inner product of x; y 2 Rd and

hA;Bi :¼
Xd
i;j¼1

AijBij; A ¼ ðAijÞdi;j¼1;B ¼ ðBijÞdi;j¼1 2 Mðd;RÞ:

We also write ða; bÞ 2 A0ðfPtg0� t� 1Þ if a; b 2 L1
locð½0; 1� � Rd; dtPtðdxÞÞ and (1.10) holds

for all f 2 C1;2
0 ð½0; 1� � RdÞ.

Remark 2 For fPtg0� t� 1 in (1.10), AðfPtg0� t� 1Þ is not necessarily a singleton (see

[11–14, 33]).

The following is a generalized version of Nelson’s problem (see [47, 49, 50]).

Definition 1 (Nelson’s problem) For any fPtg0� t� 1 	 PðRdÞ such that A0ðfPtg0� t� 1Þ is

not empty and for any ða; bÞ 2 A0ðfPtg0� t� 1Þ, construct a d � d matrix-valued function

rðt; xÞ on ½0; 1� � Rd and a semimartingale fXðtÞg0� t� 1 such that the following holds: for

ðt; xÞ 2 ½0; 1� � Rd ,

aðt; xÞ ¼ rðt; xÞrðt; xÞ�; dtPtðdxÞ-a.e.; ð1:11Þ

XðtÞ ¼ Xð0Þ þ
Z t

0

bðs;XðsÞÞdsþ
Z t

0

rðs;XðsÞÞdWXðsÞ; ð1:12Þ

SN Partial Differential Equations and Applications

SN Partial Differ. Equ. Appl. (2021) 2:5 Page 3 of 26 5



PXðtÞ ¼ Pt: ð1:13Þ

Here WX denotes a d-dimensional Brownian motion.

When rðt; xÞ is nondegenerate, WX can be taken to be an ðFX
t Þ-Brownian motion, where

FX
t denotes r½XðsÞ : 0� s� t�. Otherwise (1.12) means that XðtÞ � Xð0Þ �

R t
0
bðs;XðsÞÞds

is a local martingale with a quadratic variational process
R t

0
aðs;XðsÞÞds (see, e.g. [25]).

The first result on Nelson’s problem was given by E. Carlen when a is an identity matrix

(see [8, 9], and also [10, 46, 63] for different approaches). We generalized it to the case

with a variable diffusion matrix (see [33]). P. Cattiaux, C. Léonard extensively generalized

it to the case where the jump-type Markov processes are also considered (see [11–14]). In

these papers, they assumed the following condition.

Definition 2 (Finite energy condition (FEC))

There exists ða; bÞ 2 AðfPtg0� t� 1Þ such that the following holds:

Z 1

0

dt

Z
Rd
haðt; xÞ�1bðt; xÞ; bðt; xÞiPtðdxÞ\1: ð1:14Þ

We describe a class of stochastic optimal transportation problems (SOTPs for short) and

approaches to the h-path process and Nelson’s problem by the SOTPs.

Fix a Borel measurable d � d-matrix function rðt; xÞ. Let A denote the set of all Rd-

valued, continuous semimartingales fXðtÞg0� t� 1 on a (possibly different) complete fil-

tered probability space such that there exists a Borel measurable bX : ½0; 1� � Cð½0; 1�Þ �
! Rd for which the following holds:

(i) x 7!bXðt;xÞ is BðCð½0; t�ÞÞþ-measurable for all t 2 ½0; 1�,
(ii) XðtÞ ¼ Xð0Þ þ

R t
0
bXðs;XÞdsþ

R t
0
rðs;XðsÞÞdWXðsÞ, 0� t� 1,

(iii)

E

Z 1

0

jbXðt;XÞj þ jrðt;XðtÞÞj2
n o

dt

� 	
\1:

Here BðCð½0; t�ÞÞ and BðCð½0; t�ÞÞþ denote the Borel r-field of C([0, t]) and

\s[ tBðCð½0; s�ÞÞ, respectively (see, e.g. [31]). j � j :¼ h�; �i1=2
.

Let L : ½0; 1� � Rd � Rd �! ½0;1Þ be continuous. The following is a class of the

SOTPs (see [41, 45], and also [33, 37, 44]).

Definition 3 (Stochastic optimal transportation problems)

(1) For P0, P1 2 PðRdÞ,

VðP0;P1Þ :¼ inf
X2A;

PXðtÞ¼Pt ;t¼0;1

E

�Z 1

0

Lðt;XðtÞ; bXðt;XÞÞdt
	
:

ð1:15Þ

(2) For fPtg0� t� 1 	 PðRdÞ,
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VðfPtg0� t� 1Þ :¼ inf
X2A;

PXðtÞ¼Pt ;0� t� 1

E

�Z 1

0

Lðt;XðtÞ; bXðt;XÞÞdt
	
:

ð1:16Þ

If the set over which the infimum is taken is empty, then we set the infimum for infinity.

Suppose that one knows the marginal probability distributions of a stochastic system at

times t ¼ 0; 1 or t 2 ½0; 1�. To study the stochastic system on [0, 1] from the viewpoint of

the principle of least action, one has to consider these kinds of problems.

Remark 3 (i) The sets of stochastic processes over which the infimum are taken in (1.15)-

(1.16) can be empty. If P1ðdxÞ � dx, then the case when it is not empty is known for (1.15)

in [28] and for (1.16) in [5, 8–14, 33, 35–37, 40, 41, 46, 60, 63]. (ii) For fXðtÞg0� t� 1 2 A,

ðrðt; xÞrðt; xÞ�; bXðt; xÞ :¼ E½bXðt;XÞjðt;XðtÞ ¼ xÞ�Þðt;xÞ2½0;1��Rd

2 AðfPXðtÞg0� t� 1Þ:
ð1:17Þ

Indeed, by Itô’s formula, (1.10) with a ¼ rr�; b ¼ bX holds and by Jensen’s inequality,

E½jbXðt;XðtÞÞj� ¼ E½jE½bXðt;XÞjðt;XðtÞÞ�j� �E½jbXðt;XÞj�: ð1:18Þ

Schrödinger’s problem which is a typical example of the SOTP is VS :¼ V in (1.15) when

the following holds:

L ¼ 1

2
jrðt; xÞ�1ðu� nðt; xÞÞj2 ð1:19Þ

(see, e.g. [30, 44, 53]). If VSðP0;P1Þ is finite for P0, P1 2 PðRdÞ and if r and n satisfy nice

conditions, then the minimizer uniquely exists and is the h-path process with two endpoint

marginals P0;P1 in (1.4)–(1.5) (see [16, 21, 44, 45, 51, 62]).

By the continuum limit of Vð�; �Þ, we considered Nelson’s Problem in a more general

setting, including the following case (see [33, 40]).

Definition 4 (Generalized finite energy condition (GFEC))

There exists c[ 1 and ða; bÞ 2 AðfPtg0� t� 1Þ such that the following holds:

Z 1

0

dt

Z
Rd
haðt; xÞ�1bðt; xÞ; bðt; xÞi

c
2PtðdxÞ\1: ð1:20Þ

As an application of the Duality Theorem for V, we also gave an approach to Nelson’s

Problem under the condition which includes the GFEC (see [41]).

If (1.11)–(1.13) hold, then they also say that the superposition principle holds. When

a 
 0, the superposition principle was studied in [1, 2, 36, 37]. Trevisan’s result [60]

almost completely solved Nelson’s problem (see also [5, 19]). In the case where the linear

operator with the second order differential operator and with the Lévy measure is con-

sidered, it was studied in [14, 52].
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Theorem 1 (See [60]) Suppose that there exists fPtg0� t� 1 	 PðRdÞ such that ða; bÞ 2
AðfPtg0� t� 1Þ exists.

Then Nelson’s problem (1.11)–(1.13) has a solution.

In his problem, Nelson considered the case where a ¼ Identity and b ¼ Dxwðt; xÞ for some

function w. It turned out that the Nelson process is the minimizer of VN :¼ V when (1.19)

with r ¼ Identity and n ¼ 0 and the FEC hold (see Proposition 3.1 in [33] and also

Theorem 4 in Sect. 2). Indeed, if ða;DxwiÞ 2 AðfPtg0� t� 1Þ, i ¼ 1; 2, then Dxw1 ¼ Dxw2,

dtPtðdxÞ-a.e.. In this sense, we consider that Nelson’s problem is the studies of the

superposition principle and of the minimizer of V. In particular, if the superposition

principle holds, then the set over which the infimum is taken in V is not empty and then one

can consider a minimizer of V, provided it is finite. There was a different approach by

showing Proposition 1 in Sect. 2 via the Duality Theorems in Theorems 3 and 4 in Sect. 2

(see [41] and also [33, 40]). It is also generalized by the superposition principle and our

previous approach to the first part of Nelson’s problem is not useful anymore.

In Sect. 2, we improve our previous results on the SOTPs with a convex cost function by

the superposition principle in Theorem 1.

More precisely, we prove that the SOTPs are equivalent to variational problems for

probability measures given by the Fokker–Planck equation and to those by a relaxed

version of the Fokker–Planck equation (see Proposition 1 in Sect. 2). In particular, we can

prove the convexity and the lower-semicontinuity of the SOTPs in marginal distributions

by a finite-dimensional approach though the SOTPs are variational problems for semi-

martingales. It gives a new insight into the SOTPs and lets us revisit them.

In Sect. 3, in the case where d ¼ 1 and where a is not fixed, we consider slightly relaxed

versions of the SOTPs of which cost functions are not supposed to be convex. In this case,

we need a generalization of Trevisan’s result which was recently obtained by Bogachev,

Röckner, Shaposhnikov.

Theorem 2 (See [5]) Suppose that there exists fPtg0� t� 1 	 PðRdÞ such that ða; bÞ 2
A0ðfPtg0� t� 1Þ exists and that the following holds:

Z 1

0

dt

Z
Rd

jaðt; xÞj þ jhx; bðt; xÞij
1 þ jxj2

PtðdxÞ\1: ð1:21Þ

Then Nelson’s problem (1.11)–(1.13) has a solution.

As a fundamental problem of the stochastic optimal control theory, the test of the Markov

property of a minimizer is known. We also discuss this problem for a finite-time horizon

stochastic optimal control problem.

In Sect. 4, we study the semiconcavity and the Lipschitz continuity of Schrödinger’s

problem VS.

2 SOTPs with a convex cost

In this section, we discuss applications of D. Trevisan’s result to the Duality Theorems for

the SOTPs in the case where u 7!Lðt; x; uÞ is convex and where r and a ¼ rr� in (1.11) are

fixed. We write b 2 AðfPtg0� t� 1Þ if ða; bÞ 2 AðfPtg0� t� 1Þ for the sake of simplicity (see

(1.10) for notation).
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As a preparation, we introduce two classes of marginal problems which play crucial

roles in the proof of the Duality Theorems for the SOTPs (see [40, 41]) and which will be

proved to be equivalent to the SOTPs by D. Trevisan’s result.

The following can be considered as versions of the SOTPs for a flow of marginals which

satisfy (1.10).

Definition 5 (SOTPs for marginal flows)

(1) For P0, P1 2 PðRdÞ,

vðP0;P1Þ :¼ inf
b2AðfQtg0� t� 1Þ;

Qt¼Pt ;t¼0;1

Z 1

0

dt

Z
Rd

Lðt; x; bðt; xÞÞQtðdxÞ: ð2:1Þ

(2) For fPtg0� t� 1 	 PðRdÞ,

vðfPtg0� t� 1Þ :¼ inf
b2AðfPtg0� t� 1Þ

Z 1

0

dt

Z
Rd

Lðt; x; bðt; xÞÞPtðdxÞ: ð2:2Þ

For lðdxduÞ 2 PðRd � RdÞ,

l1ðdxÞ :¼ lðdx� RdÞ; l2ðduÞ :¼ lðRd � duÞ: ð2:3Þ

We write mðdtdxduÞ 2 ~A if the following holds. (i) m 2 Pð½0; 1� � Rd � RdÞ and

Z
½0;1��Rd�Rd

ðjaðt; xÞj þ jujÞmðdtdxduÞ\1: ð2:4Þ

(ii) mðdtdxduÞ ¼ dtmðt; dxduÞ, mðt; dxduÞ 2 PðRd � RdÞ, m1ðt; dxÞ; m2ðt; duÞ 2 PðRdÞ,
dt�a.e. and t 7!m1ðt; dxÞ has a weakly continuous version m1;tðdxÞ 2 PðRdÞ for which the

following holds: for any t 2 ½0; 1� and f 2 C1;2
b ð½0; 1� � RdÞ,

Z
Rd

f ðt; xÞm1;tðdxÞ �
Z
Rd

f ð0; xÞm1;0ðdxÞ

¼
Z
½0;t��Rd�Rd

Ls;x;uf ðs; xÞmðdsdxduÞ:
ð2:5Þ

Here

Ls;x;uf ðs; xÞ :¼ osf ðs; xÞ þ
1

2
haðs; xÞ;D2

xf ðs; xÞi þ hu;Dxf ðs; xÞi: ð2:6Þ

We introduce a relaxed version of the problem above (see [23] and references therein for

related topics).

Definition 6 (SOTPs for marginal measures)

(1) For P0, P1 2 PðRdÞ,
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~vðP0;P1Þ :¼ inf
m2 ~A;

m1;t¼Pt ;t¼0;1

Z
½0;1��Rd�Rd

Lðt; x; uÞmðdtdxduÞ:
ð2:7Þ

(2) For fPtg0� t� 1 	 PðRdÞ,

~vðfPtg0� t� 1Þ :¼ inf
m2 ~A;

m1;t¼Pt ;0� t� 1

Z
½0;1��Rd�Rd

Lðt; x; uÞmðdtdxduÞ:
ð2:8Þ

Remark 4 If b 2 AðfPtg0� t� 1Þ and X 2 A, then dtPtðdxÞdbðt;xÞðduÞ 2 ~A and

dtPðXðtÞ;bXðt;XÞÞðdxduÞ 2 ~A, respectively. Here dx denotes the delta measure on fxg. In

particular, dtPðXðtÞ;bXðt;XÞÞðdxduÞ is the distribution of a ½0; 1� � Rd � Rd-valued random

variable ðt;XðtÞ; bXðt;XÞÞ. This is why we call (2.7)–(2.8) SOTPs for marginal measures

(see also Lemma 1 given later). One can also identify fPtg0� t� 1 	 PðRdÞ with dtPtðdxÞ 2
Pð½0; 1� � RdÞ when V; v and ~v are considered (see Theorem 4 and also [41, 44]).

We introduce assumptions.

(A.0.0). (i) rij 2 Cbð½0; 1� � RdÞ, i; j ¼ 1; . . .; d. (ii) rð�Þ ¼ ðrijð�ÞÞdi;j¼1 is a nondegen-

erate d � d-matrix function on ½0; 1� � Rd .

(A.1). (i) L 2 Cð½0; 1� � Rd � Rd; ½0;1ÞÞ. (ii) Rd 3 u7!Lðt; x; uÞ is convex for

ðt; xÞ 2 ½0; 1� � Rd .

(A.2).

lim
juj!1

inffLðt; x; uÞjðt; xÞ 2 ½0; 1� � Rdg
juj ¼ 1:

The following proposition gives the relations among and the properties of three classes of

the SOTPs stated in Definitions 3, 5, and 6 above. In particular, it implies that they are

equivalent in our setting and why they are all called the SOTPs. It also implies the

convexities and the lower semicontinuities of VðP0;P1Þ and VðfPtg0� t� 1Þ.

Proposition 1

(i) Suppose that (A.1) holds. Then the following holds:

VðP0;P1Þ ¼ vðP0;P1Þ ¼ ~vðP0;P1Þ; P0;P1 2 PðRdÞ; ð2:9Þ

VðfPtg0� t� 1Þ ¼ vðfPtg0� t� 1Þ ¼ ~vðfPtg0� t� 1Þ; fPtg0� t� 1 	 PðRdÞ: ð2:10Þ

(ii) Suppose, in addition, that (A.0.0,i) and (A.2) hold. Then there exist minimizers
X of VðP0;P1Þ and Y of VðfPtg0� t� 1Þ for which

bXðt;XÞ ¼ bXðt;XðtÞÞ; bYðt; YÞ ¼ bYðt; YðtÞÞ; ð2:11Þ

provided VðP0;P1Þ and VðfPtg0� t� 1Þ are finite, respectively (see (1.17) for

notation).
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(iii) Suppose, in addition, that (A.0.0,ii) holds and that Rd 3 u7!Lðt; x; uÞ is strictly

convex for ðt; xÞ 2 ½0; 1� � Rd. Then for any minimizers X of VðP0;P1Þ and Y of
VðfPtg0� t� 1Þ, (2.11) holds and bX and bY in (2.11) are unique on the support of

dtPXðtÞðdxÞ and dtPYðtÞðdxÞ, respectively.

Remark 5 Let c 2 CðRd � Rd; ½0;1ÞÞ. For P0;P1 2 PðRdÞ,

TMðP0;P1Þ :¼ inf

Z
Rd

cðx;uðxÞÞP0ðdxÞ




P0u

�1 ¼ P1

� �

�TðP0;P1Þ :¼ inf

Z
Rd�Rd

cðx; yÞlðdxdyÞ




li ¼ Pi�1; i ¼ 1; 2

� � ð2:12Þ

(see (2.3) for notation). TMðP0;P1Þ and TðP0;P1Þ are called Monge’s and Monge-Kan-

torovich’s problems, respectively. The second equalities in (2.9)–(2.10) are similar to the

relation between Monge’s and Monge-Kantorovich’s problems since ~v and ~v are the

infimums of linear functionals of measure (see, e.g. [51, 61]).

Before we prove Proposition 1, we state its application to the SOTPs.

For any s� 0 and P 2 PðRdÞ,

WPðsÞ :¼
�
m 2 ~A





m1;0 ¼ P;

Z
½0;1��Rd�Rd

Lðt; x; uÞmðdtdxduÞ� s

�
: ð2:13Þ

Let PðRdÞ be endowed with a weak topology. Then the following is known.

Lemma 1 (See [41]) Suppose that (A.0.0,i) and (A.1)–(A.2) hold. Then for any s� 0 and

compact set K 	 PðRdÞ, the set [P2KWPðsÞ is compact in Pð½0; 1� � Rd � RdÞ.

Lemma 1 was given in [41] to prove the Duality Theorems for vðP0;P1Þ and

vðfPtg0� t� 1Þ. By Proposition 1, it can be also used in the proof of the lower semiconti-

nuities of VðP0;P1Þ and VðfPtg0� t� 1Þ. Besides, we do not need the following assumption

anymore.

(A).

DLðe1; e2Þ :¼ sup
Lðt; x; uÞ � Lðs; y; uÞ

1 þ Lðs; y; uÞ ! 0 ase1; e2 # 0; ð2:14Þ

where the supremum is taken over all (t, x) and ðs; yÞ 2 ½0; 1� � Rd for which jt � sj\e1,

jx� yj\e2 and over all u 2 Rd.

This assumption can be used to prove the lower semicontinuity of the following (see

[26], Chapter 9.1):

ACð½0; 1�;RdÞ 3 f 7!
Z 1

0

L t; f ðtÞ; df ðtÞ
dt

� �
dt: ð2:15Þ

We state additional assumptions and the improved versions of the Duality Theorems for

VðP0;P1Þ and VðfPtg0� t� 1Þ.
(A.0). rij 2 C1

bð½0; 1� � RdÞ, i; j ¼ 1; . . .; d.
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(A.3). (i) otLðt; x; uÞ and DxLðt; x; uÞ are bounded on ½0; 1� � Rd � BR for all R[ 0,

where BR :¼ fx 2 Rdjjxj �Rg. (ii) CL is finite, where

CL :¼ sup
Lðt; x; uÞ

1 þ Lðt; y; uÞ





0� t� 1; x; y; u 2 Rd

� �
: ð2:16Þ

Hðt; x; zÞ :¼ supfhz; ui � Lðt; x; uÞju 2 Rdg: ð2:17Þ

The following is a generalization of [41], in that we do not need the nondegeneracy of

a and the assumption (A) and can be proved almost in the same way as in [41] by

Proposition 1 and by Lemma 1. Indeed, in our previous papers, by the nondegeneracy of a,

we made use of the Cameron–Martin–Maruyama–Girsanov formula to prove the convexity

of P 7!VðP0;PÞ, which we can avoid by Proposition 1. The lower semicontinuity of

P 7!VðP0;PÞ can be proved by Proposition 1 and by Lemma 1. In [59], they considered a

similar problem and used a general property on the convex combination of probability

measures on an enlarged space, which allows them not to assume the nondegeneracy of a,

though they assumed a condition which is similar to (A).

One can also find details in [44] (see [24] for related topics). We refer readers to

[15, 20, 29] on the viscosity solution.

Theorem 3 (Duality Theorem for V) Suppose that (A.0)–(A.3) hold. Then, for any P0,

P1 2 PðRdÞ,

VðP0;P1Þ ¼ vðP0;P1Þ ¼ ~vðP0;P1Þ

¼ sup
f2C1

b
ðRdÞ

�Z
Rd

f ðxÞP1ðdxÞ �
Z
Rd

uð0; x; f ÞP0ðdxÞ
�
;

ð2:18Þ

where uðt; x; f Þ denotes the minimal bounded continuous viscosity solution to the following
HJB Eqn: on ½0; 1Þ � Rd ,

otuðt; xÞ þ
1

2
haðt; xÞ;D2

xuðt; xÞi þ Hðt; x;Dxuðt; xÞÞ ¼ 0;

uð1; �Þ ¼ f :
ð2:19Þ

We introduce the following condition to replace u in (2.18) by classical solutions to the

HJB Eq. (2.19).

(A.4). (i) ‘‘r is an identity’’, or ‘‘ rð�Þ ¼ ðrijð�ÞÞdi;j¼1 is uniformly nondegenerate,

rij 2 C1;2
b ð½0; 1� � RdÞ, i; j ¼ 1; . . .; d, and there exist functions L1 and L2 so that

L ¼ L1ðt; xÞ þ L2ðt; uÞ’’. (ii) Lðt; x; uÞ 2 C1ð½0; 1� � Rd � Rd; ½0;1ÞÞ and is strictly convex

in u. (iii) L 2 C1;2;0
b ð½0; 1� � Rd � BRÞ for any R[ 0.

Since (A.4,i), (A.4,ii), and (A.4,iii) imply (A.0), (A.1), and (A.3,i), respectively, the

following holds from Theorem 3, in the same way as in [41] (see also [44]).

Corollary 1 Suppose that (A.2), (A.3,ii), and (A.4) hold. Then (2.18) holds even if the

supremum is taken over all classical solutions u 2 C1;2
b ð½0; 1� � RdÞ to the HJB Eqn (2.19).
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Besides, for any P0;P1 2 PðRdÞ for which VðP0;P1Þ is finite, a minimizer fXðtÞg0� t� 1 of

VðP0;P1Þ exists and the following holds: for any maximizing sequence fungn� 1 of (2.18),

0 ¼ lim
n!1

E

�Z 1

0

jLðt;XðtÞ; bXðt;XÞÞ

� fhbXðt;XÞ;Dxunðt;XðtÞÞi � Hðt;XðtÞ;Dxunðt;XðtÞÞÞgjdt
	
:

ð2:20Þ

In particular, there exists a subsequence fnkgk� 1 for which

bXðt;XÞ ¼ lim
k!1

DzHðt;XðtÞ;Dxunk ðt;XðtÞÞÞ; dtdP-a.e. ð2:21Þ

The following is also a generalization of [41] and can be proved almost in the same way as

in [41] by Proposition 1 and Lemma 1.

Theorem 4 (Duality Theorem for V) Suppose that (A.0)-(A.3) hold. Then for any

P :¼ fPtg0� t� 1 	 PðRdÞ,

VðPÞ ¼ vðPÞ ¼ ~vðPÞ

¼ sup
f2C1

b
ð½0;1��RdÞ

�Z 1

0

Z
Rd

f ðt; xÞdtPtðdxÞ �
Z
Rd

/ð0; x; f ÞP0ðdxÞ
�
;

ð2:22Þ

where /ðt; x; f Þ denotes the minimal bounded continuous viscosity solution of the following
HJB Eqn: on ½0; 1Þ � Rd ,

ot/ðt; xÞ þ
1

2
haðt; xÞ;D2

x/ðt; xÞi þ Hðt; x;Dx/ðt; xÞÞ þ f ðt; xÞ ¼ 0;

/ð1; xÞ ¼ 0:
ð2:23Þ

Suppose that (A.4) holds instead of (A.0), (A.1), and (A.3,i). Then (2.22) holds even if the

supremum is taken over all classical solutions / 2 C1;2
b ð½0; 1� � RdÞ to the HJB Eqn (2.23).

Besides, if VðPÞ is finite, then a minimizer fXðtÞg0� t� 1 of VðPÞ exists and the following

holds: for any maximizing sequence f/ngn� 1 of (2.22),

0 ¼ lim
n!1

E

�Z 1

0

jLðt;XðtÞ; bXðt;XÞÞ

� fhbXðt;XÞ;Dx/nðt;XðtÞÞi � Hðt;XðtÞ;Dx/nðt;XðtÞÞÞgjdt
	
:

ð2:24Þ

In particular, there exists a subsequence fnkgk� 1 for which

bXðt;XÞ ¼ lim
k!1

DzHðt;XðtÞ;Dx/nk ðt;XðtÞÞÞ; dtdP-a.e. ð2:25Þ
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Remark 6 (See [41, 44]) (i) Suppose that (A.0)–(A.3) hold. Then for any f 2 UCbðRdÞ, the

following is the minimal bounded continuous viscosity solution of the HJB equation

(2.19):

uðt; x; f Þ ¼ sup
X2At ;XðtÞ¼x

E

�
f ðXð1ÞÞ �

Z 1

t

Lðs;XðsÞ; bXðs;XÞÞds
	
; ð2:26Þ

where At denotes A with a time interval [0, 1] replaced by [t, 1]. (ii) Suppose that (A.0)–

(A.3) with L replaced by Lðt; x; uÞ � f ðt; xÞ hold. Then the following is the minimal

bounded continuous viscosity solution of the HJB Eq. (2.23):

/ðt; x; f Þ ¼ sup
X2At ;XðtÞ¼x

E

�Z 1

t

f ðs;XðsÞÞ � Lðs;XðsÞ; bXðs;XÞÞf gds
	
: ð2:27Þ

We consider Schrödinger’s and Nelson’s problems, i.e., VS and VN . We introduce a new

assumption.

(A.4)’. (1.19) holds, rð�Þ ¼ ðrijð�ÞÞdi;j¼1 is uniformly nondegenerate, and

a 2 C1;2
b ð½0; 1� � Rd;Mðd;RÞÞ; n 2 C1;2

b ð½0; 1� � Rd;RdÞ.
(A.4)’ implies (A.0)-(A.3). Besides, for f 2 C3

bðRdÞ and f 2 C1;2
b ð½0; 1� � RdÞ, the HJB

equations (2.19) and (2.23) have unique classical solutions in C1;2
b ð½0; 1� � RdÞ, respec-

tively. They are also the minimal bounded continuous viscosity solutions of (2.19) and

(2.23), respectively, since they have the same representation formulas given in Remark 6

(see, e.g. [20, 22] on classical solutions and Lemma 4.5 in [41] on viscosity solution). In

particular, the following holds though (A.4)’ does not imply (A.4).

Corollary 2 Suppose that (A.4)’ holds. Then the assertions in Corollary 1 and Theorem 4

hold.

Remark 7 If (1.19) holds, then

Lðt; x; uÞ � fhu; zi � Hðt; x; zÞg ¼ 1

2
jrðt; xÞ�1ðaðt; xÞz� uþ nðt; xÞÞj2: ð2:28Þ

In the rest of this section, we prove Proposition 1.

Proof of Proposition 1 We prove (i). For fXðtÞg0� t� 1 2 A, by Jensen’s inequality,

E

�Z 1

0

Lðt;XðtÞ; bXðt;XÞÞdt
	
�E

�Z 1

0

Lðt;XðtÞ; bXðt;XðtÞÞÞdt
	
: ð2:29Þ

Theorem 1 implies the first equalities of (2.9)–(2.10) (see Remark 3, (ii)).

For m 2 ~A,

bmðt; xÞ :¼
Z
Rd

umðt; x; duÞ; ð2:30Þ
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where mðt; x; duÞ denotes a regular conditional probability of m given (t, x). Then by Jen-

sen’s inequality,

Z
½0;1��Rd�Rd

Lðt; x; uÞmðdtdxduÞ�
Z 1

0

dt

Z
Rd

Lðt; x; bmðt; xÞÞm1;tðdxÞ: ð2:31Þ

bm 2 Aðfm1;tg0� t� 1Þ from (2.5), since by Jensen’s inequality,

Z
½0;1��Rd

jbmðt; xÞjdtm1;tðdxÞ�
Z
½0;1��Rd�Rd

jujmðdtdxduÞ\1;

and for any t 2 ½0; 1� and f 2 C1;2
b ð½0; 1� � RdÞ,

Z
½0;t��Rd�Rd

hu;Dxf ðs; xÞimðdsdxduÞ

¼
Z t

0

ds

Z
Rd
hbmðs; xÞ;Dxf ðs; xÞim1;sðdxÞ:

ð2:32Þ

This implies the second equalities of (2.9)–(2.10) (see Remark 4).

The proof of (ii) is done by Lemma 1, (2.32), and Theorem 1.

We prove (iii). From (2.29) and the strict convexity of u7!Lðt; x; uÞ, (2.11) holds. For

b 2 AðfPtg0� t� 1Þ, PtðdxÞ � dx, dt-a.e. from (A.0.0,ii), since a; b 2 L1ð½0; 1� �
Rd; dtPtðdxÞÞ (see [4], p. 1042, Corollary 2.2.2). For fpiðt; xÞdxg0� t� 1 	 PðRdÞ,
bi 2 Aðfpiðt; xÞdxg0� t� 1Þ, i ¼ 0; 1, and k 2 ½0; 1�,

pk :¼ ð1 � kÞp0 þ kp1; bk :¼ 1ð0;1ÞðpkÞ
ð1 � kÞp0b0 þ kp1b1

pk
; ð2:33Þ

where 1AðxÞ denotes an indicator function of A 	 R. Then bk 2 Aðfpkðt; xÞdxg0� t� 1Þ and

Z 1

0

dt

Z
Rd

Lðt; x; bkðt; xÞÞpkðt; xÞdx

�ð1 � kÞ
Z 1

0

dt

Z
Rd

Lðt; x; b0ðt; xÞÞp0ðt; xÞdx

þ k
Z 1

0

dt

Z
Rd

Lðt; x; b1ðt; xÞÞp1ðt; xÞdx:

ð2:34Þ

Here the equality holds if and only if b0 ¼ b1 dtdx-a.e. on the set

fðt; xÞ 2 ½0; 1� � Rdjp0ðt; xÞp1ðt; xÞ[ 0g. h

3 Stochastic optimal transport with a nonconvex cost

In this section, in the case where d ¼ 1 and where a is not fixed, we consider slightly

relaxed versions of the SOTPs of which cost functions are not supposed to be convex. As a

fundamental problem of the stochastic optimal control theory, the test of the Markov

property of a minimizer of a stochastic optimal control problem is known. We also con-

sider the Markov property of the minimizer of a finite-time horizon stochastic control

problem. Our previous result [35] proved it in a one-dimensional case by the optimal

transportation problem with a concave cost. We generalize it by Theorem 2 in Sect. 1.
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Since a is not fixed in this section, we consider a new class of semimartingales.

Let u ¼ fuðtÞg0� t� 1 and fWðtÞg0� t� 1 be a progressively measurable real valued

process and a one-dimensional Brownian motion on the same complete filtered probability

space, respectively. The probability space under consideration is not fixed in this sec-

tion. Let r : ½0; 1� � R �! R be a Borel measurable function. Let Yu;r ¼ fYu;rðtÞg0� t� 1

be a continuous semimartingale such that the following holds weakly:

Yu;rðtÞ ¼ Yu;rð0Þ þ
Z t

0

uðsÞdsþ
Z t

0

rðs; Yu;rðsÞÞdWðsÞ; 0� t� 1; ð3:1Þ

provided it exists.

For r[ 0,

Ur : ¼ ðu; rÞ




E
Z 1

0

rðt; Yu;rðtÞÞ2

1 þ jYu;rðtÞj2
þ juðtÞj

 !
dt

" #
\1; jrj � r

( )
; ð3:2Þ

Ur;Mar : ¼ ðu; rÞ 2 Urjuð�Þ ¼ bYu;rð�; Yu;rð�ÞÞf g; ð3:3Þ

where bYu;rðt; Yu;rðtÞÞ :¼ E½uðtÞjðt; Yu;rðtÞÞ�. For ðu; rÞ 2 Ur,

FYu;r

t ðxÞ : ¼ PðYu;rðtÞ� xÞ; ð3:4Þ

Gu
t ðxÞ : ¼ PðuðtÞ� xÞ; ð3:5Þ

~bu;Yu;rðt; xÞ : ¼ ðGu
t Þ

�1ð1 � FYu;r

t ðxÞÞ; ðt; xÞ 2 ½0; 1� � R: ð3:6Þ

Here for a distribution function F on R,

F�1ðvÞ :¼ inffx 2 RjFðxÞ� vg; 0\v\1:

F�1 is called the quasi-inverse of F (see, e.g. [48, 51, 57]).

pY
u;rðt; xÞ :¼ PYu;rðtÞðdxÞ

dx
ð3:7Þ

exists dt-a.e. since r is positive and ðr2; bYu;rÞ 2 A0ðfPYu;rðtÞg0� t� 1Þ (see [4], p. 1042,

Corollary 2.2.2). Indeed, by Jensen’s inequality,

Z
R

jbYu;rðt; yÞjpYu;rðt; yÞdy ¼ E½jE½uðtÞjðt; Yu;rðtÞÞ�j� �E½juðtÞj�: ð3:8Þ

From the idea of covariance kernels (see [6, 7, 34, 39]),

~au;Yu;rðt; xÞ

:¼ 1ð0;1ÞðpY
u;rðt; xÞÞ

2
R x
�1ð ~bu;Yu;rðt; yÞ � bYu;rðt; yÞÞpYu;rðt; yÞdy

pYu;rðt; xÞ :
ð3:9Þ

The following holds and will be proved later.
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Theorem 5 Let r[ 0. For ðu; rÞ 2 Ur , there exists ~u such that ð~u; ~r :¼ ðr2 þ ~au;Yu;rÞ
1
2Þ 2

Ur;Mar and that the following holds:

PY ~u; ~rðtÞ ¼ PYu;rðtÞ; t 2 ½0; 1�; ð3:10Þ

bY ~u; ~r ¼ ~bu;Yu;r ; ð3:11Þ

PbY ~u; ~r ðt;Y ~u; ~rðtÞÞ ¼ PuðtÞ; dt�a:e: ð3:12Þ

For r[ 0 and fPtg0� t� 1 	 PðRÞ,

A0;rðfPtg0� t� 1Þ : ¼
�
ða; bÞ 2 A0ðfPtg0� t� 1Þ





a� r2;

Z 1

0

dt

Z
Rd

aðt; xÞ
1 þ jxj2

þ jbðt; xÞj
�
PtðdxÞ\1

 )
:

ð3:13Þ

Let L1; L2 : ½0; 1� � R �! ½0;1Þ be Borel measurable.

For ðu; rÞ,

Jðu; rÞ :¼ E

�Z 1

0

ðL1ðt; Yu;rðtÞÞ þ L2ðt; uðtÞÞÞdt
	
: ð3:14Þ

For ða; bÞ 2 A0ðfPtg0� t� 1Þ,

IðfPtg0� t� 1; a; bÞ :¼
Z 1

0

dt

Z
Rd
ðL1ðt; xÞ þ L2ðt; bðt; xÞÞÞPtðdxÞ: ð3:15Þ

One easily obtains the following from Theorems 2 and 5.

Corollary 3 Suppose that L1; L2 : ½0; 1� � R �! ½0;1Þ are Borel measurable.
Then for any r[ 0, the following holds. (i) For any P0;P1 2 PðRÞ,

inffJðu; rÞjðu; rÞ 2 Ur;P
Yu;rðtÞ ¼ Pt; t ¼ 0; 1g

¼ inffJðu; rÞjðu; rÞ 2 Ur;Mar;P
Yu;rðtÞ ¼ Pt; t ¼ 0; 1g

¼ inffIðfQtg0� t� 1; a; bÞjða; bÞ 2 A0;rðfQtg0� t� 1Þ;Qt ¼ Pt; t ¼ 0; 1g:
ð3:16Þ

In particular, if there exists a minimizer in (3.16), then there exists a minimizer
ðu; rÞ 2 Ur;Mar. (ii) For any fPtg0� t� 1 	 PðRÞ,

inffJðu; rÞjðu; rÞ 2 Ur;P
Yu;rðtÞ ¼ Pt; 0� t� 1g

¼ inffJðu; rÞjðu; rÞ 2 Ur;Mar;P
Yu;rðtÞ ¼ Pt; 0� t� 1g

¼ inffIðfPtg0� t� 1; a; bÞjða; bÞ 2 A0;rðfPtg0� t� 1Þg:
ð3:17Þ

In particular, if there exists a minimizer in (3.17), then there exists a minimizer
ðu; rÞ 2 Ur;Mar.
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Suppose that L : ½0; 1� � R� R �! ½0;1Þ;W : R �! ½0;1Þ are Borel measurable. Then

for any P0 2 PðRÞ,

inf
ðu;rÞ2Ur ;

PYu;rð0Þ¼P0

E

Z 1

0

Lðt; Yu;rðtÞ; uðtÞÞdt þWðYu;rð1ÞÞ
� 	

¼ inf
P2PðRÞ

VrðP0;PÞ þ
Z
R

WðxÞPðdxÞ
� �

;

ð3:18Þ

where Vr denotes V with A replaced by fYu;rjðu; rÞ 2 Urg.

In particular, we easily obtain the following from Corollary 3.

Corollary 4 In addition to the assumption of Corollary 3, suppose that W : R �! ½0;1Þ is
Borel measurable. Then for any r[ 0 and P0 2 PðRÞ,

inffJðu; rÞ þ E½WðYu;rð1ÞÞ�jðu; rÞ 2 Ur;P
Yu;rð0Þ ¼ P0g

¼ inffJðu; rÞ þ E½WðYu;rð1ÞÞ�jðu; rÞ 2 Ur;Mar;P
Yu;rð0Þ ¼ P0g:

ð3:19Þ

In particular, if there exists a minimizer in (3.19), then there exists a minimizer
ðu; rÞ 2 Ur;Mar.

We prove Theorem 5 by Theorem 2.

Proof of Theorem 5 For ðu; rÞ 2 Ur, the following holds (see [35]):

~au;Yu;rðt; �Þ � 0; P
~bu;Yu;r ðt;Yu;rðtÞÞ ¼ PuðtÞ; dt�a:e: ð3:20Þ

Indeed,

Z x

�1
~bu;Yu;rðt; yÞpYu;rðt; yÞdy ¼ E½ðGu

t Þ
�1ð1 � FYu;r

t ðYu;rðtÞÞÞ; Yu;rðtÞ� x�;
Z x

�1
bYu;rðt; yÞpYu;rðt; yÞdy ¼ E½E½uðtÞjðt; Yu;rðtÞÞ�; Yu;rðtÞ� x�

¼ E½uðtÞ; Yu;rðtÞ� x�:

For an R2-valued random variable Z ¼ ðX; YÞ on a probability space,

E½Y;X� x� ¼
Z 1

0

fFXðxÞ � FZðx; yÞgdy�
Z 0

�1
FZðx; yÞdy;

FZðx; yÞ� maxðFXðxÞ þ FYðyÞ � 1; 0Þ
¼ PðF�1

X ðUÞ� x;F�1
Y ð1 � UÞ� yÞ;

where FX denotes the distribution function of X and U is a uniformly distributed random

variable on [0, 1]. The distribution functions of F�1
X ðUÞ and F�1

Y ð1 � UÞ are FX and FY ,

respectively. From (3.7), FYu;r

t ðYu;rðtÞÞ is uniformly distributed on [0, 1] and

ðFYu;r

t Þ�1ðFYu;r

t ðYu;rðtÞÞÞ ¼ Yu;rðtÞ, P-a.s., dt-a.e. (see [17] or, e.g. [48, 51, 57]).

It is easy to see that the following holds from (3.8) and (3.20):
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ðr2 þ ~au;Yu;r ; ~bu;Yu;rÞ 2 A0ðfPYu;rðtÞg0� t� 1Þ:

Indeed, from (3.20), the following holds:

E

Z 1

0

j ~bu;Yu;rðt; Yu;rðtÞÞjdt
� 	

¼ E

Z 1

0

juðtÞjdt
� 	

\1: ð3:21Þ

The following will be proved below:

E

Z 1

0

~au;Yu;rðt; Yu;rðtÞÞ
1 þ jYu;rðtÞj2

dt

" #
\1: ð3:22Þ

(3.21)–(3.22) and Theorem 2 complete the proof. We prove (3.22).

E

Z 1

0

~au;Yu;rðt; Yu;rðtÞÞ
2ð1 þ jYu;rðtÞj2Þ

dt

" #

¼
Z 1

0

dt

Z
R

1

1 þ x2
dx

Z x

�1
ð ~bu;Yu;rðt; yÞ � bYu;rðt; yÞÞpYu;rðt; yÞdy:

ð3:23Þ

From (3.20),

Z 1

�1
~bu;Yu;rðt; yÞpYu;rðt; yÞdy ¼ E½uðtÞ� ¼ E½E½uðtÞjðt; Yu;rðtÞÞ��

¼
Z 1

�1
bYu;rðt; yÞpYu;rðt; yÞdy; dt-a.e.

ð3:24Þ

In particular, the following holds dt-a.e.:

Z
R

1

1 þ x2
dx

Z x

�1
ð ~bu;Yu;rðt; yÞ � bYu;rðt; yÞÞpYu;rðt; yÞdy

¼
Z 0

�1

1

1 þ x2
dx

Z x

�1
ð ~bu;Yu;rðt; yÞ � bYu;rðt; yÞÞpYu;rðt; yÞdy

�
Z 1

0

1

1 þ x2
dx

Z 1

x

ð ~bu;Yu;rðt; yÞ � bYu;rðt; yÞÞpYu;rðt; yÞdy

¼
Z 0

�1
ð ~bu;Yu;rðt; yÞ � bYu;rðt; yÞÞpYu;rðt; yÞdy

Z 0

y

1

1 þ x2
dx

�
Z 1

0

ð ~bu;Yu;rðt; yÞ � bYu;rðt; yÞÞpYu;rðt; yÞdy
Z y

0

1

1 þ x2
dx

�
Z
R

j arctan yjðj ~bu;Yu;rðt; yÞj þ jbYu;rðt; yÞjÞpYu;rðt; yÞdy:

ð3:25Þ

Since j arctan yj is bounded, (3.8) and (3.21) completes the proof of (3.22). h

4 Semiconcavity and continuity of Schrödinger’s Problem

Proposition 1 and Lemma 1 imply that PðRd � RdÞ 3 P� Q 7!VðP;QÞ is convex and

lower semicontinuous.
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In this section, we give a sufficient condition under which for a fixed Q 2 PðRdÞ,
L2ðX;P;RdÞ 3 X 7!VSðPX;QÞ is semiconcave and is continuous (see (1.19) for notation).

More precisely, we show that there exists C[ 0 such that for a fixed Q 2 PðRdÞ,

L2ðX;P;RdÞ 3 X 7!VSðPX;QÞ � CE½jXj2�

is concave and is continuous. Here L2ðX;P;RdÞ denotes the space of all square integrable

functions from a probability space ðX;F ;PÞ to ðRd;BðRdÞÞ. Let W2 denote the Wasser-

stein distance of order 2, i.e. T1=2 with c ¼ jy� xj2 in Remark 5. We also show the

Lipschitz continuity of P2ðRdÞ 3 P 7!VSðP;QÞ in W2 (see (4.4) for notation).

We first describe the assumptions in this section.

(A.5) rðt; xÞ ¼ ðrijðt; xÞÞdi;j¼1, ðt; xÞ 2 ½0; 1� � Rd, is a d � d-matrix.

aðt; xÞ :¼ rðt; xÞrðt; xÞ�, ðt; xÞ 2 ½0; 1� � Rd , is uniformly nondegenerate, bounded, once

continuously differentiable, and uniformly Hölder continuous. Dxaðt; xÞ is bounded and the

first derivatives of a(t, x) are uniformly Hölder continuous in x uniformly in t 2 ½0; 1�.
(A.6) nðt; xÞ : ½0; 1� � Rd �! Rd is bounded, continuous, and uniformly Hölder con-

tinuous in x uniformly in t 2 ½0; 1�.

Remark 8 (A.5)–(A.6) imply (A.0.0), (A.1), and (A.2) for (1.19). (A.4)’ implies (A.0)–

(A.3) and (A.5)–(A.6).

We describe the following fact.

Theorem 6 Suppose that (A.5)–(A.6) hold. Then for any P0 2 PðRdÞ, the following SDE
has the unique weak solution with a positive continuous transition probability density

p(t, x; s, y), 0� t\s� 1, x; y 2 Rd:

dXðtÞ ¼ nðt;XðtÞÞdt þ rðt;XðtÞÞdWXðtÞ; 0\t\1;

PXð0Þ ¼ P0

ð4:1Þ

(see [28]). Besides, there exist constants C1;C2 [ 0 such that

�C1 þ C�1
2 jx� yj2 � � log pð0; x; 1; yÞ�C1 þ C2jx� yj2; x; y 2 Rd ð4:2Þ

(see [3, 22]).

Remark 9 If VSðP;QÞ is finite, then the distribution of the minimizer X of VSðP;QÞ is

absolutely continuous with respect to PX. In particular, QðdxÞ � dx under (A.5)–(A.6).

Indeed, VSðP;QÞ is the relative entropy of PX with respect to PX and PXð1Þ has a density

(see the discussion below Remark 3).

We recall the definition of displacement convexity.

Definition 7 (Displacement convexity (see [32])) Let G : PðRdÞ �! R [ f1g. G is dis-

placement convex if the following is convex: for any q0; q1 2 PðRdÞ and convex function

u : Rd �! R [ f1g,
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½0; 1� 3 t 7!GðqtÞ; ð4:3Þ

where qt :¼ q0ðid þ tðDu� idÞÞ�1
, 0\t\1, provided q1 ¼ q0ðDuÞ�1

and qt can be

defined. Here id denotes an identity mapping.

Recall that a convex function is differentiable dx-a.e. in the interior of its domain (see, e.g.

[61]) and qt in (4.3) is well defined if q0 2 P2;acðRdÞ and if q1 2 P2ðRdÞ (see, e.g. [61]).

Here

P2ðRdÞ : ¼ P 2 PðRdÞ





Z
Rd

jxj2PðdxÞ\1
� �

; ð4:4Þ

PacðRdÞ : ¼ fpðxÞdx 2 PðRdÞg; ð4:5Þ

P2;acðRdÞ : ¼ P2ðRdÞ \ PacðRdÞ: ð4:6Þ

The following implies that L2ðX;P;RdÞ 3 X 7!VSðPX ;QÞ is semiconvave for a fixed Q 2
PacðRdÞ and will be proved later.

Theorem 7 Suppose that (A.4)’ holds and that there exists a constant C[ 0 such that

x 7! log pð0; x; 1; yÞ þ Cjxj2 is convex for any y 2 Rd. Then for any Q 2 PacðRdÞ,
Xi 2 L2ðX;P;RdÞ; i ¼ 1; 2, and k1 2 ð0; 1Þ,

X2

i¼1

kiVSðPXi ;QÞ � k1k2CE½jX1 � X2j2� �VSðP
P2

i¼1
kiXi ;QÞ; ð4:7Þ

where k2 :¼ 1 � k1. Equivalently, the following is convex:

L2ðX;P;RdÞ 3 X 7! � VSðPX;QÞ þ CE½jXj2�: ð4:8Þ

In particular, the following is displacement convex:

P2;acðRdÞ 3 P 7! � VSðP;QÞ þ C

Z
Rd

jxj2PðdxÞ: ð4:9Þ

Remark 10 Suppose that aij ¼ aijðxÞ; ni ¼ niðxÞ 2 C1
b ðRdÞ and that a(x) is uniformly

nonnegenerate. Then D2
x log pð0; x; 1; yÞ is bounded (see [58], Theorem B). In particular,

there exists a constant C[ 0 such that for any y 2 Rd , x7! log pð0; x; 1; yÞ þ Cjxj2 is

convex.

For P 2 PðRdÞ,

SðPÞ :¼

Z
Rd

pðxÞ log pðxÞdx; PðdxÞ ¼ pðxÞdx;

1; otherwise:

8<
: ð4:10Þ

Let lðP;QÞ denote the joint distribution at t ¼ 0; 1 of the minimizer of VSðP;QÞ, provided
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VSðP;QÞ is finite. The following implies that L2ðX;P;RdÞ 3 X 7!VSðPX;QÞ is continuous

for a fixed Q 2 PacðRdÞ such that SðQÞ is finite.

The lower-semicontinuity of PðRdÞ 3 P 7!VSðP;QÞ is known and can be proved, e.g.

from Proposition 1 and Lemma 1. That of (4.12) can be proved in the same way as Lemma

3.4 in [43]. We give the proof for the sake of completeness.

Theorem 8 Suppose that (A.5)–(A.6) hold. For P;Q 2 P2ðRdÞ, if SðQÞ is finite, then
VSðP;QÞ is finite and the following holds:

�VSðP;QÞ ¼ HðP� QjlðP;QÞÞ � SðQÞ

þ
Z
Rd�Rd

log pð0; x; 1; yÞPðdxÞQðdyÞ:
ð4:11Þ

In particular, the following is weakly lower semicontinuous:

P2ðRdÞ 3 P 7! � VSðP;QÞ þ C2

Z
Rd�Rd

jx� yj2PðdxÞQðdyÞ ð4:12Þ

(see (4.2) for notation). The following is also continuous in the topology induced by W2:

P2ðRdÞ 3 P7!VSðP;QÞ: ð4:13Þ

If SðQÞ is infinite, then so is VSðP;QÞ.

Remark 11 For C[ 0 and P;Q 2 PðRdÞ,

WQ;CðPÞ :¼ SðPÞ � VSðP;QÞ þ C

Z
Rd�Rd

jx� yj2PðdxÞQðdyÞ: ð4:14Þ

WQ;CðPÞ plays a crucial role in the construction of moment measures by the SOTP (see

[43, 44] and also [54] for the approach by the OTP). Since PacðRdÞ 3 P 7!SðPÞ is strictly

displacement convex from Theorem 2.2 in [32], so is P2;acðRdÞ 3 P 7!WQ;CðPÞ under the

assumption of Theorem 7.

From Theorem 7, under stronger assumptions than Theorem 8, for a fixed Q 2 P2;acðRdÞ
such that SðQÞ is finite, we prove that P2ðRdÞ 3 P7!VSðP;QÞ is Lipschitz continuous in

W2.

Corollary 5 Suppose that (A.4)’ holds and that there exists a constant C[ 0 such that

log pð0; x; 1; yÞ þ Cjxj2 is convex in x for any y 2 Rd. Then for any Q 2 P2;acðRdÞ such that
SðQÞ is finite, the following holds:

jVSðP0;QÞ � VSðP1;QÞj
� f ðmaxðjjxjjL2ðP0Þ; jjxjjL2ðP1ÞÞ; jjxjjL2ðQÞÞW2ðP0;P1Þ; P0;P1 2 P2ðRdÞ;

ð4:15Þ

where jjxjjL2ðPÞ :¼ ð
R
Rd jxj2PðdxÞÞ1=2

, P 2 P2ðRdÞ and

f ðx; yÞ :¼ 2C2x
2 þ 2ðC2y

2 þ C1Þ þ C
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(see (4.2) for notation). In particular, if pð0; x; 1; yÞ ¼ ð2paÞ�d=2
expð�jy� xj2=

ð2aÞÞ; a[ 0, then

jVSðP0;QÞ � VSðP1;QÞj

� 1

2a
fjjxjjL2ðP0Þ þ jjxjjL2ðP1Þ þ 2ð1 þ maxðr0; r1ÞÞjjxjjL2ðQÞgW2ðP0;P1Þ;

ð4:16Þ

where

ri :¼
�Z

Rd

�
x�

Z
Rd

yPiðdyÞ
�2

PiðdxÞ
�1=2

; i ¼ 0; 1:

We prove Theorems 7 and 8, and Corollary 5.

Proof of Theorem 7 For any fi 2 C1
b ðRdÞ, uiðxÞ :¼ uð0; x; fiÞ (see (2.18) for notation).

Then

X2

i¼1

ki

Z
Rd

fiðxÞQðdxÞ �
Z
Rd

uiðxÞPXiðdxÞ
� �

�VSðP
P2

i¼1
kiXi ;QÞ þ k1k2CE½jX1 � X2j2�:

ð4:17Þ

Indeed,

X2

i¼1

ki

Z
Rd

fiðxÞQðdxÞ �
Z
Rd

uiðxÞPXiðdxÞ
� �

¼
Z
Rd

X2

i¼1

kifiðxÞQðdxÞ � E

�X2

i¼1

kifuiðXiÞ þ CjXij2g
	
þCE

�X2

i¼1

kijXij2
	
;

Z
Rd

X2

i¼1

kifiðxÞQðdxÞ

�VSðP
P2

i¼1
kiXi ;QÞ þ

Z
Rd

u

�
0; x;

X2

i¼1

kifi

�
P
P2

i¼1
kiXiðdxÞ

by the Duality Theorem for VS (see Corollary 2).

Z
Rd

u

�
0; x;

X2

i¼1

kifi

�
P
P2

i¼1
kiXiðdxÞ ¼ E

�
u

�
0;
X2

i¼1

kiXi;
X2

i¼1

kifi

�	

�E

�X2

i¼1

ki

�
uiðXiÞ þ CjXij2

�	
�CE

�




X2

i¼1

kiXi






2	
:

In the inequality above, we considered as follows:
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uðt; x; f Þ ¼ log

Z
Rd

pðt; x; 1; yÞ expðf ðyÞÞdy
� �

; ðt; xÞ 2 ½0; 1Þ � Rd;

Z
Rd

exp

�
log p

�
0;
X2

i¼1

kiXi; 1; y

�
þC






X2

i¼1

kiXi






2

þ
X2

i¼1

kifiðyÞ
�
dy

�
Z
Rd

exp

�X2

i¼1

kiflog pð0;Xi; 1; yÞ þ CjXij2 þ fiðyÞg
�
dy

�
Y2

i¼1

Z
Rd

expðlog pð0;Xi; 1; yÞ þ CjXij2 þ fiðyÞÞdy
� �ki

ð4:18Þ

by Hölder’s inequality. Taking the supremum in fi over C1
b ðRdÞ on the left hand side of

(4.17), the Duality Theorem for VS completes the proof (see Corollary 2). h

Proof of Theorem 8 We prove the first part. We first prove that VSðP;QÞ is finite. Indeed,

from [53],

VSðP;QÞ ¼ inffHðlðdxdyÞjPðdxÞpð0; x; 1; yÞdyÞ : l1 ¼ P; l2 ¼ Qg
�HðPðdxÞQðdyÞjPðdxÞpð0; x; 1; yÞdyÞ

¼SðQÞ �
Z
Rd�Rd

flog pð0; x; 1; yÞgPðdxÞQðdyÞ\1
ð4:19Þ

from (4.2) (see (2.3) for notation). Here for l; m 2 PðRd � RdÞ,

HðljmÞ :¼

Z
Rd�Rd

log
lðdxdyÞ
mðdxdyÞ

� �
lðdxdyÞ; l � m;

1; otherwise:

8<
:

There exists a Borel measurable f : Rd �! R such that the following holds (see, e.g. [28]):

lðP;QÞðdxdyÞ ¼ PðdxÞpð0; x; 1; yÞ expðf ðyÞ � uð0; x; f ÞÞdy ð4:20Þ

(see (4.18) for notation).

Since VSðP;QÞ is finite, f 2 L1ðRd;P1Þ and uð0; x; f Þ 2 L1ðRd;P0Þ (see, e.g. [53]). In

particular,

�VSðP;QÞ ¼ �
Z
Rd�Rd

log
lðP;QÞðdxdyÞ

PðdxÞpð0; x; 1; yÞdy

� �
lðP;QÞðdxdyÞ

¼
Z
Rd�Rd

ð�f ðyÞ þ uð0; x; f ÞÞPðdxÞQðdyÞ

¼
Z
Rd�Rd

PðdxÞQðdyÞ
�

log
PðdxÞQðdyÞ
lðP;QÞðdxdyÞ

� �

� log qðyÞ þ log pð0; x; 1; yÞ
�
;

ð4:21Þ

which completes the proof of (4.11). P� Q 7!HðP� QjlðP;QÞÞ is weakly lower semi-

continuous since P� Q 7!lðP;QÞ is weakly continuous (see [43]) and since ðl; mÞ7!HðljmÞ
is weakly lower semicontinuous (see, e.g. [18], Lemma 1.4.3). In particular, (4.12) is

weakly lower semicontinuous from (4.11). The weak lower semicontinuity of (4.12)
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implies the upper semicontinuity of (4.13) since for Pn;P 2 PðRdÞ; n� 1, W2ðPn;PÞ ! 0

as n ! 1 if and only if Pn ! P weakly and
R
Rd jxj2PnðdxÞ !

R
Rd jxj2PðdxÞ (see, e.g.

[61]).

(4.13) is also weakly lower semicontinuous by Proposition 1 and Lemma 1.

We prove the last part.

qð0; x; 1; yÞ :¼ pð0; x; 1; yÞ expðf ðyÞ � uð0; x; f ÞÞ: ð4:22Þ

Then by Jensen’s inequality,

VSðP;QÞ

¼
Z
Rd�Rd

log qð0; x; 1; yÞ � log pð0; x; 1; yÞf gPðdxÞqð0; x; 1; yÞdy

�SðQÞ �
Z
Rd�Rd

log pð0; x; 1; yÞf gPðdxÞqð0; x; 1; yÞdy;

ð4:23Þ

since

QðdyÞ ¼
Z
Rd

PðdxÞqð0; x; 1; yÞ
� �

dy:

(4.2) completes the proof. h

Remark 12 Under (A.5)-(A.6), from Theorem 6, (4.21), and (4.23), for P;Q 2 P2ðRdÞ, if

SðQÞ is finite, then

�1\� C1 þ C�1
2

Z
Rd�Rd

jx� yj2lðP;QÞðdxdyÞ

� �
Z
Rd�Rd

flog pð0; x; 1; yÞglðP;QÞðdxdyÞ

�VSðP;QÞ � SðQÞ

� �
Z
Rd�Rd

flog pð0; x; 1; yÞgPðdxÞQðdyÞ

�C1 þ C2

Z
Rd�Rd

jx� yj2PðdxÞQðdyÞ\1:

ð4:24Þ

Remark 12 plays a crucial role in the proof of Corollary 5.

Proof of Corollary 5 Let X; Y 2 L2ðX;P;RdÞ and k :¼ minð1; jjX � Y jj2Þ, where

jjXjj2 :¼ fE½jXj2�g1=2
.

We prove the following when k[ 0.

VSðPX ;QÞ � VSðPY ;QÞ� kf2C2ðjjXjj22 þ jjxjj2L2ðQÞÞ þ 2C1 þ Cg ð4:25Þ

(see (4.2) for notation). From Theorem 7,
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ð1 � kÞVSðPX ;QÞ þ kVSðPk�1ðY�XÞþX;QÞ
� kð1 � kÞCjjk�1ðY � XÞjj22 þ VSðPY ;QÞ:

since Y ¼ ð1 � kÞX þ kðk�1ðY � XÞ þ XÞ. From this,

VSðPX ;QÞ � VSðPY ;QÞ

� kfVSðPX;QÞ � VSðPk�1ðY�XÞþX ;QÞ þ Cð1 � kÞjjk�1ðY � XÞjj22g:
ð4:26Þ

Since (A.4)’ implies (A.5)–(A.6),

VSðPX;QÞ � VSðPk�1ðY�XÞþX;QÞ
�SðQÞ þ C1 þ 2C2ðjjXjj22 þ jjxjj2L2ðQÞÞ � SðQÞ þ C1

from Remark 12. The following completes the proof of the first part:

ð1 � kÞjjk�1ðY � XÞjj22 ¼
1 � k; k ¼ jjX � Y jj2\1;

0 ¼ 1 � k; k ¼ 1:

�

We prove the second part. One can set C ¼ ð2aÞ�1
.

From (4.26), the following holds:

VSðPX;QÞ � VSðPY ;QÞ

� k

�
VSðPX ;QÞ � VSðPk�1ðY�XÞþX ;QÞ

� 1

2a
jjXjj22 þ

1

2a
jjk�1ðY � XÞ þ Xjj22

�
þ 1

2a
ðjjXjj22 � jjY jj22Þ;

ð4:27Þ

since

kð1 � kÞjjk�1ðY � XÞjj22 ¼ kð�jjXjj22 þ jjk�1ðY � XÞ þ Xjj22Þ þ jjXjj22 � jjY jj22:

The following completes the proof: from Remark 12,

VSðPX ;QÞ � VSðPk�1ðY�XÞþX;QÞ � 1

2a
jjXjj22 þ

1

2a
jjk�1ðY � XÞ þ Xjj22

� 1

a

Z
Rd�Rd

hx; yi lðPk�1ðY�XÞþX ;QÞðdxdyÞ � PXðdxÞQðdyÞ
n o

¼ 1

a

Z
Rd�Rd

hx� E½X�; yilðPk�1ðY�XÞþX ;QÞðdxdyÞ

� 1

ak
ðjjX � Y jj2 þ kVðXÞ1=2ÞjjxjjL2ðQÞ:

h
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