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Abstract
Vehicular flow modeling has received much attention in the past decade due to the con-

sequential effect of the increasing number of vehicles. A notable effect is the congestion on

urban and semi-urban roads. Traffic flow models are often the first point of reference in

addressing these congestion problems. In that regard, a new viscous second-order

macroscopic model is presented to explore some dynamics of multilane traffic. The new

model accounts for viscosity and the velocity differentials across infinitely many count-

able lanes. It is realized that the wave properties of the proposed model are analogous to

the driving setting on a Ghanaian highway. This is followed by a mathematical condition to

achieving a stable traffic flow. Moreover, the viscous model is recast into its discrete form

to address interdependency among unique multiple lanes. A simulation result of an eight-

lane infrastructure is presented to explain this conceptualization.

Keywords Viscosity � Multilane traffic � Macroscopic model � Speed–density profiles

Mathematics Subject Classification 35L65 � 65M06 � 76L05

1 Introduction

Traffic flow models are categorized according to how researchers perceive the flow of

vehicles. The two main categorizations are microscopic and macroscopic models. The first-

order, and second-order equations are the main classes of macroscopic models. The first-
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order model is oftentimes called the LWR equation. Some examples of micro models are

the car-following, safe distance, optimal velocity, intelligent driver, and cellular automata

models.

The microscopic family models the behavior of individual cars. Detailed information on

each vehicle is outlined during the modeling processing. It considers quantities such as

headway, spacing, and individual vehicle speed. The car-following model is one of the

celebrated class of model under the microscopic branch. It had its inaugural offshoot from

the research work by Pipes, who expressed the location of the nth vehicle as a function of

the location of its immediate leading vehicle [33]. The Pipes car following model forms the

root for almost all microscopic models [37]. Cellular automata are the fully discretized

version of the earlier car-following models. Space, time and velocity are discretized as

opposed to the discretization of only space and time in the former microscopic models

[28]. The stochastic car-following model is the recent offshoot of microscopic models.

Some theoretical analysis was presented on the single regime stochastic car-following

model [39] and the multi regime car following model [43].

Macroscopic models do not explicitly consider detailed information on individual

vehicles. Vehicular traffic is rather viewed as having some similarities with the flow of

water in a pipe. Traffic is modeled as having continuum property. Macroscopic models

aggregate micro traffic variables. Average speed, average flow, and traffic density are the

three main macroscopic variables. The first-order equation by [29, 35] was formulated

using these three quantities. Second-order models have other variables such as relaxation,

anticipation, and diffusion including speed, density, and flow. The second-order model is

constituted by a first-order equation plus a dynamic velocity equation.

A general dynamic velocity equation is expressed as:
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u is the average traffic speed, k is the traffic density, V(k) is the equilibrium speed defined

by the fundamental relation, c2oðkÞ is the anticipation rate, and s is the relaxation parameter.

This parameter (s) determines how vehicles adapt their speed to the conditions associated

with the fundamental diagram. The first term on the right-hand side of Eq. (1) is the

relaxation term and the last is the diffusion term. The quantities: coðkÞ; cðpÞ; and mðkÞ are
the diverging points for second-order models. A tabular presentation of these model classes

is elaborated in Table 1.

These models began from a sequential inquiry by Payne and Whitham hence the

hyphenated name Payne-Whitham or simply the PW model [31, 40]. Payne’s model was

Table 1 Coefficients of the
dynamic velocity equation for
different models

Author(s) VðkÞ�u
s

ok
ox

ou
ox

o2u
ox2

[31, 40] 1 c2oðkÞ
k

0 0

[1] 1 0 kP0ðkÞ 0

[20] 1 0 c 0

[46] 1 0 �kU0
eðkÞ 0

[44] 1 0 �kU0
eðkÞtr=s 0

[26] 1 c2oðkÞ
k

0 l

[22] 1 c2oðkÞ
k

0 l=k
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criticized for being anisotropic [7]. That is vehicles react to both the leader and the

follower as opposed to the simple car-following models. Danganzo explained that second-

order models have negative velocities. This was as a result of the discrepancies between

the vehicle’s speed and the characteristics waves. This led to the development of aniso-

tropic second-order models. Notable among these are the models by Zhang [46], Jiang-Wu-

Zhu [20], and Aw-Rascle model [1].

Wu et al. [42] formulated a traveling wave approach to solving the Aw-Rascle model.

The proposed model was solved numerically using the Lax-Friedrichs scheme. There was

no substantial difference between the analytical solution and the proposed scheme. Second-

order models are often identified with two characteristic waves, with one often faster than

the vehicle’s speed. The traveling wave solution was able to reproduce this nonlinear

phenomenon. Wu, independently obtained the asymptotic solution of the second-order

model [41]. The model was discretized and solved using the fifth-order accurate finite

difference WENO method. The author found no disparity between the analytical solution

and the numerical solution. The paper further discusses the necessary and sufficient

requirements for long moving vehicle cluster. As an alternative solution, the Aw-Rascle

model was solved using the discontinues Galerkin method [4]. The authors compared their

results to the LWR using the phenomenon of capacity drop.

On the standpoint of model development, a multi-lane and a multi-class version of the

Payne-Whitham model were postulated by [13] and [2] respectively, with [27] introducing

a generic version of second-order models. The generalized second-order model was later

solved within a Lagrange coordinate system [25]. The discretized models were able to

describe relevant physical processes. The authors [25] used the Godunov scheme to predict

the behavior of vehicle packets along a given trajectory. Zawar and Gulliver [23] postu-

lated a new macroscopic second-order model to characterize how traffic reacts and aligns

itself to downstream conditions. Apart from the usual relaxation time, the authors intro-

duced the transition term; the time for traffic to harmonize. They analyzed their model

using discontinuous density function. The numerical scheme employed was the Roe

decomposition method. Their proposed model seems to reveal extra relevant traffic

characteristics. Recently, the PW model was again extended to account for driver physi-

ological response [24] and driver presumption [45]. Taking one step further back in time,

[16] developed a two-dimensional version of higher-order models. The Aw-Rascle-Zhang

model was reformulated to account for lane-changing maneuvering. The authors used the

same ideology as the two-dimensional LWR model [15]. The model was able to charac-

terize some features of a multilane flow but was not intended for multi-lane traffic. A

macroscopic model that incorporates both PDE and ODE was developed to describe how a

platoon of vehicles reacts to its neighboring traffic [32]. This model was solved as a

Riemann problem using a finite difference scheme.

However, all these existing classes of models have overlooked a pragmatic traffic

feature in modeling vehicular flow. Hence, the basis for this activity. In specific, this

research extends the classical PW model to a two-dimensional layout to account for a

lateral traffic feature; velocity differential with viscosity. With the introduction of this

lateral feature, we move from the exiting one-dimensional space into a two-dimensional

spatial domain. The graphical representation (Fig. 1) is used to simplify this

conceptualization.

Figure 1 is limited to only four lanes, nonetheless, this could also be extended to an

infinitely countable number of lanes. Each of these lanes has its designated speed limits.

This respective lane speed suggests the presence of velocity changes from concurrent

driving on adjacent lanes. From [19], these speed differential brings into the scene
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viscosity. The intent of developing a mathematical equation that captures this lateral

phenomenon is the focus of this paper.

In the next section, we explain how a new dynamic velocity equation is derived from a

simplified Navier-Stokes equation. The characteristic wave properties and the instability

condition are discussed in Sect. 3. The simulation results of the proposed continuum model

and the discrete model are presented in Sects. 4 and 5 respectively. In each case, the

numerical scheme and some graphical illustrations are presented. The paper is concluded

in Sect. 6.

2 The model derivation

A second-order traffic flow model consists of two systems of partial differential equations;

the continuity equation and the momentum equation.

The two-dimensional continuity equation is derived using the conservation principle.

That is, the rate of accumulation equals the rate of inflow minus the rate of outflow. From

[19, 38], the three-dimensional continuity equation is given as

ok
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þ oku
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þ okv
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þ okw

oz
¼ 0 ð2Þ

For two-dimensional analysis, the last term on the left-hand side of Eq. (2) is assumed to be

zero, thus (2) reduces to

ok
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¼ 0 ð3Þ

Equation (1) could be interpreted as multilane traffic with the flow along the x-direction

and lane changing along the y-direction. There is no direct vehicular movement along the

y�axis. As such, the speed along the y-direction would be zero. Vehicles only move along

the x-direction with a velocity differential along the y-direction. With v ¼ 0, we have

ok

ot
þ oku

ox
¼ 0 ð4Þ

Equation (4) is the continuity or LWR equation.

On the other hand, our new momentum equation is derived from the simplified Navier-

Stokes equation [38].

In this derivation, we assume that gravitational force and pressure terms have zero

contribution to flow. Again, for two spatial domains the speed w ¼ 0. Thus, the classical

Navier-Stokes equation reduces to

Fig. 1 Multilane highway scenario
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As emphasized earlier, there is no direct flow along the y-direction, hence the velocity

along the y-direction and all its derivatives go to zero. Thus, (5) is simplified as:
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k
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ð6Þ

l is the coefficient of viscosity, u the velocity along the x-direction, k the density of the

traffic. o2u=ox2 is traffic diffusive term. Here, it is assumed to be zero. Moreover, the

lateral term lo2u=koy2 is decomposed to specifically address the speed differential across

these lanes. The second derivative term is defined to be a constant fy times a first derivative

function. Ansatz

o2u

oy2
� fy

ou

oy
ð7Þ

This is done to explicitly model the velocity differentials at a given cross-section of the

road. The expression ou=oy is the lateral velocity gradient. fy is assumed to be a sensitivity

function for lane changing. This term is modeled in correspondence to the sensitivity term

in lane changing models [36]. This will account for the safe vertical distance between

vehicles on a multilane road. Again, since there is a negative relationship between viscosity

and flow, it is conventional to introduce this as part of the model to avoid changing signs.

These mathematical assumptions reduce the momentum equation to the form
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This dynamic velocity equation (8) will be coupled with the continuity equation (4) to form

the viscous macroscopic second-order vehicular traffic flow model. Nonetheless, this new

model (8) is devoid of the driver-anticipation-relaxation term. The absence of these terms

could lead to vehicles colliding with each other. In other to overcome this shortcoming, the

anticipation term c2ook=kox and relaxation term ðVðkÞ � uÞ=s are directly adopted from the

PW model [31, 40]. These modifications lead to the proposed viscous model as
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The relaxation term enforces the system to its steady-state and the anticipation term

describes how drivers respond to traffic density. The relaxation time s determines how

quick vehicles can adapt its velocity to a variable traffic phenomenon. The anticipation rate

co determines how drivers react to the density of the traffic.
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3 Qualitative properties of the proposed model

3.1 Characteristic wave profiles

To study the behavior of this model, it is most appropriate if it is expressed in its char-

acteristic form. The system of equations (9) is expressed in a quasi-linear equation form as:
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letting / ¼ ½k u�
0
, then Eq. (10) becomes

o/
ot

þ Að/Þ o/
ox

¼ Bð/Þ ð11Þ

where Að/Þ ¼
� u k
c2o=k u

�
and Bð/Þ ¼

� 0

ðVðkÞ � uÞ=s� uylfy=k

�
.

The motive is to diagonalize the matrix Að/Þ ¼
� u k
c2o=k u

�
by computing its eigen-

values and eigenvectors. The eigenvalues are obtained as follows:

A� kI ¼
� u� k k
c2o=k u� k

�
¼ 0.

where ðu� kÞ2 � c2o ¼ 0: ) u� k ¼ �co: ) k1;2 ¼ u� co.

The eigenvalues represent the characteristic speeds of the model. That is

dx1
dt

¼ uþ co and
dx2
dt

¼ u� co

It is clear from these eigenvalues that the wave speed may either be greater or less than the

vehicle’s speed. This is an indication that information from behind may sometimes

influence driving behavior. This isotropic property of vehicular movements is common

among ‘trotro’ drivers in Ghana. The vehicle speed of a given trotro driver is often

influenced by both leading and trailing vehicles. Trotro are minivans that offer short and

averagely long transport services for urban dwellers in Ghana. Trotro operate as the first-

driver-arrive first-passenger-board system. Passengers wait along any section of the road to

board vehicles. Therefore, drivers compete among themselves for the passengers by

focusing both on leading and trailing vehicles.

3.2 Instability condition

In this section, we determine the instability criterion of the proposed model. The model (9)

is first linearised in other to determine the conditions that will yield a steady flow and

unstable traffic otherwise. From (9), the model is linearized as:

oðdkÞ
ot

þ ue
oðdkÞ
ox

þ ke
oðduÞ
ox

¼ 0 ð12aÞ
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ke; and ue ¼ VðkeÞ are the solution states for density and speed. Following [14], a small

variation from the equilibrium will result in:

kðx; y; tÞ ¼ ke þ dkðx; y; tÞ
uðx; y; tÞ ¼ ue þ duðx; y; tÞ

The general solution to dk and du can be expressed as the series below [14, 18].

dðkÞ ¼
Z
z

Z
s

X
j

k�j ðs; zÞ exp i sxþ zyð Þ þ kjðke; s; zÞ � ixjðke; s; zÞ
� �

t
� 	

dsdz
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Z
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Z
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X
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u�j ðs; zÞ exp i sxþ zyð Þ þ kjðke; s; zÞ � ixjðke; s; zÞ
� �

t
� 	

dsdz
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This series can be decomposed into several simple wave function. The underlying simple

wave equations (14) are chosen to help determine the condition that will cause traffic flow

to breakdown.

dkðx; tÞ ¼ k� exp½isxþ izyþ ðk� ixÞt� ¼ k�e
kteiðsxþzy�xtÞ

duðx; tÞ ¼ u� exp½isxþ izyþ ðk� ixÞt� ¼ u�e
kteiðsxþzy�xtÞ

ð14Þ

s and z are the wave numbers with respect to the x and y coordinates with their corre-

sponding wavelength 2p=s and 2p=z. x is the wave frequency, k�e
kt; u�e

kt are amplitudes

at time t, whereas k is the growth rate (wave dumping). It is imperative to note that a small

variation in k will lead to traffic jams when k[ 0. For k\0, a small variation will lead to

model stability.

Based on Eq. (14) and its derivatives we have the continuity equation as:

k�ðk� ixÞekteiðsxþzy�xtÞ þ ueisk�e
kteiðsxþzy�xtÞ þ keisu�e

kteiðsxþzy�xtÞ ¼ 0 ð15aÞ

and the dynamic continuity equation as
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iskee
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Since ekteiðsxþzy�xtÞ is not equal to zero, Eq. (15) is expressed in matrix form as:

k� ixþ ueis keis

c2o
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is� 1

s
dV

dk
k� ixþ ueisþ

1

s
þ i

lfy
ke

z

2
4

3
5 k�

u�

� �
¼ 0 ð16Þ

simplified as
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where the following abbreviations have been used: ~k ¼ k� i ~x and ~x ¼ x� ues. The
above (17) result to the following characteristic polynomial:
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where the real and imaginary term under the square root are R ¼ 1
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Following from [14], the term on the extreme right of Eq. (18) can be expanded as:
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Therefore, Eq. (18) can be written in the following form:
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The real part of the characteristic equation above can be uncoupled as

REð~k1Þ ¼ � 1

2s
þ 1

2
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The viscous PW model is unstable if the real part of the dumping factors REð~k1;2Þ is
greater than zero. SinceREð~k1Þ[REð ~k2Þ, if the real part of the dumping element REð~k1Þ
is less than zero, then the stability criterion holds automatically for the other term REð~k2Þ.
By definition REð~k1Þ should be less than zero for the model to be stable. That is
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In antecedent, it was affirmed that R ¼ 1
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A direct substitution of these terms into Eq. (20) will produce the inequality:
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For the PW formulation c2o ¼ � 1
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Thus, the condition to attain stable traffic flow is given by the inequality
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2s
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s
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The established condition provides an acceptable conclusion for oscillatory traffic and jam

formation in actual traffic scenarios. This second-order viscous macroscopic model is

stable when the changes in speed with respect to density is arbitrarily small. This is often

realized during light and highly dense traffic. Again, the role of the lateral term in this

stability criterion is appropriated by the joint impact of the viscosity and sensitivity rates.

4 Single piped model analysis

4.1 Numerical scheme

The explicit finite difference scheme is used to solve the viscous macroscopic model. This

scheme is proven to be stable and consistent with PW formulations [6, 10]. The model is

simulated using a Riemann initial condition. To solve the modified model as a Riemann

problem, the following piecewise initial condition is adopted:
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Kðx; 0Þ ¼
kl; if x[ a

kr; if x\a ;

�
Uðx; 0Þ ¼

ul; if x[ a

ur; if x\a

�
ð22Þ

There is a single discontinuity at the point x ¼ a. This is chosen to explain important traffic

phenomenon such as traffic shocks, which is known to be a problem in traffic modeling [7].

This model can be classified to be appropriate if it can explicate this nonlinear traffic

property. kl and kr are the densities upstream and downstream of a bottleneck respectively.

The upstream and downstream speeds are also denoted by ul and ur .
The main variables involved with the numerical simulation are: the velocity ðuiðjÞÞ; the

density of a given stretch ðkiðjÞÞ; and the flow rate ðqiðjÞÞ. From the Greenshields fun-

damental relation

qiðjÞ ¼ kiðjÞ � uiðjÞ

The quantities i and l are used to denote the longitudinal and lateral positions on the

specified highway, time is discretized using J ¼ j 2 N, the spatial intervals are Dx and Dy,
with Dt as the time step. Hence, the discrete version of the continuity equation is expressed

as

kiðjþ 1Þ ¼ kiðjÞ þ
Dt
Dx

uiðjÞ ki�1ðjÞ � kiðjÞ½ � þ Dt
Dx

kiðjÞ uiðjÞ � uiþ1ðjÞ½ � ð23Þ

With this continuum case, the lateral speed gradient is modeled analogously to Pipes lane

changing model. Following from [34], we define the lateral speed differential terms as

ou

oy
¼ ulþ1 � ul ð24Þ

where ulþ1 is the velocity of a given vehicle on lane lþ 1, and ul is the velocity of the

adjacent vehicle on lane l. Hence, the dynamic velocity equation is discretized as

uiðjþ 1Þ ¼ uiðjÞ þ
Dt
Dx

uiðjÞ ui�1ðjÞ � uiðjÞð Þ � Dt
Dy

l � fy
kiðjÞ

ulþ1 � ul
� �

þ

Dt
s

ViðjÞ � uiðjÞð Þ � Dt
Dx

c2o
kiðjÞ þ v

kiþ1ðjÞ � kiðjÞð Þ
ð25Þ

where i 2 N; l 2 Rþ and j 2 W. The parameter v is added to capture the inaccuracies for

modeling an empty road [10, 30]. From Eqs. (23) and (25) we can determine the values of

speed and density at time step jþ 1 given the values at time j.
The scheme is numerically stable if it satisfies the underlying Courant-Friedrichs-Lewy

(CFL) condition [6].

max vmax; q
0ðkÞf g � Dt

Dx
� 1 ð26Þ

We also adopt the following equilibrium velocity-density relationship (27) from [8, 11].

ViðjÞ ¼ vmax � vmax � exp 1� exp
cm
vmax

kmax
kiðjÞ

� �
� 1

� �� �
ð27Þ

The parameter cm is the speed of the kinematic wave during congestion.
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4.2 Numerical illustrations

The simulation time is 15 minutes, with a time step of four seconds. The spatial step size is

400m for a total road length of 40km. Density is standardized with kmax ¼ 1. The assumed

lateral gradient constant is 5.55m/s in absolute terms as derived from [3]. Inter-lane sen-

sitivity fy ¼ 0:37s [36]. We model the shear viscosity as analogous to that of a normal fluid,

with 0:0\l\1:0. The other parameter values that have been used in the simulation work

is shown in Table 2 [6, 12].

The graphical results mimic shock and rarefaction wave profiles for realistic traffic.

From Fig. 2, we observe moderately dense traffic upstream catching up with a denser

traffic downstream. A closely related real case is when the traffic turns red.

There is the formation of queues with a jam density downstream of the shock.

Figure 3 is an exemplification of a near to stop traffic catching up with fairly moving

traffic. The queue dissolves gradually, however, vehicles cannot move at their maximum

speed limits (20m/s) .
Increasing the viscous rate, the flow rate decreases as well. We can observe a negative

relationship between viscosity and the flow rate. A smaller viscosity value ensures free-

flowing traffic, while a viscosity value greater than unity causes the traffic to breakdown.

The stability condition (21) also affirms this. From 4, we can observe that though traffic has

not attained maximum density, the speed of vehicles drops below 2m/s.
In summary, the simulation results for the viscous macroscopic model are consistent

with the day to day traffic phenomenon on our roads. There is the formation of shock

waves from a frontal bottleneck, which is a free-flow traffic coinciding with a traffic jam.

We also observe rarefaction waves moving from a congested traffic regime to a free-flow

regime.

5 Multilane analysis

Macroscopic traffic models for multilane flow have been explained independently from one

lane to the other. In the past, most researchers focused on a maximum of two independent

lanes. In 2012, [5] extended the famous Nagel-Schrenkenberg cellular automata model to

multilane. In their analysis, they restricted themselves to only two lanes. A similar two-

independent one-lane model analysis was performed by [21] and [9]. Another multilane

analysis was performed using the LWR model [17]. Here, we present a new formulation

which takes into account the inter-lane-dependency among finitely countable many lanes

each having specific speed and density profiles. The model can be expressed as:

Table 2 Parameter Values
Parameters Value

vmax 20 m/s

v 0.5 veh/s

c2o 25 m2=s2

s 10 s

cm 11 m/s
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okl

ot
þ oql

ox
¼ 0 ð28aÞ

oul

ot
þ ul

oul

ox
¼VðklÞ � ul

s
� lfy

kl
oul

oy
� c2o

kl
okl

ox
ð28bÞ

Fig. 2 Shock waves under the Riemann initial conditions kl ¼ 0:6 and kr ¼ 0:9

Fig. 3 Rarefaction waves under the Riemann initial conditions kl ¼ 1 and kr ¼ 0:7

Fig. 4 Waves profiles under the Riemann initial conditions kl ¼ 0:6 and kr ¼ 0:3 for l ¼ 0:7
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l is the given lane index. ql; kl and ul are the flow rate, density, and speed for the lth lane.

These variable are related by the functional

ql ¼ kl � ul ð29Þ

5.1 Model discretization

The explicit finite difference scheme is again used to solve (28). Given the viscous model,

(28a) can be discretized as

kliðjþ 1Þ ¼ kliðjÞ þ
Dt
Dx

uliðjÞ kli�1ðjÞ � kliðjÞ
� �

þ Dt
Dx

kliðjÞ uliðjÞ � uliþ1ðjÞ
� � ð30Þ

while (28b) gives

uliðjþ 1Þ ¼ uliðjÞ þ
Dt
Dx

uliðjÞ uli�1ðjÞ � uliðjÞ
� �

þ Dt
Dy

n

kliðjÞ
ulþ1
i ðjÞ � uliðjÞ

� �
þ

Dt
s

Vl
i ðjÞ � uliðjÞ

� �
� Dt
Dx

ck

kliðjÞ þ v
kliþ1ðjÞ � kliðjÞ
� � ð31Þ

where i 2 N; l 2 Rþ and j 2 W. The lane-specific density and speed at the next time jþ 1

are determined by the joint impact of Eqs. (30) and (31).

The corresponding lane-specific steady state speed-density equation is

Vl
i ðjÞ ¼ umax � umax � exp 1� exp

cm
umax

kmax

kliðjÞ

� �
� 1

� �� �
ð32Þ

The initial densities are unique for each lane with the commensurate speed values. For a

total on L lanes with l ¼ 1; 2; � � � L, their initial density and speed profiles are:

Klðx; 0Þ ¼

kð1Þ; if l ¼ 1

kð2Þ; if l ¼ 2

..

. ..
. ..

.

kðLÞ; if l ¼ L

8>>>><
>>>>:

Ulðx; 0Þ ¼

uðkð1ÞÞ; if l ¼ 1

uðkð2ÞÞ; if l ¼ 2

..

. ..
. ..

.

uðkðLÞÞ; if l ¼ L

8>>>><
>>>>:

5.2 Simulation results

The simulation is based on a minimum of eight lanes, each extending 6km long and a

longitudinal space step size of 300 meters. The inter-lane distance Dy ¼ 1m. We will opt

for the standard form of density with jam density equal to one and free-flow density equal

to zero. The free-flow speed umax is equal to 20m/s for all lanes.
Each of these lanes in Fig. 5 has its density below 0.25, with lane eight have the least

density of 0.05. The initial speed profile increases gradually to a maximum of 20m/
s moving from lane one through to lane eight. We can observe maximum flow, short

queues and a lower density in lane eight vis-a-vis mixed speed, long vehicular queues and

an increasing density in lane one. The other lanes have intermediate characteristics of these

extremities. Observably, from Fig. 5 the lower speed lanes intend to become clustered over

time. We realize the speed profiles for lane one decrease over time due to stopping and

alighting effects just like the city traffic in Ghana. Correspondingly, the density for lane
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one also increases over time. Due to this clustering effect, drivers might begin to change

lanes, to a lesser dense lane. This also causes the density of higher speed lanes to increase

thereby causing a consequential drop in speed as evinced by Figs. 5, 6, 7.

In Fig. 6, the initial density profile for this flow is equivalent to dense traffic. Lane one

has a near jam density of 0.98. Proceeding to lane eight, the density declines to 0.80 and

observing stopped traffic in lane one with a zero speed. Nonetheless, traffic continues to

flow steadily in the other lanes, with a maximum speed of about 2m/s.
In Fig. 8, there is a jam density in lane one, while lane eight has an optimal flow rate.

The viscosity term is increased to 0.07. An increasing viscosity implies an increasing flow

interruption. This interruption is more evident in the free-flow lanes (six, seven, eight). An

uninterrupted version of these initial density profiles is exhibited with Fig. 7.

The wave profiles for these inter-dependent multilane model is synonymous to realistic

traffic flow. At some given point, high-speed lanes have shorter queues compared to lanes

with dense traffic. Also, in extremely dense traffic, increasing viscosity value does not have

any impact on the flow rate. This is because traffic is at a near stop and any disturbance is

not easily translated to speed drop. For free-flow traffic, a small disturbance is seen by a

Fig. 5 Low density multilane traffic. The initial densities are equally spaced values from 0.05 to 0.25 with
l ¼ 0:007

Fig. 6 Highly dense multilane traffic. The initial densities are equally spaced values from 0.80 to 0.98 with
l ¼ 0:007
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speed drop. The speed profiles instantaneously drop to the equilibrium with viscosity value

close to zero.

6 Conclusion

The paper proposes a two-dimensional spatial second-order macroscopic traffic flow model

that extends a classical one-dimensional macroscopic model. It introduces and models an

unaccounted physical flow property; velocity differentials alongside with viscosity. The

velocity differentials take into account the lateral speed changes on a multilane road

network, with inter-lane friction quantize as viscosity. From the characteristic wave

analysis, the viscous model epitomizes the conduct of trotro drivers in Ghana who react to

both forward and backward stimuli. Trotro are minivans that offer short and averagely long

transport services for urban dwellers in Ghana. Again, we derived a mathematical

inequality to justify the condition for traffic instability. The velocity-density gradient was

the main variable for determining an unstable flow. It could be deduced that traffic would

be stable for small and large densities, and unstable for medium densities. Again, some

Fig. 7 Uninterrupted multilane traffic. The initial densities are equally spaced values from 0.001 to 1.00
with l ¼ 0:007

Fig. 8 Interrupted multilane traffic. The initial densities are equally spaced values from 0.001 to 1.00 with
l ¼ 0:07
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profiles of the continuum model were presented using graphically results of acceleration

and deceleration traffic waves. Moreover, the continuum equation was reformulated as a

discrete model to explain interdependency among adjacent lanes. The simulation results

showed both the longitudinal and lateral profiles of an eight-lane infrastructure. It was

observed that lanes ascribed as higher speed lanes had wave profiles comparatively shorter

than the clustered lanes. Lastly, the effect of viscosity on different traffic regimes was

presented. Observably, the effect of a smaller viscosity value on vehicle flow was not so

evident.
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