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Abstract
We study a dynamic boundary condition problem in heat transfer which represents the

interaction between a conducting solid enclosed by a conducting shell. Both the solid and

the shell are thermally inhomogeneous and anisotropic. Interaction is modelled by con-

sidering the solid as a source of thermal energy to the shell. A constitutive equation

proposed by Carslaw and Jaeger establishes a relation between temperature in the shell and

the boundary value of temperature in the solid. This gives rise to a dynamic boundary

condition problem that has not been studied in the recent literature. The system of equa-

tions so obtained is presented as an implicit evolution equation which involves a pair of

unbounded linear operators that map between two different spaces. We extend the oper-

ators to a jointly closed pair for which the implicit equation makes sense. The solution of

the initial value problem is constructed by means of a holomorphic family of solution

operators. The class of admissible initial states is surprisingly large.

Keywords Dynamic boundary condition � Heat transfer � Carslaw-Jaeger relation

Mathematics Subject Classification 34G10 � 35K15 � 58J35

1 Introduction

In the 1947-edition of their scholarly book, Carslaw and Jaeger laid down a fundamental

constitutive relation for thermal contact between heat-conducting materials. It states that at
a point of contact between two bodies [the normal component of ] thermal flux is pro-
portional to the difference in temperature at the given point and directed toward the lower
temperature. This constitutive equation introduces the notion of perfect/imperfect contact

by means of a function that is zero at points of perfect contact and positive when contact is

imperfect.
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This paper is devoted to the study of heat transfer in a solid, represented by a bounded

open set X � R
3
, enclosed by a thin shell modelled as the boundary C ¼ oX. It is assumed

that the shell internally conducts thermal energy in a tangential direction and that,

according to the Carslaw-Jaeger relation, contact is everywhere imperfect. If u(x, t)
denotes the temperature at x 2 X and Uðx0 ; tÞ at x0 2 C at time t[ 0, the following

equations arise after scaling to dimensionless variables:

ut þ Lu ¼ 0 in X; ð1Þ

Ut þ KU þ c
L
u ¼ 0 in C: ð2Þ

Here the the operators L and K are defined by the differential expressions Lu ¼
�r � ½aðxÞru� and KU ¼ �rS � ½bðx0 ÞrS U� with a and b suitable symmetric matrix

functions. The operator L represents internal heat transfer in the solid and K heat transfer in

the shell. In (2), c
L
u denotes the co-normal derivative associated with L. It signifies flux of

thermal energy between solid and shell. We use rS � and rS to denote the surface

divergence and surface (tangential/covariant) gradient on C. When the shell does not

internally conduct heat, KU ¼ 0.

The Carslaw-Jaeger relation is

Uðx0 ; tÞ � c
0
uðx0 ; tÞ ¼ kðx0 Þc

L
uðx0 ; tÞ ð3Þ

with c
0

the trace operator that assigns boundary values of u. The non-negative function k

expresses the quality of contact. If k � 0 we talk of perfect contact in which case U ¼ c
0
u.

The system of Eqs. (1)–(3) comprises the dynamic boundary condition problem treated

here under the condition that kðx0 Þ[ 0 everywhere on C.

Recent work on dynamic boundary conditions in heat transfer (or diffusion) largely

focused on the Wentzell boundary condition (first introduced by William Feller). Here heat

transfer/diffusion in a solid is represented by the Laplace operator (D) and a boundary

operator of the form bu ¼ c
0
½Du�þ lower order terms is involved. The original Wentzell

boundary condition is bu ¼ g for given g and the dynamic boundary condition is in the

form ot ½c0
u� ¼ bu (e.g., Favini, Goldstein et al. [5]). The boundary operator was later

replaced by bu ¼ DL ½c0
u� þ � � � with DL the Laplace-Beltrami operator and the term gen-

eralized Wentzell boundary condition made its appearance ( e.g., Vázquez and Vitillaro

[27]). In Goldstein et al. [9] the Laplacian is replaced by a general symmetric strongly

elliptic operator of second order and the Laplace-Beltrami operator by a similar, unrelated,

general elliptic operator on the boundary manifold. Here the phrase general Wentzell
boundary condition was born. In Coclite, Goldstein et al. [4] and Gal [8] nonlinear

operators are considered, the latter without diffusion in the boundary. The dynamic

boundary condition in the studies mentioned above corresponds to the case U ¼ c
0
u in (2)

i.e., k � 0; perfect contact. The system we study here cannot be considered as related to

boundary conditions of Wentzell type.

Some earlier papers deal with the case of no internal heat transfer in the boundary shell

(KU � 0) and perfect contact (Sauer [18] and Hintermann [13], who considers higher order

elliptic operators and Dirichlet boundary operators). Everywhere imperfect contact, again

with KU � 0, and the singular transition from imperfect to perfect is treated by van der

Merwe [24, 25].
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This paper systematically explores the situation of a thermally conducting boundary

shell with the Carslaw-Jaeger relation for contact. To understand the equations (1)–(3) we

discuss the physical background of the problem from the viewpoint of balance/conserva-

tion laws (principles) to arrive at a system of implicit evolution equations from which it is

difficult to escape. It provides the physical significance of mathematical concepts. Then we

go on to a mathematical analysis based on the notion that implicit evolution equations

involve a description where initial states live in a world different from the one in which

solutions are sought (see e.g., Favini-Yagi [6], Sauer [18]).

Section 2 is devoted to a ‘rational’ way of deriving the heat equation for inhomogeneous,

anisotropic materials. It lays down the fundamental concepts for understanding heat transfer

in a shell and thermal interaction between the shell and the solid it encloses. This is where the

Carslaw-Jaeger relation enters. The discussion here builds on the detailed work of Rossouw

[17], specifically on the notions of thin boundary models and constitutive equations of con-
tact. The boundary equation with tangential heat conduction and perfect contact, also features

in van Rensburg [26]. To be noted is that the dynamic boundary condition obtained reflects the

dynamics of the shell and the dynamical interaction between solid and shell. This is the true

nature of dynamic boundary conditions. A recent paper of Goldstein [10] presents some of the

thoughts involved, although with less than adequate attention to heat transfer in shells and

interactions as a source in boundary operators, with perfect contact tacitly assumed. It is of

interest to note that in his antecedent to the Wentzell boundary condition, Feller [7] gives a

physical interpretation which is akin to the approach we present here.

With the physical background in hand, we go on in Sect. 3 to a mathematical formu-

lation of the derived system of equations. This involves precise requirements about

‘conductivity’ matrices, smoothness of functions and the boundary. For the necessary

precision, and as a reminder that boundary operators should be seen as limits, the for-

mulation continues to use trace operators as in Lions-Magenes [16], for example. Since the

ultimate formulation will involve Sobolev spaces over three and two-dimensional mani-

folds, scaling to dimensionless quantities is introduced in Sect. 4. This essential step is all

too often ignored in mathematical texts.

The final formulation comes in Sect. 5 as an implicit evolution equation of the form
d
dt½BuðtÞ� þ AuðtÞ ¼ 0 with A and B unbounded linear operators defined on a domain D �
X ¼ L2 ðXÞ mapping to the space Y :¼ L2 ðXÞ � L2 ðCÞ where X represents the solid, and its

boundary C the enclosing shell. The natural initial condition is limt!0þ ½BuðtÞ� ¼ y 2 Y .

Thus the solutions u(t) we look for are in a space different from the one in which the given

initial state y finds itself. We introduce two operators A
0

and B
0

to be extended in a specific

way to the operators A and B.

For the purpose of the extension we introduce in Sect. 6 bilinear forms tailored to the the

demands of the problem at hand and develop some of their properties. In particular, we

introduce a related sectorial form (Kato [14, Chap.6, p.319 ff.]) which plays a key role in

defining a family of (generalized) resolvent operators. This is crucial for the extension of the

operator pair hA
0
;B

0
i to an operator pair hA;Bi that will feature in the implicit equation. Also,

towards this goal, we obtain in Sect. 7 some intricate results on the density of the ranges of

operators in the space Y ¼ L2 ðXÞ � L2 ðCÞ. To obtain these results we consider a system of

two elliptic equations, the one defined on the open setX and the other on the boundaryC. The

subtle link between the two equations is the Carslaw-Jaeger relation, viewed as a constraint,

and the thermal interaction between solid and shell. Existence (and uniqueness) is achieved

by the introduction of a nonlinear mapping and use of the Leray-Schauder principle—a

construct, not necessary for problems of the Wentzell kind. Once this is established, we
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construct in Sect. 8 the Friedrichs extension of the operator pair. This extension, analogous to

its famous namesake for a single operator as presented by Lax-Milgram [15], is jointly, not

separately. It was introduced in [19] and later expanded in [24]. Use of elliptic boundary value

problems in this context goes back to [24, 25] and is also employed in [9] for the L
p
-setting.

See also Grubb [11].

In Sect. 9 we (finally) prove that the mathematical problem developed earlier is well-

posed. To achieve this, we directly construct a holomorphic family of solution operators

S(t) for t in a positive cone of the complex plane. These operators map arbitrary initial

states y 2 Y ¼ L2 ðXÞ � L2 ðCÞ to solutions of the form uðtÞ ¼ SðtÞy 2 X ¼ L2 ðXÞ. It is

remarkable that this is done without explicit recourse to semigroup theory. The approach is

partly in accordance with the ideas of Arendt and ter Elst [2] which also ties in with the

sectorial form introduced in Sect. 6. There is a semigroup lurking in the background,

though. This is briefly discussed in Sect. 10.

2 Heat transfer in solids and shells

In this section we give a systematic account of the physical model that underpins Eqs. (1)–

(3). In the process the basic assumptions and the meaning of mathematical notions such as

co-normal derivative will become clear. We do this under various subheadings.

IN A SOLID. We represent the solid under consideration as a simply connected open set

X � R
3

with a C
1

boundary C. To formulate the principle of balance of thermal energy
we need the scalar quantity q(x, t), thermal density (Joule m�3 ) and the vector quantity u,

thermal flux density (Watt m�2 ). When there are no external sources the principle is

expressed mathematically as

d

dt

Z
G

qðx; tÞdx ¼ �
Z
oG

u � mdS; ð4Þ

with G � G � X a suitable, but arbitrary open set with boundary oG and m denoting the

unit exterior normal to oG (as it will always do from now on). In words the principle reads:

In the absence of external sources the rate of increase of thermal energy in an arbitrary
part G of the body is balanced by the netto flow-rate (flux) of thermal energy over its
boundary. The minus-sign in (4) indicates flow into G from oG.

Under some differentiability and related assumptions (about functions we do not know),

by use of the divergence theorem, the statement (4) can be re-written in the formZ
G

qt ðx; tÞ þ r � uðx; tÞ
� �

dx ¼ 0: ð5Þ

Since G is arbitrary, the general balance equation

qt ðx; tÞ þ r � uðx; tÞ ¼ 0; x 2 X; t[ 0; ð6Þ

follows from (5). We note that the gradient operation r only involves differentiation with

respect to spatial variables.

The single general equation (6) has four unknowns. They are augmented by constitutive
equations that relate to the specific nature of the material under consideration. It is cus-

tomary to express these equations in terms of the temperature u(x, t) at x 2 X and time

t[ 0. We begin with thermal density q. Let c[ 0 be the volume-specific heat capacity
(Joule K�1 m�3 ; K = Kelvin) of the material. It is assumed to be constant. The first con-

stitutive equation is
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qðx; tÞ ¼ cuðx; tÞ: ð7Þ

Next we formulate a constitutive relation for the flux density vector in which the material

can be thermally inhomogeneous and anisotropic. Conductivity depends on position and

has varying directions. The relation is

uðx; tÞ ¼ �aðxÞruðx; tÞ: ð8Þ

Here a(x) is a symmetric, real-valued matrix which is assumed to be positive, i.e. n �
aðxÞn[ 0 for all x 2 X and all nonzero n 2 R

3
. This ensures that thermal energy will not

flow from low to high temperatures. The components of a have as unit Watt K�1 m�1 .

Combination of (6)–(8) gives the equation

cut ðx; tÞ � r � aðxÞruðx; tÞ½ � ¼ 0 ð9Þ

which resembles the familiar heat equation. The traditional heat equation is obtained when

aðxÞ ¼ jI with the conductivity j a positive constant and I the 3 � 3 identity matrix. This

means that the material is thermally homogeneous and isotropic. It is then also customary

to divide throughout by c to obtain the equation ut � KDu ¼ 0 with D the Laplacian.

IN A SHELL. To describe the bounding surface C of a conducting body we consider it as a

two-dimensional orientable differentiable manifold embedded in R
3
. The physical entities

corresponding to thermal density and flux density will be denoted by Q and Uðx0 ; tÞ defined

for x0 2 C. Their units will have one spatial dimension less than their ‘solid’ counterparts.

Without special notation we shall assume a parametrization of the surface.

Let B be a submanifold of C bounded by a smooth curve oB and let lðx0 Þ denote the

unit exterior normal to oB, tangential to C at x0 . We consider an exterior source gðx0 ; tÞ at

x0 2 C (with unit Watt m�2 ). Balance of thermal energy is expressed as follows:

d

dt

Z
B

Qðx0 ; tÞdSðx0 Þ ¼ �
Z
oB

Uðx0 ; tÞ � lðx0 Þd‘ðx0 Þ

þ
Z
B

gðx0 ; tÞdSðx0 Þ:
ð10Þ

It is reasonable to require that the flux U be tangential to C in which case the divergence

theorem on 2-dimensional manifolds allows us to express the line integral in (10) as the

surface integral of rS �U where rS � denotes the ‘surface divergence’ on C ( e.g.,

Weatherburn [28, Sect.122, p.238 ff.]). As before, we obtain the counterpart of (6) for heat

transfer in the shell:

Qt ðx0 ; tÞ þ rS �Uðx0 ; tÞ ¼ gðx0 ; tÞ; x0 2 C; t[ 0: ð11Þ

The constitutive equations are similar in form to those for a solid. We denote the tem-

perature in C by Uðx0 ; tÞ. Thus, for thermal density the equation is

Qðx0 ; tÞ ¼ CUðx0 ; tÞ; x0 2 C: ð12Þ

Again we require that the heat capacity C[ 0 be constant and note that its unit is Joule K�1

m�2 . The constitutive equation for flux density is more complicated. Let Tðx0 ;CÞ denote

the tangent space at x0 2 C and let bðx0 Þ be a 3 � 3 real, symmetric matrix that maps

Tðx0 ;CÞ into itself. The constitutive equation is
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Uðx0 ; tÞ ¼ �bðx0 ÞrS Uðx0 ; tÞ; ð13Þ

with rS the surface (tangential/covariant) gradient in C, so that rS U is tangential to C. In

addition it is required that b is positive in the sense that g � bðx0 Þg[ 0 for g 2 Tðx0 ;CÞ. If

the shell does not conduct thermal energy the flux density U is taken as zero. The unit for

components of b is Watt K�1 . Combination of the expressions (11)–(13) yields

CUt ðx0 ; tÞ � rS � bðx0 ÞrS Uðx0 ; tÞ
h i

¼ gðx0 ; tÞ: ð14Þ

As before, we remark that for the case where bðx0 Þ ¼ KI with I the 3 � 3 identity matrix,

rS � ½bðx0 ÞrS U� ¼ KDS U with DS the Laplace-Beltrami operator.

A SOLID AND A SHELL INTERACTING. Here we discuss the situation of a heat-conducting

solid which we model as an open set X � R
3

enclosed in a heat conducting shell modelled

as the boundary C ¼ oX. The orientation of C as a differentiable manifold is so chosen that

the exterior normal m to oX is also the unit exterior normal to the manifold C.

Interaction between solid and shell is described by a choice of the source term in (14).

First we identify two differential expressions that occur in (9) and (14):

Luðx; tÞ :¼ �r � aðxÞruðx; tÞ½ �; x 2 X; ð15Þ

KUðx0 ; tÞ :¼ �rS � bðx0 ÞrS Uðx0 ; tÞ
h i

; x0 2 C: ð16Þ

Associated with the ‘operator’ L is the co-normal operator

c
L
uðx0 ; tÞ :¼ �uj

x0 2C
� mðx0 Þ ¼ ½aðx0 Þruðx0 ; tÞ� � mðx0 Þ: ð17Þ

This is the normal component of flux into the solid at a boundary point x0 . Now we

postulate: The external source of thermal energy to the boundary shell is from internal flux
at the boundary. This means that gðx0 ; tÞ ¼ u � m ¼ �c

L
u. The Eqs. (9) and (14) obtained in

the two previous sections can now be re-phrased:

cut ðx; tÞ þ Luðx; tÞ ¼ 0; x 2 X; ð18Þ

CUt ðx0 ; tÞ þ KUðx0 ; tÞ þ c
L
uðx0 ; tÞ ¼ 0; y 2 C: ð19Þ

This, however, does not relate the temperatures u and U. For that we need a contact
constitutive equation that reflects the nature of contact between the solid and the shell

surrounding it. We shall use the one proposed by Carslaw and Jaeger [3, pp.18 & 23]:

Uðx0 ; tÞ � lim
x!x0

x2X

uðx; tÞ ¼ Uðx0 ; tÞ � c
0
uðx0 ; tÞ

¼ kðx0 Þc
L
uðx0 ; tÞ; x0 2 C;

ð20Þ

with c
0

the trace operator that assigns boundary values and kðx0 Þ[ 0, defined on C, the

contact function. An extreme case is kðx0 Þ ¼ 0, so that Uðx0 ; tÞ ¼ c
0
uðx0 ; tÞ at x0 2 C. This

describes perfect contact. Wentzell boundary conditions deal with perfect contact over the

whole of C. Another extreme case is when the contact function kðx0 Þ is large. Then thermal

insulation is approached (c
L
uðx0 ; tÞ � 0). What we deal with here is the case of imperfect
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contact over all of C. The system of Eqs. (18), (19), (20), already mentioned in Sect. 1, will

be the concern of the rest of the paper.

3 Mathematical setting

In the foregoing section we derived a system of equations without giving strict mathe-

matical requirements for objects to exist or operations to be valid. Let X be a bounded open

subset of R
3

with boundary C of class C
1

and unit exterior normal m. C is taken to be a

compact infinitely differentiable manifold without boundary, orientated as described

above.

For the matrix-valued functions, a and b that occur implicitly in (18) and (19) we

require that a 2 C
1 ðXÞ and b 2 C

1 ðCÞ (the components are). We require, as stated before,

that a and b are real-valued and symmetric. Positivity will be replaced by the stronger

requirement of uniform positive definiteness:

n � aðxÞn	 cX jnj
2

for all n 2 R
3
; x 2 X; ð21Þ

g � bðx0 Þg	 cC jgj
2

for all g 2 Tðx0 ;CÞ; x0 2 C; ð22Þ

with cX and cC positive constants. The operators L and K are now strongly elliptic. Of

course, the matrix b is required to keep tangential vectors tangential. Also note that cX has

the same unit as the components of a, and similarly for cC .

To give a precise setting for the boundary operators c
0
; c

L
to be defined we need to

introduce appropriate Sobolev spaces and trace operators. The spaces we have in mind are

H2 ðXÞ and H2 ðCÞ embedded in the complex Lebesgue space L2 ðXÞ. We note that within

the present context the boundary space H2 ðCÞ needs only to be defined in terms of tan-

gential derivatives (see [16, Remark 7.6, p.37]).

For u 2 H2 ðXÞ the co-normal operator c
L

is defined as c
L
uðx0 Þ ¼ ½aðx0 Þc

0
ruðx0 Þ� � mðx0 Þ,

with c
0

the trace operator that assigns boundary values. The contact constitutive equation

(20) may now be formulated for u 2 H2 ðXÞ (after some re-arrangement) as

U ¼ cu :¼ c
0
uþ kc

L
u; ð23Þ

and we require that the contact function k be sufficiently smooth; in C
1 ðCÞ, say. We note

that the boundary operator c equals the customary one only if k � 0 in which case

U ¼ cu ¼ c
0
u.

The system of Eqs. (18), (19), (20) may now be expressed as a dynamic boundary

condition problem: find uðtÞ ¼ uð�; tÞ 2 D � L2 ðXÞ that satisfies

cut þ Lu ¼ 0 in X;

CUt þ KU þ c
L
u ¼ 0 on C;

U ¼ cu ¼ c
0
uþ kc

L
u; on :

9>>=
>>;

ð24Þ

The dynamic boundary condition here is of Wentzell-type only if k � 0 that is, when

cu ¼ c
0
u. In the papers [24, 25] it is assumed that the boundary (shell) does not internally

conduct thermal energy. Thus the elliptic boundary operator K is taken to be zero and the
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second Eq. in (24) is replaced by CUt þ c
L
u ¼ 0. The presence of the operator K requires

an analysis much deeper than that used before.

Our further investigation will be to identify the domain D and appropriate initial

conditions. Since the operators involved may not be closeable, this is delicate.

4 Scaling

The heat capacities c, C and the matrices a(x), b(x) (hidden in L and K) that occur in

Eqs. (23) and (24) are in different physical units. The reason for this is that the set X is

open in R
3

while the manifold C is locally represented in R
2
. This may lead to incom-

parable quantities being compared. We can, however, scale the equations to dimensionless

form and the difficulty will exist no more.

One way of doing this is as follows: Let # :¼ C=c be the chosen unit of length. It may

be thought of as the ‘thermal thickness’ of C. As unit of time we choose T :¼ #2 ½c=cX �
with the requirements (21), (22) in mind. Scaling is by the replacements t ! t=T , x ! x=#,

x0 ! x0 =#, a ! c�1

X
a and b ! ½#cX �

�1
b. The function k in (23) is replaced by ½cX =#�k.

Under this scaling (with abuse of notation) the system (23), (24), in dimensionless form,

becomes

ut þ Lu ¼ 0;

Ut þ KU þ c
L
u ¼ 0;

U ¼ cu ¼ c
0
uþ kc

L
u:

9>>=
>>;

ð25Þ

These are the Eqs. (1)–(3).

5 An implicit evolution equation

It is tempting to eliminate the boundary temperature U in (25) to obtain the (seemingly)

familiar dynamic boundary equation ½cu�
t
þ K½cu� þ c

L
u ¼ 0. We shall resist this temp-

tation, but keep in mind that U is intricately related to u. Thus we write the system in vector

form as follows:

o

ot

u

U

� �
þ

L 0

c K

� �
u

U

� �
¼

0

0

� �
;

U ¼ cu ¼ c
0
uþ kc

L
u:

ð26Þ

This suggests the setting of an implicit evolution equation of the form
d
dt½BuðtÞ� þ AuðtÞ ¼ 0, that involves unbounded linear operators A and B between (complex)

Banach spaces X and Y. More precisely, we consider a domain D � X and A;B : D ! Y .

The natural initial condition would be limt!0þ ½BuðtÞ� ¼ y 2 Y , with y given. At the core of

the investigation are the ‘resolvent operators’ PðkÞ ¼ ðkBþ AÞ�1
: Y ! D for complex k,

taken as bounded linear operators. It has been shown that if PðkÞ exists for two distinct

values of k, the operator pair hA;Bi : u 2 D ! hAu;Bui 2 Y � Y is closed. If A and B are

both closed, this is certainly the case, but the converse is not necessarily true. A counter-

example within the context of dynamic boundary conditions can be found in [21].

Let us work towards this setting for the Eq. (25). Let X ¼ L2 ðXÞ and let D
0
¼ C

1 ðXÞ be

a preliminary domain for which the operations in the equations are well-defined. Further,
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we take Y ¼ L2 ðXÞ � L2 ðCÞ. Elements of Y will be denoted by

hf ;Fi; f 2 L2 ðXÞ;F 2 L2 ðCÞ. With the vector form (26) in mind, we define the operators

A
0
;B

0
: D

0
! Y as follows:

A
0
u ¼ hLu;KU þ c

L
ui; ð27Þ

B
0
u ¼ hu;Ui; ð28Þ

U ¼ cu ¼ c
0
uþ kc

L
u: ð29Þ

In the next three sections we prepare for an extension of the operators A
0
;B

0
to a closed

pair that will fulfill our needs. To achieve this we define a third operator C
0
: D

0
! Y by

C
0
u ¼ A

0
uþ B

0
u ¼ hLuþ u;KU þ U þ c

L
ui: ð30Þ

6 Some bilinear forms

For the purpose of extending the operators A
0

and B
0

defined in Sect. 5, we define in this

section some bilinear (sesquilinear) forms on the domain D
0
� X ¼ L2 ðXÞ related to these

operators which map to the product space Y ¼ L2 ðXÞ � L2 ðCÞ. Inner products in L2 ðXÞ and

L2 ðCÞ are denoted by subscripts such as ð ; Þ
X

and ð ; Þ
C

and likewise for the norms. The

bilinear forms are set out by means of the inner product ðhf ;Fi; hg;GiÞ
Y
:¼ ðf ; gÞ

X
þ

ðF;GÞ
C

in Y. We begin with

R
0
ðu; vÞ ¼ ðA

0
u;C

0
vÞ

Y
¼ ðA

0
u;A

0
vÞ

Y
þ ðA

0
u;B

0
vÞ

Y
; ð31Þ

S
0
ðu; vÞ ¼ ðB

0
u;C

0
vÞ

Y
¼ ðB

0
u;A

0
vÞ

Y
þ ðB

0
u;B

0
vÞ

Y
;

½u; v� ¼ R
0
ðu; vÞ þ S

0
ðu; vÞ ¼ ðC

0
u;C

0
vÞ

Y
;

ð32Þ

having used the definitions (27)–(30) to expand. These forms may be expressed more

explicitly by doing integration by parts, mindful of the fact that on C this is valid because

brS U is tangential to C. With the definitions (15), (16) and (17) in mind, we find with

V ¼ cv ¼ c
0
vþ kc

L
v,

ðA
0
u;B

0
vÞ

Y
¼ ðaru;rvÞ

X
þ ðbrS U;rS VÞC þ ðc

L
u; kc

L
vÞ

C
;

ðB
0
u;A

0
vÞ

Y
¼ ðru; arvÞ

X
þ ðrS U; brS VÞC þ ðkc

L
u; c

L
vÞ

C
:

9=
; ð33Þ

Since the matrices a, b are real-symmetric and the function k is real-valued, it follows from

(33) that

ðA
0
u;B

0
vÞ

Y
¼ ðB

0
u;A

0
vÞ

Y
¼ ðaru;rvÞ

X
þ ðbrS U;rS VÞC þ ðkc

L
u; c

L
vÞ

C
:

The bilinear forms in question may now be expressed in expanded form:
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R
0
ðu; vÞ ¼ðA

0
u;A

0
vÞ

Y
þ ðaru;rvÞ

X
þ ðbrS U;rS VÞC þ ðkc

L
u; c

L
vÞ

C
; ð34Þ

S
0
ðu; vÞ ¼ðB

0
u;B

0
vÞ

Y
þ ðaru;rvÞ

X
þ ðbrS U;rS VÞC þ ðkc

L
u; c

L
vÞ

C
; ð35Þ

½u; v� ¼ðA
0
u;A

0
vÞ

Y
þ ðB

0
u;B

0
vÞ

Y

þ 2 ðaru;rvÞ
X
þ ðbrS U;rS VÞC þ ðkc

L
u; c

L
vÞ

C

h i
:

ð36Þ

We explore some properties of the bilinear forms. For this we denote by cR
0
ðuÞ :¼ R

0
ðu; uÞ

and cS
0
ðuÞ :¼ S

0
ðu; uÞ the associated quadratic forms. From (34) and (35) we see that R

0

and S
0

are symmetric and therefore the quadratic forms are real-valued. The same, and

more, is true for ½ ; �. Indeed, if we observe that ðB
0
u;B

0
vÞ

Y
¼ ðu; vÞ

X
þ ðU;VÞ

C
, it fol-

lows from (36) that

j½u�j2 :¼ ½u; u� ¼ kA
0
uk2

Y
þ kuk2

X
þ kUk2

C

þ 2½ðaru;ruÞ
X
þ ðbrS U;rS UÞ

C
þ ðkc

L
u; c

L
uÞ

C
� 	 kuk2

X
:

ð37Þ

Thus ½ ; � is an inner product and defines a norm j½ �j on D
0
. From the identity (36),

kA
0
uk2

Y

 j½u�j2 . The same holds for kB

0
uk2

Y
. Thus we have

Theorem 1 The operators A
0
;B

0
;C

0
: D

0
! Y are bounded in j½ �j.

Theorem 2 The mapping u 2 hD
0
; k k

X
i ! u 2 hD

0
; j½ �ji is injective in the sense that if

fun g � D
0
is a Cauchy sequence in j½ �j and kun kX

! 0, then j½un �j ! 0.

Proof From (37) we see that

1. fun g is a Cauchy-sequence in H1 ðXÞ since ðarun ;run ÞX 	 cX krun k2

X
. Hence, un ! 0

in H1 ðXÞ. By the trace theorem, c
0
un ! 0 in H

1=2 ðCÞ.
2. Likewise, fUn g is a Cauchy-sequence in H1 ðCÞ. Let U 2 H1 ðCÞ be its limit.

3. fc
L
un g is a Cauchy-sequence in the weighted space L2 ðC; kdSÞ. Let UL;k be its limit.

4. fA
0
un g is a Cauchy-sequence in Y. This means that fLun g is a Cauchy-sequence in

L2 ðXÞ and so is fKUn þ c
L
un g in L2 ðCÞ.

By the Aronszajn coerciveness-estimates (see Agmon [1, Sects 10,11]) there is a constant

CA [ 0 such that

kun k
H2 ðXÞ


CA kLun kX
þ kun kX

h i
: ð38Þ

Thus un ! 0 in H2 ðXÞ. By the trace theorem, therefore, c
L
un ! 0 in H

1=2 ðCÞ � L2 ðCÞ.
Since the function k is bounded, kc

L
un k

L2 ðC;kdSÞ
is dominated by kc

L
un kC

and it follows that

U ¼
ffiffiffi
k

p
UL;k ¼ 0.

Finally an estimate similar to (38) for KUn shows that Un ! 0 in H2 ðCÞ. Scrutiny of

(37) shows that indeed j½un �j ! 0. h
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For later purposes we define a family of bilinear forms that depends on a complex

parameter k:

Q
0
ðu; v; kÞ :¼ R

0
ðu; vÞ þ ðkþ 1ÞS

0
ðu; vÞ ¼ ½u; v� þ kS

0
ðu; vÞ; u; v 2 D

0
; ð39Þ

and write cQ
0
ðu; kÞ :¼ Q

0
ðu; u; kÞ. By (35) cS

0
ðuÞ	 0 and it follows immediately that for

real k[ 0, cQ
0
ðu; kÞ	 j½u�j2 . For such k, Q

0
ð�; kÞ is positive definite. But there is more. Let

/ 2 ð0; p=2Þ and let R/ :¼ fk 2 C : jarg kj\/þ p=2g. The following result, a more

general version of which can be found in [24], will often be used:

Lemma 1 For r; s 2 R and k 2 C, let zk ¼ rkþ s. If k 2 R/ ,

(i) jzk j
2 	 s

2
cos

2 /;

and

(ii) jzk j
2 	 r

2 jkj2 cos
2 /:

Proof This follows from jzk j
2 ¼ r2 jkj2 þ s2 þ 2rsjkj cosðarg kÞ	 r2 kj2 þ s2 � 2rsjkj sin/

and the inequalities 2rsjkj sin/
 r2 jkj2 þ s2 sin
2 /; 2rsjkj sin/
 r2 jkj2 sin

2 /þ s2 . h

From (i) in Lemma 1, we have with zk :¼ cQ
0
ðu; kÞ ¼ kcS

0
ðuÞ þ j½u�j2 , taken from (39),

Theorem 3 For k 2 R/ and u 2 D
0
, jcQ

0
ðu; kÞj 	 cos/j½u�j2 .

7 Density theorems

We proceed to show that the ranges of the operators C
0

and B
0

are dense in

Y ¼ L2 ðXÞ � L2 ðCÞ.
For given hf ; gi 2 Y consider the system of elliptic equations

Luþ u ¼ f in X;

cu ¼ c
0
uþ kc

L
u ¼ U on C:

)
ð40Þ

KU þ U þ c
L
u ¼ g in C: ð41Þ

We note that the boundary condition in (40) is the Carslaw-Jaeger relation. Since the

manifold C is without boundary, there is no boundary condition to accompany (41).

It has been shown in [23] that the boundary operator c is normal, covers L (see [16,

p.113]) and that the problem (40) has, for given U 2 H
1=2 ðCÞ, a unique solution in H2 ðXÞ.

Similarly the Eq. (41) has, for given u 2 H2 ðXÞ, a unique solution in H2 ðCÞ (Taylor [22],

for example). We need to bring the two equations together.

Theorem 4 There exists a unique u 2 H2 ðXÞ with cu 2 H2 ðCÞ so that the equations (40),

(41) are satisfied.
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Proof We begin by making the equations as homogeneous as possible. Let w 2 H2 ðXÞ be

the solution of the problem Lwþ w ¼ f ; cw ¼ 0 and let W be the solution of

KW þW ¼ g� c
L
w. Then solving the problem (40), (41) reduces to solving the following:

Lvþ v ¼ 0 in X;

cv ¼ W þ V on C:

)
ð42Þ

KV þ V ¼ �c
L
v in C: ð43Þ

Indeed, the solution we look for, would be of the form u ¼ wþ v.

We show that a unique solution of (42), (43) exists. For this purpose let v in H2 ðXÞ be

chosen and let V 2 H2 ðCÞ be the solution of (43). We then use the V so obtained in the

boundary condition of (42). The problem (42) has a unique solution which we denote by

TðvÞ 2 H2 ðXÞ. Formally, T : v 2 H2 ðXÞ ! V 2 H2 ðCÞ ! TðvÞ 2 H2 ðXÞ.
The next task is to show that the (nonlinear) operator T has a fixed point, a solution of

(42), (43). For this we apply the Leray-Schauder principle.

First we show that T is compact. Consider v, vy 2 H2 ðXÞ and let V, V
y 2 H2 ðCÞ be the

corresponding solutions of (43). Then L½TðvÞ � Tðvy Þ� þ ½TðvÞ � Tðvy Þ� ¼ 0, c½TðvÞ �
Tðvy Þ� ¼ V � V

y
and K½V � V

y � ¼ �c
L
½v� vy �. From the standard apriori estimate [16,

Thm. 5.1, p.149ff.]

kTðvÞ � Tðvy Þk
H2 ðXÞ


 const.kV � V
y k

H
1=2 ðCÞ

: ð44Þ

From the same estimates on manifolds (e.g. [22, Chap. 5]) we have

kV � V
y k

H2 ðCÞ

 const.kc

L
v� c

L
vy k

H
1=2 ðCÞ

;

so that the mapping c
L
v 2 H

1=2 ðCÞ ! V 2 H2 ðCÞ is continuous. Let fvn g be a weakly

convergent sequence in H2 ðXÞ and Vn the corresponding V. Then from the continuity of the

mapping v 2 H2 ðXÞ ! c
L
v 2 H

1=2 ðCÞ, the sequence fVn g is weakly convergent in H2 ðCÞ.
By the Rellich embedding (Hebey [12, Chap. 3]), fVn g is norm-convergent in H

1=2 ðCÞ.
From (44) we now have kTðvn Þ � Tðvm Þk

H2 ðXÞ

 const.kVn � Vm k

H
1=2 ðCÞ

which proves the

compactness of T.

Next, suppose that for 0
 k
 1, vk ¼ kTðvk Þ and let Vk be the solution of (43) cor-

responding to vk . Now we have, after some manipulation,

Lvk þ vk ¼ 0;

cvk ¼ k½W þ Vk �;

KVk þ Vk ¼ �c
L
vk :

9>>>=
>>>;

ð45Þ

To estimate vk we consider the first of the equations in (45) and expand to obtain

kLvk þ vk k
2

X
¼ kLvk k

2

X
þ kvk k

2

X
þ ðLvk ; vk ÞX þ ðvk ; Lvk ÞX ¼ 0: ð46Þ
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The last two terms in (46) may, as we have done in Sect. 6, be integrated by parts to obtain

kLvk k
2

X
þ kvk k

2

X
þ 2ðarvk ;rvk ÞX � 2Re ðc

0
vk ; cL vk ÞC ¼ 0: ð47Þ

From the second equation in (45) we obtain c
0
vk ¼ k½W þ Vk � � kc

L
vk . This, substituted in

(47), gives

kLvk k
2

X
þ kvk k

2

X
þ 2ðarvk ;rvk ÞX þ 2kc

L
vk k

2

L2 ðC;kdSÞ

� 2kRe ðVk ; cL vk ÞC ¼ 2kRe ðW; c
L
vk ÞC :

ð48Þ

Now we obtain from the third equation in (45), again after integration by parts,

�Re ðVk ; cL vk ÞC ¼ ðbrS Vk ;rS Vk ÞC þ kVk k
2

C
, which, together with (48), leads to the

identity

kLvk k
2

X
þ kvk k

2

X
þ 2ðarvk ;rvk ÞX þ 2kc

L
vk k

2

L2 ðC;kdsÞ

þ 2k½ðbrS Vk ;rS Vk ÞC þ kVk k
2

C
� ¼ 2kRe ðW ; c

L
vk ÞC :

ð49Þ

The well-known coercivity estimate for elliptic operators is now invoked and combined

with with (49). We also note that none of the terms on the left of (49) are negative. The

result is

CA kvk k
2

H2 ðXÞ

 ½kLvk k

2

X
þ kvk k

2

X
�


 kLvk k
2

X
þ kvk k

2

X
þ 2ðarvk ;rvk ÞX þ 2kc

L
vk k

2

L2 ðC;kdSÞ

þ 2k½ðbrS Vk ;rS Vk ÞC þ kVk k
2

C
� ¼ 2kRe ðW; c

L
vk ÞC :

ð50Þ

The right of (50) can now be estimated with the aid of the trace theorem (with c[ 0 a

constant). For e[ 0,

2kRe ðW; c
L
vk ÞC 
 2kWk

C
kc

L
vk kC


 2ckWk
C
kvk kH2 ðXÞ


 c2

e
kWk2

C
þ ekvk k

2

H2 ðXÞ
:

ð51Þ

Combination of (50) and (51) gives

ðCA � eÞkvk k
2

H2 ðXÞ

 c2

e
kWk2

C
: ð52Þ

By choosing 0\e\CA , we see from the Leray-Schauder principle that the mapping T

indeed has a fixed point v which solves the system (42), (43). That the solution is unique

can be seen by noticing that v also obeys the inequality (52) so that W ¼ 0 implies that

v ¼ 0. The regularity of cu is evident. h

Theorem 5 C
0
½D

0
� is dense in Y.

Proof Let us approximate f by fn 2 C
1 ðXÞ and g by gn 2 C

1 ðCÞ. Let Wn and vn denote

the corresponding entities when f is replaced by fn and g by gn and set un ¼ wn þ vn . By

standard regularity of solutions of elliptic equations, un 2 D
0
.

From the standard apriori estimates, wn ! w in H2 ðXÞ and, consequently, Wn ! W in

H2 ðCÞ. From (52) we see that vn ! v in H2 ðXÞ. Thus un ¼ wn þ vn ! u ¼ wþ v.

Therefore C
0
un ¼ hfn ; gn i ! hf ; gi in Y and density is established. h
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For later use we also need the following result:

Theorem 6 B
0
½D

0
� is dense in Y.

Proof Suppose that F ¼ hf ; gi 2 Y is orthogonal to B
0
½D

0
�. That is ðf ; uÞ

X
þ ðg; cuÞ

C
¼ 0

for every u 2 D
0
. In particular, ðf ; uÞ

X
¼ 0 for every u 2 C

1

0
ðXÞ, so that f ¼ 0. Thus,

ðg; cuÞ
C
¼ 0 for all u 2 D

0
.

Let u 2 H2 ðXÞ be the solution of the system (40), (41) with f ¼ 0. Take gn 2 C
1 ðCÞ

that approximates g, and let un be the solution of the same system of equations with g
replaced by gn . From the equation Luþ u ¼ 0 in X we obtain in the familiar way

ðaru;run ÞX þ ðu; un ÞX þ ðkc
L
u; c

L
un ÞC � ðc

L
u;Un ÞC ¼ 0: ð53Þ

From the equation KU þ U ¼ g� c
L
u, since ðg;Un ÞC ¼ 0, we obtain similarly

�ðc
L
u;Un ÞC ¼ ðbrS U;rS Un ÞC þ ðU;Un ÞC : ð54Þ

Combination of (53) and (54) leads to the identity

ðaru;run ÞX þ ðu; un ÞX þ ðkc
L
u; c

L
un ÞC þ ðbrS U;rS Un ÞC þ ðU;Un ÞC ¼ 0: ð55Þ

We have proved above that un ! u in H2 ðXÞ and, consequently, that Un ! U in H2 ðCÞ.
So if we take limits in (55) the conclusion is that u ¼ 0 and U ¼ 0. But then, by (41),

g ¼ 0. h

8 The Friedrichs extension

We are now in a position to extend the operators A
0
, B

0
to a domain D � L2 ðXÞ in such a

way that crucial properties are kept intact.

The first step is completion of the domain D
0

with respect to the norm j½ �j to a Hilbert

space D
1
. From (37) it is clear that the norm j½ �j is stronger than the L2 ðXÞ norm and

therefore an embedding of J : D
1
,!L2 ðXÞ should be possible. Indeed, suppose fun g � D

0

is a Cauchy-sequence in j½ �j and u0 2 D
1

is associated with it. By (37), it is also a Cauchy-

sequence in L2 ðXÞ with limit u 2 L2 ðXÞ. The embedding is Ju0 ¼ u and kJu0k
X

 j½u0�j.

From Theorem 2 we see that the operator J is bijective so that the elements of D
1

may

be identified with elements of L2 ðXÞ. Theorem 1 allows us to extend by continuity the

operators A
0
, B

0
and C

0
to bounded linear operators A

1
, B

1
and C

1
on D

1
. From the

definitions (31), (32) and (39) we see that the bilinear forms R
0
, S

0
and Q

0
ð: ; :; kÞ may

also be extended to bounded bilinear forms R, S and Qð: ; :; kÞ defined on D
1
.

Unfortunately, operators extended by continuity may lose some of their properties. The

next step is to restrict the extended operators in such a way that desired properties are

retained. For this purpose we consider the variational problem: Given y 2 Y , find u 2 D
1

such that for all v 2 D
1

Qðu; v; kÞ ¼ ðy;C
1
vÞ

Y
: ð56Þ

On account of Theorem 3 the Lax-Milgram lemma ensures that for every k in the sectorial

domain R/ there is a unique solution uy 2 D
1
. We consider uy as an element of L2 ðXÞ and
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the mapping y ! uy from Y to X ¼ L2 ðXÞ, but immediately take note of the fact that the

topology of X is weaker than that of D
1
.

Theorem 7 The linear operators PðkÞ : y 2 Y ! uy 2 L2 ðXÞ; k 2 R/ , are bounded and

invertible.

Proof With u ¼ v ¼ uy in (56), use of Theorem 3 leads to

cos/j½uy �j2 
 j bQðuy ; kÞj 
 kyk
Y
:kC

1
uy k ¼ kyk

Y
:j½uy �j: Thus cos/j½uy �j 
 kyk

Y
. From (37)

we see that kuy kX

 j½uy �j and we arrive at the inequality kPðkÞyk

X

kyk

Y
= cos/ which

establishes boundedness.

Further, if PðkÞy ¼ uy ¼ 0, it follows from (56) that ðy;C
1
vÞ

Y
¼ 0 for all v 2 D

1
.

From Theorem 5 it follows thatC
1
½D

1
� is dense inY and hence y ¼ 0 so thatPðkÞ is invertible.h

Theorem 8 The resolvent equation

PðkÞ � PðlÞ ¼ ðl� kÞPðlÞB
1
PðkÞ ð57Þ

holds for k; l 2 R/ . In addition,

PðlÞB
1
PðkÞ ¼ PðkÞB

1
PðlÞ: ð58Þ

The range of PðkÞ does not depend on k.

Proof Suppose uy ¼ PðkÞy. From the identities

ðy;C
1
vÞ

Y
¼ Qðuy ; v; kÞ ¼ Rðuy ; vÞ þ ðkþ 1ÞSðuy ; vÞ

¼ Qðuy ; v; lÞ � ðl� kÞSðuy ; vÞ
¼ Qðuy ; v; lÞ � ðl� kÞðB

1
uy ;C1

vÞ
Y
;

we conclude that Qðuy ; v; lÞ ¼ ðyþ ðl� kÞB
1
uy ;C1

vÞ
Y

for all v 2 D
1
. Therefore,

PðkÞy ¼ uy ¼ PðlÞ½yþ ðl� kÞB
1
uy � which translates directly into (57) and proves the

invariance of the range. The commutation rule (58) is obtained by interchange of the roles

of l and k in (57). h

We may now, without reservations, set D :¼ PðkÞ½Y �; k 2 R/ . Evidently, D
0
� D � D

1
.

Let us denote by A, B and C the restrictions of A
1
, B

1
and C

1
to D and notice immediately

that in the expressions (57) and (58), B
1

can be replaced by B. From now on we consider D

as a linear subspace of L2 ðXÞ. As a matter of fact, the operators A and B are restrictions of

operators bounded in a stronger topology than that of L2 ðXÞ.
The solution uy satisfies a system of equations so similar to (40), (41) that Theorem 4

applies to it. This leads to

Theorem 9 D ¼ fu 2 H2 ðXÞ : cu ¼ c
0
uþ kc

L
u 2 H2 ðCÞg.

Thus the operators A and B retain their original meaning, at least in the sense of regular

distributions. Moreover, the domain D is determined by the contact function k. Therefore

transition from imperfect to perfect contact represents a singular perturbation.
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Theorem 10 For k 2 R/ , ðkþ 1ÞBþ A is invertible and

PðkÞ ¼ ðkþ 1ÞBþ A½ ��1
: ð59Þ

The operator pair hA;Bi : D � L2 ðXÞ ! Y � Y is closed.

Proof From the definitions (31) and (39) it is seen that Qðu; v; kÞ ¼ ð½Aþ ðkþ
1ÞB�u;CvÞ

Y
for u; v 2 D. Thus ð½Aþ ðkþ 1ÞB�uy ;CvÞY ¼ ðy;CvÞ

Y
for all v 2 D. By

Theorem 5 C½D� is dense in Y. Therefore, ½Aþ ðkþ 1ÞB�PðkÞy ¼ ½Aþ ðkþ 1ÞB�uy ¼ y.

By Theorem 7, Aþ ðkþ 1ÞB, being the inverse of a bounded operator, is closed for all

k 2 R/ , that is, for at least two distinct values of k. h

The operator pair hA;Bi is called the Friedrichs extension of hA
0
;B

0
i. We shall use the

notation DY :¼ B½D�. From the definition (28) it is seen that

kBuk2

Y
¼ kuk2

X
þ kUk2

C
	kuk2

X
. We therefore have

Theorem 11 The operator B : D � L2 ðXÞ ! DY � Y has a bounded inverse B�1 .

9 The solution operators

The ultimate step is to construct the solution of the Cauchy-problem

d

dt
½BuðtÞ� þ AuðtÞ ¼ 0;

lim
t!0þ

½BuðtÞ� ¼ y;

9>=
>; ð60Þ

in which hA;Bi is the extended pair constructed in Sect. 8. One burning issue is to identify

the class of initial states y 2 Y for which the problem can be solved.

Our approach is to represent the solution in the form uðtÞ ¼ SðtÞy with the solution

operators SðtÞ : Y ! L2 ðXÞ to be constructed. For this purpose we need some important

estimates.

Theorem 12 For k 2 R/ and y 2 Y the following holds:

kBPðkÞyk
Y

 1

jkj cos/
kyk

Y
: ð61Þ

kAPðkÞyk
Y

 1 þ jkj þ 1

jkj cos/

� �
kyk

Y
: ð62Þ

kPðkÞyk
X

 1

cos/
kyk

Y
: ð63Þ

Proof As in Sect. 8, let uy ¼ PðkÞy. Then, from (59), ½ðkþ 1ÞBþ A�uy ¼
kBuy þ Cuy ¼ y. Hence,
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kkBuy k2

Y
þ ðCuy ;Buy ÞY ¼ ðy;Buy ÞY : ð64Þ

From the expressions (32) and (35) we see that the term ðCuy ;Buy ÞY 	 0 and therefore,

with zk ¼ kkBuy k2

Y
þ ðCuy ;Buy ÞY , Lemma 1 (ii) gives jzk j 	 kBuy k2

Y
:jkj cos/. The right of

(64) can be estimated by the Schwarz inequality so that in the end kBuy kY
:jkj cos/
kyk

Y
,

which is the same as the inequality (61).

The identity APðkÞy ¼ y� ðkþ 1ÞBPðkÞy together with (61) yields the inequality (62).

To derive the inequality (63), we use Lemma 1 (i) to obtain jzk j 	 ðCuy ;Buy ÞY : cos/.

But from (35) we see that ðCuy ;Buy ÞY 	kBuy k2

Y
so that indeed, kBuy kY

: cos/
kyk
Y
. As

we have noticed before, kBuy kY
	kuy kX

and that concludes the proof. h

To construct the solution operators, we fix an angle / 2 ð0; p=2Þ and choose a contour G in

the following way: For 0\e\/=2, let w ¼ /� 2e and let G be defined by the lines

zþ ðrÞ ¼ r expfiðwþ p=2g þ i, z� ðrÞ ¼ �r expf�iðwþ p=2g � i; r[ 0, and the semicir-

cle zðhÞ ¼ expfihg; �p=2
 h
 p=2. We define for complex t the family of operators

S
y ðtÞ : Y ! L2 ðXÞ by the integral

S
y ðtÞy ¼ 1

2pi

Z
G

expfktgPðkÞydk; t 6¼ 0; jarg tj\e; y 2 Y : ð65Þ

It follows from (63) that the integral is well-defined. From the identities (57) and (58) we

see that the mapping k ! PðkÞy is an analytic function so that the integral does not depend

on the contour chosen. The change of variable kjtj ¼ l leads to the representation S
y ðtÞy ¼

1
2pijtj

R
H expflngPðlÞydl with H ¼ jtjG and arg n ¼ arg t; jnj ¼ 1. The contour H can be

‘deformed’ back to G to obtain

S
y ðtÞy ¼ 1

2pijtj

Z
G

expflngPðl=jtjÞydl: ð66Þ

Theorem 13 The operators S
y ðtÞ are bounded and map Y to D. The operators A and

B can be interchanged with the integral in (65).

Proof From the inequality (63) and (66) we obtain an estimate of the form

kSy ðtÞyk
X

Const.jtj�1 kyk

Y

so that the operators S
y ðtÞ are bounded. To prove the other assertions we need to verify

integrability of the integrands in (65) or (66) after A and B had acted on them. From the

estimate (61) we obtain

kjtj�1
expflngBPðl=jtjÞyk
 ðj expflngj=jljÞkyk

Y

so that the integral exists. From the identity APðkÞy ¼ y� ðkþ 1ÞBPðkÞy, and the estimate

(62) we see that the integral of expflngAPðl=jtjÞ exists. Since the operator pair hA;Bi is

closed (Theorem 10) it follows that S
y ðtÞ : Y ! D and
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AS
y ðtÞy ¼ 1

2pi

Z
G

expfktgAPðkÞdk; ð67Þ

BS
y ðtÞy ¼ 1

2pi

Z
G

expfktgBPðkÞdk: ð68Þ

Thus ends the proof. h

Theorem 14 For all y 2 Y , kBSy ðtÞy� yk
Y
! 0 as jtj ! 0.

Proof For y 2 DY we have y ¼ BPðkÞ½BPðkÞ��1
y ¼ kBPðkÞyþ BPðkÞ½yþ AB�1 y�. Since

y ¼ 1

2pi

Z
G

k�1
expfktgydk;

we have, with the help of (61),

BS
y ðtÞy� y ¼ � 1

2pi

Z
G

k�1
expfktgBPðkÞ½yþ AB

�1
y�dk:

Once again, the substitution l ¼ jtjk and the inequality (61) yields an estimate of the form

kBSy ðtÞy� yk
Y

Const.jtjkyþ AB

�1
yk

Y

which converges to zero as jtj ! 0 for y 2 DY . From the proof of Theorem 13 we note that

BS
y ðtÞy is uniformly bounded in t. Since DY is dense in Y (Theorem 6) the final conclusion

is reached. h

Theorem 15 For y 2 Y , uðtÞ :¼ expf�tgSy ðtÞy solves the Cauchy-problem (60).

Proof From the identity (68) and the dominated convergence theorem we see that

d
dt BS

y ðtÞy
h i

¼ 1
2pi

R
G

expfktgkBPðkÞydk. From the identity ðkBþ Bþ AÞPðkÞy ¼ y, (67)

and (68) we now obtain d
dt BS

y ðtÞy
h i

¼ 1
2pi

R
G expfktg y� BPðkÞy� APðkÞy½ �dk, which, by

virtue of Theorem 13, translates to the equation d
dt BS

y ðtÞy
h i

þ BS
y ðtÞyþ AS

y ðtÞy ¼ 0.

This, together with Theorem 14, concludes the argument. h

The solution operators alluded to are then SðtÞ ¼ expf�tgSy ðtÞ and can be represented in

integral form as

SðtÞy ¼ 1

2pi

Z
G

expfðk� 1ÞtgPðkÞydk; t 6¼ 0; jarg tj\e; y 2 Y ;

with a slight modification of the contour G.
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10 An implicit semigroup

In Sect. 9 the operators RðkÞ :¼ BPðkÞ : Y ! DY played a crucial role. From the identities

(57) and (58) we readily see that RðkÞ � RðlÞ ¼ ðl� kÞRðkÞRðlÞ and RðkÞRðlÞ ¼
RðlÞRðkÞ for k 2 R/ . Hence we can define the holomorphic family EðtÞ : Y ! Y by

EðtÞy ¼ 1
2pi

R
G expfktgRðkÞydk. From the estimate (61) it follows that E(t) is indeed a

holomorphic semigroup defined on Y. Moreover, a somewhat delicate calculation with the

use of (57) in the form PðkÞ � PðlÞ ¼ ðl� kÞPðkÞRðlÞ, leads to the empathy relation
Sðt þ sÞ ¼ SðtÞEðsÞ which is a general framework for implicit equations [20]. In the pre-

sent discussion, however, neither the semigroup property nor the empathy relation is

important.
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