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Abstract

The paper is concerned with the regularity of solutions of the Boussinesq equations for
incompressible fluids without heat conductivity. The main goal is to prove a regularity
criterion in terms of the vorticity for the initial boundary value problem in a bounded
domain Q of R* with Navier-type boundary conditions and we prove that if

T (-t
/ o, Dl smoe) dt <o,
0 tog(e + o, lmo
where o :=curl u is the vorticity, then the unique local in time smooth solution of the 3D
Boussinesq equations can be prolonged up to any finite but arbitrary time.
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1 Introduction and main result.

Let Q be a bounded, simply connected domain in R® with 0Q € C* and n = (n', n?, n*) be
the outward unit normal vector field along boundary 0Q. In this note, we consider the
classical problem of regularity conditions for fluid mechanics equations. Precisely, we
consider the initial boundary value problem for the 3D Boussinesq equations without heat
conductivity modeling the flow of an incompressible fluid with Navier-type boundary
conditions :

Ou+ (u-V)u—Au+Vr=0e;, in Qx (0,00),
00+ u-V)0=0, in Qx(0,00),
V-u=0, in Qx(0,00), (1.1)
u-n=0, (Vxu)xn=0, on 0Q,
(u7 6)(}(, O) = (M(), 90) in Qv
where u = u(x, ) and 0 = 0(x, 1) denote the unknown velocity vector field and the scalar
temperature. Initial data ug is assumed to satisfy a compatibility condition : V - up(x) = 0
in Q. e3 = (0,0,1)". @ = n(x, ) is the pressure of fluid at the point (x, ) € Q x (0,00). The
Boussinesq system has important roles in atmospheric sciences (see, e.g., [18]).
When 0 =0, (1.1); and (1.1); are the well-known Navier-Stokes system. Giga [13],
Kim [15] and Kang and Kim [14] have proved some Serrin type regularity criteria.
These type of regularity results are very well-known in literature and they all started

with the improvement of Kozono and Taniuchi [16] of the Beale-Kato—Majda criterion for
the 3D Euler equations, namely

T
/0 oo 1) pyroqee) e <o,

Here BMO stands for the space of the bounded mean oscillation.
This paper is an improvement on the results contained in the paper [7, 20]. Precisely, in
the Reference [20] it is proved that if

w 3
/ (-, )l pmogr) dt < o,
0

(e + o, )l mo )

holds then the unique local in time smooth solution of the Cauchy problem for the 3D
Boussinesq equations with thermal diffusivity can be prolonged up to any finite but
arbitrary time. On the other hand in the reference [7] it is proved that if

T
/0 192 1) pyrorendt <o, (1.2)

then the unique local in time smooth solution of the initial boundary value problem for the
3D Boussinesq equations without thermal diffusivity and with Navier boundary conditions
can be prolonged up to any finite but arbitrary time.

One may also refer to some interesting results are devoted to find regularity criteria or
prove partial regularity for these equations, such as [8] for Boussinesq equations, and
[9-12, 21] for system, in a bounded domain.

Motivated by the result in [7], we will improve (1.2) as
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/T ||w('at)||BMO(Q) di < 0o (1.3)
0 ln(e + ||w('at)HBMO(Q)) |

where @ = V X u is the vorticity. More precisely, we will prove

Theorem 1.1 Let (up,0o) € H*(Q) x WH(Q) with 3<q<6 and V -uy =0 in Q and
up-n=0,(Vxuy) xn=0on0Q. Let (u,0) be a strong solution of problem (1.1). If
(1.3) holds, then the solution (u,0) can be extended beyond T > 0.

Remark 1.1 This result says that the velocity field of the fluids plays a more dominant role
than the temperature 0 in the regularity theory of the system (1.1). So our theorem is a
complement and improvement of the previous results. Therefore, if 0 = 0, Theorem 1.1
directly yields an alternative proof of logarithmically improved Beale-Kato-Majda type
extension criterion for smooth solutions to the incompressible Navier-Stokes equations,
which improves the result in [19].

2 Proof of Theorem 1.1

In this section we prove our main result and to this end, we recall some preliminary results
which will be used in the proof.

Lemma 2.1 [4] Ler Q C R® be a domain with smooth connected boundary 0Q. Let w :
Q — R? be a smooth vector field and let 1 <5< oo. Then

—/Aw~w\w|s_2dx
Q
@2.1)
1 4(s —2 s
= [t 2ionpa+ 2D [pitfa— [ ow - wao,
S
Q Q 0Q

Here do denotes the surface measure sur 0Q).

In addition to the classical integration by parts, in some calculations we will also use the
following Gauss—Green formula, where w =V X u.

Lemma 2.2 [5] Assume that u is divergence-free and that on 0Q condition (1.1)4 holds, i.e.
u-n=0and w x n=0. Then

0w
5, 0= (evjkerp, + exnerp, + exnespy) wjpden,, (2.2)

where € denotes the totally anti-symmetric tensor such that (a X b); = €;jxa;by.
We shall often make use of the following

Lemma 2.3 (See [1], Lemma 7.44 and [17], Corollary 1.7) Let Q be a smooth and
bounded open set in R>. Then, there is a constant C depending on Q, such that if f €
L1(Q) N WH(Q) with 1 <g<oo, then
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1-1 1
1 llzeceey < Iy | ATy (23)

We need the following Gagliardo—Nirenberg inequality using BMO-norm.

Lemma 2.4 [3] Let 1 <r<g<oo. There exists a constant C depending on Q, such that for
every f € L'(Q) N BMO(Q),

(2.4)

r 1-L
||f”Lq(Q) < CHf qL'(Q)HfHBMqO(Q)'

In the sequel, we will use the classical regularity result for the following Stokes problem,
see for instance [2].

Lemma 2.5 Let Q be a bounded, simply connected domain in R> with 0Q € C* and let
méeZ so that m> — 1 and q € (1,00). For any f € W"4(Q), there exists a unique
solution (u,n) of the following Stokes system

—Au+Vrn=f in Q,
Vu=0 in Q,
u-n=0, (Vxu)xn=0 ondQ,

such that u € W"24(Q) and = € W™ 14(Q). The solution satisfies the estimate

il a0 H el 1) < Clf oy

for some constant C depending only on Q and q. In particular, for m = 0, we have

[ullri@) < CllA 2@ (2:5)

and

V7l 20) < 11l 220)- (2.6)

We need also the following lemma due to [6], (see Theorem 2.6).

Lemma 2.6 [6] Let s be a non-negative real. If u € H*(Q) such that Au € H*(Q) and such
that
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V-u=0 in Q,
u-n=0, (Vxu)xn=0 on 0Q,

then u € H*2(Q) and there is a positive constant C independent of u such that

ol ey < € (Il () 1A ) (2.7)

In particular, for s = 1, we have
oy < € (il 2+l Al
=C(llull 2@ IV % (V X )l gy )
< (Il Hio )
< (Il +Hloll 2@ +IA0]2)-
Now we are in a position to prove our main result.

Proof We only need to establish a priori estimates. We will show that under the
hypotheses of Theorem 1.1, the H> x W!'—norms of both velocity and temperature
remain uniformly bounded, hence we can uniquely continue the solution beyond 7, con-
tradicting its maximality.

First we observe that, by standard energy method we have

0 € L*((0,T);LY(Q))  for any 1 <g < o0, (2.9)
and
u € L*((0,T); L*(Q)) NL*((0,T); H'(Q)).
Next, we consider the equation for the vorticity o :
0w — Ao+ (u-V)o = (0-V)u+V x (Oes). (2.10)

By multiplying (2.10) by w|w|s_2 (1 <s<0), using (1.1)3, (2.1), (2.2), (2.3) and (2.4), we
obtain
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/|w|dx+/|w|s VoL + /|V| 2

= /|w|“2(n-V)w-wdo+/w-vu-w|w|”dx+/v x (Oe3) - w|w]*dx
Q Q

3
- / || (Z e,jke,«/;y> wjwpdxn,do + /(a) Vu - oo *dx
i =

Q

+ / (8es x n) - olol~2do + / (0es) - ¥ x (| 2)dx
oQ Q

3
=— / ]2 (Z e,;,-ke,-/;y> wjwpOn,do + /(a) V) - wlol2dx
i=1

Q

/(0e3 "7V x w)dx + (s — 2)/ Oes) - || V|| x wdx

<c / ofda + [ a0l +s = 1) [ 100l olas
Q
1
aQ)+C||w||SLt‘
-1
(e D0l o ol o,

H £ s 2 2 s—2
< o3[V s+ Cllols ol o+ 205 — 1N ol

*lel'”IVw\Hiz

[ (1+ ol paso)

+ IOl +Clloll + ok Vol

which gives
d N s
5 [ erdr< 1+ lol) (1 + llmo)
Q

1+ [lollsyo

=.C(1+ || log(e + ||w
(1 +lloli) log(e + [|o]|yr0) e+ Nelwo) (2.11)
1+ J|ollgpo
C(1+|o|;) ————24% < log(e + ||@
( || HL)lOg(€+ ||wHBMO) ( || ||H2)

1+ [|oo|lgaso

log(e + ||VAu||;2).
o (e + llpyg) el T VAull2)

C(1+ [lellz)

Defining
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Z(1) = sup [[VAu(,1)|2,

T.<t<T

the inequality (2.11) implies that
sup (-, 1)|[3s < Cule + 2(1), (2.12)
T,<i<T

where € is a small constant, such that

T
[
T, log(e + ”w”BMO)

By using the standard energy estimate, we can deduce that
llo(cs Tl e <00

Now, testing (1.1); by O;u, using (1.1)3 and (2.12), we see that
H@MIIL2+ HV x ul|72

— /(u - V)u - Oudx + / Vr - Qudx + / Oes - O;udx

Q Q Q
<H

HatulleJrCHWHyHWIIU+C||9HL2+ w72
<3 Hatu||L2+CHwHL3||wHL3+C
1 2 Ce
< 5 ol +Cule + 2(1) ™ + C,
which implies
t
/ o, 2 < C. (e + 2(1)) (2.13)
T.

Here we have used the facts

/Au a,udx—/v X (V X u) - Qudx = / (V xu)-Vx (a,u)dX—f—HV X ul|72,
/Vn 6,udx——/rc-a,(V~u)dx:O.

Now we want to estimate ||O,u||,.. We take the time derivative of first equation in (1.1), we
get

0%u+ (u- V)ou — A@u) + V(8,1) = —(Quu - V)u + 8,(0e3). (2.14)
Multiplying (2.14) by O,u, using (1.1)s3, (2.9), (2.12) and (2.13), it follows that
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2dt/|@,u| dx+/|V X (Opu)|dx

< /(G,M - V)u - Qudx| + /(u - V)0 - Oezdx
Q Q
< |0l 75 Vel s +Clluall s ||V (@120) [ 121 0]] 5

1
< IIGtMIILzIIV(atu)HLzHWHL#Z/IV x (@) *dx + Cl|0]17: || Vul |72
Q

_1
IV % (@) || 4-CllRuul 22|l 7 +Cllo] 72

| —

S IV % @uo)l[7+C(1L+ o) o7

Here we have used the facts

/bpw@m-@mw:o

Q

and also we use the continuity equation (to substitute 0,0 by —(u - V)0)

— / 0;0e3 - O;udx = /(u - V)0es - Oudx

Q Q
- /(u - V)0,u - Oesdx + / (u-n)(Oez - du)do
Q )

where in the integration by parts we used the fact that u is divergence-free. In addition, the
boundary term vanishes since (u-n) =0 on 0Q.
Integrating over [T, ], using (2.12) and (2.13), we obtain

/ O + / / IV x (@), 7) Pl < C. (e + Z(1)°°. (2.15)

On the other hand, since (u, ) is a solution of the Stokes system :
—Au+Vr=—0u— (u-V)u-+ Oes,

thanks to the H>—theory of the Stokes system, we obtain by Holder’s inequality, Sobolev’s
inequality, (2.12) and (2.15)
Jull o < Cll~ A+ Vil 2= Cll0w + (- Ve —
< C|[Byul| 2 +Cllael| [ Vel 5 +-C 0] 2
< Cleaul 2 +ClVul| 2 |Vl [ 5 +-C
< C.le+ Z(1)“

(2.16)

Multiplying (2.14) by [V (0;n) — A(;u)], using (1.1)3, (2.15) and (2.16), we derive
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1d R
EE/|V X (6,u)| dx
Q

+ /|V6,n — Aa,u|2dx
Q

= /[(6,0)63 — (u-V)0ou — (Qu-Vu] - (VO — AD,u)dx
o)

=— /[(u -V0)es + (u- V)ou + (O - V)u] - (VO,m — Ad,u)dx
e (2.17)
< (lael o V700t 2 H[Orte | o V] 15
Haell < [1VOll2) VO — Ayu] 2
SC(llull IV > @)l IV < (@) [ 2| Vel 12 Vel
+ Clu|g2) | VOt — ADsu]| 2
< C(llull IV x @)l
HIV x @) 2 | Vullyn +Cllull 2 ) [VOm — Adyu]| 2
< Cllullge (IIV > @) 2 41) [V — Adyu] 2

1
< 5 IV8m — Al +Cllul (Hv x (a,u)ngzﬂ)
where we have used the fact : since Q is simply connected and u - n = 0 on 0Q , then

Vol < C(IIV - @)l 2 HIV x (@u)ll,2) = CIIV x ()|
Integrating (2.17) over (T.,?) and using (2.15) and (2.16), we have

/ IV x (B0)2dx + /T t / (Vo — Adu)(x, D) dxdr < Cule + Z(). (2.18)
Q "Q

Here we have used the fact
/|v « (1) (x, T.) Pl < oo,
Q

by the standard energy method.
On the other hand, it follows from (2.8), (2.10), (2.12 ), (2.16) and (2.18) that
ullgs < C(lull 2+ @l +HAol ) < C(1 + [|Aw]|,)
<CA+|dw+ (u-V)o — (0 V)u+V x (0e3)]| 2
S C(1+ (8| o+l o [V ol o+ [leol] o | Vel 5+ VO )
< C + C||g0| 2 +C|lull3
< Cule+ 2(n)*

Thus we conclude that

SN Partial Differential Equations and Applications
A SPRINGER NATURE journal



41 Page 10 of 11 SN Partial Differ. Equ. Appl. (2020) 1:41

H””Lx(mr;m(g)) <C. (2.19)
By taking the gradient of the continuity equation in (1.1), we get the equation
V(0,0) + (1 V)(V0) = —(Vu)(V0). (2.20)

By multiplying (2.20) by V0|V0|¢"? for ¢ > 3 and by integrating by parts, we obtain the
following differential inequality

1d
Q Q Q

Then, by integrating the above differential inequality with respect to time and by using
(2.19), we get that there exists a constant C independent of ¢ such that

||V@||LX(OYT;L4(Q)) S C with 3<q S 6.

This completes the proof of Theorem 1.1.
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