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Abstract
We prove the existence of a least energy solution to the problem

�Du� ðIa � FðuÞÞf ðuÞ ¼ ku in RN ;

Z
RN

u2ðxÞdx ¼ a2;

where N� 1, a 2 ð0;NÞ, FðsÞ :¼
R s
0
f ðtÞdt, and Ia : R

N ! R is the Riesz potential. If f is

odd in u then we prove the existence of infinitely many normalized solutions.

Keywords Choquard equation � Stretched functional � Normalized solution
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1 Introduction

We consider the equation

�Du� ðIa � FðuÞÞf ðuÞ ¼ ku in RN ; ð1:1Þ
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whereN � 1, a 2 ð0;NÞ,FðsÞ :¼
R s
0
f ðtÞdt, and Ia : RN ! R is the Riesz potential defined by

IaðxÞ ¼
C N�a

2

� �
C a

2

� �
pN=22a xj jN�a for x 2 RNnf0g:

Equation (1.1) is usually called the nonlinear Choquard equation. It is a semilinear elliptic

equation with a nonlocal nonlinearity. For the physical case N ¼ 3, a ¼ 2 and f ðsÞ ¼ s,
(1.1) is the Choquard–Pekar equation which goes back to the 1954’s work by S. Pekar on

quantum theory of a polaron at rest [28]. The Choquard equation was also introduced by P.

Choquard in 1976 in the modelling of a one-component plasma [20]. Mathematically, in

[20–22], Lieb and Lions opened the way to an intensive study of (1.1). The existence and

qualitative properties of solutions of the Choquard equation (1.1) have been studied for a

few decades by variational methods; see [9, 10, 17, 25–27] and further references therein,

for instance. Almost all papers deal with the case of fixed k.
From a physical point of view, it is interesting to find solutions of (1.1) with prescribed

L2-norms, k appearing as Lagrange multiplier. Solutions of this type are often referred to as

normalized solutions. The present paper is devoted to such solutions. We study the exis-

tence and multiplicity of solutions to the problem

�Du� ðIa � FðuÞÞf ðuÞ ¼ ku in RN ;R
RN u2dx ¼ a2; u 2 H1ðRNÞ; k 2 R;

(
ð1:2Þ

where a is a positive constant. By a solution we mean a couple ðk; uÞ which satisfies (1.2)

with k being a Lagrangian multiplier.

The existence of normalized solutions ðk; uÞ to the semilinear elliptic equation

�Du� gðuÞ ¼ ku in RN ; k 2 R ð1:3Þ

has achieved considerable attention recently. Mathematically, this is a more challenging

issue than the existence of solutions of (1.3) with a prescribed frequency k, and is much

less understood. Normalized solutions can be obtained as critical points of a functional

constrained to an L2 sphere. The difficulty here is that even for subcritical nonlinearities the
functional does not satisfy the Palais-Smale condition. In fact, a Palais-Smale sequence

((PS) sequence for short in the following) does not even need to be bounded. In order to

overcome the difficulties in dealing with normalized solutions, L. Jeanjean in [12] intro-

duced a stretched functional whose critical points are solutions of (1.3) and whose (PS)

sequences carry information of the Pohozaev identity, which can be used to prove

boundedness. Then another difficulty appears, namely that a weak limit of a bounded (PS)

sequence need not lie on the prescribed L2 sphere. In order to control this it is important to

bound the Lagrange multipliers. Using a mountain pass structure for the stretched func-

tional L. Jeanjean in [12] proved the existence of at least one normalized solution of (1.3).

The existence of infinitely many normalized solutions of (1.3) was later proved by

T. Bartsch and S. de Valeriola in [1] using a new linking geometry for the stretched

functional (see also the papers by T. Bartsch and N. Soave [4, 5]). More results on nor-

malized solutions for scalar equations and systems can be found in

[2, 3, 6, 7, 13–15, 19, 24, 30, 31].

We know only a few papers dealing with the existence of normalized solutions of the

Choquard equation. In the case N� 3, G. Li and H. Ye in [19] obtained a ground state

solution ðka; uaÞ of (1.2) under a set of assumptions on f, which when f takes the special

form f ðsÞ ¼ C1jsjr�2sþ C2jsjp�2s requires that Nþaþ2
N \r� p\ Nþa

N�2
. For a monomial
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nonlinearity f ðsÞ ¼ jsjp�2s, qualitative properties including existence and nonexistence of

minimizers of the functional associated to the nonlinear Choquard equation were discussed

by H. Ye in [32].

The goal of this paper is to first prove the existence of a least energy solution of (1.2) in

all dimensions N� 1, including N ¼ 1; 2. We believe that our proof is simpler and more

transparent than the one from [19]. In addition we prove the existence of infinitely many

solutions of (1.2) if f is odd. This will be based on a linking argument which in turn

depends on a certain topological intersection property. This has been proved in [1] using a

cohomological index theory. Here we present a new and more elementary proof of this

property using only the classical Borsuk-Ulam theorem.

We now present our results. Let 2�a :¼ ðN þ aÞ=ðN � 2Þ if N� 3, and 2�a :¼ þ1 if

N ¼ 1; 2. We assume the following hypotheses on the nonlinearity.

ðf1Þ f 2 C0ðRÞ and there exist r, p 2 R satisfying

N þ aþ 2

N
\r� p\2�a

such that

0\rFðsÞ� f ðsÞs� pFðsÞ for s 6¼ 0:

ðf2Þ The function eFðsÞ :¼ f ðsÞs� Nþa
N FðsÞ satisfies:

eFðsÞ
jsjðNþaþ2Þ=N is nonincreasing in ð�1; 0Þ and nondecreasing in ð0;þ1Þ:

Let

JðuÞ ¼ 1

2

Z
RN

ruj j2dx� 1

2

Z
RN
ðIa � FðuÞÞFðuÞdx ð1:4Þ

be the corresponding variational functional of (1.2) defined on the constraint

SðaÞ ¼ fu 2 H1ðRNÞ : uk kL2ðRNÞ¼ ag:

Setting

IðuÞ ¼
Z
RN

ruj j2dxþ N þ a
2

Z
RN
ðIa � FðuÞÞFðuÞdx�

N

2

Z
RN
ðIa � FðuÞÞf ðuÞu dx ð1:5Þ

every solution of (1.2) lies on the Pohozaev manifold

VðaÞ ¼ fu 2 SðaÞ : IðuÞ ¼ 0g:

Our first main result states that

mðaÞ :¼ inf
u2VðaÞ

JðuÞ

is achieved by a solution.

Theorem 1.1 If ðf1Þ and ðf2Þ hold then, for any a[ 0, problem (1.2) possesses a solution

ðka; uaÞ 2 R� H1ðRNÞ such that ka\0 and JðuaÞ ¼ mðaÞ.
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Remark 1.2

(a) Due to the radial symmetry of (1.2) we may also work on the space E :¼ H1
radðRNÞ

of radial functions. A critical point of JjSðaÞ\E is also a critical point of JjSðaÞ by the

principle of symmetic criticality. It is even simpler to obtain a solution ðkrada ; urada Þ 2
R� E such that

Jðurada Þ ¼ mradðaÞ :¼ inf
u2VðaÞ\E

JðuÞ

because E embeds compactly into LqðRNÞ for 2\q\2�. It is an open problem

whether mðaÞ ¼ mradðaÞ. Observe that V(a) is not invariant under symmetrization.

(b) Replacing f by fþ :¼ maxff ; 0g one obtains by a symmetrization argument a least

energy solution ðeka; euaÞ of
�Du� ðIa � FþðuÞÞfþðuÞ ¼ ku in RN ;R

RN u2dx ¼ a2; u 2 H1ðRNÞ; k 2 R;

(

with eka\0 and eua [ 0 being radial, where FþðsÞ :¼
R s
0
fþðtÞdt. This is also a

solution of (1.2). Similarly (1.2) has a solution ðbka; buaÞ such that bka\0 and bua\0

being radial. This suggests of course that there should exist a third solution of

mountain pass type on V(a), i.e. of Morse index 2 on S(a). To obtain this one may

work in the space of radial functions. If f is odd then eua ¼ �bua are least energy

solutions. In general the relation between eua, bua and the least energy solution ua
from Theorem 1.1 is not clear but we conjecture that ua does not change sign.

(c) For N � 3, a similar result has been proved in [19]. Here we include the dimensions

N ¼ 1; 2. The idea of the argument in [19] is as follows. The stretched functional

method from [12] was first used to find a (PS) sequence fvng for JjSðaÞ at the level

m(a) such that IðvnÞ ! 0. Then it was proved that there exists ka 2 R such that

hJ0ðvnÞ; vni=kvnk2L2ðRN Þ ! ka. After that, the key step was to prove that ka\0. In

order to achieve this, it was proved that fvng is a (PS) sequence of the functional W
defined by

WðuÞ ¼ JðuÞ � 1

2
ka

Z
RN

u2dx

and that m(a) has a strict subadditivity property. This strict subadditivity property

together with decomposition properties of (PS) sequences of W make it possible to

prove ka\0 and that there exists ua 2 H1ðRNÞnf0g such that ðka; uaÞ is a solution of
(1.2). We will also use the stretched functional method from [12] to obtain a (PS)

sequence fvng for JjSðaÞ at the level m(a) with the property IðvnÞ ¼ oð1Þ. But unlike
[19], we use a concentration compactness argument to find a solution ðka; uaÞ with
ka\0 and ua 6¼ 0 of (1.1) from the (PS) sequence fvng directly. Then we prove that

m(a) is strictly decreasing in a. This property combined with the fact that IðuaÞ ¼
limn!1 IðvnÞ ¼ 0 makes it possible for us to prove that ðka; uaÞ is indeed a solution

of (1.2) and JðuaÞ ¼ mðaÞ. The proof presented here is shorter, easier, and more

transparent than the one in [19].

Our second main result deals with odd nonlinearities.
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Theorem 1.3 If N� 2, ðf1Þ � ðf2Þ hold and f is odd, then for any a[ 0, problem (1.2)
possesses an unbounded sequence of pairs of radial solutions ðkk;�ukÞ with kk\0 and
JðukÞ ! 1 as k ! 1.

When we say that ðk; uÞ is a radial solution, we mean that u 2 E ¼ H1
radðRNÞ.

Remark 1.4 For the semilinear equation (1.3) infinitely many normalized solutions have

been obtained via two different approaches in [1] and in [4]. In [1], the stretched functional

method incorporating a new linking structure of the associated functional produces a

bounded (PS) sequence and leads to normalized solutions at a sequence of energy levels

cn ! 1 which is constructed by a minimax procedure. In [4], see also [5] for systems, the

authors considered the functional corresponding to J, constrained to the Pohozaev manifold

corresponding to V(a). In this way they avoided the introduction of the stretched func-

tional. In the present paper we extend the stretched functional method to deal with (1.2).

The paper is organized as follows. In Sect. 2 we prove Theorem 1.1. We first show that

m(a) is the mountain pass level of JjSðaÞ, and we use the stretched functional method to

obtain a (PS) sequence fvng for JjSðaÞ, which satisfies JðvnÞ ! mðaÞ and IðvnÞ ! 0. Then

we use a concentration compactness argument, which does not rely on the compactness

from radial symmetry [16, 26], to show that, up to translations, vn ! ua weakly in H1ðRNÞ
for some ua 6¼ 0 and that there exists ka\0 such that ðka; uaÞ is a weak solution of (1.1).

Next we show that m(a) is strictly decreasing. This fact is used to show that kuakL2ðRNÞ ¼ a

and JðuaÞ ¼ mðaÞ. Therefore, ðka; uaÞ is a weak solution of (1.2). We prove Theorem 1.3 in

Sect. 3, working in the subspace H1

rad
ðRNÞ of H1ðRNÞ consisting of radially symmetric

functions. Here we first present a new and more elementary proof of the intersection

lemma from [1]. This and a suitable equivariant pseudogradient vector field for the

stretched functional will be used to construct an unbounded sequence of minimax values ck
for JjSðaÞ together with (PS)ck sequences fvk;ng1n¼1 at each minimax value ck satisfying

limn!1 Iðvk;nÞ ¼ 0, which is used to show that fvk;ng1n¼1 is bounded. Then we use the

compactness of the imbedding H1

rad
ðRNÞ,!LqðRNÞ for q 2 ð2; 2�Þ to show that fvk;ng1n¼1

converges along a subsequence strongly in E to some uk 2 SðaÞ as n ! 1.

2 Proof of Theorem 1.1

Recall the definition of J and I in (1.4) and (1.5), respectively. Observe that ðf1Þ implies, for

s 2 R,

tpFðsÞ�FðtsÞ� trFðsÞ if 0� t� 1; ð2:1Þ

and

trFðsÞ�FðtsÞ� tpFðsÞ if t[ 1: ð2:2Þ

These inequalities will be used frequently in what follows.

For each u 2 SðaÞ and t 2 R, set

utðxÞ ¼ e
Nt
2 uðetxÞ:
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It is clear that ut 2 SðaÞ if u 2 SðaÞ and t 2 R. The following lemma asserts that on the

curve t 7!ut there exists a unique point belonging to V(a), at which JðutÞ achieves its

maximum.

Lemma 2.1

(a) For every u 2 SðaÞ, there exists a unique tðuÞ 2 R such that utðuÞ 2 VðaÞ and

JðutðuÞÞ ¼ maxt2R JðutÞ. The map

SðaÞ ! VðaÞ � R; u 7! utðuÞ; tðuÞ
� �

is a homeomorphism with inverse

VðaÞ � R ! SðaÞ; ðu; tÞ7!u�t:

(b) IðuÞ ¼ d

dt

����
t¼0

JðutÞ.

Proof For u 2 SðaÞ and t 2 R, we have

JðutÞ ¼ 1

2

Z
RN

rutj j2dx� 1

2

Z
RN
ðIa � FðutÞÞFðutÞdx

¼ e2t

2

Z
RN

ruj j2dx� 1

2eðNþaÞt

Z
RN

Ia � F e
Nt
2 u

� �� �
F e

Nt
2 u

� �
dx:

ð2:3Þ

Then

d

dt
JðutÞ ¼ e2t

Z
RN

ruj j2dxþ N þ a

2eðNþaÞt

Z
RN

Ia � F e
Nt
2 u

� �� �
F e

Nt
2 u

� �
dx

� N

2eðNþaÞt

Z
RN

Ia � F e
Nt
2 u

� �� �
f e

Nt
2 u

� �
e
Nt
2 udx

¼ e2t
Z
RN

ruj j2dx� N

2
wðtÞ

� �
;

ð2:4Þ

where

wðtÞ ¼
Z
RN

Ia �
FðeNt

2 uÞ
ðeNt

2 Þ
Nþaþ2

N

 ! eFðeNt
2 uÞ

ðeNt
2 Þ

Nþaþ2
N

dx:

From (2.4) we obtain the result b).

For any s 2 R, s 6¼ 0, from ðf1Þ and ðf2Þ we see that both the functions
FðtsÞ
tr and

eFðtsÞ
tðNþaþ2Þ=N

are nondecreasing in t 2 ð0;1Þ. Moreover, since r[ Nþaþ2
N and

FðtsÞ
tðNþaþ2Þ=N ¼ FðtsÞ

tr
tr�

Nþaþ2
N ;

we deduce that
FðtsÞ

tðNþaþ2Þ=N is strictly increasing in t 2 ð0;1Þ. This implies wðtÞ is strictly

increasing in t 2 R and there is at most one t 2 R such that d
dt JðutÞ ¼ 0. By (2.1) and (2.2),

we have
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lim
t!0

FðtsÞ
tðNþaþ2Þ=N ¼ 0 and lim

t!þ1

FðtsÞ
tðNþaþ2Þ=N ¼ þ1: ð2:5Þ

Since

r � N þ a
N

� �
FðsÞ� eFðsÞ� p� N þ a

N

� �
FðsÞ

and since ðN þ aþ 2Þ=N\r� p, we also have

lim
t!0

eFðtsÞ
tðNþaþ2Þ=N ¼ 0 and lim

t!þ1

eFðtsÞ
tðNþaþ2Þ=N ¼ þ1: ð2:6Þ

From (2.5) and (2.6), we deduce wðtÞ ! 0 as t ! �1 using the Lebesgue dominated

convergence theorem, and we have wðtÞ ! þ1 as t ! 1 by the Fatou Lemma. As a

consequence of (2.4), there exists exactly one t ¼ tðuÞ 2 R such that d
dt JðutÞjt¼tðuÞ ¼ 0, and

moreover, d
dt JðutÞ[ 0 for t\tðuÞ and d

dt JðutÞ\0 for t[ tðuÞ. Therefore, there exists a

unique tðuÞ 2 R such that utðuÞ 2 VðaÞ and JðutðuÞÞ ¼ maxt2RJðutÞ. Now assume that

fung 	 SðaÞ and un ! u in H1ðRNÞ, and let tn ¼ tðunÞ. Then

2

N

Z
RN

runj j2dx ¼
Z
RN

Ia �
F e

Ntn
2 un

� �

e
Ntn
2

� �Nþaþ2
N

0
B@

1
CA
eF e

Ntn
2 un

� �

e
Ntn
2

� �Nþaþ2
N

dx:

Using the Lebesgue dominated convergence theorem and the Fatou Lemma again, we see

that the sequence ftng is bounded. Assume tn ! t� 2 R, passing to a subsequence if

necessary. Then passing to the limit in the last equation yields

2

N

Z
RN

ruj j2dx ¼
Z
RN

Ia �
F e

Nt�
2 u

� �

e
Nt�
2

� �Nþaþ2
N

0
B@

1
CA
eF e

Nt�
2 u

� �

e
Nt�
2

� �Nþaþ2
N

dx;

which together with the uniqueness of t(u) implies that tðuÞ ¼ t� ¼ limn!1 tðunÞ. Hence
t(u) is continuous in u, hence the map

SðaÞ ! VðaÞ � R; u 7! utðuÞ; tðuÞ
� �

is a homeomorphism because ut is continuous in (u, t). This proves a). h

In the next lemma, we show that J has a mountain pass structure on S(a) as in [12, 19], and

we use the stretched functional method as in [12] to find a (PS) sequence fvng of JjSðaÞ at
the mountain pass level such that IðvnÞ ! 0 as n ! 1.

Lemma 2.2

(a) Let Dk :¼ fu 2 SðaÞ :
R
RN ruj j2dx� kg. There exist 0\k1\k2 such that

0\ sup
u2Dk1

JðuÞ\ inf
u2oDk2

JðuÞ and JðuÞ[ 0 for u 2 Dk2 :

(b) Setting
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CðaÞ :¼ fc 2 Cð½0; 1
; SðaÞÞ : cð0Þ 2 Dk1 ; Jðcð1ÞÞ\0g;

there holds

mðaÞ ¼ inf
c2CðaÞ

sup
t2½0;1


JðcðtÞÞ[ 0:

Moreover, there exists a sequence fvng 	 SðaÞ such that, as n ! þ1,

JðvnÞ ! mðaÞ;
�
JjSðaÞ

�0ðvnÞ ! 0; IðvnÞ ! 0:

Proof

(a) We first claim that J has a mountain pass geometry on S(a). Let u 2 SðaÞ. From (2.1)

and (2.2), we have, for s 2 R,

FðsÞ� ðFð�1Þ þ Fð1ÞÞð sj jrþ sj jpÞ;

and thenZ
RN
ðIa � FðuÞÞFðuÞdx�ðFð�1Þ þ Fð1ÞÞ2

Z
RN
ðIa � ð sj jrþ sj jpÞÞð sj jrþ sj jpÞdx:

Let C[ 0 be a constant depending only on N; a; a; r, and p, which may change from

line to line. Using the Hardy-Littlewood-Sobolev inequality, the Gagliardo-Niren-

berg inequality and the Sobolev embedding inequality, we obtain for u 2 SðaÞZ
RN
ðIa � FðuÞÞFðuÞdx

�C

Z
RN
ðIa � uj jrÞ uj jrdxþ 2

Z
RN
ðIa � uj jrÞ uj jpdxþ

Z
RN
ðIa � uj jpÞ uj jpdx

	 


�C uk k2rL2Nr=ðNþaÞðRN Þþ uk k2p
L2Np=ðNþaÞðRN Þ

� �

�C ruk krN�N�a
L2ðRN Þ þ ruk kpN�N�a

L2ðRNÞ

� �
:

ð2:7Þ

This implies that

JðuÞ� 1

2

Z
RN

ruj j2dx� C

2
ruk krN�N�a

L2ðRN Þ �C

2
ruk kpN�N�a

L2ðRNÞ :

On the other hand, we have

JðuÞ� 1

2

Z
RN

ruj j2dx:

Since pN � N � a� rN � N � a[ 2, there exist 0\k1\k2 small enough such that

0\ sup
u2Dk1

JðuÞ\ inf
u2oDk2

JðuÞ and JðuÞ[ 0 for u 2 Dk2 :

(b) Clearly,
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lim
t!�1

Z
RN

rutj j2dx ¼ 0 and lim
t!þ1

Z
RN

rutj j2dx ¼ þ1:

Using (2.3), we rewrite JðutÞ as

JðutÞ ¼ e2t

2

Z
RN

ruj j2dx� uðtÞ
� �

;

where

uðtÞ ¼
Z
RN

Ia �
F e

Nt
2 u

� �

e
Nt
2

� �Nþaþ2
N

0
@

1
A F e

Nt
2 u

� �

e
Nt
2

� �Nþaþ2
N

dx:

From (2.5), a similar discussion as in the proof of Lemma 2.1 shows that uðtÞ ! 0

as t ! �1, and uðtÞ ! 1 as t ! 1, hence

lim
t!�1

JðutÞ ¼ 0 and lim
t!þ1

JðutÞ ¼ �1: ð2:8Þ

Then for u 2 VðaÞ, there exist t1\0 and t2 [ 0 such that ut1 2 Dk1 and Jðut2Þ\0.

So, if we set gðtÞ ¼ uð1�tÞt1þtt2 for t 2 ½0; 1
, then g 2 CðaÞ and sup
t2½0;1


JðgðtÞÞ ¼ JðuÞ.

This implies

mðaÞ� inf
c2CðaÞ

sup
t2½0;1


JðcðtÞÞ� inf
u2oDk2

JðuÞ[ 0: ð2:9Þ

On the other hand, from Lemma 2.1 we see that SðaÞnVðaÞ has precisely two

components given by S�ðaÞ :¼ fu 2 SðaÞ : �IðuÞ[ 0g. The result a) of this lemma

implies that Dk1 	 SþðaÞ. By ðf1Þ, if JðuÞ\0 then IðuÞ\0. This shows

J0 :¼ fu 2 SðaÞ : JðuÞ\0g 	 S�ðaÞ. Hence any path in CðaÞ must intersect V(a).
This property together with (2.9) implies

mðaÞ ¼ inf
c2CðaÞ

sup
t2½0;1


JðcðtÞÞ[ 0:

Now we recall the stretched functional introduced first in [12]:

eJ : H1ðRNÞ � R ! R; ðu; tÞ7!JðutÞ

and define

eCðaÞ :¼ fg 2 Cð½0; 1
; SðaÞ � RÞ : gð0Þ 2 Dk1 � f0g; gð1Þ 2 J0 � f0gg:

Since for c 2 CðaÞ,

gð�Þ :¼ ðcð�Þ; 0Þ 2 eCðaÞ and eJðgðtÞÞ ¼ JðcðtÞÞ for t 2 ½0; 1


and for g ¼ ðg1; g2Þ 2 eCðaÞ,
cð�Þ :¼ g1ð�Þg2ð�Þ 2 CðaÞ and JðcðtÞÞ ¼ eJðgðtÞÞ for t 2 ½0; 1
;

we have
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inf
g2eCðaÞ sup

t2½0;1

eJðgðtÞÞ ¼ mðaÞ:

Then, using the Ekeland variational principle as in [12, Lemma 2.3], it follows that

there exists a sequence fðvn; tnÞg 	 SðaÞ � R such that, as n ! þ1,

tn ! 0; eJðvn; tnÞ ! mðaÞ; eJ jSðaÞ�R

� �0
ðvn; tnÞ ! 0:

Without loss of generality, we may assume that tn ¼ 0 because eJðvn; tnÞ ¼ eJðvtnn ; 0Þ
and

eJ jSðaÞ�R

� �0
ðvn; tnÞ½u; s
 ¼ eJ jSðaÞ�R

� �0
ðvtnn ; 0Þ½utn ; s


for all s 2 R and u 2 H1ðRNÞ with
R
RN vnudx ¼ 0. This implies that (see [12] for

details), as n ! þ1,

JðvnÞ ! mðaÞ; JjSðaÞ
� �0

ðvnÞ ! 0 and ot eJðvn; 0Þ ! 0:

Since ot eJðvn; 0Þ ¼ IðvnÞ the proof is complete.

h

Now we study the (PS) sequence fvng of JjSðaÞ obtained in Lemma 2.2. With the help of the

additional information IðvnÞ ! 0, we will see that fvng is bounded. We will use the

concentration compactness principle to prove that, up to a translation and a subsequence,

vn ! ua weakly in H1ðRNÞ for some ua 6¼ 0. The fact that IðvnÞ ! 0 will also be used to

show that limn!1hJ0ðvnÞ; vni=a2 ¼ ka for some ka\0 and that ðka; uaÞ is a weak solution

of (1.1).

Lemma 2.3 If fvng is the sequence obtained in Lemma 2.2, then there exists ua 2
H1ðRNÞnf0g such that, up to a subsequence and a translation, vn ! ua weakly in H1ðRNÞ.
Moreover, there exists ka\0 such that ðka; uaÞ is a weak solution of (1.1) and IðuaÞ ¼ 0.

Proof For n 2 N,

2JðvnÞ � IðvnÞ ¼
N

2

Z
RN
ðIa � FðvnÞÞ f ðvnÞvn �

N þ aþ 2

N
FðvnÞ

	 

dx: ð2:10Þ

Then by ðf1Þ there exist C1 [ 0 and C2 [ 0 such that

C1 �
Z
RN
ðIa � FðvnÞÞFðvnÞdx�C2: ð2:11Þ

Then we see that fvng is bounded in H1ðRNÞ from
Z
RN

rvnj j2dx ¼ 2JðvnÞ þ
Z
RN
ðIa � FðvnÞÞFðvnÞdx:

Next we claim that

SN Partial Differential Equations and Applications

34 Page 10 of 25 SN Partial Differ. Equ. Appl. (2020) 1:34



lim
n!þ1

sup
y2RN

Z
B1ðyÞ

vnj j2 [ 0: ð2:12Þ

If this is false, we obtain vn ! 0 in LqðRNÞ for q 2 ð2; 2�Þ by Lions’ vanishing lemma [23],

and then, by the second inequality in (2.7),
R
RN ðIa � FðvnÞÞFðvnÞdx ! 0 as n ! þ1,

contrary to (2.11). Hence (2.12) is true. Consequently, there is a sequence fyng 	 RN and a

ua 2 H1ðRNÞnf0g such that, up to a subsequence, vnð� � ynÞ ! ua weakly in H1ðRNÞ and
a.e. in RN . Replacing vnð� � ynÞ by vn, we may assume yn ¼ 0, and vn ! ua weakly in

H1ðRNÞ and a.e. in RN . By ðf1Þ, fFðvnÞg is bounded in L2N=ðNþaÞðRNÞ and FðvnÞ ! FðuaÞ
a.e. in RN . This in particular implies FðvnÞ ! FðuaÞ weakly in L2N=ðNþaÞðRNÞ, and

therefore Ia � FðvnÞ ! Ia � FðuaÞ weakly in L2N=ðN�aÞðRNÞ since Ia� : L2N=ðNþaÞðRNÞ !
L2N=ðN�aÞðRNÞ is a bounded linear operator.

Now assume N� 3. By ðf1Þ again, ff ðvnÞg is bounded in L2N=ðaþ2ÞðRNÞ and f ðvnÞ !
f ðuaÞ strongly in L

2N=ðaþ2Þ
loc

ðRNÞ. Then, for any u 2 C1
0 ðRNÞ,

Z
RN
ðIa � FðvnÞÞf ðvnÞu !

Z
RN
ðIa � FðuaÞÞf ðuaÞu: ð2:13Þ

Since fðIa � FðvnÞÞf ðvnÞg is bounded in L
2N
Nþ2ðRNÞ, which is seen by the Hölder inequality

Z
RN

jðIa � FðvnÞÞf ðvnÞj
2N
Nþ2 �

Z
RN

Ia � FðvnÞj j
2N
N�a

� �N�a
Nþ2

Z
RN

f ðvnÞj j
2N
aþ2

� �aþ2
Nþ2

;

and since C1
0 ðRNÞ is dense in L

2N
N�2ðRNÞ, we deduce that

ðIa � FðvnÞÞf ðvnÞ ! ðIa � FðuaÞÞf ðuaÞ weakly in L
2N
Nþ2ðRNÞ: ð2:14Þ

Since
�
JjSðaÞ

�0ðvnÞ ! 0, we have (see [8, Lemma 3]), for v 2 H1ðRNÞ,
Z
RN

rvn � rvdx� ln

Z
RN

vnvdx�
Z
RN
ðIa � FðvnÞÞf ðvnÞvdx ¼ oð1Þkvk; ð2:15Þ

where

ln :¼
1

a2
hJ0ðvnÞ; vni ¼

1

a2

Z
RN

rvnj j2dx�
Z
RN
ðIa � FðvnÞÞf ðvnÞvndx

� �
:

Using the definition of I in (1.5) and the fact that limn!1 IðvnÞ ¼ 0, ln can be expressed as

ln ¼
1

a2
IðvnÞ �

N þ a
2

Z
RN
ðIa � FðvnÞÞFðvnÞdxþ

N � 2

2

Z
RN
ðIa � FðvnÞÞf ðvnÞvndx

	 


¼ oð1Þ þ 1

2a2

Z
RN
ðIa � FðvnÞÞ ðN � 2Þf ðvnÞvn � ðN þ aÞFðvnÞ½ 
dx:

By ðf1Þ and (2.11), for n large, ln is negative, bounded below and bounded away from 0.

Therefore, there exists ka\0 such that, up to a subsequence, ln ! ka. Moreover, it follows

from (2.14) and (2.15) that, for any v 2 H1ðRNÞ,
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Z
RN

rua � rvdx� ka

Z
RN

uavdx�
Z
RN
ðIa � FðuaÞÞf ðuaÞvdx ¼ 0: ð2:16Þ

Then ðka; uaÞ is a weak solution of (1.1). By [26, Theorem 3],

ðN � 2Þ
Z
RN

ruaj j2dx� Nka

Z
RN

uaj j2dx� ðN þ aÞ
Z
RN
ðIa � FðuaÞÞFðuaÞdx ¼ 0: ð2:17Þ

Letting v ¼ ua in (2.16) and using (2.17) yields IðuaÞ ¼ 0.

If N ¼ 1; 2, then by ðf1Þ, fjf ðvnÞjsg is bounded in L1ðRNÞ for any s� 2N
aþ2

and f ðvnÞ !
f ðuaÞ strongly in Ls

loc
ðRNÞ for any s� 1. This in particular implies that ff ðvnÞg is bounded

in L2N=ðNþaÞðRNÞ and f ðvnÞ ! f ðuaÞ strongly in L
2N=ðNþaÞ
loc

ðRNÞ. Then, for any

u 2 C1
0 ðRNÞ, (2.13) is still valid. Since fðIa � FðvnÞÞf ðvnÞg is bounded in L2ðRNÞ as seen

from the inequality

Z
RN

ðIa � FðvnÞÞf ðvnÞj j2 �
Z
RN

Ia � FðvnÞj j
2N
N�a

� �N�a
N
Z
RN

f ðvnÞj j
2N
a

� �a
N

;

and since C1
0 ðRNÞ is dense in L2ðRNÞ, we deduce that

ðIa � FðvnÞÞf ðvnÞ ! ðIa � FðuaÞÞf ðuaÞ weakly in L2ðRNÞ:

Then we use the same argument as above to find ka\0 and see that ðua; kaÞ satisfies (2.16).
Since N ¼ 1; 2, we have ua 2 LsðRNÞ for s� 2. Then FðuaÞ 2 LsðRNÞ for any s� 1. By the

Hardy–Littlewood–Sobolev inequality, we deduce that

Z
RN

jðIa � FðuaÞÞgj �CkFðuaÞkLsðRNÞkgkLtðRNÞ

if s[ 1, t[ 1, 1
s þ 1

t ¼ 1þ a
N, and g 2 LtðRNÞ. The range of t[ 1 for which there exists

s[ 1 such that 1s þ 1
t ¼ 1þ a

N is 1\t\ N
a . Then the range of numbers conjugate to such t is

ð N
N�a ;þ1Þ. Therefore, Ia � FðuaÞ 2 LtðRNÞ if t[ N

N�a. Then for any l[ 1,

Z
RN

jðIa � FðuaÞÞf ðuaÞjl �kIa � FðuaÞklLlN=ðN�aÞðRN Þkf ðuaÞkLlN=aðRN Þl:

Thus, by the Caldéron-Zygmund inequality [11, Theorem 9.9], ua 2 W2;l

loc
ðRNÞ. Once we

have this regularity of ua, we can obtain (2.17) again in the spirit of the proof of [26,

Theorem 3]. This combined with (2.16) yields IðuaÞ ¼ 0. h

Even though we have proved that ðka; uaÞ is a solution of (1.1), we do not know whether

kuakL2ðRN Þ ¼ a and JðuaÞ ¼ mðaÞ at this stage. This is not easy to see because the

embedding H1ðRNÞ ! LqðRNÞ is not compact for q 2 ð2; 2�Þ. Here and in what follows,

2� ¼ 2N=ðN � 2Þ if N� 3 and 2� ¼ þ1 if N ¼ 1; 2. In the proof of Theorem 1.1, we need

the following lemma, in which the estimate is motivated by the paper [31].

Lemma 2.4 For a[ 0, the map a7!mðaÞ is strictly decreasing.

Proof We fix a2 [ a1 [ 0. By the definition of m(a), there exists fung 	 Vða1Þ such that
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mða1Þ� JðunÞ�mða1Þ þ
1

n
:

Since IðunÞ ¼ 0, we have

2JðunÞ ¼
Z
RN

runj j2dx�
Z
RN
ðIa � FðunÞÞFðunÞdx

¼N

2

Z
RN
ðIa � FðunÞÞ f ðunÞun �

N þ aþ 2

N
FðunÞ

	 

dx:

ð2:18Þ

It follows from (2.18) and ðf1Þ that

0\ lim
n!þ1

Z
RN
ðIa � FðunÞÞFðunÞdx� lim

n!þ1

Z
RN
ðIa � FðunÞÞFðunÞdx\þ1 ð2:19Þ

and

0\ lim
n!þ1

Z
RN

runj j2dx� lim
n!þ1

Z
RN

runj j2dx\þ1: ð2:20Þ

Setting vnðxÞ ¼ b
N�2
2 unðbxÞ with b :¼ a1=a2\1, we obtain vn 2 Sða2Þ. From Lemma 2.1

we deduce that there exists tn :¼ tðvnÞ 2 R such that vtnn 2 Vða2Þ. Then we have

mða2Þ� J vtnn
� �

¼ 1

2

Z
RN

rvtnn
�� ��2dx� 1

2

Z
RN

Ia � F vtnn
� �� �

F vtnn
� �

dx

¼ 1

2

Z
RN

rutnn
�� ��2dx� 1

2ðbetnÞNþa

Z
RN

Ia � F b
N�2
2 e

Ntn
2 un

� �� �
F b

N�2
2 e

Ntn
2 un

� �
dx

¼ Jðutnn Þ þ
1

2eðNþaÞtn

Z
RN

Ia � F e
Ntn
2 un

� �� �
F e

Ntn
2 un

� �
dx

� 1

2ðbetnÞNþa

Z
RN

Ia � F b
N�2
2 e

Ntn
2 un

� �� �
F b

N�2
2 e

Ntn
2 un

� �
dx

� JðunÞ þ
1

2eðNþaÞtn

Z
RN

U e
Ntn
2 un

� �
dx

�mða1Þ þ
1

n
þ 1

2eðNþaÞtn

Z
RN

U e
Ntn
2 un

� �
dx;

ð2:21Þ

where

UðuÞ ¼ ðIa � FðuÞÞFðuÞ �
1

bNþa Ia � F b
N�2
2 u

� �� �
F b

N�2
2 u

� �
:

We first consider the case N� 3. Since b
N�2
2 � 1, we have FðbN�2

2 sÞ�b
pðN�2Þ

2 FðsÞ. This
implies

UðuÞ� ð1� bðN�2Þp�ðNþaÞÞðIa � FðuÞÞFðuÞ� 0; ð2:22Þ

because
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bðN�2Þp�ðNþaÞ ¼ a2
a1

� �Nþa�pðN�2Þ
[ 1:

Then we have

mða2Þ� Jðvtnn Þ�mða1Þ þ
1

n
ð2:23Þ

which together with the fact that vtnn 2 Vða2Þ, by estimates similar to (2.20), yields

0\ lim
n!þ1

Z
RN

rvtnn
�� ��2dx� lim

n!þ1

Z
RN

rvtnn
�� ��2dx\þ1: ð2:24Þ

Observing that

Z
RN

jrvtnn j
2dx ¼ e2tn

Z
RN

jrvnj2dx ¼ e2tn
Z
RN

jrunj2dx;

combining (2.20) and (2.24) implies the existence of T [ 0 such that

�T\tn\T: ð2:25Þ

Using (2.22) and (2.25) we can estimate the last term in (2.21):

1

2eðNþaÞtn

Z
RN

U e
Ntn
2 un

� �
dx� � bðN�2Þp�ðNþaÞ � 1

2eðNþaÞT

Z
RN

Ia � F e
Ntn
2 un

� �� �
Fðe

Ntn
2 unÞdx

� � bðN�2Þp�ðNþaÞ � 1

2eðNþNpþaÞT

Z
RN
ðIa � FðunÞÞFðunÞdx;

ð2:26Þ

where the second inequality follows from

F e
Ntn
2 un

� �
�F e�

NT
2 un

� �
� e�

NTp
2 FðunÞ:

In view of (2.19) and (2.21) we arrive at

mða2Þ�mða1Þ þ
1

n
� d ð2:27Þ

for n large and for some d[ 0 independent of n. Then mða2Þ\mða1Þ follows by letting

n ! þ1.

In the case N ¼ 1; 2, we have b
N�2
2 � 1 and FðbN�2

2 sÞ�b
rðN�2Þ

2 FðsÞ, and we still have the

estimates from (2.22) to (2.26) with p replaced by r. Therefore (2.27) is valid and the result
follows. h

We are now ready to prove Theorem 1.1, using the previous lemmas. Again, the fact that

limn!1 IðvnÞ ¼ 0 ¼ IðuaÞ plays an important role in the proof.

Proof of Theorem 1.1 Let fvng be the sequence obtained in Lemma 2.2. By Lemma 2.3,

there exist ka\0 and ua 2 H1ðRNÞnf0g such that ðka; uaÞ is a weak solution of (1.1),

IðuaÞ ¼ 0 and, up to a subsequence, vn ! ua weakly in H1ðRNÞ and a.e. in RN . Clearly we

have
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Z
RN

vnj j2dx ¼
Z
RN

uaj j2dxþ
Z
RN

vn � uaj j2dxþ oð1Þ:

Let a1 ¼ kuakL2ðRN Þ and a2;n ¼ kvn � uakL2ðRNÞ. Then

a1 [ 0 and a2 ¼ a21 þ a22;n þ oð1Þ:

Fatou’s lemma implies that Ia � FðuaÞ� lim infn!1 Ia � FðvnÞ. Since IðuaÞ ¼ 0, by ðf1Þ
and Lemma 2.2 and using Fatou’s lemma again, we have

JðuaÞ ¼JðuaÞ �
1

2
IðuaÞ

¼N

4

Z
RN
ðIa � FðuaÞÞ f ðuaÞua �

N þ aþ 2

N
FðuaÞ

	 

dx

� N

4
lim

n!þ1

Z
RN
ðIa � FðvnÞÞ f ðvnÞvn �

N þ aþ 2

N
FðvnÞ

	 

dx

¼ lim
n!þ1

ðJðvnÞ �
1

2
IðvnÞÞ ¼ mðaÞ:

ð2:28Þ

On the other hand, it follows from Lemma 2.4 that

JðuaÞ�mða1Þ�mðaÞ: ð2:29Þ

(2.28) together with (2.29) implies

JðuaÞ ¼ mða1Þ ¼ mðaÞ:

Now by Lemma 2.4 again, we see that kuakL2ðRN Þ ¼ a1 ¼ a. This completes the proof. h

The sequence fvng converges strongly to ua in H1ðRNÞ. Indeed, the above proof shows that

JðuaÞ ¼ lim
n!þ1

JðvnÞ ¼ mðaÞ; ð2:30Þ

and

Z
RN
ðIa � FðuaÞÞ f ðuaÞua �

N þ aþ 2

N
FðuaÞ

	 

dx

¼ lim
n!þ1

Z
RN
ðIa � FðvnÞÞ f ðvnÞvn �

N þ aþ 2

N
FðvnÞ

	 

dx:

ð2:31Þ

From (2.31) and the decomposition

Z
RN
ðIa � FðuÞÞ f ðuÞu� N þ aþ 2

N
FðuÞ

	 

dx

¼
Z
RN
ðIa � FðuÞÞ½f ðuÞu� rFðuÞ
dxþ r � N þ aþ 2

N

� �Z
RN
ðIa � FðuÞÞFðuÞdx;

using Fatou’s lemma we see that
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lim
n!þ1

Z
RN
ðIa � FðvnÞÞFðvnÞdx ¼

Z
RN
ðIa � FðuaÞÞFðuaÞdx:

Then it follows from (2.30) that

lim
n!1

Z
RN

rvnj j2dx ¼
Z
RN

ruaj j2dx;

which together with the fact kvnkL2ðRN Þ ¼ kuakL2ðRN Þ implies vn ! ua strongly in H1ðRNÞ.

3 Proof of Theorem 1.3

In this section, we assume that N� 2, f is odd and ðf1Þ � ðf2Þ hold. We adapt arguments

from [1, 12] to the problem in question. Let E :¼ H1

rad
ðRNÞ be the subspace of H1ðRNÞ

consisting of radially symmetric functions. Let k � k be the usual norm of H1ðRNÞ. We fix a

strictly increasing sequence of finite-dimensional linear subspaces Vk 	 E such that
S

k Vk

is dense in E. Let V?
k be the orthogonal complement of Vk in E.

Lemma 3.1 For any k 2 N, there exists qk [ 0 such that bk :¼ inf
u2Bk

JðuÞ ! þ1 as k !
þ1 where

Bk ¼ fu 2 V?
k�1 \ SðaÞ : ruk kL2ðRN Þ¼ qkg:

Proof For q 2 ð2; 2�Þ, let

lkðqÞ :¼ inf
u2V?

k�1

kuk2

kuk2LqðRN Þ
: ð3:1Þ

Then lkðqÞ ! þ1 as k ! 1 (see [1, Lemma 2.1]). We see from ðf1Þ that 2\2Nr=ðN þ
aÞ� 2Np=ðN þ aÞ\2� and, consequently,

mk :¼ min lk
2Nr

N þ a

� �
; lk

2Np

N þ a

� �� �
! 1 as k ! 1:

By (2.7) and (3.1), for u 2 V?
k�1 \ SðaÞ with k sufficiently large,

Z
RN
ðIa � FðuÞÞFðuÞdx�C uk k2rL2Nr=ðNþaÞðRNÞþ uk k2p

L2Np=ðNþaÞðRN Þ

� �
� C

mrk
ðkuk2r þ kuk2pÞ:

Since kuk2 � a2, we have kuk2r � a2r�2pkuk2p, and it follows that

Z
RN

ðIa � FðuÞÞFðuÞdx�
C

mrk
uk k2p � C

mrk

Z
RN

ruj j2dx
� �p

þ1

� �
;

where C ¼ Cðf ;N; a; aÞ[ 0 is a constant depending only on f, N, a and a. Now we have
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JðuÞ ¼ 1

2

Z
RN

ruj j2dx� 1

2

Z
RN
ðIa � FðuÞÞFðuÞdx

� 1

2

Z
RN

ruj j2dx� C

2mrk

Z
RN

jruj2dx
� �p

þ1

� �
:

Let

qk ¼
mrk
2C

� � 1
2p�2

:

Then, for u 2 Bk,

JðuÞ� 1

2
q2k �

Cq2pk
2mrk

� C

2mrk
¼ 1

4
q2k �

C

2mrk
:

Since mk ! þ1 as k ! 1, qk ! þ1 as k ! 1 and the result follows. h

According to Lemma 3.1, there exists k0 2 N such that bk [ 1 for k� k0. For k� k0, (2.8)
and the compactness of Vk \ SðaÞ imply that there exists tk [ 0 large enough so that

kru�tkkL2ðRNÞ\qk\krutkkL2ðRN Þ and max
u2Vk\SðaÞ

fJðu�tkÞ; JðutkÞg\1: ð3:2Þ

Now we define

Ck ¼ fc : ½0; 1
 � ðSðaÞ \ VkÞ ! SðaÞ : c is continuous, odd in u;

cð0; uÞ ¼ u�tk ; and cð1; uÞ ¼ utkg:

A key role in the argument in [1] is played by the intersection property:

cð½0; 1
 � ðSðaÞ \ VkÞÞ \ Bk 6¼ ; for every c 2 Ck:

In [1, Lemma 2.3] this property was proved using the cohomological index theory for

spaces with an action of the group G ¼ f�1; 1g. Here we provide a new and more ele-

mentary proof of this property that does not require the cohomological index. We first

show the following lemma using the Borsuk-Ulam theorem.

Lemma 3.2 Let L1(L be finite dimensional normed vector spaces. Let a[ 0,

S ¼ fu 2 L : kuk ¼ ag, a 2 R, and H ¼ ðH1;H2Þ : ½0; 1
 � S ! R� L1 be a continuous
map such that H1ðt; uÞ is even in u, H2ðt; uÞ is odd in u, and

H1ð0; uÞ\a\H1ð1; uÞ for u 2 S: ð3:3Þ

Then there exists ðt; uÞ 2 ½0; 1
 � S such that Hðt; uÞ ¼ ða; 0Þ.

Proof Assume, by contradiction, that the conclusion is false. Let

K1 ¼ fðt; uÞ 2 ½0; 1
 � S : H1ðt; uÞ� a; H2ðt; uÞ ¼ 0g [ ðf0g � SÞ

and

K2 ¼ fðt; uÞ 2 ½0; 1
 � S : H1ðt; uÞ� a; H2ðt; uÞ ¼ 0g [ ðf1g � SÞ:
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Then K1 and K2 are closed subsets of ½0; 1
 � S, and hence compact. According to (3.3) and

the assumption of contradiction, K1 and K2 are disjoint, and therefore

d :¼ 1
4
distðK1;K2Þ[ 0. Set

NdðKiÞ ¼ fðt; uÞ 2 ½0; 1
 � S : distððt; uÞ; KiÞ\dg; i ¼ 1; 2:

Since H1ðt; uÞ is even in u and H2ðt; uÞ is odd in u, Ki and thus NdðKiÞ are symmetric sets

with respect to u. Moreover, NdðK1Þ \ NdðK2Þ ¼ ; and

H2ðt; uÞ 6¼ 0 if ðt; uÞ 2 o½0;1
�SNdðKiÞ; ð3:4Þ

where o½0;1
�SNdðKiÞ is the boundary of NdðKiÞ in ½0; 1
 � S. Denote X ¼ fu 2 L :
kuk\ag and let M ¼ ðM1;M2Þ : L ! ðf0g � XÞ [ ð½0; 1Þ � SÞ be the homeomorphism

induced by the stereographic projection with north pole ð1; 0Þ 2 R� L. To be more

precise,

MðuÞ ¼
ð0; uÞ if u 2 X;

ð1� akuk�1; akuk�1uÞ if u 2 LnX:

�

Denote X1 ¼ M�1ððf0g � XÞ [ NdðK1ÞÞ. Then X1 is an open bounded symmetric neigh-

borhood of 0 in L and MðoX1Þ ¼ o½0;1
�SNdðK1Þ. Now we define A : oX1 ! L1 as

AðuÞ ¼ H2 �MðuÞ ¼ H2ð1� akuk�1; akuk�1uÞ for u 2 oX1:

Then A is odd and continuous and, by (3.4), AðuÞ 6¼ 0 for all u 2 oX1. But this is in

contradiction with the Borsuk–Ulam theorem. h

The following is [1, Lemma 2.3], for which we provide a new proof based on Lemma 3.2.

Lemma 3.3 cð½0; 1
 � ðSðaÞ \ VkÞÞ \ Bk 6¼ ; for every c 2 Ck.

Proof Set L ¼ Vk and L1 ¼ Vk�1 in which we use the L
2ðRNÞ norm. Choose S ¼ SðaÞ \ Vk

and a ¼ qk. Let Pk�1 : E ! Vn�1 be the orthogonal projection and define

hk : SðaÞ ! R� Vk�1; u 7!ðkrukL2ðRN Þ; Pk�1uÞ

and

H ¼ ðH1; H2Þ ¼ hk � c:

Then L, L1, S, a, and H satisfy all the conditions of Lemma 3.2. By Lemma 3.2, there exists

ðt; uÞ 2 ½0; 1
 � ðSðaÞ \ VkÞ such that Hðt; uÞ ¼ ða; 0Þ. That is, cðt; uÞ 2 Bk. h

By Lemmas 3.1 and 3.3, we have

ck :¼ inf
c2Ck

max
t2½0;1
; u2SðaÞ\Vk

Jðcðt; uÞÞ� bk ! þ1:

We will show that ck, k� k0, is a critical value of JjSðaÞ. For this we make use of the

stretched functional
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eJ : E :¼ E � R ! R; eJðu; sÞ ¼ JðusÞ

from the proof of Lemma 2.2, now constrained to the space E of radial functions. On E we

consider the involution

s : E ! E; sðu; sÞ :¼ ð�u; sÞ;

which preserves the natural inner product on E. Clearly eJ is invariant under s because F is

even in u. This implies that reJ : E ! E is s-equivariant, i.e. reJ � s ¼ s � reJ .
Now we define

eck :¼ inf
g2eCk

max
t2½0;1
; u2SðaÞ\Vk

eJðgðt; uÞÞ

where

eCk :¼ fg : ½0; 1
 � ðSðaÞ \ VkÞ ! SðaÞ � R : g is continuous and equivariant;

gð0; uÞ ¼ ðu�tk ; 0Þ; and gð1; uÞ ¼ ðutk ; 0Þg:

Here a map g : ½0; 1
 � ðSðaÞ \ VkÞ ! SðaÞ � R is said to be equivariant if

gðt;�uÞ ¼ sgðt; uÞ.

Lemma 3.4 eck ¼ ck.

Proof Observe that

c 2 Ck ¼) g :¼ ðc; 0Þ 2 eCk; eJðgðt; uÞÞ ¼ Jðcðt; uÞÞ;

and

g 2 eCk ¼) c :¼ gg21 2 Ck; Jðcðt; uÞÞ ¼ eJðgðt; uÞÞ:
Then the result follows. h

Recall that we fixed k� k0 so that bk [ 1. Then Lemmas 3.3 and 3.4 yield

eck ¼ ck � bk [ 1:

To show that ck is a critical value of JjSðaÞ, we first prove the following result.

Lemma 3.5 Let 0\e\ck � 1 and g 2 eCk be such that

max
t2½0;1
; u2SðaÞ\Vk

eJðgðt; uÞÞ� ck þ e:

Then there exists ðv; sÞ 2 SðaÞ � R such that:

(i) eJðv; sÞ 2 ½ck � e; ck þ e
,
(ii) mint2½0;1
; u2SðaÞ\Vk

kðv; sÞ � gðt; uÞkE �
ffiffi
e

p
,

(iii) k
�eJ jSðaÞ�R

�0ðv; sÞk� 2
ffiffi
e

p
.
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Proof The proof is an equivariant version of the one of [12, Lemma 2.3]. On eCk, we define

the metric

dðg; hÞ ¼ max
t2½0;1
; u2SðaÞ\Vk

kgðt; uÞ � hðt; uÞkE

and consider the continuous function

U : eCk ! R; UðgÞ ¼ max
t2½0;1
; u2SðaÞ\Vk

eJðgðt; uÞÞ:

By Ekeland’s variational principle there exists h 2 eCk such that

(i) UðhÞ�UðgÞ,
(ii) dðh; gÞ�

ffiffi
e

p
,

(iii) Uðh1Þ[UðhÞ �
ffiffi
e

p
dðh1; hÞ for h1 2 eCk with h1 6¼ h.

Assume, by contradiction, that the result is not true. For ðu; sÞ 2 SðaÞ � R the tangent

space is denoted by

Tðu;sÞ :¼ Tðu;sÞðSðaÞ � RÞ ¼ TuSðaÞ � R ¼ ðz1; z2Þ 2 E : hu; z1iL2 ¼ 0
� �

:

For ðt; uÞ 2 ½0; 1
 � ðSðaÞ \ VkÞ with eJðhðt; uÞÞ� ck � e, there exists zðt; uÞ 2 Thðt;uÞ with

kzðt; uÞkE ¼ 1 and such that

hreJðhðt; uÞÞ; zðt; uÞiE\� 2
ffiffi
e

p
: ð3:5Þ

Denote

S ¼ fðt; uÞ 2 ½0; 1
 � ðSðaÞ \ VkÞ : eJðhðt; uÞÞ� ck � eg:

Then, using (3.5), we can construct a continuous vector field U : S ! E such that

(i) kUðt; ukE ¼ 1,

(ii) Uðt; uÞ 2 Thðt;uÞ,

(iii) hreJðhðt; uÞÞ;Uðt; uÞiE\� 2
ffiffi
e

p
.

Thus U is a normalized pseudo-gradient vector field for eJ along h. The vector field

Vðt; uÞ :¼ 1

2

�
Uðt; uÞ þ s � Uðt;�uÞ

�
2 Thðt;uÞ

is equivariant, i.e. Vðt;�uÞ ¼ sVðt; uÞ. Moreover (iii) with V instead of U holds because

reJ � h is equivariant. It also follows that Vðt; uÞ 6¼ 0, hence we may pass to the nor-

malized vector field

W : S ! E; Wðt; uÞ ¼ 1

kVðt; uÞkE
Vðt; uÞ;

which is continuous and equivariant. Clearly (i)-(iii) from above hold with U replaced by

W. Let W : ½0; 1
 � ðSðaÞ \ VkÞ ! ½0; 1
 be a continuous cut-off function satisfying

Wðt; uÞ ¼ 1; if eJðhðt; uÞÞ� ck;

0; if eJðhðt; uÞÞ� ck � e:

(

SN Partial Differential Equations and Applications

34 Page 20 of 25 SN Partial Differ. Equ. Appl. (2020) 1:34



We may assume that Wðt;�uÞ ¼ Wðt; uÞ because eJ is even in u. If not we replace Wðt; uÞ
by 1

2

�
Wðt; uÞ þWðt;�uÞ

�
. Now we use W to deform h 2 eC as follows. For r 2 ½0; 1=2
 we

define gr ¼ ðgr;1; gr;2Þ : ½0; 1
 � ðSðaÞ \ VkÞ ! SðaÞ � R for ðt; uÞ 2 S by

gr;1ðt; uÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2W2ðt; uÞkW1ðt; uÞk2L2

a2

s
h1ðt; uÞ þ rWðt; uÞW1ðt; uÞ;

and

gr;2ðt; uÞ ¼ h2ðt; uÞ þ rWðt; uÞW2ðt; uÞ:

For ðt; uÞ 2 ½0; 1
 � ðSðaÞ \ VkÞnS we set grðt; uÞ ¼ hðt; uÞ. Observe that gr is continuous
and equivariant: grðt;�uÞ ¼ sgrðt; uÞ. In addition, (3.2) implies

maxfeJðhð0; uÞÞ; eJðhð1; uÞÞg ¼ maxfeJðu�tk ; 0Þ; eJðutk ; 0Þg ¼ maxfJðu�tk Þ; Jðutk Þg\1;

hence ck � e[ 1 yields

grð0; uÞ ¼ hð0; uÞ ¼ ðu�tk ; 0Þ; grð1; uÞ ¼ hð1; uÞ ¼ ðutk ; 0Þ:

Therefore, gr 2 eCk for r 2 ½0; 1=2
.
The rest of the proof proceeds as the one of [12, Lemma 2.3], leading to a contra-

diction. h

From Lemma 3.5, it is possible to find a (PS) sequence fvk;ng 	 SðaÞ for JjSðaÞ with the

additional property limn!1 Iðvk;nÞ ¼ 0 at the level ck.

Lemma 3.6 There exists a sequence fvk;ng 	 SðaÞ, also denoted by fvng for simplicity of

notation, such that, as n ! þ1,

JðvnÞ ! ck;
�
JjSðaÞ

�0ðvnÞ ! 0; IðvnÞ ! 0:

Proof The proof is essentially the same as the proof of [12, Lemma 2.4]. We only sketch it

and refer to [12] for more details. For n large such that 1n\ck � 1, let gn 2 eCk be such that

max
t2½0;1
; u2SðaÞ\Vk

eJðgnðt; uÞÞ� ck þ
1

n
:

We may assume that gnðt; uÞ ¼ ðgn;1ðt; uÞ; 0Þ with gn;1 2 Ck. By Lemma 3.5 there exists

ðwn; snÞ 2 SðaÞ � R such that:

(i) eJðwn; snÞ 2 ½ck � 1
n ; ck þ 1

n
,
(ii) mint2½0;1
; u2SðaÞ\Vk

kðwn; snÞ � gnðt; uÞkE � 1ffiffi
n

p ,

(iii) k
�eJ jSðaÞ�R

�0ðwn; snÞk� 2ffiffi
n

p .

Clearly (ii) implies
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lim
n!1

sn ¼ 0: ð3:6Þ

Set vn ¼ wsn
n . Then by (i)

lim
n!1

JðvnÞ ¼ lim
n!1

eJðwn; snÞ ¼ ck:

Since IðvnÞ ¼ os eJðwn; snÞ, by (iii) we have

lim
n!1

IðvnÞ ¼ 0:

Moreover, since hJ0ðvnÞ;uiE��E ¼ hou eJðwn; snÞ;u�sniE��E for any u 2 TSðaÞvn, by (iii) and

(3.6), for n sufficiently large,

k
�
JjSðaÞ

�0ðvnÞk ¼ sup
u2TSðaÞvn; kukE¼1

hJ0ðvnÞ;uiE��E

¼ sup
u2TSðaÞvn; kukE¼1

hou eJðwn; snÞ;u�sniE��E

� 2ffiffiffi
n

p sup
u2TSðaÞvn; kukE¼1

ku�snkE �
4ffiffiffi
n

p :

This completes the proof. h

With (PS) sequences on hand, we are in a position to study their compactness. Since we are

working in the space E consisting of radially symmetric functions so that E is imbedded

compactly in LqðRNÞ for any q 2 ð2; 2�Þ, it is easier to show the compactness of (PS)

sequences in the present case compared with the argument in Sect. 2.

Lemma 3.7 Let fvk;ng1n¼1 	 SðaÞ be the sequence obtained in Lemma 3.6. Then up to a

subsequence fvk;ng1n¼1 converges strongly in E to some uk 2 SðaÞ as n ! 1. Moreover,

there exists kk\0 such that ðkk; ukÞ is a solution of (1.2) and JðukÞ ¼ ck.

Proof In view of the fact that vk;n satisfies (2.10) and (2.11), we see that fvk;ng1n¼1 is

bounded in E. Therefore, we may assume that there exists uk 2 E such that up to a

subsequence vk;n ! uk weakly in E. Since N� 2, E is imbedded compactly in LqðRNÞ for
any q 2 ð2; 2�Þ. Then vk;n ! uk strongly in LqðRNÞ for any q 2 ð2; 2�Þ.

Since

jFðsÞj �Cðjsjr þ jsjpÞ and 2\
2Nr

N þ a
� 2Np

N þ a
\2�;

we have Fðvk;nÞ ! FðukÞ strongly in L
2N
NþaðRNÞ (see [29, Theorem A.4]). Then Ia �

Fðvk;nÞ ! Ia � FðukÞ strongly in L
2N
N�aðRNÞ as Ia� : L

2N
NþaðRNÞ ! L

2N
N�aðRNÞ is a bounded

linear operator. Since

2\
2Nðr � 1Þ
aþ 2

� 2Nðp� 1Þ
aþ 2

\2�;

we can choose a number q such that
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2N

aþ 2
\q\

2N

a
ð3:7Þ

and

2\qðr � 1Þ� qðp� 1Þ\2�: ð3:8Þ

The condition

jf ðsÞj �Cðjsjr�1 þ jsjp�1Þ

together with (3.8) implies f ðvk;nÞ ! f ðukÞ strongly in LqðRNÞ (see [29, Theorem A.4]).

Let l be the number defined by

N � a
2N

þ 1

q
¼ 1

l
: ð3:9Þ

Then ðIa � Fðvk;nÞÞf ðvk;nÞ ! ðIa � FðukÞÞf ðukÞ strongly in LlðRNÞ. By (3.7) and (3.9), we

have

2N

N þ 2
\l\2: ð3:10Þ

Note that (see [8, Lemma 3]), for v 2 H1ðRNÞ,
Z
RN

rvk;n � rvdx� lk;n

Z
RN

vk;nvdx�
Z
RN
ðIa � Fðvk;nÞÞf ðvk;nÞvdx ¼ oð1Þkvk ð3:11Þ

as n ! 1, where

lk;n :¼
1

a2
hJ0ðvk;nÞ; vk;ni:

Since we already proved the convergence of ðIa � Fðvk;nÞÞf ðvk;nÞ to ðIa � FðukÞÞf ðukÞ in

LlðRNÞ and since l is in the range of (3.10), we can argue in the same way as (2.15)–(2.16)

to see that, for v 2 H1ðRNÞ,
Z
RN

ruk � rvdx� kk

Z
RN

ukvdx�
Z
RN
ðIa � FðukÞÞf ðukÞvdx ¼ 0; ð3:12Þ

where kk ¼ limn!1 lk;n\0. Taking the difference between (3.11) and (3.12) with

v ¼ vk;n � uk, we see for n ! 1:

Z
RN

jrðvk;n � ukÞj2dx� kk

Z
RN
ðvk;n � ukÞ2dx

¼
Z
RN

�
ðIa � Fðvk;nÞÞf ðvk;nÞ � ðIa � FðunÞÞf ðunÞ

�
ðvk;n � unÞdxþ oð1Þ ! 0:

Therefore, fvk;ng1n¼1 converges strongly in E to uk 2 SðaÞ as n ! 1 and ðkk; ukÞ is a

solution of (1.1) with JðukÞ ¼ ck. h

Proof of Theorem 1.3 By Lemma 3.7, ðkk;�ukÞ are radial solutions of (1.2) with kk\0 and

JðukÞ ¼ ck. This proves the result. h
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