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Abstract
We prove the existence of a least energy solution to the problem

—Au— (I, * F(u))f (u) = Au in RV, /RN u*(x)dx = a*,

where N> 1, o € (0,N), F(s) := f(ff(t)dt, and I, : RY — R is the Riesz potential. If f is
odd in u then we prove the existence of infinitely many normalized solutions.
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1 Introduction

We consider the equation

—Au— (I, * F(u))f(u) = Au in RY, (L.1)

This article is part of the topical collection dedicated to Prof. Dajun Guo for his 85th birthday, edited by
Yihong Du, Zhaoli Liu, Xingbin Pan, and Zhitao Zhang.

X} Zhaoli Liu
zliu@cnu.edu.cn

Thomas Bartsch
Thomas.Bartsch@math.uni-giessen.de

Yanyan Liu

liuyanyan @amss.ac.cn

Mathematisches Institut, Justus-Liebig-Universitit Giessen, Arndtstrasse 2, 35392 Giessen,
Germany

School of Mathematical Sciences, Capital Normal University, Beijing 100048, People’s Republic
of China

SN Partial Differential Equations and Applications
A SPRINGER NATURE journal


http://orcid.org/0000-0002-2487-1973
http://crossmark.crossref.org/dialog/?doi=10.1007/s42985-020-00036-w&amp;domain=pdf
https://doi.org/10.1007/s42985-020-00036-w

34 Page 2 of 25 SN Partial Differ. Equ. Appl. (2020) 1:34

where N > 1, € (0,N), F(s) := [, f(¢)dt,and I, : RY — Ris the Riesz potential defined by

res)

——~ 2/ for x € RV\{0}.
NOECIN o

L(x) =

Equation (1.1) is usually called the nonlinear Choquard equation. It is a semilinear elliptic
equation with a nonlocal nonlinearity. For the physical case N =3, o =2 and f(s) = s,
(1.1) is the Choquard—Pekar equation which goes back to the 1954’s work by S. Pekar on
quantum theory of a polaron at rest [28]. The Choquard equation was also introduced by P.
Choquard in 1976 in the modelling of a one-component plasma [20]. Mathematically, in
[20-22], Lieb and Lions opened the way to an intensive study of (1.1). The existence and
qualitative properties of solutions of the Choquard equation (1.1) have been studied for a
few decades by variational methods; see [9, 10, 17, 25-27] and further references therein,
for instance. Almost all papers deal with the case of fixed /.

From a physical point of view, it is interesting to find solutions of (1.1) with prescribed
L2-norms, / appearing as Lagrange multiplier. Solutions of this type are often referred to as
normalized solutions. The present paper is devoted to such solutions. We study the exis-
tence and multiplicity of solutions to the problem

{ —Au— (I, * F(u))f (u) = Ju in RV,

1.2
Jp tPdx =, uc H(RY), 1€R, (1.2)

where a is a positive constant. By a solution we mean a couple (4,u) which satisfies (1.2)
with 4 being a Lagrangian multiplier.
The existence of normalized solutions (Z,u) to the semilinear elliptic equation

~Au—gu)= u inR" LeR (1.3)

has achieved considerable attention recently. Mathematically, this is a more challenging
issue than the existence of solutions of (1.3) with a prescribed frequency A, and is much
less understood. Normalized solutions can be obtained as critical points of a functional
constrained to an L? sphere. The difficulty here is that even for subcritical nonlinearities the
functional does not satisfy the Palais-Smale condition. In fact, a Palais-Smale sequence
((PS) sequence for short in the following) does not even need to be bounded. In order to
overcome the difficulties in dealing with normalized solutions, L. Jeanjean in [12] intro-
duced a stretched functional whose critical points are solutions of (1.3) and whose (PS)
sequences carry information of the Pohozaev identity, which can be used to prove
boundedness. Then another difficulty appears, namely that a weak limit of a bounded (PS)
sequence need not lie on the prescribed L? sphere. In order to control this it is important to
bound the Lagrange multipliers. Using a mountain pass structure for the stretched func-
tional L. Jeanjean in [12] proved the existence of at least one normalized solution of (1.3).
The existence of infinitely many normalized solutions of (1.3) was later proved by
T. Bartsch and S. de Valeriola in [1] using a new linking geometry for the stretched
functional (see also the papers by T. Bartsch and N. Soave [4, 5]). More results on nor-
malized solutions for scalar equations and systems can be found in
[2, 3, 6,7, 13-15, 19, 24, 30, 31].

We know only a few papers dealing with the existence of normalized solutions of the
Choquard equation. In the case N >3, G. Li and H. Ye in [19] obtained a ground state
solution (4,,u,) of (1.2) under a set of assumptions on f, which when f takes the special

form f(s) = Ci|s|" s + Cy|s|” s requires that N2 < <p< ¥4 For a monomial
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nonlinearity f(s) = |s|’~%s, qualitative properties including existence and nonexistence of
minimizers of the functional associated to the nonlinear Choquard equation were discussed
by H. Ye in [32].

The goal of this paper is to first prove the existence of a least energy solution of (1.2) in
all dimensions N > 1, including N = 1,2. We believe that our proof is simpler and more
transparent than the one from [19]. In addition we prove the existence of infinitely many
solutions of (1.2) if fis odd. This will be based on a linking argument which in turn
depends on a certain topological intersection property. This has been proved in [1] using a
cohomological index theory. Here we present a new and more elementary proof of this
property using only the classical Borsuk-Ulam theorem.

We now present our results. Let 2! := (N +a)/(N —2) if N>3, and 2} := +o0 if
N =1,2. We assume the following hypotheses on the nonlinearity.

(fi) f € C°R) and there exist r, p € R satisfying

N+o+2

N <r<p<2;

such that
0<rF(s) <f(s)s<pF(s) fors#O0.

(f2)  The function F(s) := f(s)s — X2 F(s) satisfies:
F(s)

“N+ﬂ+2ﬂN

| is nonincreasing in (—oo, 0) and nondecreasing in (0, +00).
s

Let

Jw) =5 /R [VuPds 3 /R (1 * () F(u)ds (14)

be the corresponding variational functional of (1.2) defined on the constraint
S(a) = {u e H'(R") : |ull pmv)= a}.

Setting

I(u) = /{RN\VM|2dx+]$/RN(lx * F(u))F(u)dx — %/RN(I“ * F(u))f (wudx  (1.5)
every solution of (1.2) lies on the Pohozaev manifold
V(a) ={u € S(a) : I(u) = 0}.
Our first main result states that

= inf J
mla) = inf )

is achieved by a solution.

Theorem 1.1 If (fi) and (f2) hold then, for any a > 0, problem (1.2) possesses a solution
(lartta) € R x H'(RY) such that 1,<0 and J(u,) = m(a).
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Remark 1.2

(a)

(b)

(©

Due to the radial symmetry of (1.2) we may also work on the space E := Hrlad(lR{N )
of radial functions. A critical point of J| S(a)NE is also a critical point of J| S(a) by the

principle of symmetic criticality. It is even simpler to obtain a solution (2“/, u/*¢) €

R x E such that
JW ) = myq(a) == inf J
(ua ) " d(a) ueV(a)NE (u)
because E embeds compactly into LI(RY) for 2<g<2*. It is an open problem
whether m(a) = my.q(a). Observe that V(a) is not invariant under symmetrization.
Replacing f by f* := max{f,0} one obtains by a symmetrization argument a least

energy solution (A, u,) of

—Au — (I« FT(u))f*(u) = Au in RY,
Jpv ?dx = a*, u€ H'(RY), L ER,

with 1, <0 and @, > 0 being radial, where F*(s):= [y fT(r)dr. This is also a

solution of (1.2). Similarly (1.2) has a solution (g, @,) such that 1, <0 and i1, <0
being radial. This suggests of course that there should exist a third solution of
mountain pass type on V(a), i.e. of Morse index 2 on S(a). To obtain this one may
work in the space of radial functions. If f is odd then u, = —u, are least energy
solutions. In general the relation between u,, u, and the least energy solution u,
from Theorem 1.1 is not clear but we conjecture that u, does not change sign.

For N > 3, a similar result has been proved in [19]. Here we include the dimensions
N = 1,2. The idea of the argument in [19] is as follows. The stretched functional
method from [12] was first used to find a (PS) sequence {v,} for J|s, at the level
m(a) such that I(v,) — 0. Then it was proved that there exists 4, € R such that
(J’(vn),v,,)/||v,,||iz(RN) — 4. After that, the key step was to prove that /,<0. In

order to achieve this, it was proved that {v,} is a (PS) sequence of the functional ¥
defined by

Y(u) =J(u) — lia/ uldx
2 RV

and that m(a) has a strict subadditivity property. This strict subadditivity property
together with decomposition properties of (PS) sequences of ¥ make it possible to
prove A, <0 and that there exists u, € H'(RV)\{0} such that (14, u,) is a solution of
(1.2). We will also use the stretched functional method from [12] to obtain a (PS)
sequence {v,} for J|y at the level m(a) with the property /(v,) = o(1). But unlike
[19], we use a concentration compactness argument to find a solution (A4, u,) with
2q<0and u, # 0 of (1.1) from the (PS) sequence {v, } directly. Then we prove that
m(a) is strictly decreasing in a. This property combined with the fact that I(u,) =
lim, ., I(v,) = 0 makes it possible for us to prove that (1,,u,) is indeed a solution
of (1.2) and J(u,) = m(a). The proof presented here is shorter, easier, and more
transparent than the one in [19].

Our second main result deals with odd nonlinearities.
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Theorem 1.3 If N>2, (fi) — (f2) hold and f is odd, then for any a > 0, problem (1.2)
possesses an unbounded sequence of pairs of radial solutions (A, £uy) with A <0 and
J(u) — o0 as k — oo.

When we say that (4,u) is a radial solution, we mean that u € E = H! ,(R").

Remark 1.4 For the semilinear equation (1.3) infinitely many normalized solutions have
been obtained via two different approaches in [1] and in [4]. In [1], the stretched functional
method incorporating a new linking structure of the associated functional produces a
bounded (PS) sequence and leads to normalized solutions at a sequence of energy levels
¢, — oo which is constructed by a minimax procedure. In [4], see also [5] for systems, the
authors considered the functional corresponding to J, constrained to the Pohozaev manifold
corresponding to V(a). In this way they avoided the introduction of the stretched func-
tional. In the present paper we extend the stretched functional method to deal with (1.2).

The paper is organized as follows. In Sect. 2 we prove Theorem 1.1. We first show that
m(a) is the mountain pass level of J|g ), and we use the stretched functional method to
obtain a (PS) sequence {v,} for J|g, which satisfies J(v,) — m(a) and I(v,) — 0. Then
we use a concentration compactness argument, which does not rely on the compactness
from radial symmetry [16, 26], to show that, up to translations, v, — u, weakly in H ! (IR{N )

for some u, # 0 and that there exists 1, <0 such that (4,,u,) is a weak solution of (1.1).
Next we show that m(a) is strictly decreasing. This fact is used to show that ||us| 2y = a

and J(u,) = m(a). Therefore, (1,4, u,) is a weak solution of (1.2). We prove Theorem 1.3 in
Sect. 3, working in the subspace H rla d(IR{N ) of H'(R") consisting of radially symmetric

functions. Here we first present a new and more elementary proof of the intersection
lemma from [1]. This and a suitable equivariant pseudogradient vector field for the
stretched functional will be used to construct an unbounded sequence of minimax values cy
for J| S(a) together with (PS)., sequences {vk_n};:il at each minimax value ¢ satisfying

limy o0 I(v,) = 0, which is used to show that {v;,},-, is bounded. Then we use the
compactness of the imbedding Hrlad(RN)%Lq(RN) for g € (2,2*) to show that {vg,}ne,
converges along a subsequence strongly in E to some u; € S(a) as n — oc.

2 Proof of Theorem 1.1

Recall the definition of J and I in (1.4) and (1.5), respectively. Observe that (f; ) implies, for
seER,
PF(s)<F(ts)<t'F(s) if 0<t<1, (2.1)
and
t'F(s)<F(ts) <#F(s) if t>1. (2.2)

These inequalities will be used frequently in what follows.
For each u € S(a) and 7 € R, set

i (x) = 7 u(e'x).
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It is clear that u' € S(a) if u € S(a) and t € R. The following lemma asserts that on the
curve r—u' there exists a unique point belonging to V(a), at which J(u') achieves its
maximum.

Lemma 2.1

(@) For every u € S(a), there exists a unique t(u) € R such that u'™ € V(a) and
J (™) = max,eg J(u'). The map

S(a) = V(a) xR, w— (u’(”),t(u)>

is a homeomorphism with inverse

V(a) x R— S(a), (u,t)—u"".

d
(b) I(w) ="

& J(u").

t=0

Proof For u € S(a) and t € R, we have

_! / Vil P — L / (1, + F(u')) F(u'

(2.3)
/ |Vu|dx — 2o / (Ia * F(e%u))F(e%u) dx.
Then
%J(u’ / Vu2dx + ZN(A:; /N (Ia . F(e%))F(e%u)dx
S o
= ([ jwpax S,
where

_ . F(e%u) \ F(e?u)
W= (1“ <->—> Eaa

From (2.4) we obtain the result b).

F(tv F(1s)

For any s € R, s # 0, from (f;) and (f2) we see that both the functions and sy

are nondecreasing in ¢ € (0, 00). Moreover, since r > ¥ “*2 and

_ Ntot2
N

F(ts)  F(ts) ,
{(N+o+2)/N — 4r 4 ’

we deduce that Mf(%)m is strictly increasing in 7 € (0, 00). This implies (z) is strictly
increasing in t € R and there is at most one ¢ € R such that %J(u’) =0.By (2.1) and (2.2),
we have
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F(ts) 0 and F(ts)

20 {2 Jim e = oo (2.5)

Since

(r- 235 r0 < P < (-T2

and since (N + o+ 2)/N <r <p, we also have

F(ts)

F(ts)
y=0 and  lm me o =

From (2.5) and (2.6), we deduce (r) — 0 as t — —oo using the Lebesgue dominated
convergence theorem, and we have /() — +oo as t — oo by the Fatou Lemma. As a
consequence of (2.4), there exists exactly one 7 = 7(u) € R such that £J (i) =y = 0, and
moreover, 4.J(u') >0 for t<t(u) and £.J(u') <O for t > t(u). Therefore, there exists a
unique #(u) € R such that '™ € V(a) and J(«'™) = max,cpJ(u'). Now assume that
{u,} € S(a) and u, — u in H'(R"), and let #, = #(u,). Then

Ny ~( N
2 F(eTu,,) F(e 2 u,,)
= | Vu,[dx = I, * dx
N Jgy RY

Ntot2 N+ot2 °
Ny \ TN Ny \ TN
e? e:?

Using the Lebesgue dominated convergence theorem and the Fatou Lemma again, we see
that the sequence {z,} is bounded. Assume #, — t* € R, passing to a subsequence if
necessary. Then passing to the limit in the last equation yields

2 F (e%*u) F (e%u)
—/ |Vul*dx :/ I, * dx
N RN RN

N+to+2 N+to+2 ?
Nt N Nt N
e?2 e?2

which together with the uniqueness of #(u) implies that #(u) = t* = lim,,_, #(u,). Hence
t(u) is continuous in u, hence the map

S(a) — V(a) x R, uH(u'(“),z(u))
is a homeomorphism because u' is continuous in (u, t). This proves a). [

In the next lemma, we show that J has a mountain pass structure on S(a) as in [12, 19], and
we use the stretched functional method as in [12] to find a (PS) sequence {v,} of J| S(a) At

the mountain pass level such that I(v,) — 0 as n — oo.

Lemma 2.2

(@) Let Dy :={u€ S(a): fRN|Vu|2dx§k}. There exist 0 <k <k, such that

O<supJ(u)< inf J(u) and J(u)>0 for u€ Dy,.

ueDy, u€dDy,
(b) Setting
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I'(a) :=={y € C([0,1], S(a)) : 7(0) € Dy, J(y(1)) <0},
there holds

m(a) = mf sup J(y(z)) > 0.
7€l(a) tefo,1)

Moreover, there exists a sequence {v,} C S(a) such that, as n — 400,

Ja) = m(a),  (Isq) (va) =0, I(v,) = 0.

Proof

(a) We first claim that J has a mountain pass geometry on S(a). Let u € S(a). From (2.1)
and (2.2), we have, for s € R,

F(s) < (F(=1) + F(1))(Is|"+[s"),
and then

[ e PP < (F(-1) 4 P [ @ (o415 s+t s
R R

Let C > 0 be a constant depending only on N, o, a, r, and p, which may change from
line to line. Using the Hardy-Littlewood-Sobolev inequality, the Gagliardo-Niren-
berg inequality and the Sobolev embedding inequality, we obtain for u € S(a)

N(I“ * F(u))F(u)dx
R

gc[/ (1,_*|u|’)|u|’dx+z/ (Ia*\u|r)|u|pdx+/ (la*|u|p)|u\pdx}
RY RY RY (2.7)

/\

2,
C (1l ey v )

< C(IVulE @t +Ivulh ™).

This implies that
)2 5 [ IVl = S IVl S Il
On the other hand, we have
1
Jw < / Vulds.
2 RN
Since pN — N — o >rN — N — o > 2, there exist 0 <k; <k, small enough such that

O<supJ(u)< inf J(u) and J(u)>0 for u€ Dy,.
2

u€Dy, uedDy,

(b) Clearly,
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lim / V' Pdx=0 and  lim / Vi Pdx = +o0.
[RN

t——00 t——+o00 RN

Using (2.3), we rewrite J(u") as

) =5 ([ 1vitas— o),
oo [ (1 FO) 709

where

N+a+t2 N+to+2
() 7 ) (%) 7
From (2.5), a similar discussion as in the proof of Lemma 2.1 shows that ¢(f) — 0
as t — —oo, and ¢(t) — oo as t — oo, hence

. no_ . no_
tllznocl(u)fo and [lnllooj(u)f 0. (2.8)

Then for u € V(a), there exist #; <0 and #, > 0 such that u" € Dy, and J(u"?)<0.
So, if we set g(t) = ul'=""+" for t € [0, 1], then g € I'(a) and sup J(g()) = J(u).
t€[0,1]

This implies

a)> inf sup J(y(t)) > inf J(u) > 0.
mla@)> it supJ6(0) > inf I 29)

On the other hand, from Lemma 2.1 we see that S(a)\V(a) has precisely two
components given by S*(a) := {u € S(a) : £I(u) > 0}. The result a) of this lemma
implies that Dy, C S*(a). By (fi), if J(u)<O then I(u)<O0. This shows
J*:={ueS(a): J(u)<0} C S (a). Hence any path in I'(a) must intersect V(a).
This property together with (2.9) implies

m(a) = 1nf sup J(y(2)) > 0.
7€l(a) tefo,1)

Now we recall the stretched functional introduced first in [12]:
J:H'RYXR—R, (u,1)—J(u)
and define
T'(a) :={g € C([0,1],5(a) x R) : g(0) € Dy, x {0}, g(1) € J* x {0}}.

Since for y € T'(a),

g()=0(),0)€T(a) and J(g(t))=J(3(t)) for 1€]0,1]
and for g = (21,82) € I'(a),

() =gi1()* €T(@) and J(p(1)) = J(g(t)) for 1€ [0,1],

we have
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inf  sup T(s(1)) = m(a).
g€l (a) t€[01]

Then, using the Ekeland variational principle as in [12, Lemma 2.3], it follows that

there exists a sequence {(vn,,)} C S(a) x R such that, as n — +o0,

~ ~ !
ty — 0, J(vy,t,) — m(a), (‘”S(a)XR) (Vn, tn) — 0.

Without loss of generality, we may assume that 7, = 0 because J (v, ,) = J (v, 0)
and

(Tlstae) O 10)l0:5] = (Tl ) 050l 5

for all s € R and ¢ € H'(R") with [iv v,@dx = 0. This implies that (see [12] for
details), as n — +o0,

!
J(vy) — m(a), (J|S(a)) (vp,) >0 and 0,J(v,,0) — 0.

Since 9,J (v,,0) = I(v,) the proof is complete.
O

Now we study the (PS) sequence {v,} of J|g,, obtained in Lemma 2.2. With the help of the
additional information /(v,) — 0, we will see that {v,} is bounded. We will use the
concentration compactness principle to prove that, up to a translation and a subsequence,
vy — u, weakly in H I(RN ) for some u, # 0. The fact that I(v,) — 0 will also be used to
show that lim,, . (J'(v,),v,)/a® = 2, for some 4, <0 and that (2,,u,) is a weak solution
of (1.1).

Lemma 2.3 If {v,} is the sequence obtained in Lemma 2.2, then there exists u, €
H'(RM)\{0} such that, up to a subsequence and a translation, v, — u, weakly in H' (RV).
Moreover, there exists 1, <0 such that (1,,u,) is a weak solution of (1.1) and I(u,) = 0.
Proof Forne N,
N N 2
20(v) = 1(v) = > / (L F(v,)) [f(vn)v,, SRS p,) [ax. (2.10)
2 RN N
Then by (f) there exist C; > 0 and C, > 0 such that
o < / (I, * F(v))F(vy)dx < C. (2.11)
RN
Then we see that {v,} is bounded in H'(R") from

/ [Vu Py =20() + / (o F0)F(v,)d
R R

Next we claim that
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lim sup/()lvn|2>0- (2.12)
y

n—-+oo )'ERN B,

If this is false, we obtain v, — 0in L9(R") for ¢ € (2,2*) by Lions’ vanishing lemma [23],
and then, by the second inequality in (2.7), [gv (L * F(vy))F(v,)dx — 0 as n — +oo,
contrary to (2.11). Hence (2.12) is true. Consequently, there is a sequence {y,} C R" and a
u, € H'(RV)\{0} such that, up to a subsequence, v, (- — y,) — u, weakly in H'(R") and
a.e. in RY. Replacing V(- — yu) by v,, we may assume y, = 0, and v, — u, weakly in
H'(RY) and a.e. in RY. By (f;), {F(v,)} is bounded in L*¥/W+%)(RN) and F(v,) — F(u,)
ae. in RY. This in particular implies F(v,) — F(u,) weakly in L*¥/(V+#)(RN)  and
therefore I, * F(v,) — I, * F(u,) weakly in L*N/W=%(RN) since I : L*N/W+)(RV) —
L2N/(N=9)(RN) is a bounded linear operator.

Now assume N >3. By (f;) again, {f(v,)} is bounded in L*N/(**2)(RN) and f(v,) —

f(u,) strongly in LfN/ (Hz)(RN ). Then, for any ¢ € C*(RY),

[ e = [ (s Fu)te. .13)
R R

Since {(I, * F(v,))f(va)} is bounded in L¥*2(RY), which is seen by the Hélder inequality

/|I*Fvn ()|~+z<(/ I, F(v |~«) </ I (v w)xz,

and since C3°(RY) is dense in L= (RY), we deduce that
(Lx FOu))f () = (L F(ua))f(ua)  weakly in LFR(RY).  (2.14)
Since (J|S(a))l(vn) — 0, we have (see [8, Lemma 3]), for v € H'(R"),
/[RN Vv, - Vvdx — /IR.{N Vavdx — /[R{N (I % F(vy))f (va)vdx = o(1) |||, (2.15)
where
= a5 0 o) = ([ Ve [ (1 PO One).

Using the definition of 7 in (1.5) and the fact that lim,_,, I(v,) = 0, p, can be expressed as

1, = 6712 {I(V,,) N “/RN (L% F(v))F (vy)dx + N%Z/R (I F(vn))f(vn)vndX}
=o(1) +ﬁ/m(1a * F(va))[(N = 2)f (v)va — (N + @) F(va)]dx

By (f1) and (2.11), for n large, u, is negative, bounded below and bounded away from 0.
Therefore, there exists 4, <0 such that, up to a subsequence, i, — 4,. Moreover, it follows
from (2.14) and (2.15) that, for any v € H'(R"),
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/ Vu, - Vvdx — )»a/ ugvdx — / (I, * F(ug))f (ug)vdx = 0. (2.16)
RY RY RY

Then (A4, u,) is a weak solution of (1.1). By [26, Theorem 3],

(N —2) /RNWM‘,de—NzL, /RN|ua\2dx—(N+oc) /RN(IQ*F(ua))F(ua)dx:O. (2.17)

Letting v = u, in (2.16) and using (2.17) yields I(u,) = 0.
If N = 1,2, then by (f}), {|f(va)['} is bounded in L' (R") for any s > 2% and f(v,) —

f(u,) strongly in L{ __(R") for any s > 1. This in particular implies that {f(v,)} is bounded

loc(
in L2N/(N+1)(RN) and f(v,) — f(u,) strongly in zgé(N“)(RN). Then, for any

@ € C(RY), (2.13) is still valid. Since {(I, * F(v,))f(v,)} is bounded in L>(R") as seen
from the inequality

/|1 * F(v,))f v,,|<(/ |1, *FvnIN“)NT(/ If (va) ZV)7

and since C3°(RY) is dense in L?(R"), we deduce that

(L %« Fvu))f (vn) = Iy % F(ua))f (uq) weakly in L*(RV).

Then we use the same argument as above to find 4, <0 and see that (u,, 4,) satisfies (2.16).
Since N = 1,2, we have u, € L*(R") for s >2. Then F(u,) € L°*(R") for any s > 1. By the
Hardy-Littlewood—Sobolev inequality, we deduce that

/RN (L % F(ua)) 8] < CINF ()| o vy 8 e vy

ifs>1,r>1, %—&—%: 1+%, and g € L’(RN). The range of t > 1 for which there exists
s > 1suchthati+1=1+%is1<r<% Then the range of numbers conjugate to such  is
(=, +00). Therefore, I, * F(u,) € L'(R) if # > = Then for any > 1,

% F) )l P o 1) oy
Thus, by the Caldéron-Zygmund inequality [11, Theorem 9.9], u, € Wl20”C (RM). Once we

have this regularity of u,, we can obtain (2.17) again in the spirit of the proof of [26,
Theorem 3]. This combined with (2.16) yields 7(u,) = 0. O

Even though we have proved that (/,,u,) is a solution of (1.1), we do not know whether
l[tall 2y = @ and J(ug) = m(a) at this stage. This is not easy to see because the

embedding H'(RY) — LI(R") is not compact for ¢ € (2,2*). Here and in what follows,
2* =2N/(N —2)if N >3 and 2* = 400 if N = 1, 2. In the proof of Theorem 1.1, we need
the following lemma, in which the estimate is motivated by the paper [31].

Lemma 2.4 For a > 0, the map a—m(a) is strictly decreasing.

Proof We fix a; > a; > 0. By the definition of m(a), there exists {u,} C V(a;) such that
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m(ay) <J(u,) <mlay) —5—%.

Since I(u,) = 0, we have
20(y) = / IV, P — / (I + F () F (1 )dx
RV RV

(2.18)
%/ (I * Fu,)) {f(u,»un A2 ) e

N

It follows from (2.18) and (f;) that
0< tim | (I, Fu)F(u)dx < Tim / (I, # F(un)) Flu)de< + 00 (2.19)
n——+o0o JRY n—+00 [pN

and

0< lim [ |Vu,|’dx< Tim / |V, |*dx < + oc. (2.20)
RN n——+o00 RN

n—+o0

Setting v,(x) = ﬁNTJu,,(ﬁx) with f#:=a;/ay <1, we obtain v, € S(a,). From Lemma 2.1
we deduce that there exists f, := #(v,) € R such that v» € V(a,). Then we have

m(ay) <J (Vi)
1 1
= —/ ‘Vv;” Zdx — 5/ (L, = F(vir))F (vir)dx
e (P ) (7 i
1 Nin Nip
=J(ul) + CYE /[RN (Ia * F(e 2 u,,))F(e 2 un)dx (2.21)
l N—-2 Nm N—2 Nip
S v Ia*F( 7 e u))F( TeTu”)dx
2(Ben )V /R ( g
1 Nin
<J(u,) +726(N+a)tn /RN (I)(e ? un)dx

1 1 Noy
m(a1) + ; + 728(N+oc)tn /I;{N d)(e 2 Mn)d.X7

where

D) = (I, + F(u)F(u) — ﬁNIM(Ia*F(ﬁ ) )F(#5).

We first consider the case N >3. Since ﬁg 1, we have F(ﬁ¥s) Zﬁp(NTZ)F(s). This
implies
D) < (1 — pN2P=WN+2y (1 s F(u))F(u) <0, (2.22)

because
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N-2-(N+) _ (“_2 o1

N+o—p(N-2)
(11)

Then we have
1
m(az) <J(vir) <m(ar) += (2.23)
n
which together with the fact that v € V(ay), by estimates similar to (2.20), yields

0< lim [ |vv[’dx< Tim / Vv Pdx < + oo. (2.24)
RV RY

n—+00 n—-+00

Observing that

/ Vs = e / |V fPdx = e / Vundx,
R R R

combining (2.20) and (2.24) implies the existence of 7" > 0 such that
—-T<t,<T. (2.25)

Using (2.22) and (2.25) we can estimate the last term in (2.21):

1 N ﬁ(N72)p7(N+ot) —1 Ny Ny
ey OeH )< == [t F(¢¥ ) )P e

IN-2p=(N+2) _

< W/RN (I * F(up))F(uy,)dx,
(2.26)
where the second inequality follows from
F<6N%un) 2F<6_NT“Tun) > e_#F(u,,).
In view of (2.19) and (2.21) we arrive at
1
m(ay) <m(ay) +~—0 (2.27)
n

for n large and for some ¢ > 0 independent of n. Then m(ay) <m(a;) follows by letting
n — +o0.

In the case N = 1,2, we have ﬂN%Z >1 and F( ¥s) > /E'WZJ)F(S), and we still have the
estimates from (2.22) to (2.26) with p replaced by r. Therefore (2.27) is valid and the result
follows. O]

We are now ready to prove Theorem 1.1, using the previous lemmas. Again, the fact that
lim,, ., I(v,) = 0 = I(u,) plays an important role in the proof.

Proof of Theorem 1.1 Let {v,} be the sequence obtained in Lemma 2.2. By Lemma 2.3,
there exist 4, <0 and u, € H'(R")\{0} such that (1,,u,) is a weak solution of (1.1),
I(u,) = 0 and, up to a subsequence, v, — u, weakly in H'(R") and a.e. in R". Clearly we
have
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/\v,,|2dx:/ |ua|2dx+/ v — tta P + o(1).
RV RV RV

Let ay = ||ua||L2(RN) and azn = ||Vn - uaHL2<RN>. Then

ap >0 and azzaf—l—a;n—}—o(l).

Fatou’s lemma implies that I, x F(u,) < liminf,_, I, x F(v,). Since I(u,) =0, by (f)
and Lemma 2.2 and using Fatou’s lemma again, we have

J(ua) =J(ug) — %I(ua)

N N 2
=0 [ Fug) [f(ua)ua - %HF(MG)} dx
RN
2.28)
N N 2 (
<% i [ o p o) 100 -2 R )
n——+oo J RN N
1
— lim (J(v) —51(v,)) = m(a).
n—-+0oo 2
On the other hand, it follows from Lemma 2.4 that
J(ug) >m(ay) > m(a). (2.29)

(2.28) together with (2.29) implies
J(ug) = m(ay) = m(a).

Now by Lemma 2.4 again, we see that [|us[|;2gv) = a1 = a. This completes the proof. [J

The sequence {v,} converges strongly to u, in H'(R"). Indeed, the above proof shows that

J(”a) = nETmJ(Vn) = m(a)7 (2.30)
and
R {f(ua)ua - N%MF(MQ)} dx
' N+o+2 (231)
~ lim_ /RN(Ia < F(v)) {f(v,,)v,l - TF(vn)}dx.

From (2.31) and the decomposition

[t Fn [0 =2

_ /R (B F () [ () — rF () + (r - N#‘“) /R (L + F()F(u)d,

using Fatou’s lemma we see that
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lim (I % F(v;))F(v,)dx = / (I * F(ug))F(ug)dx.

n—-+00 RY RN

Then it follows from (2.30) that

n—oo

lim \vvn| dx = / V| dx,
RN

which together with the fact [|v,[|;2gv) = |[uall2(gv) implies v, — u, strongly in H' (RM).

3 Proof of Theorem 1.3

In this section, we assume that N >2, f'is odd and (f;) — (f>) hold. We adapt arguments
from [1, 12] to the problem in question. Let E := Hr'ad(IR{N) be the subspace of H'(RY)

consisting of radially symmetric functions. Let || - || be the usual norm of H'(R"). We fix a
strictly increasing sequence of finite-dimensional linear subspaces Vj, C E such that | J, Vi
is dense in E. Let V,f- be the orthogonal complement of Vj in E.

Lemma 3.1 For any k € N, there exists p, > 0 such that by := 1an( ) — +oo as k —
u€By
+00 where

By ={ue Vi, nS@a): [[Vullpey= o}

Proof For g € (2,2%), let

, ]
Ww(q) == inf ————. (3.1)
Ve H””IZA(RN)

Then ;(q) — 400 as k — oo (see [1, Lemma 2.1]). We see from (f) that 2<2Nr/(N +
) <2Np/(N + o) <2* and, consequently,

. 2Nr 2Np X
Vi := min T —_— — — 00.
k Hy Nia) Hi N+ o oo as o0

By (2.7) and (3.1), for u € Vi~ | N S(a) with k sufficiently large,
C
/R o F ()P (0)e < © (a0 oy ) < 5 il + )
k

Since ||ul|* > a2, we have |ju]|* <a® 2 ||u||*, and it follows that

[ s FaFwars < (/. |W|2dx>p+1),

where C = C(f,N,a,a) > 0 is a constant depending only on f, N, o and a. Now we have
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J(u) :%/R;N|vu‘2d)€*%/wv(ly *F(u))F(u)dx

1 2 ¢ 2\
>— | |Vul"dx — [Vul"dx | +1).
2 RN 2V;; RN
r 212
_ (XN
Pr = (20) '

Cp C 1

A A o Zp

Let

Then, for u € By,

1 C
>_p2— A
J(u) > 3 Pr k 20

Since vy — 400 as k — 00, p, — +00 as k — oo and the result follows. [

According to Lemma 3.1, there exists ky € N such that by > 1 for k > ky. For k > kg, (2.8)
and the compactness of V; N S(a) imply that there exists # > 0 large enough so that

IVu Ny <pe<IVitllpgey  and  max {J@™).J@}<1. (32

Now we define
I ={y:[0,1] x (S(a) N Vi) — S(a) :y is continuous, odd in u,
9(0,u) = u™™, and y(1,u) = u™}.
A key role in the argument in [1] is played by the intersection property:
2([0,1] x (S(a) N V) NBy #0  for every y € I'.

In [1, Lemma 2.3] this property was proved using the cohomological index theory for
spaces with an action of the group G = {—1, 1}. Here we provide a new and more ele-
mentary proof of this property that does not require the cohomological index. We first
show the following lemma using the Borsuk-Ulam theorem.

Lemma 3.2 Let LiCL be finite dimensional normed vector spaces. Let a >0,
S={uel: |u|=a}, « € R, and H= (H,,H,) : [0,1] xS — R x L; be a continuous
map such that H(t,u) is even in u, Hy(t,u) is odd in u, and

H,(0,u) <o<H;(1,u) foruesS. (3.3)
Then there exists (t,u) € [0,1] x S such that H(t,u) = (2, 0).
Proof Assume, by contradiction, that the conclusion is false. Let
Ky ={(t,u) € [0,1] x S : H(t,u) <o, Hy(t,u) =0} U ({0} x S)
and

K> ={(t,u) €[0,1] x S Hy(t,u) >0, H(r,u) =0} U ({1} x S).
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Then K, and K, are closed subsets of [0, 1] X S, and hence compact. According to (3.3) and
the assumption of contradiction, K; and K, are disjoint, and therefore
0= idiSI(Kl,Kz) > (. Set

Ns(K:) = {(t,u) € [0,1] x S+ dist((t,u), K)) <0}, i=1,2.

Since H,(t,u) is even in u and Hy(t,u) is odd in u, K; and thus N;s(K;) are symmetric sets
with respect to u. Moreover, N5(K;) N Ny(K>) = () and

Hy(t,u) #0 if (1,u) € d*SNy(K;), (3.4)

where 05N, (K;) is the boundary of Njs(K;) in [0,1] x S. Denote Q= {ueL:
lu|| <a} and let M = (M, M) : L — ({0} x Q) U ([0,1) x S) be the homeomorphism
induced by the stereographic projection with north pole (1,0) € R x L. To be more
precise,

(0, u) ifuecQ,
M(u) = -1 -1 :
(T —allull™, allull "« if u e L\Q.

Denote Q; = M~ (({0} x Q) UN;(K;)). Then Q; is an open bounded symmetric neigh-
borhood of 0 in L and M(3Q;) = 0*'Ns(K,). Now we define A : 0Q; — L; as

A(u) = Hy o M(u) = Hy(1 — allu| ", aljul| 'u) for u € 0Q.

Then A is odd and continuous and, by (3.4), A(u) # 0 for all u € 0Q;. But this is in
contradiction with the Borsuk—Ulam theorem. |

The following is [1, Lemma 2.3], for which we provide a new proof based on Lemma 3.2.
Lemma 3.3 ([0, 1] x (S(a) N Vi)) N By # O for every y € T
Proof SetL = V; and L; = V;_; in which we use the L>(R") norm. Choose S = S(a) N Vj
and o = p;. Let Py_; : E — V,_; be the orthogonal projection and define

/’lk :S(a) — R x Vk—l; w—>(||Vu||L2(RN), Pk,lu)
and

H= ([‘117 Hg) :hkO'}).

Then L, Ly, S, o, and H satisfy all the conditions of Lemma 3.2. By Lemma 3.2, there exists
(t,u) € [0,1] x (S(a) N Vi) such that H(t,u) = («,0). That is, y(¢,u) € By. O
By Lemmas 3.1 and 3.3, we have

:= inf ma J(y(t,u))>b .
Cr ylel"k te[O,l],uE?(u)ﬂVk ())( u))_ k = +00

We will show that ¢, k> ko, is a critical value of J| S(a)- For this we make use of the
stretched functional
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J:E=ExR—R, J(us)=Ju)

from the proof of Lemma 2.2, now constrained to the space E of radial functions. On E we
consider the involution

1:E—E, t(us):=(—uys),

which preserves the natural inner product on E. Clearly J is invariant under t because F is
even in u. This implies that VJ : E — E is t-equivariant, i.e. VJ ot =10V/J.
Now we define

¢y := inf max J tu
k gEFk t€[0,1], ueS(a)NVi (g( ))

where

Ty = {g:[0,1] x (S(a) N Vi) — S(a) x R : g is continuous and equivariant,
8(0,u) = (u™*,0), and g(1,u) = (u",0)}.

Here a map g:[0,1] x (S(a)NVy) — S(a) x R is said to be equivariant if
g(t,—u) = 1g(t, u).

Lemma 3.4 ¢; = ¢k

Proof Observe that

yely = g:=(,0) ey, J(gtu)=J0u)),
and

g€ f‘k = 7= gé'l,z S rk: J(?(ta Lt)) = j(g(ta u))

Then the result follows. O

Recall that we fixed k > ko so that by > 1. Then Lemmas 3.3 and 3.4 yield
Ek =cr>b > 1.

To show that ¢ is a critical value of J]| s(a)» We first prove the following result.

Lemma 3.5 Let O<e<c,—1and g € lN"k be such that

J(g(t,u)) < 3
ze[(),l],n;g(a)mvk (g( u)) Sete

Then there exists (v,s) € S(a) x R such that:

A J(v,s) € [cx — &, ¢k + ¢,

(i) mine), ues@ny, [1(v;s) — g(1,u)|lg < Ve,
T !
(i) ] <J|S(a)><[R) (v,5)]| <2+
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Proof The proof is an equivariant version of the one of [12, Lemma 2.3]. On fk, we define
the metric

d(g,h) = t,u) — ht
() = o max ele.) = o)

and consider the continuous function

O: T, =R, ®g) = J(g(t,u)).
P — R, D(g) o™ (g(t,u))

By Ekeland’s variational principle there exists & € T, such that

i @(h)<®(g),
(i) d(h,g) <+e,
(i) (k) > D(h) — ed(hy,h) for hy € Ty with hy # h.

Assume, by contradiction, that the result is not true. For (u,s) € S(a) x R the tangent
space is denoted by

Tius) = Tiuy)(S(a) x R) = T,S(a) x R = {(z1,22) €E: (u,z1),> =0}.

For (t,u) € [0,1] x (S(a) N Vi) with J(h(t,u)) > ¢ — &, there exists z(t,u) € Ty, With
|lz(z,u)|| = 1 and such that
<v‘7(h(t7 u))vz(t7 u)>E< _2\/‘; (35)
Denote
S={(t,u) €[0,1] x (S(a) N Vy) : JN(h(t, u)) >cp — &}

Then, using (3.5), we can construct a continuous vector field U : § — E such that

i U ullg=1,

() U(t,u) € Ty,

(i) (VI (h(t,u)), U(t,u))g < — 2v/&.
Thus U is a normalized pseudo-gradient vector field for J along k. The vector field

1
V(t,u) = 3 (U(t,u) + 1o U(t,—u)) € Ty

is equivariant, i.e. V(t, —u) = tV(t,u). Moreover (iii) with V instead of U holds because

VJoh is equivariant. It also follows that V(¢,u) # 0, hence we may pass to the nor-
malized vector field

1
W:S—E, W =
S ) (t7 M) ||V(t7u)HE V(t7 Ll),

which is continuous and equivariant. Clearly (i)-(iii) from above hold with U replaced by
W.Let ¥ : [0,1] x (S(a) N Vi) — [0, 1] be a continuous cut-off function satisfying

Wiy =1L if J(h(t,u)) > cx,
’ 0, if J(h(t,u))<ci —e.
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We may assume that ¥(r, —u) = (¢, u) because J is even in u. If not we replace W(z, u)
by L (P(1,u) + (1, —u)). Now we use W to deform / € T as follows. For r € [0,1/2] we
define g, = (g,,1,8r2) : [0,1] X (S(a) N Vi) — S(a) x R for (r,u) € S by

P22 (1, u) || Wi (1, 0) || %
g,_l(t,u)—\/l ( ”le‘( )”Lhl(t,u)+r‘I’(t,u)W1(t,u),

and
gra(t,u) = ha(t,u) + r¥(t, u)Wa(t, u).
For (t,u) € [0, 1] x (S(a) N Vi)\S we set g,(t,u) = h(t,u). Observe that g, is continuous
and equivariant: g, (¢, —u) = tg,(¢,u). In addition, (3.2) implies
max{J (h(0,u)), J(h(1,u))} = max{J (u*,0), J(u",0)} = max{J(u™),J(u*)} <1,
hence ¢, — ¢ > 1 yields

2-(0,u) = h(0,u) = (u™™,0), g-(1,u) =h(1,u) = (u*,0).

Therefore, g, € Iy for r € [0,1/2].
The rest of the proof proceeds as the one of [12, Lemma 2.3], leading to a contra-
diction. ]

From Lemma 3.5, it is possible to find a (PS) sequence {vi,} C S(a) for J|g, with the
additional property lim,_.., I(vk,) = O at the level c.

Lemma 3.6 There exists a sequence {vy,} C S(a), also denoted by {v,} for simplicity of
notation, such that, as n — —+oo,

Jw) =ty (Tlgia) () = 0, 1(va) — 0.

Proof The proof is essentially the same as the proof of [12, Lemma 2.4]. We only sketch it
and refer to [12] for more details. For n large such that% <cr — 1, let g, € T'; be such that

ma J(gn(t,u)) <c + !
X u C, —.
1€[0,1], ueS(a)Vi Enlb)) =Gy

We may assume that g,(¢,u) = (g,1(¢,u),0) with g,; € T'y. By Lemma 3.5 there exists
(Wn, $1) € S(a) x R such that:

@ T(wnrsa) € lex = 4o+ 1,
(i) minep 1), ues@nvi |(Wns sn) — 8alt, w)[lg < ﬁv
T !
(i) (J|s(a)x[Re) (Was )| Sﬁ-
Clearly (ii) implies
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lim s, = 0. (3.6)

n—oo

Set v, = wy». Then by (i)

lim J(v,) = lim J(wp,s,) = .
n—oo n—oo

Since I(v,,) = 0;J (Wn, $,), by (iil) we have

lim (v,) = 0.

n—o0o

Moreover, since (J' (), @) e = (Oud (Wny Sn), @) g p fOr any ¢ € T(,yvy, by (iii) and
(3.6), for n sufficiently large,

!
H(‘”S(a)) (V")H = Sup <Jl(vﬂ)7(p>E*><E
QETs(a)Vn; @l p=1

-5,
= sup <au‘](wn7 Sﬂ)? ® " >E' xE
@ET5(a)Vn, [0l z=1

<2 wp o<
< — u ¢ gS —=-
\/EWETS((I)V'H llollz=1 \/ﬁ

This completes the proof. O

With (PS) sequences on hand, we are in a position to study their compactness. Since we are
working in the space E consisting of radially symmetric functions so that E is imbedded
compactly in LI(RY) for any ¢ € (2,2*), it is easier to show the compactness of (PS)
sequences in the present case compared with the argument in Sect. 2.

Lemma 3.7 Let {v,}oe; C S(a) be the sequence obtained in Lemma 3.6. Then up to a
subsequence {vi,},—, converges strongly in E to some u € S(a) as n — oo. Moreover,
there exists ;<0 such that (A, uy) is a solution of (1.2) and J(uy) = c.

Proof In view of the fact that v, satisfies (2.10) and (2.11), we see that {vi,}.—, is
bounded in E. Therefore, we may assume that there exists u; € E such that up to a
subsequence vy, — u; weakly in E. Since N > 2, E is imbedded compactly in L"([RN ) for
any g € (2,2%). Then vy, — w strongly in LI(R") for any g € (2,2%).
Since
2Nr < 2Np
N+oa = N+uo

[F(s)| < C(|s]" +|s|") and 2< <2%,

we have F(v,) — F(u) strongly in M%([R{N) (see [29, Theorem A.4]). Then I, *
F(vin) — I % F(uy) strongly in L¥5(RN) as L : Lv=(RY) — L¥3(RY) is a bounded
linear operator. Since

N(r—1) _2N(p—1)

2<
«+2 T a+2

<2%

we can choose a number ¢ such that
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2N 2N

<g<— 3.7
Il A (3.7)

and
2<q(r—1)<q(p—-1)<2~. (3.8)
The condition
)l <cls/™" + s

together with (3.8) implies f(vi,,) — f(ux) strongly in L1(R") (see [29, Theorem A.4]).
Let u be the number defined by
N—o 1 1

Then (I % F(vin))f (Vin) — (I % F(w))f (ur) strongly in L*(RY). By (3.7) and (3.9), we
have

2N
—_<u<2. (3.10)
Note that (see [8, Lemma 3]), for v € H'(RY),

/ Vvin - Vvdx — ,uk’,,/ Vi vdx — / (Ly % F(vin))f (i) vdx = o(1)||v| (3.11)
RV RV RV
as n — oo, where

1
:uk,n = ; <J/(Vk,n)7 Vk‘n> .

Since we already proved the convergence of (I, * F(vi,))f (vin) to (I, * F(ug))f (uy) in
L"(IR{N) and since u is in the range of (3.10), we can argue in the same way as (2.15)—(2.16)
to see that, for v € H'(R"),

/ Vuy - Vvdx — ik/ ugvdx — / (I * F(ui) )f (wg)vdx = 0, (3.12)
RV RY RY

where J; = lim,, ., f, <0. Taking the difference between (3.11) and (3.12) with
V = Vi, — Uy, we see for n — oo:

/ |V (v — uk)|2dx — /Ik/ (Vkn — uk)zdx
RN R

= /[RN [(I“ * F (i) )f (Vin) — (I % F(Mn))f(u,,)] (Vi — tp)dx + o(1) — 0.

Therefore, {vi,}., converges strongly in E to u; € S(a) as n — oo and (A, u) is a
solution of (1.1) with J(u) = ¢. O

Proof of Theorem 1.3 By Lemma 3.7, (A, 2uy) are radial solutions of (1.2) with 4, <0 and
J(ux) = ck. This proves the result. O
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Note added in proof: After acceptance of our paper for publication we learned of the paper [18], which
contains analogous results for a related Choquard equation involving the fractional Laplacian and a
homogeneous nonlinearity.
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