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Abstract
Existence of nontrivial and multiple solutions for two types of non-local problems with

sublinear or superlinear nonlinearities are investigated by linking theorems and index

theory in critical point theory. Some results in the literature are extended.

Keywords Non-local(Fractional) problems � Nontrivial(Multiple) solutions � Linking
theorems � Index theory
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1 Introduction

Fractional and non-local operators of elliptic type arise in a quite natural way in many

different problems, such as the thin obstacle problem, optimization, finance, phase tran-

sitions, stratified materials, anomalous diffusion, crystal dislocation, soft thin films,

semipermeable membranes, flame propagation, conservation laws, ultra-relativistic limits

of quantum mechanics, quasi-geostrophic flows, multiple scattering,minimal surfaces,

materials science, water waves and so on. The investigations of the problems involved

these non-local operators are interesting and important from both pure mathematical

research aspects and real-world applications, eg see [1, 2] and references therein.

Recently, variational methods and critical point theory have been proved to be powerful

in dealing with these non-local elliptic problems after the paper [3] establishing the

framework for the solvability of the following problems
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ð�DÞsu ¼ gðx; uÞ in X;

u ¼ 0 in RNnX;

�
ð1Þ

where X � RN is an open bounded set with smooth boundary, 0\s\1, N [ 2s and ð�DÞs

is the fractional Laplace operator, which (up to normalization factors) may be defined as

ð�DÞsuðxÞ ¼
Z
RN

ðuðx þ yÞ þ uðx � yÞ � 2uðxÞÞ
jyjNþ2s

dy; x 2 RN :

They established the solvability of nontrivial solutions of the problems under the

Ambrosetti- Rabinowitz superlinear condition for the nonlinearity g(x, u): there exist

l[ 2 and r [ 0 such that for a.e. x 2 X; t 2 R; jtj � r, we have 0\lGðx; tÞ� tgðx; tÞ;
where G ¼

R t

0
gðx; sÞds. When the nonlinearity g(x, u) satisfies a linear growth condition,

solvability of the problem is studied in [4]. When g(x, u) is a lower order perturbation of

the critical power, the classical Brezis-Nirenberg results are established in [5]. Some

multiplicity results are also established either by Morse theory eg see [6, 7] or by fountain

theorems eg see [8] where superlinear nonlinearities without Ambrosetti- Rabinowitz

conditions are considered.

When g(x, u) is a linear perturbation such as gðx; uÞ ¼ kqðxÞu þ f ðx; uÞ, where k ¼ 1 or

is a parameter related to the eigenvalues of certain eigenvalue problems and q 2 L1ðXÞ,
several researches considered the so-called non-resonance or resonant problems with

Landesman-Lazer conditions when g(x, u) is bounded; for example, see [9, 10]. When the

perturbation g(x, u) is superlinear and satisfies the Ambrosetti- Rabinowitz conditions, we

refer to [11] for some results concerning the solvability of nontrivial solutions of the

problem. In this paper, we first consider the case where the perturbation g(x, u) is sublinear
and satisfies an extended form of Ahmad-Lazer-Paul type conditions; e.g. see [12–14] for

some references. We remark that when f(x, u) is bounded, the Ahmad-Lazer-Paul type is

more general than the Landesman-Lazer condition used in [10]; see [13, 15] and the

references therein. Hence our results generalize the corresponding ones in [9, 10]. The

other case we consider is the superlinear perturbation f(x, u), but we do not impose the

standard Ambrosetti- Rabinowitz condition on it. This makes our results can be applied to

more general nonlinearities. Moreover, not as in the literature we don’t need that the

function q is bounded which makes us to deal with a different eigenvalue problem.

2 Main results

As in [3], we consider a more general non-local operator LK with ð�DÞs
as a special case,

which is defined as follows:

LKuðxÞ ¼
Z
RN

�
ðuðx þ yÞ þ uðx � yÞ � 2uðxÞÞ

�
KðyÞdy; x 2 RN :

Here K : RNnf0g ! ð0;þ1Þ is a function such that

mK 2 L1ðRNÞ; where mðxÞ ¼ minfjxj2; 1g; ð2Þ

there exists h[ 0 such that KðxÞ� hjxj�ðNþ2sÞ
for any x 2 RNnf0g; ð3Þ

KðxÞ ¼ Kð�xÞ for any x 2 RNnf0g: ð4Þ
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The function space X denotes the linear space of Lebesgue measurable functions from RN

to R such that the restriction to X of any function g in X belongs to L2ðXÞ and

ðgðxÞ � gðyÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðx � yÞ

p
2 L2ðR2NnðCX� CXÞ; dxdyÞ, where CX ¼ R2NnX.

Instead of (1), we consider the more general problem

�LKu ¼ gðx; uÞ in X;

u ¼ 0 in RNnX:

�
ð5Þ

By a solution of (5), we mean a weak one. That is a u 2 X0 such that

Z
R2N

ðuðxÞ � uðyÞÞð/ðxÞ � /ðyÞÞKðx � yÞdxdy ¼
Z
X

gðx; uðxÞÞ/ðxÞdx; 8/ 2 X0;

where the Hillbert space X0 denotes

X0 :¼ fu 2 X : u ¼ 0 a.e. in RNnXg;

with the scalar product

hu; vi ¼
Z
R2N

ðuðxÞ � uðyÞÞðvðxÞ � vðyÞÞKðx � yÞdxdy

and the norm uk k2 = hu; ui.
The main results of the paper are existence theorems (Theorems 1–3 and Theorem 5)

and a multiplicity result (Theorem 4) for two types equations driven by general non-local

operators including fractional operators as special cases with sublinear or superlinear

nonlinearities.

To be precise, in the first part of the paper we study the following problem with

sublinear nonlinearities

�LKu þ aðxÞu � kku ¼ gðx; uÞ in X;

u ¼ 0 in RNnX;

�
ð6Þ

where X � RN is an open bounded domain with smooth boundary, s 2 ð0; 1Þ; N [ 2s;

aðxÞ 2 L
N
2sðXÞ, g(x, u) is not necessarily bounded and kk is an eigenvalue of the problem

�LKu þ aðxÞu ¼ ku in X;

u ¼ 0 in RNnX:

�
ð7Þ

We notice that since aðxÞ 2 L
N
2sðXÞ is not necessarily bounded, eigenvalue problem (7) does

not seem to have been investigated in the literature. Hence we will first study problem (7).

Particularly, we will prove that it has and only has a sequence of eigenvalues

k1\k2\k3\ � � �\kn\::: with a finite multiplicity for each eigenvalue. The eigenspace

corresponding to ki is denoted by Ei. Suppose that Ek ¼ spanf/1;/2;/3; :::;/mg:
We impose the following assumptions, where Gðx; tÞ ¼

R t

0
gðx; sÞds:

(g1) g 2 CðX� R;RÞ; jgðx; tÞj �Cjtja þ C; for some 0� a\1 and C [ 0;

(G�)

R
X

G

�
x;
Pm

i¼1
ai/i

�
dx

ak k2a ! �1; as ak k ¼
�Pm

i¼1

a2i

�1
2 ! 1:

If g(x, t) is odd for t 2 R; we can consider multiple solutions of (6) under some con-

ditions. For example, we assume

(g2) there exists r [ 0; s.t. Gðx; tÞ[ 0; as ðx; tÞ 2 X� ð0; r	;
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(g3) gðx;�tÞ ¼ �gðx; tÞ; as ðx; tÞ 2 X� R:
We have the following results.

Theorem 1 Let s 2 ð0; 1Þ; N [ 2s; X � RN be an open bounded domain with smooth

boundary and let K : RNnf0g ! ð0;þ1Þ be a function satisfying (2), (3) and (4). Suppose
that condition pair (g1) (Gþ) or (g1) (G�) holds, then (6) has at least one solution u 2 X0:

Theorem 2 Let s 2 ð0; 1Þ; N [ 2s; X � RN be an open bounded domain with smooth

boundary and let K : RNnf0g ! ð0;þ1Þ be a function satisfying (2), (3) and (4). Suppose
that conditions (g1) and (Gþ) hold. If there exists m� k such that

lim sup
t!0

gðx; tÞ
t

\km � kk ð8Þ

and

inf
t 6¼0

gðx; tÞ
t

� km�1 � kk ð9Þ

uniformly for almost everywhere x 2 X; then equation (6) has at least one nontrivial
solution in X0:

Theorem 3 Let s 2 ð0; 1Þ; N [ 2s; X � RN be an open bounded domain with smooth

boundary and let K : RNnf0g ! ð0;þ1Þ be a function satisfying (2), (3) and (4). Suppose
that conditions (g1) and (G�) hold. If there exists m� k such that

lim inf
t!0

gðx; tÞ
t

[ km � kk

and

sup
t 6¼0

gðx; tÞ
t

� kmþ1 � kk

uniformly for almost everywhere x 2 X; then equation (6) has at least one nontrivial
solution in X0:

Theorem 4 Let s 2 ð0; 1Þ; N [ 2s; X � RN be an open bounded domain with smooth

boundary and let K : RNnf0g ! ð0;þ1Þ be a function satisfying (2), (3) and (4).
Moreover, we assume that all the eigenfunctions of problem (7) belong to L1ðXÞ. If
conditions (G�) and (g1-g3) hold, then problem (6) has at least m solutions in X0; where m
is the dimension of the eigenvalue kk.

Remark 1 The regularity assumption in Theorem 4 on the eigenfunctions of (7) is not too

strong; e.g. see [2] for some related discussion for fractional problems.

Remark 2 Conditions (G�), sometimes called generalized Ahmad-Lazer-Paul conditions,

are now typical and widely used in the literature for dealing with elliptic PDEs on bounded

domains or periodic solutions for Hamitonian systems with sublinear nonlinearities. But
it seems that they haven’t appeared in non-local problems. As a ¼ 0, (G�) are reduced to
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the classical Ahmad-Lazer-Paul conditions, which include the well-known Landesman-

Lazer conditions as special cases in variational problems, for dealing with similar problems

but with bounded nonlinearities (e.g. see [14, 15] or Theorem 4.12 in [16]).

Extensions of the classical Ahmad-Lazer-Paul conditions to the present forms (G�) for
investigating unbounded problems were considered by a number of authors in early 1990s;

e.g. see some references in [17]. The extensions to the present forms (G�), either for

elliptic PDEs or for periodic solutions for Hamiltonian systems, were also independently

obtained in the first author’s Ph.D. thesis in 1992 under supervision of Professor Guo

Dajun whom the paper dedicates to; e.g. see [12] and [18], where some further references

are also available.

As in the literatures such as in [12] and the references therein, conditions (G�) can be

replaced by ones not involving the eigenfunctions of problem (7) (e.g. see [10]) if the

following unique continuity property holds for the eigenfunctions of problem (7): all

eigenfunctions corresponding to (7) have nodal set with zero Lebesgue measure, where the

nodal set of a function / in X is the level set fx 2 X;/ðxÞ ¼ 0g: Some information about

the unique continuity property for non-local problems can be found in [10].

In the second part of the paper we study the following problem with superlinear

nonlinearities

�LKu þ aðxÞu ¼ gðx; uÞ in X;

u ¼ 0 in RNnX;

�
ð10Þ

where K, X, aðxÞ 2 L
N
2sðXÞ; s 2 ð0; 1Þ; N [ 2s are all as in the first part.

We impose the following assumptions, where Gðx; tÞ ¼
R t

0
gðx; sÞds:

(a0) k ¼ 0 is not an eigenvalue of problem (7): �LKu þ aðxÞu ¼ ku; u 2 X0:

(g4) g 2 CðX� R;RÞ, Gðx; tÞ� 0; gðx; tÞ ¼ oðjtjÞ as t ! 0 uniformly in �X:

(g5) limjtj!þ1
Gðx;tÞ
jtj2 ¼ þ1 uniformly in x 2 �X:

(g6) Set eGðx; tÞ ¼ 1
2

gðx:tÞt � Gðx; tÞ: Then eGðx; tÞ[ 0 for t 6¼ 0 and there is

r0; c0 [ 0; r[ maxf1; N
2sg s.t.

jgðx; tÞjr � c0 eGðx; tÞjtjr; if jtj � r0:

Our main result reads as follows.

Theorem 5 Let s 2 ð0; 1Þ; N [ 2s; X � RN be an open bounded domain with smooth

boundary and let K : RNnf0g ! ð0;þ1Þ be a function satisfying (2), (3) and (4).
Moreover, suppose that conditions (a0), (g4)–(g6) hold, then (10) has at least one nontrivial
solution in X0:

Remark 3 The conditions (g4), (g5),(g6) are more general than the Ambrosetti- Rabinowitz

condition and a simple computation can prove that the superlinear function

gðx; tÞ ¼ juj2 lnð1þ jujÞ � 1

2
juj2 þ juj � lnð1þ jujÞ

satisfies (g4) - (g6) but does not satisfy Ambrosetti-Rabinowitz condition [19].
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3 Preliminaries

In order to investigate eigenvalue problem (7), we first prove the following lemma.

Lemma 1 If s 2 ð0; 1Þ; N [ 2s; X � R2N is an open domain, aðxÞ 2 L
N
2sðXÞ and un *

u 2 X0; then Z
X

aðxÞjunðxÞj2dx !
Z
X

aðxÞjuðxÞj2dx:

Proof Since un * u in X0; then by the imbedding theorem in [1, 3], u2n is bounded in

L
N

N�2sðXÞ: So we may suppose

u2
n * u2 in L

N
N�2sðXÞ:

We assume that, up to a subsequence,

u2
nðxÞ ! u2ðxÞ a.e. x 2 X:

Then the proof is given by Vitali theorem. h

Now we focus on the eigenvalue problem (7)

�LKu þ aðxÞu ¼ ku in X;

u ¼ 0 in RNnX:

�

Lemma 2 Let s 2 ð0; 1Þ; N [ 2s; X � R2N be an open bounded domain and

aðxÞ 2 L
N
2sðXÞ.

(a) Define

k1 :¼ inf
u2X0;kuk2¼1

1

2

Z
R2N

juðxÞ � uðyÞj2Kðx � yÞdxdy þ
Z
X

aðxÞuðxÞ2dx:

Then k1 is finite and is a simple eigenvalue of (7) with a non-negative eigenfunction
e1 2 X0:

(b) The spectrum of problem (7) has and only has eigenvalues which can be listed
k1\k2 � k3 � � � � � kn � ::: and the corresponding eigenfunctions fekgk2N form a

base of Hilbert spaces L2ðXÞ and X0:

Proof Denote eJ ðuÞ ¼ 1
2

R
R2N juðxÞ � uðyÞj2Kðx � yÞdxdy þ

R
X aðxÞuðxÞ2dx, where u 2 X0:

By the Hölder and Sobolev inequalities, we have

eJ ðuÞ� 1

2
uk k2�e

Z
X
juj

2N
N�2sdx

� �N�2s
N

�CðeÞ
Z
X
jaðxÞj

N
2sdx

� �2s
N

� 1

2
uk k2�Ce uk k2�CðeÞ;
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for every e[ 0. Hence, by fixing e small, eJ ðuÞ is coercive on X0 and therefore is bounded

below. Then k1 is a finite number. Let un 2 X0; kunk2 ¼ 1 be a minimizing sequence for eJ ,

that is, eJ ðunÞ ! k1: It is clear that un is bounded in X0: Up to a subsequence suppose that

un * u in X0: By the compact imbedding X0 � L2ðXÞ ([3]), we have un ! u in L2ðXÞ:
Hence kuk2 ¼ 1: By Lemma 1

Z
X

aðxÞjunðxÞj2dx !
Z
X

aðxÞjuðxÞj2dx:

Hence by the lower semi-continuity of the norm in X0

eJ ðuÞ� lim inf
n!þ1

eJ ðunÞ ¼ k1:

Hence eJ ðuÞ ¼ k1; and k1 is achieved and is an eigenvalue of (7).

Since u 2 X0 implies that juj 2 X0 and

jjunðxÞj � junðyÞjj2 � junðxÞ � unðyÞj2

we have that fjunjg is also a minimizing sequence if fung is a minimizing sequence for eJ
in X0. Therefore, there exists a non-negative eigenfunction e1 corresponding to the first

eigenvalue k1. In fact we can prove that every eigenfunction e corresponding to the first

eigenvalue k1 doesn’t change sign. That is e� 0 or e� 0 a.e. in X: Obviously, eJ ðeÞ ¼
k1 ¼ eJ ðe1Þ: But, if x 2 fe[ 0g and y 2 fe\0g, we have that

jjeðxÞj � jeðyÞjj\jeðxÞ � eðyÞj:

This means that eJ ðjejÞ\ eJ ðeÞ; if both fe[ 0g and fe\0g have positive measure, which

contradicts to jej 2 X0; kek2 ¼ 1: As the proof of (c) in Proposition 9 ( [11]), we can get

that k1 is simple.

For the proof of (b), we argue recursively. Assume that the claim holds for 1, ..., k and

prove it for k þ 1: By the definition of k1; we have, just as Lemmas 2.14 and 2.15 in [20]

for a similar problem,

kn ¼ inf
n�

uk k2þ
Z
X

aðxÞuðxÞ2dx
�
: kuk2 ¼ 1; ðu; e1Þ ¼ � � � ¼ ðu; en�1Þ ¼ 0

o
:

So we get a sequence of eigenvalues

k1\k2 � k3 � � � � � kn � ::::

From standard theory of compact linear operators, we know that the spectrum of problem

(7) consists of just the above eigenvalues and the corresponding eigenfunctions form a base

for both X0 and L2ðXÞ. h

We can also characterize the eigenvalues by subspaces of X0.

Proposition 1 We have

kn ¼ max
V2Vn�1

inf
u2V?;kuk2¼1

�
uk k2þ

Z
X

aðxÞuðxÞ2dx
�
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where Vn�1 is the set of n � 1 dimensional subspaces in X0.

Proof Denote

ekn :¼ max
V2Vn�1

inf
u2V? ;kuk2¼1

�
uk k2þ

Z
X

aðxÞuðxÞ2dx
�
:

By the variational definition of kn; ekn � kn: On the other hand, for any V 2 Vn�1; there

exists uðu 6¼ 0Þ; u ¼
Pn

i¼1

xjej 2 V? where feig1� i� n are the corresponding eigenfunctions

of fkig1� i� n such that

uk k2þ
Z
X

aðxÞu2ðxÞdx ¼
Xn

i¼1

kjx
2
j

Z
X

e2j dx� kn

Z
X

u2dx: ð11Þ

Hence

inf
u2V?;kuk2¼1

�
uk k2þ

Z
X

aðxÞu2ðxÞdx
�
� kn:

So, ekn � kn: The proposition is proved. h

Lemma 3 If the eigenvalues of (7) are listed as follows k1\k2 � :::� kk � 0\kkþ1 � :::
and

Y ¼fe1; :::; ekg where fekg are the corresponding eigenfunctions

Z ¼fu 2 X0; hu; viL2 ¼ 0; 8v 2 Yg;

then we have

d ¼ inf
u2Z; uk k¼1

uk k2þ
Z
X

aðxÞu2ðxÞdx[ 0:

Proof By the above variational characterization of kkþ1,

uk k2þ
Z
X

aðxÞu2ðxÞdx� kkþ1

Z
X

u2; for any u 2 Z:

If the lemma were not true, there exist un 2 Z; n 2 N

unk k2þ
Z
X

aðxÞu2
nðxÞdx\

1

n
unk k2:

Set vn ¼ un

unk k : Then

1þ
Z
X

aðxÞv2nðxÞdx� 1

n
:

Without loss of generality, assume vn * v in X0.

By Lemma 1
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Z
X

aðxÞv2nðxÞdx !
Z
X

aðxÞv2ðxÞdx:

Hence,

1þ
Z
X

aðxÞv2ðxÞdx� 0; ð12Þ

which implies that v 6¼ 0: Since v 2 Z;

vk k2þ
Z
X

aðxÞv2ðxÞdx� kkþ1

Z
X

v2nðxÞdx: ð13Þ

We change (12) to

vk k2þ
Z
X

aðxÞjvðxÞj2dx� vk k2�1: ð14Þ

By combining (13) and (14), we have

vk k2 � 1þ kkþ1

Z
X

v2ðxÞdx[ 1:

But,

vk k2 � lim
n!þ1

vnk k2¼ 1:

The contraction ends the proof. h

The proofs of the existence of one (nontrivial) solution rely on the standard linking the-

orems (e.g. see [16, 20]) and the proof of Theorem 4 needs the following proposition from

Z2-index theory (e.g. see [21, 22]).

Proposition 2 Let J be an even and C1 � functional on a Banach space X, satisfying P-S
condition and f ðhÞ ¼ 0: If there is q[ 0 and a m�dimensional subspace X1 s.t.

sup
x2X1\Sðh;qÞ

J ðxÞ\0;

and there is another j-dimensional subspace X2ðj\mÞ s.t.

inf
x2X?

2

J ðxÞ[ �1

where X?
2 is the direct compliment subspace of X2; then J has at least m � j pair critical

points.

4 Proof of main results

Due to the variational nature of the problem, in order to find weak solutions for problem

(6), in the following we will look for critical points of the functional J on X0
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J ðuÞ ¼ 1

2
uk k2þ 1

2

Z
X

aðxÞðuðxÞÞ2dx � 1

2

Z
X
kkðuðxÞÞ2dx �

Z
X

Gðx; uÞdx;

where kk is an eigenvalue of (7). Here all eigenvalues of (7) are listed as

k1\k2\k3\ � � �\kn\. . . and the corresponding eigenspaces are denoted by Ek

(k ¼ 1; 2; . . .).

Moreover, it is known that under the conditions of our theorems J 2 C1ðX0;RÞ and for

any u; / 2 X0,

hJ 0ðuÞ;/i ¼
Z
R2NðuðxÞ�uðyÞÞð/ðxÞ�/ðyÞÞKðx�yÞdxdyþ

R
X

aðxÞuðxÞ/ðxÞdx �
R
X
kkuðxÞ/ðxÞdx�

R
X

gðx;uðxÞÞ/ðxÞdx:

Let us write

u ¼ �u þ u0 þ eu; u 2 X0;

where

�u 2
X
i\k

Ei; u0 2 Ek and eu 2
X

i� kþ1

Ei:

Lemma 4 Under condition pair (g1), (Gþ) or (g1), (G�), the functional J defined above
satisfies P-S condition on X0:

Proof We only prove the case where (g1) and (Gþ) hold. The other case can be proved

similarly.

Suppose that ðunÞ 2 X0 satisfies

J 0ðunÞ ! 0; as n ! þ1;

and

jJ ðunÞj �C:

We have, noticing a similar inequality in (11)

hJ 0ðunÞ;��uni

¼ �
Z
R2N

j�unðxÞ � �unðyÞj2Kðx � yÞdxdy �
Z
X

aðxÞj�unðxÞj2dx þ
Z
X
kkj�unðxÞj2dx

þ
Z
X

gðx; unðxÞÞ�unðxÞdx

�ðkk � kk�1Þ
Z
X
j�unðxÞj2dx �

Z
X
j�unðxÞj

�
Cj�uðxÞ þ u0ðxÞ þ eunðxÞja þ C

�
dx

�ðkk � kk�1Þ
Z
X
j�unj2dx � C

Z
X
j�unjdx � C

Z
X
j�unjðj�unja þ ju0

nj
a þ jeunjaÞdx

�ðkk � kk�1 � eÞ
Z
X
j�unj2dx � C

Z
X
j�unjju0nj

adx � C

Z
X
j�unjjeunjadx � CðeÞ;

where CðeÞ[ 0 is a universal constant dependent on the arbitrary e[ 0: Fixing e[ 0

sufficiently small and noticing that
P

i� k�1 Ei is finite dimensional, we have

�unk k2 �C eunk k2a2aþC u0n
�� ��2a

2a
þC: ð15Þ
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By a similar computation and noticing Lemma 3, we have

hJ 0ðunÞ; euni

¼
Z
R2N

jeunðxÞ � eunðyÞj2Kðx � yÞdxdy þ
Z
X

aðxÞjeunðxÞj2 �
Z
X
kkjeunðxÞj2

þ
Z
X

gðx; unðxÞÞeunðxÞdx

�
Z 2N

R

jeunðxÞ � eunðyÞj2Kðx � yÞdxdy þ
Z
X

aðxÞjeunðxÞj2dx þ
Z
X

gðx; unðxÞÞeunðxÞdx

� kk

kkþ1

h Z
R2N jeunðxÞ�eunðyÞj2Kðx�yÞdxdyþ

R
X

aðxÞjeunðxÞj2dx

i

¼
�
1� kk

kkþ1

�h Z 2N

R

jeunðxÞ � eunðyÞj2Kðx � yÞdxdy þ
Z
X

aðxÞjeunðxÞj2dx
i

þ
Z
X

gðx; unðxÞÞeunðxÞdx

�
�
1� kk

kkþ1

�h Z
R2N

jeunðxÞ � eunðyÞj2Kðx � yÞdxdy

þ
Z
X

aðxÞjeunðxÞj2
i
�
Z
X
ðCjunja þ CÞjeunðxÞjdx

� d
�
1� kk

kkþ1

�Z
R2N

jeunðxÞ � eunðyÞj2Kðx � yÞdxdy

� C

Z
X
jeunjðCjeun þ �un þ u0

nj
a þ CÞdx

� d
�
1� kk

kkþ1

� eunk k2�C

Z
X
jeunjdx � C

Z
X
jeunjðj�unja þ ju0

nj
a þ jeunjaÞdx

� d
�
1� kk

kkþ1

� e
� eunk k2�CðeÞ

Z
X
j�unj2adx � CðeÞ

Z
X
j�u0nj

2adx � CðeÞ;

where CðeÞ[ 0 is a universal constant dependent on the arbitrary e[ 0: Similarly,

noticing that hJ 0ðunÞ; euni� oð1Þ eunk k; and fixing e[ 0 sufficiently small, we have

eunk k2 �C �unk k2a2aþC u0n
�� ��2a

2a
þC: ð16Þ

By enlarging the term keunk2a2a in the right side of (15) to Ckeunk2a by embedding inequality

and inserting the inequality (16) to (15) and then using Young inequality, we can get the

following inequality

�unk k2 �C u0
n

�� ��2a
2a
þC: ð17Þ

Similarly, we have

eunk k2 �C u0n
�� ��2a

2aþC: ð18Þ

By
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Z
X

�
Gðx; unÞ � Gðx; u0nÞ

�
dx
			 ¼ j

Z
X

dx

Z 1

0

gðx; u0
n þ sðeun þ �unÞÞððeun þ �unÞÞdsj

�
Z
X

dx

Z 1

0

ðjeunj þ j�unjÞðCju0
n þ sðeun þ �unÞja þ bÞds

�C

Z
X
ðjeunjju0nj

a þ jeunj1þa þ jeunjj�unja þ bjeunjÞdx

þ
Z
X
ðj�unjju0nj

a þ j�unjjeunja þ j�unj1þa þ bj�unjÞdx;

and estimating the above each term with Hölder and embedding inequalities and (17) and

(18), we can get 			
Z
X

�
Gðx; unÞ � Gðx; u0nÞ

�
dx
			�C u0n

�� ��2a
2a
þC: ð19Þ

By jJ ðunÞj �C and the inequality

Z
R2N

j�unðxÞ � �unðyÞj2Kðx � yÞdxdy þ
Z
X

aðxÞj�unðxÞj2dx �
Z
X
kkj�unðxÞj2dx� 0;

we have

� C � 1

2

Z
R2N

jeunðxÞ � eunðyÞj2Kðx � yÞdxdy þ 1

2

Z
X

aðxÞjeunðxÞj2

�
Z
X
kkjeunðxÞj2 �

Z
X

Gðx; unÞdx:

Noticing

Z
X

aðxÞjeunðxÞj2dx�
Z
X
jaðxÞjjeunðxÞj2dx�kakN

2s
keunk22N

N�2s
�C eunk k2

and a similar inequality �
R
X kkjeunðxÞj2dx�C eunk k2, we change the above inequality to

�C �C eunk k2�
Z
X

h
Gðx; unÞ � Gðx; un

0Þ
i
dx �

Z
X

Gðx; un
0Þdx:

Moreover, by (18) and (19), we have

�C �C u0n
�� ��2a

2a
þC �

Z
X

Gðx; un
0Þdx: ð20Þ

Hence, fu0ng is bounded by (Gþ). Therefore, by (17) and (18), fung is bounded in X0. A

standard argument ( [3]) implies that J satisfies Palais-Smale condition on X0: h

Proof of Theorem 2 Write X0 ¼
P

i�m�1 Ei 

P

i�m Ei: We claim that

(i) 9 q; d [ 0 s.t. J � d on
n

u 2
P

i�m Eij uk k ¼ q
o
;

(ii) there are e 2
P

i�m Ei with ek k ¼ 1; R[ q and �\d s.t. if

Q ¼
n

u 2
X
i\m

Eij uk k�R
o

 fte : 0\t\Rg;
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then J � � on oX; where oX denotes the boundary of Q in
P

i\m Ei 
 Re:

Step 1 We give the proof of claim (i).

By (8),8 e[ 0; 9 d; as jtj\d;

gðx; tÞ
t

\ðkm � eÞ � kk;

and then

Gðx; tÞ� t2

2
ðkm � e� kkÞ þ CðeÞjtjq; 2\q\2�s

for all real number t and x 2 X.
For u 2

P
i�m Ei;

J ðuÞ ¼ 1

2
uk k2þ 1

2

Z
X

aðxÞjuj2dx � 1

2
kk

Z
X
juj2dx �

Z
X

Gðx; uÞdx

� 1

2
uk k2þ 1

2

Z
X

aðxÞjuj2dx � 1

2
kk

Z
X
juj2dx � CðeÞ

Z
X
jujqdx

� 1

2
ðkm � e� kkÞ

Z
X

u2dx

¼ 1

2
uk k2þ 1

2

Z
X

aðxÞjuj2dx � 1

2
ðkm � eÞ

Z
X
juj2dx � CðeÞ

Z
X
jujqdx

� jðeÞ uk k2�CðeÞ
Z
X
jujqdx

� jðeÞ uk k2�CðeÞkukq

for some jðeÞ[ 0, where the inequality in Lemma 3 is used. Hence, claim

(i) holds.

Step 2 By (9), it is obvious that J � 0 on
P

i�m�1 Ei: If we can prove that

lim
uk k!1;u2

P
i�m

Ei

J ðuÞ ¼ �1;
ð21Þ

then e can be taken as any element in Em with ek k ¼ 1; R any number sufficiently

large and �\d any number sufficiently small.

Suppose m ¼ k. For u 2
P

i�m Ei; u ¼ �u þ u0; then

J ðuÞ ¼ 1

2
�uk k2þ 1

2

Z
X

aðxÞj�uj2dx � 1

2
kk

Z
X
j�uj2dx �

Z
X

Gðx; uÞdx

� 1

2
ðkk�1 � kkÞ

Z
X
j�uj2dx �

Z
X

�
Gðx; uÞ � Gðx; u0Þ

�
dx �

Z
X

Gðx; u0Þdx

� 1

2
ðkk�1 � kk þ 2eÞ

Z
X
j�uj2dx þ CðeÞ

Z
X
ju0j2adx �

Z
X

Gðx; u0Þdx þ CðeÞ:

Choosing 0\e\ kk�kk�1

2
and using the condition (Gþ), we obtain (21).
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If m\k, then u ¼ �u. The proof of (21) is much easier. Hence, the theorem is proved by

Rabinowitz’s linking theorem, e.g. see Theorem 2,12 in [20]. h

Proof of Theorem 3 Under the conditions of the theorem, we can prove

(i) there are p; d [ 0 such that J\� d on
n

u 2
P

i�m Eij uk k ¼ q
o
;

(ii) J � 0 on
P

i�mþ1 Ei;

(iii) J ! þ1 as u 2
P

i�m Ei and uk k ! 1:

Then, for I ¼ �J ; we use Theorem 5.29 in [16] and obtain a positive(nonzero) critical

value for I. This completes the proof. h

Proof of Theorem 4 Consider the functional on X0

J ðuÞ ¼ 1

2
uk k2þ 1

2

Z
X

aðxÞu2ðxÞdx � 1

2

Z
X
kku2ðxÞdx �

Z
X

Gðx; uÞdx:

Clearly, under our assumptions, J is even and C1 on X0, satisfying P-S condition.

We set X2 ¼
Pk�1

i¼1 Ei as the subspace X2 in Proposition 2. Then X?
2 ¼

P
i� k Ei: For

every u 2 X0; we write u ¼ �u þ u0 þ eu: Write the decomposition as X0 ¼ X2 
 X?
2 ¼

X2 
 Ek 

P

i� kþ1 Ei:

For u 2 X?
2 ; u ¼ u0 þ eu; by Lemma 3, we obtain that

J ðuÞ ¼ 1

2
euk k2þ 1

2

Z
X

aðxÞjeuðxÞj2dx � 1

2

Z
X
kkjeuðxÞj2dx �

Z
X

Gðx; u0 þ euÞdx

� j euk k2�
Z
X

h
Gðx; u0 þ euÞ � Gðx; u0Þ

i
dx �

Z
X

Gðx; u0Þdx:

for some j[ 0. By condition (g1) and a similar argument of (19), we get the J is bounded

below on X?
2 .

Set X1 ¼
Pk

i¼1 Ei � L1ðXÞ. Since X1 is finite dimensional, there exists d2 [ 0 s.t.

juj1 � r; 8u 2 X1 with uk k� d2: Hence by (g2),

J ðuÞ� �
Z
X

Gðx; uÞdx\0; 8u 2 X1 \ Sd2 :

Noting that m � j ¼ dimX1 � codimX?
2 ¼ dimEk ¼ m; hence J has at least m pairs of

critical points corresponding to negative critical values. This completes the proof. h

Proof of Theorem 5 We suppose that all the eigenvalues of (7) are listed as

k1\ � � �\km\0\kmþ1\ � � �\kn\ � � � and the corresponding eigenspaces are denoted

by Ek (k ¼ 1; 2; . . .). Set X�
0 ¼

P
i�m

Ei; Xþ
0 ¼

P
i�mþ1

Ei: So X0 ¼ X�
0 
 Xþ

0 and corre-

spondingly u ¼ u� þ uþ for every u 2 X0.
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J ðuÞ ¼ 1

2

Z
R2N

h
jðu�ðxÞ þ uþðxÞÞ � ðu�ðyÞ þ uþðyÞÞj2Kðx � yÞ

i
dxdy

þ
Z
X
½1
2

aðxÞu2 � Gðx; uÞ	dx

¼ 1

2

Z
R2N

juþðxÞ � uþðyÞj2Kðx � yÞdxdy

þ 1

2

Z
R2N

ju�ðxÞ � u�ðyÞj2Kðx � yÞdxdy

þ 1

2

Z
X

aðxÞu2dx �
Z
X

Gðx; uÞdx:

By (g4) and (g6), we have

jgðx; uÞj �Cjuj
rþ1
r�1; juj � r0; a.e. x 2 X:

Since r[ N
2s ; we have

rþ1
r�1

\2�s � 1: Hence J is differentiable on X0. Combining (g4) and

the above inequality, we have

jgðx; uÞj � ejuj þ Cejujp�1;
2r

r� 1
� p\2�s : ð22Þ

Step 1 We have the following result:

(i) 9 r [ 0; s.t. m ¼ inf J ðSþ
r Þ[ 0; where Sþ

r ¼ oBr \ Xþ
0 :

(ii) 9 er [ 0; s.t. J ðuÞ� 0; 8u 2 oQ; where Q ¼ fu ¼ u� þ semþ1 : u� 2
X�
0 ; s� 0; uk k� erg, where emþ1 is a nontrivial eigenfunction corresponding to

kmþ1.

h

Proof The proof of (i) is standard by equality (22) and the embedding theorem ([3]).

8u ¼ u� þ semþ1, we have

J ðuÞ ¼ 1

2

Z
R2N

jsemþ1ðxÞ � semþ1ðyÞj2Kðx � yÞdxdy

þ 1

2

Z
R2N

ju�ðxÞ � u�ðyÞj2Kðx � yÞdxdy

þ 1

2

Z
X

aðxÞðu�Þ2dx þ 1

2

Z
X

aðxÞðsemþ1Þ2dx �
Z
X

Gðx; u� þ semþ1Þdx:

In order to prove (ii), we follow some arguments in [19] (p.72) and only give the outlines.

We just need to prove

lim
u2spanfX�;emþ1g;kuk!1

JðuÞ ¼ �1:

Otherwise, there is M 2 R and a sequence un 2 spanfX�; emþ1g; kunk ! 1 such that

J ðunÞ�M. We write un ¼ u�n þ uþn and define wn ¼ un=kunk with the property kwnk ¼ 1 .

Noticing that the sequence lies in a finite dimensional space, without loss of generality,we

assume that u�n ! w�; uþn ! wþ: By using the inequality M
kunk2

� JðunÞ
kunk2

and displaying the

right term, with the help of the inequality such as (11), Lemma 3.5 and nonnegativity of
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G(x, u), we can get that wþ 6¼ 0: Then the similar proof follows by the obvious existence of

�l and the choices of x[ �l and X being the one in our paper.

Noticing also that J jX�
0
� 0, we have that (ii) holds when er [ 0 is sufficiently large.

This completes the proof of Step 1.

Step 2 J satisfies the Cerami condition at any level c 2 R: That is, if fung is any

sequence in X0 such that

J ðunÞ ! c

and

ð1þ unk kÞ supfj\J 0ðunÞ;/[ : / 2 X0; j /k k ¼ 1g ! 0;

then fung has a convergent subsequence in X0 [22]. h

Proof It is clear that for n big enough, we have

C0 �J ðunÞ �
1

2
J 0ðunÞun ¼

Z
X

eGðx; unÞdx: ð23Þ

We want to get that fung is bounded in X0: Suppose, by contradiction, there is a subse-

quence of un; still denoted by un; such that unk k ! þ1 as n ! þ1:
Set

vn ¼ un

unk k :

Hence

J 0ðunÞðuþ
n � u�

n Þ

¼
Z
R2N

ðunðxÞ � unðyÞÞ½ðuþn ðxÞ � u�
n ðxÞÞ � ðuþ

n ðyÞ � u�n ðyÞÞ	Kðx � yÞdxdy

þ
Z
X

aðxÞunðuþn � u�n Þdx �
Z
X

gðx; unÞðuþn � u�n Þdx

¼
Z
R2N

juþn ðxÞ � uþ
n ðyÞj

2Kðx � yÞdxdy þ
Z
X

aðxÞðuþn Þ
2dx

�
Z
R2N

ju�
n ðxÞ � u�n ðyÞj

2Kðx � yÞdxdy

�
Z
X

aðxÞðu�
n Þ

2dx �
Z
X

gðx; unÞðuþ
n � u�

n Þdx

� d uþ
n

�� ��2þd u�
n

�� ��2
�
Z
X

gðx; unÞðuþn � u�n Þdx

� unk k2
�
d�

Z
X

gðx; unÞðvþn � v�n Þ
unk k dx

�
;

where d[ 0 comes from Lemma 3 and a similar inequality as (11),by noting the finite

dimensionality of X�
0 . So,
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lim inf
n!1

Z
X

gðx; unÞðvþn � v�n Þ
unk k dx� d: ð24Þ

Set gðrÞ ¼ inff eGðx; uÞ : x 2 RN ; juj � rg: Then gðrÞ ! þ1; as r ! þ1; for the proof

see p.45 in [19]. Moreover, by (g6), gðrÞ[ 0; 8r [ 0. By (23), we get

C0 �
Z
X

eGðx; unÞdx�
Z
fx:junðxÞj � rg

eGðx; unÞdx� gðrÞ �measfx : junðxÞj � rg:

Hence

measfx : junðxÞj � rg� C0

gðrÞ ; 8r [ 0:

For every e[ 0; choose ae [ r0 s.t.

measfx : junðxÞj � aeg\e:			
Z
fx2X:junðxÞj � aeg

gðx; unÞðvþn � v�n Þ
unk k dx

			

�C0

Z
fx2X:junðxÞj � aeg

eGðx; unÞ
1
rjunjjvþn � v�n j

unk k dx ðby g6Þ

�C0

Z
fx2X:junðxÞj � aeg

eGðx; unÞ
1
rjvnjjvþn � v�n jdx

�C0

Z
fx2X:junðxÞj � aeg

eGðx; unÞ
1
rjvþn j

2dx þ C0

Z
fx:junðxÞj � aeg

eGðx; unÞ
1
rjv�n j

2dx

�C0

Z
fx2X:junðxÞj � aeg

eGðx; unÞdxðkvþn k
2
2�s
þ kv�n k

2
2�s
Þ �mfx 2 X : junðxÞj � aeg

1
r �Ce

1
r ;

where the last inequality comes from Höder inequality by choosing p ¼ r; q ¼ N
N�2s ;

1
r ¼

1� 1
p � 1

q and C is a constant independent of e and n.

From condition (g4), for the above e[ 0, we can choose 0\d ¼ dðeÞ\ae s.t.

jgðx; uÞj � ejuj for juj � d:

So, we derive

			
Z
fx2X:0� junðxÞj � dg

gðx; unÞðvþn � v�n Þ
unk k dx

			
�

Z
fx2X:0� junðxÞj � dg

ejunjjvþn � v�n j
unk k dx

� e
Z
X
½ðvþn Þ

2 þ ðv�n Þ
2	dx ¼ e½jvþn j

2
2 þ jv�n j

2
2	 �Ce;

where C is a constant independent of e and n.
We turn to estimate of final part of the integration.

It is clear that 9c ¼ cðeÞ s.t. jgðx; unÞj � c; 8x 2 fx 2 X : d\junðxÞj\aeg: Hence, for n
large enough, we have
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Z
fx2X:d\junðxÞj\aeg

gðx; unÞðvþn � v�n Þ
unk k dx

			� c
unk k

Z
X
ðjvþn j þ jv�n jÞdx� Ce

unk k\e:

Combining the above arguments, for every e[ 0 and we can choose N large enough such

that for as n[N we have

			
Z
X

gðx; unÞðvþn � v�n Þ
unk k dx

			\Ceþ Ce
1
r ;

where C is a constant independent of e and n, which contradicts (24). So un is bounded in

X0: A simple argument implies that fung contains a convergent subsequence in X0:
Hence, we have obtained both the compactness properties and the geometrical

structure of the functional. Hence, by linking theorem, we complete the proof of

Theorem 1.5. h
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