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Abstract

In this paper, we consider the existence of eigenvalues and relative eigenfunctions for
Carrier equations and present spectral asymptotics and bifurcation concerning the eigen-
values of some related elliptic linear problem.
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1 Introduction

In this paper, we consider the following nonlocal elliptic problem

—<a+b/ \u(x)|2dx>Au +f(x,u) = Au, xin Q,
Q
u(x) =0, xon 0Q,

where Q C RY (N >1) is a smooth and bounded domain, and @ > 0, b > 0.
Problem (1.1) is related to the stationary analogue of the equation

ey — <a +b/ \u|2dx> lee = 0
0

proposed by Carrier [6] which describes the vibration of the elastic string when the change
of the tension is not very little.
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For the case b = 0, problem (1.1) is changed as

—adu +f(x,u) = Au, xin Q,

u(x) =0, xon dQ. (12)

and some authors considered the spectral asymptotics, bifurcation and the normalized
solutions for problem (1.2) via variational method, see [5, 7, 8, 18-21, 23-25].

Since — (a +b, |u(x)|2dx)Au is lack of variational structure, it is difficult to study
problem (1.1) via variational method. Some authors focus on the existence of positive
solutions for problem (1.1) or some generalized cases only via the theory of topological
theory, the method of lower and upper solutions and pseudomontone operators theory

when / is fixed, see [1-3, 9-13, 26-28]. For examples in [26] and [27], authors considered
the following problem

—a(/ \u(x)|ypdx)Au =+, xin Q,
Q

u(x) =0, xon0Q,

(1.3)

where y>1, 0<¢g<I1, p>1, a:R— (0,+00) is a continuous function with
inf,cr a(t) = a(0) > 0; using the theory of fixed point index on cone, the authors proved
that there exist 0 </; <4, such that (1.3) has no positive solutions for 4 > 4,, at least a
positive solution for A = 4; and 4, and at least two positive solutions for A € (0,7;); in
[14], combing sub-super and bifurcation methods, the authors showed that there exists a
drastic change on the structure of the set of positive solutions when the non-local coeffi-
cient grows fast enough to infinity for problem (1.3).

Our aim is to present some results on spectral asymptotics and bifurcation for problem
(1.1).

This paper is organized as follows. In Sect. 2, using the Liusternik—Schnirelmann (LS)
theory, we obtain, given any r > 0, the existence of infinitely many eigenvalues w, ,(
n=1,2,---) for problem (1.1) associated with eigenfunctions u,, satisfying
fQ uﬁ'r(x)dx = r2. And then Sect. 3 presents bifurcation and comparison results concerning
the eigenvalues of some related linear problems (2.1),. In Sect. 4, we discuss the
asymptotic laws of the eigenvalues g, , of problem (1.1) as n — +o00 when f'is superlinear
at +oo. Our paper was motivated in part by the papers [7, 8, 15, 16, 18, 21, 22].

2 Existence of the eigenvalues of problem (1.1)

It is easy to see that problem (1.1) is equivalent to its weak formulation, namely that of
finding u € W&"Z(Q) and / € R such that

(a—i—b/ﬂuz(x)dx)/QVM~Vvdx—l—/gf(x,u)vdx:/l/guvdx

for all v € Wy?(Q), where Wy?(Q) denote the closure of C3°(®) in the Sobolev space
W'2(Q) with the scalar product (u,u)= [, Vu-Vudx and the corresponding norm
lu|| = (fQ |Vu|2dx)%, while ||qu denotes the norm of u € L7 (Q).

For r > 0, let
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M, = {u € Wé’2(9)| / wWdx = r2}
Q

and foreachn =1, 2, ..., set

K,, = {K C M, : K compact, symmetric, y(K) = n}

where 7(K) denotes the genus of K. For fixed r > 0 and for u € W,?(Q), define
O(u) = (a+br2)%||VuH§, Y(u) = /QF(x,u(x))dx

and

I(u) :== &(u) + ¥(u),

where

u(x)
F(x,u(x)) = / S (x,s)ds.
0
It is well known that the linear elliptic problem

—Au = Ju, xin Q,
u(x) =0, xon0Q, (2.1),

has eigenvalues 4; <1, < --- </, < --- and the corresponding eigenfunction to 4, is u,
with u, € M,, see [7]. For each eigenvalue /,, multiplying u, and integrating on Q for
(2.1),, we have

Py = / uidx)»,, = / |Vun\2dx. (2.2)
Q Q
Since the set of all eigenfunctions corresponding to 4, is a linear space, if we choose v, is a

eigenfunction of 4, with [, |v,,|2dx = 1, then the eigenfunction u, of 4, with u, € M, can
be written as u,, = [,,v,,. From

r2:/|u,,|2dx:/\l,,vn|2dx:l,21/|vn|2dx,
Q Q Q

u, = trv,, n=1,2,..., (2.3)

we get [, = +£r, i.e.,

which together with (2.2) gives

rzﬂvn:/Wu,,\zdx:/|V(irvn)|2dx:r2/ Vv,
Q Q Q

and so

/l,l:/|an|2dx.
Q
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Now, we introduce (see [4]) the “LS critical levels”

Cpy = }?f sip 21. (2.4)

The following lemma is needed in our proof.
Lemma 2.1 (See [8]) Let p: 1<p<py=(N+2)/(N—2) (so that 2<p+1<2*) and
let f = (N/2*)(2* — (p + 1)). Then, for each y: 0 <y < f, there exists ¢ > 0 such that

lullp i3 < el Full5™H

ull3 (2:5)

for all u € W(;’Z(Q). (Here and henceforth [[u|, denotes the norm of u in LF(Q).)

We will consider the following condition:
(A))f : @ x R — R is continuous, f(x,—u) = —f(x,u) and satisfies

(e u)| <cluf” +d
for some ¢, d >0 and some 0 <p<p = min{2* — 1,1 +4/N}.
From the LS theory, we have the following existence result.
Theorem 2.1 Assume (Ay) holds. Then, for given r > 0, there exists a sequence {u, ,} of
(weak) eigenfunctions of (1.1) belonging to M,, and such that
2 (up,) = Cpr

where ¢, , is as in (2.4); the eigenvalue y, . corresponding to u, , satisfies

rzlumr = (a + br2)||Vun_,H§ + /f(x7 un,r)”n,rdx-
Q

Proof The proof is divided into three steps.
Step 1. We show that

—00 < ¢, = inf sup 2/ < + oo0.
nr K

First, (A;) and Schwarz’s inequality imply that

/Q |F(x, u(x))|dx < ¢ /Q \u|”+‘dx+d( /Q |u|2dx)é (2.6)

for some new constants ¢, d > 0.
Moreover, we use the inequality (2.5) with 9=/ on setting
20=p+1—=(p—1)N/2, (2.6) becomes

[ < vl ( / uzdx) | 27)
Q Q

Next, from (2.6) and (2.7), for u € M,, we have

s
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Iwe < (a+ er)%HVqu + /QF(x,u(x))dx

1
1 2
<(a+bP) S vul? + c/ P dx + d(/ |u|2dx)
2 Q Q
1
<(a+br)Z|[Vulls +¢|[Vully* () + dr,
which together with the compactmess of K C K, implies that

sup 21 (u) < + oo. (2.8)

uck
Finally, from (2.6) and (2.7), for u € M,, we have also

1) 2 (a+ b3 [Vl = [ |FGx o)l o

1
> (a+br) 3 | Vull; = fec'r | Vuly* +dr).

The assumption p < min{2* — 1,1 + 4/N} is equivalent to 20 <2, which implies that [ is
bounded below on M, (for each r).
Consequently,

—00<Cpy = i[glfsup21< + oo.
nr K

(2) We show that I satisfies the Palais-Smale condition (PS) on M,, i.e., for ¢ 20, ¢ >0
small enough, u, € I"'[c — &,¢ + &] N M, and ||I}; (u,)|| — O, then there is a u € M, and a
subsequence {u,, } such that

IV (i, = u)l[, — O

Now (2.9) and the boundedness of {I(u,)} with {u,} C M, guarantees that {u,} is
bounded WS’Z(Q), which implies that there exist u* € W(;’Z(Q) and subsequence {u,,} of
{u,} such that u,, — u*, as j — +oo. Since

By (00) = 1)) = 1 w)a) [ s
— (a+bP) /Q ViuVvds + /Q Fx u)vd
—r? <(a + br2)||Vu||§ + /Qf(x7 u)udx) /qudx, u,v e WS'Z(Q)7
we have
(a+ br?) /Q Vi,V (uy, — u”*)dx

= Iy ), =) = [ 50, o, s

+ 2 ((a + brz)HVu,,jH% + /f(x, u,,/)unjdx) / U, (U, — ") dx
Q Q
— 0.
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Hence
IV (uy, — u*)||, — 0, as j — +oo.

(3) We show that ¢, is a critical value of I(u) in M,, i.e., there exists a u, , € M, such that
Cnyr = 2I(uy,) and I‘;VI,(”"-’) =0.

First, we show that Ve | 0T, there exists wu € 21 '[c,, — &, cu, + & such that
IZ/\/I, (uk) = O

On the contrary, suppose that there is a ¢ >0 such that
20 epr — €0, cnr +8) NK =0, where K={uc M,|I|;V,r(u) =0}. Let A.=
{u|2I(u) <c} and K, = {u|2I(u) = CJ“W,("‘) = 0}. From [17], let N be a neighourhood of
K., there exists a y(t,u) = n,(u) € C([0, 1] x W(;’z(Q)7 W(;‘Q(Q)) and ¢y > ¢ > 0 such that

(@ no(u) =uforall uc WS’Z(Q);

() n,(u) = u for all u € 217" [c,, — &, cnr + €] and for all 7 € [0,1];

(¢) #,(u) is a homeomorphism from WS’Z(Q) onto WS‘Z(Q) for all ¢+ € [0, 1];

(d)  1(n,(u)) <I(u) for all u € Wy>(Q), for all £ € [0, 1];

) M(Acre —N) CAcss

O I K =0 n(Acr) CAcs

(g) If fiseven, 5, is odd in u.
Since ¢, = infg, supyg2/< + oo, for O<e<eg, there is a A, CM, such that
Cnyr < SUp,eq 21(u) <y + 6. Let ¢ be replaced by ¢, + ¢ in the above (a)-(g). It infers
from (b) that y(A,) = n and y(17,(A,)) = 7(A,) = n. Since 21" [c,, — &0, Car + &) NK =
0 and & <eo, from (f), we have (A, +.) C Ae,,—» which together with A, C 21 [c,, —
& cnr + €] C A, 4. guarantees that #,(A,) C A,,—. also. Hence,

¢y =1infsup2I < sup 2I(u)<c,, —&.
N uen (Ay)

This is contradiction.
Second, obviously, {I(u)} is bounded and {I), () = 0}. The Palais-Smale condition

implies that {u; } has a convergent subsequence. Without loss of generality, we assume that
g — Uy, k — +o00.
It is easy to see that u,, € M, such that
Cnyr =20 (up,,)
and
I () (V) = 1720 () (1) - thn s (v), V0 € Wy (Q).

Let u,, = r~2I'(uy,)(un,). Note one has

(a+br?) / Vu, ,Vvdx + /f(x7 Uy )v(x)dx = '“n«,r/ Uy, vdx, Vv € W&Q. (2.10)
Q 0 Q

By u,, € M,, (2.6) becomes
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(a+b/ uﬁ rdx) / Vu,,,,.Vvdx—l—/f(x, u,,y,)v(x)dx:u,”/ iy, vdx,Vv € W01’27
(2.11)
i.e. problem (1.1) has a sequence eigenvalues {1, ,} with corresponding eigenfunctions

{un,}. Let v =u,,. Then (2.10) becomes

rz.“m = (a + brz)”vun.fﬂg + /f(x, ”n,r)”n,r‘dx~
Q
The proof is completed. O

Corollary 2.1 Let f = 0 and equation (1.1) becomes
—(a+b|lul3)Au = iu, xin Q,
u(x) =0, xondQ. (2.11),
Then, (2.11), has branches

Cp = {(a+br*)p,£m,)|r >0}, n=12,....

Proof From the L-S procedure in Theorem 2.1, (2.11), has exactly the eigenvalues ,ug_,

. . . . 0 0 _ . .
with the corresponding eigenfunction u, ,(||u, ||, = r) which satisfies
1 1
0 0 0 :
u, =AU u xin Q
2 7 n,r n,r 2 Yo )
5 a+br

a+ bl|uf
u’ (x) =0, xondQ.

o _ 0
_Aun.r = Wy

Al
Comparing (2.11), with (2.1),, we get

1 J—
a+brr

"
/L’ll

0
lun,r

and ugvr = kyu,, where u, is the corresponding eigenvalue function to 4, of (2.1), with
|lun||, = r. Moreover,

¢, = 20,) = (a+ bP)|Vid, I3, 1), = (a+ b (2.12)

n,r
: 0 _
Since u,, = k,u,, one has

0

r =y, [y = [knttally = [kalr,

which implies k, = =1 and ”gr = 4u,. Hence, (2.12) becomes

&, =20(w),) = (a+br)|[Vu|3, 1, = (a+br)i,.

n,r

From (2.2), we have

P = / IV Pex = [| Vi |2 = [ V22, |2,
Q
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and so

& =20ud ) = (a+br*)ri, MSJ = (a+ br*), (2.12)

which together with (2.3) implies that (2.11), has branches
Co={(a+br*) o, £m,)|r >0}, n=1,2,....

The proof is completed. O

3 Bifurcation results concerning the eigenvalues of some related linear
problem to (1.1)

In Sect. 2, we obtained the branches of solutions of (1.1) when f = 0. Now we consider the

case f Z 0.

Theorem 3.1 Let the assumptions of Theorem 2.1 be satisfied with p > 1 and d = 0 in the
growth assumption (Ay). Then each al, is a bifurcation point (in WS’Z(Q) ) for (1.1); more
precisely, for each n =1, 2, ---, the eigenvalue-eigenfunction pairs (,um7 u,,) given by

Theorem 2.1 satisfy f,, = @l + bl + O™ 2211 g5 1 — 0.

Proof Lety=p — 1. Then (see Lemma 2.1) we have

lull23) < el Vul3llully™" u € Wy?(9Q). (3.1)
Note (d =0 in (A;))
() — Du)] = | / Flx, u)dx| <c / P d. (3.2)
Q Q

Since
®(u) = (a+ br)||ul?,

from (3.1), we have

1 c
p+1 p—1 p—1
[ < e atulul ™ < S awuls

Hence,
/ P ax < Sy, Vue M,.
Q a
It infers from (3.2) that
€ p-1 € p-1
_ - < < b
(1 S )@(u)il(u)i (l—i—ar” )q:»(u),

and so

(1 - EW*‘) inf sup 26 (u) < inf sup 21(u) < (1 n frf’*‘) inf sup 20 (u),
a a

K., g K., g K., g
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(1_5,4’*1)027 <¢p,r < (l—i— - ),,r7

a

which implies that

C
0 0 —1
|Cnf - Cn,r < ;cn,rrp .

Now (2.9) guarantees that
len, | <er (33)
and so
lenr — ¢y, | < et

It deduces from Theorem 2.1 and (3.2) that

C"J’ = (a + brz)HVun,,H% + 2 / F(xv unjr)dx
Q

> (a+br) ||V, |} = 267 ||Vt |3
= (a+br* = 27|Vt |3,

which together with (3.3) implies that
< Cn,r
a+ br2 —2crp1
cn, Tor’t! (3.4)
~a-+brt —2cr-!
< cr?.

||v”n,r 5

From Theorem 2.1 and (3.1), (3.4), one has

lenr — rzun‘,| = ’2/ F(x, up,)dx — /f(x, Up,p ) Uy rdX
Q

<c Hvun rHM d +dr
<c(ep,)* +dr
<c ( +cr( ) +dr)* +dr,
Then
|r2.un,r - r2:u2,r| = |r21un,r = Cnyt Cpyp — Cgr + Cgr - r2u2r|
S‘rzﬂn,r_cl’l-f' +|C'1J_ | +|Cnr_r lunr|

<P 4 et 4 et
in{d,p+1
Scrmm{ P }’

which implies that

0 min{2,p—1
|‘unf - :un,rl <cr { }
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Consequently,
Hyyr = a/ln + bi,,rz + O(rlniﬂ{27p—l})'

The proof is completed. O

4 The asymptotic distribution of the eigenvalue p,, of (1.1)
In this section, we consider the asymptotic laws of the eigenvalue w, . of (1.1).

Lemma 4.1 Assume (A;) holds. For r >0 and n=1,2, ..., let y,,, ¢, be as in Theo-
rem 2.1, and let 1, be the eigenvalues of the linear problem (2.1),. Then

len, — CSJ‘ < crﬁ(cgyr)“ +dr (4.1)
and
len, — rz,un_’,.| < c(cgvr + cr/‘(cgrr)i +dr)* +dr, (4.2)

where o« = (p — 1)N/4 and = (p+ 1) — (p — 1)N/2; here and henceforth ¢, d denote
some, but not always the same, positive constants.

Proof First notice that the growth assumption (A;) implies

’/ F(x,u)dx Sc/ |u|p+ldx+d/ |u|dx,
Q Q Q

’/f(x,u)udx Sc/|u\p+1dx+d/|u\dx.
Q Q Q

Next, as 1 <p<p, from Lemma 2.1, if fQ u?dx = r*, we have

‘ /Q Flx, u)dx

and similarly

< c||Vu||§°‘rﬁ +dr

1 o
e= c<m (a +br2)\|VuH§) P+ dr (4.3)

< c(l)a(d%u))“rﬁ +dr

a

and similarly

/Q £, u)udx| < c(é)a(d%u))“rﬁ + dr, (4.4)

with o and f§ as in the statement of Lemma 4.1.
To prove (4.1), observe that (4.3) implies
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1) = B(u) + /Q Flx, u)dx
<®d(u) + crf(du)) + dr
holds ( ¢ instead of ¢(1)*). In other words, we have
() < g(®(u))
where g : Rt — R" is defined by
g(t) =t +crft* + dr.
As g is continuous and nondecreasing, we get

inf sup I(u) < inf sup g(@(u)) = g(inf sup P(u)).
Kur KeK,, Kur kekK,, Kur KeK,,

Now Theorem 2.1 implies that
Cnr < 2g(62$ )=c¢,, + crﬁ( W) +dr

for some new constants ¢ and d > 0. Therefore,

|Cur —c° |<cr (c m) + dr,
which shows (4.1) is true.
Since
enr = (a4 br2) iy |+ 2 /Q Fx, u)d,
we have

(a+ brz)HVMn,rH% =Cpy — 2/9F(x7 Uy, )dx.

It deduces from Theorem 2.1 and (4.3)-(4.4) that

‘C",’ - r2/”’n.r| = ’2/ F(-x7 umr)dx - /f(xa unﬁr)un,rdx
: Q Q

< |V, 377 + ar
<c(eny)* +dr
S (llr+cr( ) +dr) +dr7

which completes the proof of the lemma.

Lemma 4.2 (Theorem 2, [5]) The eigenvalues 1, of (2.1); satisfy, as n — 400
I = kn?/N 4 O(nl/N logn), n=1,2,---,

where
k= (2n)*(v) "

and V is the value of B(0,1).

(4.6)

(4.7)
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Theorem 4.1 Assume that (Ay) holds. Then given any r > 0, (1.1) has infinitely many
eigenfunctions u, ,(n = 1,2, ...) with [, uﬁ,rdx = 12, whose corresponding eigenvalues Py
satisfy, as n — 400 and with k as in (4.7),

by = (a+ b)Y 1 0(n' Y logn),

where p is defined in (A;).

Proof Since condition (A;) is true, Theorem 2.1 guarantees that for given any r > 0, (1.1)
has infinitely many eigenfunctions u,,(n = 1,2, ...) with [, uﬁﬁrdx =7

Now p<p = min{2* — 1,1 +4/N} guarantees that o = (p — 1)(N/4) <1. Thus, (4.3)
guarantees that

Cnr = Cn, +0((c,)")
= (a+br*)r*i, + 0((02;)1)
= (a+br*)r* i, + 002

and

(car) = 0(2),

which together (4.1) and (4.2) implies that
|r2:un,r - Cg,r = |r2:un,r = Cnr + Cpyr — Cg,r|
< ‘rzlun,r - CﬂJ' + |CVH’ - CO

n,rl
<c(ey,) +erl(c,)”

= 0(4),
and so
rzyn_’, = 62’, +0(2;) = ?(a+br*)l, + o(4).

Consequently

o, = (a+ brz)in +O(X).
Since

I = kn*N + 0(n'/V logn),
we have

t, = (a+ br)kn*™ + 0(n'/Nlogn) + O((kn*N + O(n'N logn))*)
= (a+ br)kn®N + 0(n'/N logn).

The proof is completed. (I
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