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Abstract
In this paper, we consider the existence of eigenvalues and relative eigenfunctions for

Carrier equations and present spectral asymptotics and bifurcation concerning the eigen-

values of some related elliptic linear problem.
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1 Introduction

In this paper, we consider the following nonlocal elliptic problem

� aþ b

Z
X
juðxÞj2dx

� �
Duþ f ðx; uÞ ¼ ku; x in X;

uðxÞ ¼ 0; x on oX;

ð1:1Þ

where X � RN (N � 1) is a smooth and bounded domain, and a[ 0, b[ 0.

Problem (1.1) is related to the stationary analogue of the equation

utt � aþ b

Z p

0

juj2dx
� �

uxx ¼ 0

proposed by Carrier [6] which describes the vibration of the elastic string when the change

of the tension is not very little.
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For the case b ¼ 0, problem (1.1) is changed as

�aDuþ f ðx; uÞ ¼ ku; x in X;

uðxÞ ¼ 0; x on oX:
ð1:2Þ

and some authors considered the spectral asymptotics, bifurcation and the normalized

solutions for problem (1.2) via variational method, see [5, 7, 8, 18–21, 23–25].

Since � aþ b
R
X juðxÞj2dx

� �
Du is lack of variational structure, it is difficult to study

problem (1.1) via variational method. Some authors focus on the existence of positive

solutions for problem (1.1) or some generalized cases only via the theory of topological

theory, the method of lower and upper solutions and pseudomontone operators theory

when k is fixed, see [1–3, 9–13, 26–28]. For examples in [26] and [27], authors considered

the following problem

�a

Z
X
juðxÞjcpdx

� �
Du ¼ kuq þ up; x in X;

uðxÞ ¼ 0; x on oX;

ð1:3Þ

where c� 1, 0\q� 1, p[ 1, a : R ! ð0;þ1Þ is a continuous function with

inft2R aðtÞ ¼ að0Þ[ 0; using the theory of fixed point index on cone, the authors proved

that there exist 0\k1 � k2 such that (1.3) has no positive solutions for k[ k2, at least a

positive solution for k ¼ k1 and k2 and at least two positive solutions for k 2 ð0; k1Þ; in

[14], combing sub-super and bifurcation methods, the authors showed that there exists a

drastic change on the structure of the set of positive solutions when the non-local coeffi-

cient grows fast enough to infinity for problem (1.3).

Our aim is to present some results on spectral asymptotics and bifurcation for problem

(1.1).

This paper is organized as follows. In Sect. 2, using the Liusternik–Schnirelmann (LS)

theory, we obtain, given any r[ 0, the existence of infinitely many eigenvalues ln;r(
n ¼ 1; 2; � � �) for problem (1.1) associated with eigenfunctions un;r satisfyingR
X u2

n;rðxÞdx ¼ r2. And then Sect. 3 presents bifurcation and comparison results concerning

the eigenvalues of some related linear problems ð2:1Þk. In Sect. 4, we discuss the

asymptotic laws of the eigenvalues ln;r of problem (1.1) as n ! þ1 when f is superlinear

at þ1. Our paper was motivated in part by the papers [7, 8, 15, 16, 18, 21, 22].

2 Existence of the eigenvalues of problem (1.1)

It is easy to see that problem (1.1) is equivalent to its weak formulation, namely that of

finding u 2 W1;2
0 ðXÞ and k 2 R such that

aþ b

Z
X
u2ðxÞdx

� �Z
X
ru � rvdxþ

Z
X
f ðx; uÞvdx ¼ k

Z
X
uvdx

for all v 2 W1;2
0 ðXÞ, where W1;2

0 ðXÞ denote the closure of C1
0 ðXÞ in the Sobolev space

W1;2ðXÞ with the scalar product ðu; uÞ ¼
R
X ru � rudx and the corresponding norm

kuk ¼ ð
R
X jruj2dxÞ

1
2, while kukp denotes the norm of u 2 LpðXÞ.

For r[ 0, let
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Mr :¼ u 2 W1;2
0 ðXÞj

Z
X
u2dx ¼ r2

� �

and for each n ¼ 1, 2, . . ., set

Kn;r ¼ fK � Mr : K compact, symmetric; cðKÞ ¼ ng

where cðKÞ denotes the genus of K. For fixed r[ 0 and for u 2 W1;2
0 ðXÞ, define

UðuÞ :¼ ðaþ br2Þ 1

2
kruk2

2; WðuÞ :¼
Z
X
Fðx; uðxÞÞdx

and

IðuÞ :¼ UðuÞ þWðuÞ;

where

Fðx; uðxÞÞ ¼
Z uðxÞ

0

f ðx; sÞds:

It is well known that the linear elliptic problem

�Du ¼ ku; x in X;

uðxÞ ¼ 0; x on oX; ð2:1Þk
has eigenvalues k1\k2 � � � � � kn � � � � and the corresponding eigenfunction to kn is un
with un 2 Mr, see [7]. For each eigenvalue kn, multiplying un and integrating on X for

ð2:1Þk, we have

r2kn ¼
Z
X
u2
ndxkn ¼

Z
X
jrunj2dx: ð2:2Þ

Since the set of all eigenfunctions corresponding to kn is a linear space, if we choose vn is a

eigenfunction of kn with
R
X jvnj2dx ¼ 1, then the eigenfunction un of kn with un 2 Mr can

be written as un ¼ lnvn. From

r2 ¼
Z
X
junj2dx ¼

Z
X
jlnvnj2dx ¼ l2n

Z
X
jvnj2dx;

we get ln ¼ �r, i.e.,

un ¼ �rvn; n ¼ 1; 2; . . .; ð2:3Þ

which together with (2.2) gives

r2kn ¼
Z
X
jrunj2dx ¼

Z
X
jrð�rvnÞj2dx ¼ r2

Z
X
jrvnj2dx;

and so

kn ¼
Z
X
jrvnj2dx:
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Now, we introduce (see [4]) the ‘‘LS critical levels’’

cn;r :¼ inf
Kn;r

sup
K

2I: ð2:4Þ

The following lemma is needed in our proof.

Lemma 2.1 (See [8]) Let p : 1� p� p0 ¼ ðN þ 2Þ=ðN � 2Þ (so that 2� pþ 1� 2�) and
let b ¼ ðN=2�Þð2� � ðpþ 1ÞÞ. Then, for each c : 0� c� b, there exists c[ 0 such that

kukpþ1
pþ1 � ckrukpþ1�c

2 kukc2 ð2:5Þ

for all u 2 W1;2
0 ðXÞ. (Here and henceforth kukp denotes the norm of u in LpðXÞ.)

We will consider the following condition:

ðA1Þf : X	 R ! R is continuous, f ðx;�uÞ ¼ �f ðx; uÞ and satisfies

jf ðx; uÞj � cjujp þ d

for some c, d� 0 and some 0� p\p ¼ minf2� � 1; 1 þ 4=Ng.

From the LS theory, we have the following existence result.

Theorem 2.1 Assume ðA1Þ holds. Then, for given r[ 0, there exists a sequence fun;rg of

(weak) eigenfunctions of (1.1) belonging to Mr, and such that

2Iðun;rÞ ¼ cn;r

where cn;r is as in (2.4); the eigenvalue ln;r corresponding to un;r satisfies

r2ln;r ¼ ðaþ br2Þkrun;rk2
2 þ

Z
X
f ðx; un;rÞun;rdx:

Proof The proof is divided into three steps.

Step 1. We show that

�1\cn;r ¼ inf
Kn;r

sup
K

2I\þ1:

First, ðA1Þ and Schwarz’s inequality imply that

Z
X
jFðx; uðxÞÞjdx� c

Z
X
jujpþ1dxþ d

Z
X
juj2dx

� �1
2

ð2:6Þ

for some new constants c, d[ 0.

Moreover, we use the inequality (2.5) with c ¼ b: on setting

2a ¼ pþ 1 � b ¼ ðp� 1ÞN=2, (2.6) becomes

Z
X
jujpþ1dx� c0kruk2a

2

Z
X
u2dx

� �b
2

: ð2:7Þ

Next, from (2.6) and (2.7), for u 2 Mr, we have
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IðuÞe�ðaþ br2Þ 1

2
kruk2

2 þ
Z
X
Fðx; uðxÞÞdx

�ðaþ br2Þ 1

2
kruk2

2 þ c

Z
X
jujpþ1dxþ d

Z
X
juj2dx

� �1
2

�ðaþ br2Þ 1

2
kruk2

2 þ c0kruk2a
2 ðrbÞ þ dr;

which together with the compactmess of K 
 Kn;r implies that

sup
u2K

2IðuÞ\þ1: ð2:8Þ

Finally, from (2.6) and (2.7), for u 2 Mr , we have also

IðuÞ� ðaþ br2Þ 1

2
kruk2

2 �
Z
X
jFðx; uðxÞÞjdx

�ðaþ br2Þ 1

2
kruk2

2 � ½cc0rbkruk2a
2 þ dr�:

ð2:9Þ

The assumption p\minf2� � 1; 1 þ 4=Ng is equivalent to 2a\2, which implies that I is

bounded below on Mr (for each r).
Consequently,

�1\cn;r ¼ inf
Kn;r

sup
K

2I\þ1:

(2) We show that I satisfies the Palais-Smale condition (PS) on Mr, i.e., for c 6¼ 0, e[ 0

small enough, un 2 I�1½c� e; cþ e� \Mr and kI0Mr
ðunÞk ! 0, then there is a u 2 Mr and a

subsequence funjg such that

krðunj � uÞk2 ! 0:

Now (2.9) and the boundedness of fIðunÞg with fung � Mr guarantees that fung is

bounded W1;2
0 ðXÞ, which implies that there exist u� 2 W1;2

0 ðXÞ and subsequence funjg of

fung such that unj * u�, as j ! þ1. Since

I0Mr
ðuÞðvÞ ¼ I0ðuÞðvÞ � r�2I0ðuÞðuÞ

Z
X
uvdx

¼ ðaþ br2Þ
Z
X
rurvdxþ

Z
X
f ðx; uÞvdx

� r�2 ðaþ br2Þkruk2
2 þ

Z
X
f ðx; uÞudx

� �Z
X
uvdx; u; v 2 W1;2

0 ðXÞ;

we have

ðaþ br2Þ
Z
X
runjrðunj � u�Þdx

¼ I0Mr
ðunjÞðunj � u�Þ �

Z
X
f ðx; unjÞðunj � u�Þdx

þ r�2 ðaþ br2Þkrunjk
2
2 þ

Z
X
f ðx; unjÞunjdx

� �Z
X
unjðunj � u�Þdx

! 0:
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Hence

krðunj � u�Þk2 ! 0; as j ! þ1:

(3) We show that cn;r is a critical value of I(u) in Mr, i.e., there exists a un;r 2 Mr such that

cn;r ¼ 2Iðun;rÞ and Ij0Mr
ðun;rÞ ¼ 0.

First, we show that 8ek # 0þ, there exists uk 2 2I�1½cn;r � ek; cn;r þ ek� such that

I0Mr
ðukÞ ¼ 0.

On the contrary, suppose that there is a e0 [ 0 such that

2I�1½cn;r � e0; cn;r þ e0� \ K ¼ ;, where K ¼ fu 2 MrjIj0Mr
ðuÞ ¼ 0g. Let Ac ¼

fuj2IðuÞ� cg and Kc ¼ fuj2IðuÞ ¼ c; Ij0Mr
ðuÞ ¼ hg. From [17], let N be a neighourhood of

Kc, there exists a gðt; uÞ ¼ gtðuÞ 2 Cð½0; 1� 	W1;2
0 ðXÞ;W1;2

0 ðXÞÞ and e0 [ e[ 0 such that

(a) g0ðuÞ ¼ u for all u 2 W1;2
0 ðXÞ;

(b) gtðuÞ ¼ u for all u 2 2I�1½cn;r � e0; cn;r þ e0� and for all t 2 ½0; 1�;
(c) gtðuÞ is a homeomorphism from W1;2

0 ðXÞ onto W1;2
0 ðXÞ for all t 2 ½0; 1�;

(d) IðgtðuÞÞ� IðuÞ for all u 2 W1;2
0 ðXÞ, for all t 2 ½0; 1�;

(e) g1ðAcþe � NÞ 
 Ac�e;

(f) If Kc ¼ ;, g1ðAcþeÞ 
 Ac�e;

(g) If f is even, gt is odd in u.

Since cn;r ¼ infKn;r
supK 2I\þ1, for 0\e\e0, there is a An � Mr such that

cn;r � supu2An
2IðuÞ� cn;r þ e. Let c be replaced by cn;r þ e in the above (a)-(g). It infers

from (b) that cðAnÞ ¼ n and cðg1ðAnÞÞ ¼ cðAnÞ ¼ n. Since 2I�1½cn;r � e0; cn;r þ e0� \ K ¼
; and e\e0, from (f), we have g1ðAcn;rþeÞ 
 Acn;r�e, which together with An 
 2I�1½cn;r �
e; cn;r þ e� � Acn;rþe guarantees that g1ðAnÞ 
 Acn;r�e also. Hence,

cn;r ¼ inf
Kn;r

sup
K

2I� sup
u2g1ðAnÞ

2IðuÞ� cn;r � e:

This is contradiction.

Second, obviously, fIðukÞg is bounded and fI0Mr
ðukÞ ¼ 0g. The Palais-Smale condition

implies that fukg has a convergent subsequence. Without loss of generality, we assume that

uk ! un;r; k ! þ1:

It is easy to see that un;r 2 Mr such that

cn;r ¼ 2Iðun;rÞ

and

I0ðun;rÞðvÞ ¼ r�2I0ðun;rÞðun;rÞ � un;rðvÞ; 8v 2 W1;2
0 ðXÞ:

Let ln;r ¼ r�2I0ðun;rÞðun;rÞ. Note one has

ðaþ br2Þ
Z
X
run;rrvdxþ

Z
X
f ðx; un;rÞvðxÞdx ¼ ln;r

Z
X
un;rvdx; 8v 2 W1;2

0 : ð2:10Þ

By un;r 2 Mr , (2.6) becomes

SN Partial Differential Equations and Applications

30 Page 6 of 14 SN Partial Differ. Equ. Appl. (2020) 1:30



aþ b

Z
X
u2
n;rdx

� �Z
X
run;rrvdxþ

Z
X
f ðx; un;rÞvðxÞdx ¼ ln;r

Z
X
un;rvdx; 8v 2 W1;2

0 ;

ð2:11Þ

i.e. problem (1.1) has a sequence eigenvalues fln;rg with corresponding eigenfunctions

fun;rg. Let v ¼ un;r . Then (2.10) becomes

r2ln;r ¼ ðaþ br2Þkrun;rk2
2 þ

Z
X
f ðx; un;rÞun;rdx:

The proof is completed. h

Corollary 2.1 Let f � 0 and equation (1.1) becomes

�ðaþ bkuk2
2ÞDu ¼ ku; x in X;

uðxÞ ¼ 0; x on oX: ð2:11Þk
Then, ð2:11Þk has branches

Cn ¼ fðaþ br2Þkn;�rvnÞjr[ 0g; n ¼ 1; 2; . . .:

Proof From the L-S procedure in Theorem 2.1, ð2:11Þk has exactly the eigenvalues l0
n;r

with the corresponding eigenfunction u0
n;r(ku0

n;rk2 ¼ r) which satisfies

�Du0
n;r ¼ l0

n;r

1

aþ bku0
n;rk

2
2

u0
n;r ¼ l0

n;r

1

aþ br2
u0
n;r; x in X;

u0
n;rðxÞ ¼ 0; x on oX:

8><
>:

Comparing ð2:11Þk with ð2:1Þk, we get

l0
n;r

1

aþ br2
¼ kn

and u0
n;r ¼ knun, where un is the corresponding eigenvalue function to kn of ð2:1Þk with

kunk2 ¼ r. Moreover,

c0
n;r ¼ 2Uðu0

n;rÞ ¼ ðaþ br2Þkru0
n;rk

2
2; l0

n;r ¼ ðaþ br2Þkn: ð2:12Þ

Since u0
n;r ¼ knun, one has

r ¼ ku0
n;rk2 ¼ kknunk2 ¼ jknjr;

which implies kn ¼ �1 and u0
n;r ¼ �un. Hence, (2.12) becomes

c0
n;r ¼ 2Uðu0

n;rÞ ¼ ðaþ br2Þkrunk2
2; l0

n;r ¼ ðaþ br2Þkn:

From (2.2), we have

r2kn ¼
Z
X
jrunj2dx ¼ krunk2

2 ¼ kru0
n;rk

2
2;
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and so

c0
n;r ¼ 2Uðu0

n;rÞ ¼ ðaþ br2Þr2kn; l0
n;r ¼ ðaþ br2Þkn; ð2:12Þ

which together with (2.3) implies that ð2:11Þk has branches

Cn ¼ fðaþ br2Þkn;�rvnÞjr[ 0g; n ¼ 1; 2; . . .:

The proof is completed. h

3 Bifurcation results concerning the eigenvalues of some related linear
problem to (1.1)

In Sect. 2, we obtained the branches of solutions of (1.1) when f � 0. Now we consider the

case f 6� 0.

Theorem 3.1 Let the assumptions of Theorem 2.1 be satisfied with p[ 1 and d ¼ 0 in the

growth assumption ðA1Þ. Then each akn is a bifurcation point (in W1;2
0 ðXÞ) for (1.1); more

precisely, for each n ¼ 1, 2, � � �, the eigenvalue-eigenfunction pairs ðln;r; un;rÞ given by

Theorem 2.1 satisfy ln;r ¼ akn þ bknr2 þ Oðrminf2;p�1gÞ as r ! 0.

Proof Let c ¼ p� 1. Then (see Lemma 2.1) we have

kukpþ1
pþ1 � ckruk2

2kuk
p�1
2 ; u 2 W1;2

0 ðXÞ: ð3:1Þ

Note (d ¼ 0 in ðA1Þ)

jIðuÞ � UðuÞj ¼ j
Z
X
Fðx; uÞdxj � c

Z
X
jujpþ1dx: ð3:2Þ

Since

UðuÞ ¼ ðaþ br2Þkuk2;

from (3.1), we have

Z
X
jujpþ1dx� c

1

aþ br2
UðuÞkukp�1

2 � c

a
UðuÞkukp�1

2 :

Hence,

Z
X
jujpþ1dx� c

a
UðuÞrp�1; 8u 2 Mr:

It infers from (3.2) that

1 � c

a
rp�1

� �
UðuÞ� IðuÞ� 1 þ c

a
rp�1

� �
UðuÞ;

and so

1 � c

a
rp�1

� �
inf
Kn;r

sup
K

2UðuÞ� inf
Kn;r

sup
K

2IðuÞ� 1 þ c

a
rp�1

� �
inf
Kn;r

sup
K

2UðuÞ;
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i.e.

1 � c

a
rp�1

� �
c0
n;r � cn;r � 1 þ c

a
rp�1

� �
c0
n;r;

which implies that

jcn;r � c0
n;rj �

c

a
c0
n;rr

p�1:

Now (2.9) guarantees that

jc0
n;rj � cr2 ð3:3Þ

and so

jcn;r � c0
n;rj � crpþ1:

It deduces from Theorem 2.1 and (3.2) that

cn;r ¼ ðaþ br2Þkrun;rk2
2 þ 2

Z
X
Fðx; un;rÞdx

�ðaþ br2Þkrun;rk2
2 � 2crp�1krun;rk2

2

¼ ðaþ br2 � 2crp�1Þkrun;rk2
2;

which together with (3.3) implies that

krun;rk2
2 �

cn;r
aþ br2 � 2crp�1

�
c0
n;r þ crpþ1

aþ br2 � 2crp�1

� cr2:

ð3:4Þ

From Theorem 2.1 and (3.1), (3.4), one has

jcn;r � r2ln;rj ¼ 2

Z
X
Fðx; un;rÞdx�

Z
X
f ðx; un;rÞun;rdx

����
����

� ckrun;rk2a
2 rb þ dr

� cðcn;rÞa þ dr

� cðc0
n;r þ crbðc0

n;rÞ
a þ drÞa þ dr;

Then

jr2ln;r � r2l0
n;rj ¼ jr2ln;r � cn;r þ cn;r � c0

n;r þ c0
n;r � r2l0

n;rj
� jr2ln;r � cn;rj þ jcn;r � c0

n;rj þ jc0
n;r � r2l0

n;rj
� c1r

pþ1 þ c2r
pþ1 þ c3r

4

� crminf4;pþ1g;

which implies that

jln;r � l0
n;rj � crminf2;p�1g:
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Consequently,

ln;r ¼ akn þ bknr
2 þ Oðrminf2;p�1gÞ:

The proof is completed. h

4 The asymptotic distribution of the eigenvalue ln,r of (1.1)

In this section, we consider the asymptotic laws of the eigenvalue ln;r of (1.1).

Lemma 4.1 Assume ðA1Þ holds. For r[ 0 and n ¼ 1; 2; :::, let ln;r , cn;r be as in Theo-

rem 2.1 , and let kn be the eigenvalues of the linear problem ð2:1Þk. Then

jcn;r � c0
n;rj � crbðc0

n;rÞ
a þ dr ð4:1Þ

and

jcn;r � r2ln;rj � cðc0
n;r þ crbðc0

n;rÞ
a þ drÞa þ dr; ð4:2Þ

where a ¼ ðp� 1ÞN=4 and b ¼ ðpþ 1Þ � ðp� 1ÞN=2; here and henceforth c, d denote

some, but not always the same, positive constants.

Proof First notice that the growth assumption ðA1Þ implies
Z
X
Fðx; uÞdx

����
����� c

Z
X
jujpþ1dxþ d

Z
X
jujdx;

and similarly

Z
X
f ðx; uÞudx

����
����� c

Z
X
jujpþ1dxþ d

Z
X
jujdx:

Next, as 1� p\p, from Lemma 2.1, if
R
X u2dx ¼ r2, we have

Z
X
Fðx; uÞdx

����
����� ckruk2a

2 rb þ dr

e ¼ c
1

aþ br2
ðaþ br2Þkruk2

2

� �a

rb þ dr

� c
1

a

� �a

ðUðuÞÞarb þ dr

ð4:3Þ

and similarly

Z
X
f ðx; uÞudx

����
����� c

1

a

� �a

ðUðuÞÞarb þ dr; ð4:4Þ

with a and b as in the statement of Lemma 4.1.

To prove (4.1), observe that (4.3) implies
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IðuÞ ¼ UðuÞ þ
Z
X
Fðx; uÞdx

�UðuÞ þ crbðUðuÞÞa þ dr

holds ( c instead of cð1
aÞ

a
). In other words, we have

IðuÞ� gðUðuÞÞ

where g : Rþ ! Rþ is defined by

gðtÞ ¼ t þ crbta þ dr:

As g is continuous and nondecreasing, we get

inf
Kn;r

sup
K2Kn;r

IðuÞ� inf
Kn;r

sup
K2Kn;r

gðUðuÞÞ ¼ gðinf
Kn;r

sup
K2Kn;r

UðuÞÞ:

Now Theorem 2.1 implies that

cn;r � 2gðc0
n;rÞ ¼ c0

n;r þ crbðc0
n;rÞ

a þ dr

for some new constants c and d[ 0. Therefore,

jcn;r � c0
n;rj � crbðc0

n;rÞ
a þ dr; ð4:5Þ

which shows (4.1) is true.

Since

cn;r ¼ ðaþ br2Þkun;rk2
2 þ 2

Z
X
Fðx; uÞdx;

we have

ðaþ br2Þkrun;rk2
2 ¼ cn;r � 2

Z
X
Fðx; un;rÞdx:

It deduces from Theorem 2.1 and (4.3)-(4.4) that

jcn;r � r2ln;rj ¼ 2

Z
X
Fðx; un;rÞdx�

Z
X
f ðx; un;rÞun;rdx

����
����

� ckrun;rk2a
2 rb þ dr

� cðcn;rÞa þ dr

� cðc0
n;r þ crbðc0

n;rÞ
a þ drÞa þ dr;

which completes the proof of the lemma. h

Lemma 4.2 (Theorem 2, [5]) The eigenvalues kn of ð2:1Þk satisfy, as n ! þ1

kn ¼ kn2=N þ Oðn1=N log nÞ; n ¼ 1; 2; � � � ; ð4:6Þ

where

k ¼ ð2pÞ2ðVÞ�2=N ð4:7Þ

and V is the value of Bðh; 1Þ.
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Theorem 4.1 Assume that ðA1Þ holds. Then given any r[ 0, (1.1) has infinitely many

eigenfunctions un;rðn ¼ 1; 2; :::Þ with
R
X u2

n;rdx ¼ r2, whose corresponding eigenvalues ln;r
satisfy, as n ! þ1 and with k as in (4.7),

ln;r ¼ ðaþ br2Þkn2=N þ Oðn1=N log nÞ;

where p is defined in ðA1Þ.

Proof Since condition ðA1Þ is true, Theorem 2.1 guarantees that for given any r[ 0, (1.1)

has infinitely many eigenfunctions un;rðn ¼ 1; 2; :::Þ with
R
X u2

n;rdx ¼ r2.

Now p\p ¼ minf2� � 1; 1 þ 4=Ng guarantees that a ¼ ðp� 1ÞðN=4Þ\1. Thus, (4.3)

guarantees that

cn;r ¼ c0
n;r þ Oððc0

n;rÞ
aÞ

¼ ðaþ br2Þr2kn þ Oððc0
n;rÞ

aÞ
¼ ðaþ br2Þr2kn þ OðkanÞ

and

ðcn;rÞa ¼ ððaþ br2Þr2kn þ OðkanÞÞ
a

¼ OðkanÞ;

ðcn;rÞ
1
2 ¼ Oðk1

2
nÞ;

which together (4.1) and (4.2) implies that

jr2ln;r � c0
n;rj ¼ jr2ln;r � cn;r þ cn;r � c0

n;rj
� jr2ln;r � cn;rj þ jcn;r � c0

n;rj
� cðc0

n;rÞ
a þ crbðc0

n;rÞ
a

¼ OðkanÞ;

and so

r2ln;r ¼ c0
n;r þ OðkanÞ ¼ r2ðaþ br2Þkn þ OðkanÞ:

Consequently

ln;r ¼ ðaþ br2Þkn þ OðkanÞ:

Since

kn ¼ kn2=N þ Oðn1=N log nÞ;

we have

ln;r ¼ ðaþ br2Þkn2=N þ Oðn1=N log nÞ þ Oððkn2=N þ Oðn1=N log nÞÞaÞ
¼ ðaþ br2Þkn2=N þ Oðn1=N log nÞ:

The proof is completed. h
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