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Abstract
A new existence criteria of strictly convex solutions is established for the singular Monge—
Ampere equations

{det(Dzu) = b(x)f (—u) + g(|Dul) in Q,
u=0 on 0Q,

and

{der<02u> — b(x)f (—u)(1 +g(|Dul)) in 2,
u=0 on 0Q.

Under b, f and g satisfying suitable conditions, we prove that the above boundary value
problems admit a strictly convex solution, which turns out that this case is more difficult to
handle than Monge—-Ampére problems without gradient terms and needs some new
ingredients in the arguments. Then we show the asymptotic behavior of strictly convex
solutions under appropriate conditions. On the technical level, we adopt the sub-super-
solution method and the Karamata regular variation theory.
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1 Introduction

Let Q be a strictly convex, bounded smooth domain in R" with n>2. We study the
existence and boundary asymptotic behavior of strictly convex solutions to the singular
Monge—-Ampere equations

det(D*u) = b(x)f(—u) + g(|Du|) in Q,
{ u=0 on 0Q, ()
and
{det(Dzu) = b(x)f(—u)(1+ g(|Dul)) in Q, (Ts)
u=0 on 0Q,

where det(D?u) is the Monge-Ampére operator, b € C*(Q) is positive in Q, f €
C>(0, +00) is positive and decreasing, and g € C*°(0, +00) is positive and nondecreasing.

The Monge—Ampere equation is a fully nonlinear equation arising in geometric prob-
lems, fluid mechanics and other applied subjects. For example, Monge—Ampére equation
can describe Weingarten curvature, or reflector shape design (see [1]). In recent years,
increasing attention has been paid to the study of the Monge—Ampére equation by different
methods (see [2-10]).

At the same time, we notice that the boundary asymptotic behavior of solutions of
singular elliptic problems has attracted the attention of Crandall, Rabinowitz and Tartar
[11], Ghergu and Rdadulescu [12], Lazer and McKenna [13], Zhang [14], Zhang and Li
[15], Zhang and Feng [16, 17], Alsaedi, Maagli, and Zeddini [18], Dumont, Dupaigne,
Goubet, and Radulescu [19], Zhang and Bao [20], Huang, Li, and Wang [21], and Huang
[22]. Especially, let us review several excellent results related to our problem of Monge—
Ampere equations. In [23], Loewner and Nirenberg considered the existence of solution for
the Monge—Ampere problem

(1.1)

det (D*u) = u="*? in Q,
u=0 on 0Q,

when n = 2. In [24], Cheng and Yau studied problem (1.1) in a more general case n>2
and obtained the existence results of problem (1.1).
In [25], Lazer and McKenna presented a unique result for the Monge—Ampére problem

{ det (D*u) = b(x)u™" in Q,

1.2
u=0 on 0Q, (12)

where y > land b € C Oc(Q) is positive. Applying regularity theory and sub-supersolution
method, they got a unique solution u satisfying u € C2(Q) N C(Q), and they proved that
there exist two negative ¢; and ¢;, such that u satisfies

c1d(x)! <u(x) < crd(x)’ in Q,

where f§ = % and d(x) = dist(x, 0Q).
Recently, Mohammed [26] established the existence and the global estimates of solu-
tions of the Monge—Ampere problem:
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{ det (D*u) = b(x)f(—u) in Q, (1.3)

u=0 on 0Q,

where Q € R*(n>2), f € C*(0, c0) is positive and decreasing, and b € C*°(Q) is positive
in Q.

Very recently, Li and Ma [27] studied the existence and the boundary asymptotic
behavior of solutions of problem (1.3) by using regular variation theory and sub-super-
solution method. An overview of the asymptotic behaviour of solutions of elliptic problems
can be found in Ghergu and Radulescu [28].

Moreover, it is well known that the Monge—Ampeére operator is a fully nonlinear partial
differential operator, and we notice that some fully nonlinear elliptic operators have
attracted the attention of Dai [29], Jiang, Trudinger and Yang [30], Guan and Jiao [31],
Jian, Wang and Zhao [32], Ji and Bao [33], Caffarelli, Li and Nirenberg [34], Amendola,
Galise and Vitolo [35], Galise and Vitolo [36], Capuzzo-Dolcetta, Leoni and Vitolo [37],
Bardi and Cesaroni [38], and Lazer and McKenna [25]. For the other latest related papers,
see Zhang [39], and Feng and Zhang [40].

However, to the best of our knowledge, there is almost no paper on the existence and
boundary asymptotic behavior of strictly convex solutions to singular Monge-Ampere
equations with nonlinear gradient terms.

We suppose that f satisfies:

(fi) f € C®(0,400),f(s) > O,Eiﬂrr(l)f(s) = 400, f is decreasing on (0, +00), and there

exist positive d and c; such that f(u) < s
(f2) there exists Cy > 0 such that

5 d,L_
lim H’ —_=-C
Jm HG) ) ’

where

H(E) = [0+ DFEF, Flo) = [ " Fls)ds,

and a is a positive constant. Since what we will consider is that f{s) as s — 0, that is,
the constant a is not a matter of cardinal significance.

*()  Jr
/0 m:t. (L.4)

Let ¢ satisfy

Moreover we assume that b satisfies

(b1) b e C>®(Q) is positive in Q;
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(b2) there exist 0 € C'(0,a), which is positive, monotone, and positive b, b such that

b= lim inf b(x) < lim b(x)

im inf ————— sup—————— = b, 1.5
d(x)—~0xeQ 0" (d(x)) ~ dw)—0 e 0" (d(x)) (1.5)

where d(x) = dist(x,Q), and we let ©(f) = [, 0(s)ds, and there exists Dy such that
ACIONY
1 —— | = Dy.
0" ( e(r)) ’

(g1) g € C*(0,00) is positive and nondecreasing on (0, co),
(g2) there exist constant ¢, and 0 < g <n such that

Finally we assume that g satisfies

g(x) <cpx. (1.6)

The first main result of the present paper is on the existence of strictly convex solutions
to problem I' + (I').

Theorem 1.1 Let Q be a smooth, bounded, strictly convex domain in R". If (f1), (b1), (1)
and (g2) hold, then problem T + (I'x) admits a unique strictly convex solution.

The second main result of this paper is on the boundary asymptotic behavior of strictly
convex solutions to problem T + (I'x).

For convenience’s sake, we introduce the notations:

n—1

n—1
My = max 11 Ki(x), mo = min 11 i(x),
where K1(X), ..., Kk,—1(X) denote the principal curvatures of 0Q at the point X.

Theorem 1.2 Let Q be a smooth, bounded, strictly convex domain in R". Suppose f
satisfies (f1), (f2), b satisfies (b1), (by), and g satisfies (g1) and (g2), if

Cf > 1— Dy, (1.7)

then for any strictly convex solution u(x) to T + (I'x), it holds

. u(x) inf_ "X
S Fed) a0 -0xe0 —(—EO(d(x)))’

where
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2 Preliminaries

To consider the asymptotic behavior of strictly convex solution to problem I' + (I'x), we
will use Karamata regular variation theory which was introduced and established by
Karamata in 1930, and it is a fundamental tool in stochastic processes (see
[27, 39, 41-43]). In this part, we present some basic facts of Karamata regular variation
theory, which was proved in [41, 43].

Definition 2.1 A positive measurable function f defined on (0, a), for some constant
a > 0, is called regularly varying at zero with index p, written f € RVZ,, if for each
¢ > 0 and some p € R,

lim £ (&) _ e

s—0% (S)

(2.1)
Clearly, if f € RVZ,, then L(s) :fi—j) is slowly varying at zero.

Definition 2.2 A positive measurable function f defined on (0, a), for some constant a > 0,
is called rapidly varying at zero,

if lir(r)1+f(s) =00, and for each p > 1, lir(r)l f(s)s” = o0,
s— s—0t

or if liI(R f(s) =0,and for each p > 1, lil’(I)l‘ f(s)s7? =0.

Proposition 2.3 (Uniform convergence theorem) If f € RVZ,, then (2.1) holds uniformly
Jor & € [c1, 2] with 0<cy <cp.

Proposition 2.4 (Representation theorem) A function L is slowly varying at zero if and
only if it may be written in the form

Ls) = Y(s)ewp ( s y(—)d) s€ (0,a1)

for some 0 <a, <a, where the function \y and y are measurable and for s — 0%, y(s) — 0

and Y(s) — co, with co > 0.
L(s) = coexp (/ )@dr)
s T

We say that
is normalized slowly varying at zero and

f(s) =s"L(s), s € (0,a;)

is normalized regularly varying at zero with index p and write f € NRVZ,.

Proposition 2.5 A function f € RVZ, belongs to NRVZ, if and only if
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!
f€C'(0,a), for some a; >0 and s]ir(gsj:((s;) _

Proposition 2.6 If function f, g, L are slowly varying at zero, then

(1) fP for every p € R, c\f + c2g(c1,¢2>0), fog(if g(s) — 0ass— 0") are also
slowly varying at zero.
(2) Forevery p>0ands— 0,

sPL(s) = 0, s7L(s) — oo.

(3) F0rp6Rands—>O+,W—>Oandw—>p.

ns

Proposition 2.7 If fi € RVZ, ,f> € RVZ,,, then fif € RVZ, .,, and fiof, € RVZ, ,,.
Proposition 2.8 (Asymptotic behavior) If a function L is slowly varying at zero, then for
a>0andt— 0F,

1) f(;spL(s)ds ~ (14 p)_ltl+ﬂL(t) for p > 1;
() fta SPL(S)ds (_1 _ p)_lthL(t) for p< — 1.

1%

Lemma 2.1 (Lemma 2.9 of [27]) Let 0 and © be the functions given by (by). Then

(1) If 0 is non-decreasing, then 0 < Dy < 1; and if 0 is non-increasing, then Dy > 1;

2) i O _ e _ .
@ lim G = 0 and lim EEE = 1 — Dy;

(3) If Dy >0, then 0 € NRVZ_p,p, and © € NRVZp..;
(4) If Dy =0, then 0 is rapidly varying to zero.
(5) If Dy =1, then 0 is normalized slowly varying at zero.

Lemma 2.2 (Lemma 2.10 of [27]) Let f satisfy (f1), (f2). We have

1 G<L
(2) If 0< Gy <], then f satisfying (f2) is equivalent to F € NRVZ,11)c,/(1-¢;)s
(3) If Gy = 1, then F is rapidly varying to infinity at zero;

) i (EDFEE)™Y oy
Jm e e = G

Lemma 2.3 (Lemma 2.11 of [27]) Let f satisfy (1), (f2), and ¢ is defined by (1.4). Then we
have

D (1) = [(n+ 1)F(@)]" " and " (t) = —[(n+ 1DF(@(e))] " ((2)):
@ 1im 2 = -

=0+ 10" (1)
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(3) @ €NRVZ q;
4) ¢ €NRVZ_;

(5) If (1.7) holds, then hm =0 for ¢ € [d,da] with 0<d, <dy;

( (1))

(©) 1 (1.7) holds, then 11m 1 7 =0.

GO
0p(0() —

Lemma 2.4 If f satisfies (f1),(f2), ¢ is defined by (1.4), 0,0 are defined in (by), and
0<g<n, then we have

i 2o L1 DE(@(EO@))” ™

0 0" (O)f (0(¢0(1)))

uniformly for & € [c1, cz] with 0<c| <cy.

Proof By (1.4) and Lemmas 2.1-2.3, we get

CIONE . _
tgr(gw =0 and t1_1>1(1)1+ p(0(r)) =0.

When 0 <Cr <1, letting s = ¢(0), we have

i @O+ DE@@NI L HE) ity _
t—0* qD(@(l)) s—0 s

Then, by Lemma 2.3 (6), for g € [0,n), we have
fim e 01+ DF (@@
1=0* 0" (1)f (9(E0(1)))
_ st gy L2 DE(@EOONY 0@ O) "
=< Q@ mQ

lim lim

Ao (eEe() b 0
- 1im mmm+MHM®mmWﬂ¢n

t—0* (P( ())

_ gltq (n—q ®(t) i =0, o
= et 6 - ) i Gt (O )

=0

uniformly for ¢ € [c1, 2] with 0<c; <c.
If Cy = 1 and Dy > 0, by using Lemmas 2.1 and 2.3, then we find that 0 € NRVZDJI_I,

® € NRVZp, -+ and ¢'(t) = [(n + I)F((p(t))]l/("“) belongs to NRVZ_;. So Proposition 2.7
implies that  [(n + 1)F(p(®(1)))]"/""  belongs to NRVZ_p,+ and 0(1)[(n+
l)F((p(@(t)))]l/ 1) belongs NRVZ_;. It follows by Proposition 2.6 that

0)[(n + DF (@) — co.
Thus, for g € [0,n), we have
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fim o1 F DF((¢0(1)))]* ")
=0t (O ((£O(1)))
g O() (4 DF(p(EO(n)) Y
=R M )
Tim [0(1) (n + DF((©(2)))] "]
=0.

3 Proofs of Theorem 1.1 and Theorem 1.2
Let d(x) = inf |x —y|. For any é > 0, we define
yeoQ

Qs ={xeQ:0<d(x)<d}.

When Q is C*°-smooth, choose §; > 0 such that(see Lemmas 14.16 and 14.17 of [3])
deC™® (le).

Let x € 0Q be the projection of the point x € Qs, to 0Q, and «;(x)(i = 1,2...,n — 1) be
the principal curvatures of 0Q at x, then, according to a principal coordinate system at x, we
get, by Lemma 14.17 in [3],

Dd(x) = (0,0,...,1),

—K] (f) —Kn_l()_c)
1 —dX)r(x)" 71 —dx)ru—1 (%)’

D?*d(x) = diag
We first collect some results for the convenience of later use and reference.

Lemma 3.1 (Lemma 2.1 of [44]) Suppose that Q C R" is a bounded domain, and u,v €
C%(Q) are strictly convex. If

(1) ¥(x,z,p) > ¢(x,z,p), forall (x,z,p) € (A x R x R");
(2)  det(D*u) > (x,u, Du) and det(D*v) < ¢(x,v,Dv) in Q;
(3) u<von oQ;

@) Y.(x,z,p) >0o0r ¢.(x,2,p) >0, then u<v in Q.

Lemma 3.2 (Theorem 7.1 of [2]) The equation of the form

{det(Dzu) = ¢(x,u,Du), x € Q,
u=¢ e C>®, x€oQ,

where ¢(x,u,p) is a positive C* function for x € Q u< max ¢,p € R" and ¢ is a strictly

convex function in all of Q, admits a strictly convex solution u € C*(Q), if there exists a
subsolution u € C*(Q) which equals ¢ on 0Q and satisfies

det(zij) > q)(xv u, Dﬂ): Vx € Q.
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If @, >0, then this solution is unique.

Lemma 3.3 (Proposition 2.1 of [45]) Let Q be an open subset of R* with n>2. If z €
C*(Q) and h € C*(R), then it holds

det(D*h(z(x))) = {h/(z(x))”_lh” (2(x))(Vz(x)) B(z) Vz(x)+

n <h’<z<x>>>”}dez<02<z<x>>>, reQ,

where AT denotes the transpose of matrix A, and B denotes the inverse of the matrix (z)-
Moreover, when z(x) = d(x), we have

n—1

detD* (h(z(x))) = (= ((x)))" K (z(x)) H%

i=1

Proof of Theorem 1.1 Set z(x) = 1 — ug(x), where uy € C*(Q) is the unique strictly
convex solution to problem

det(D*up) = 1 in Q, uy = 1 on 0Q.
Then z > 0 in Q and it is the unique strictly concave solution to problem
(—1)'det(D*2) = 1 in Q, z =0 on Q.

Since (inxj) is negative definite on Q, its trace is negative, that is Az <0, and hence one can
use the Hopf boundary lemma to obtain that ||Vz|| > 0 for x € 0Q. It follows that there
exist constants b; and b, with by > 0, b, > 0 such that

byd(x) < z(x) <byd(x) for x € Q.

: n+1
Let 0<s< mm{l,Hid} and

1
1 s o s =g
‘- |: Ky (MC] |Z|n+1 s(n+d) + Cgsq—n|z‘(s 1)g+n+1 m|DZ|§w€) + ]7

M;s" max max
where
M = max b(x).
xeQ
Let w = —c(z(x))’, where z is defined above.

Considering problem (I'+), we have from Lemma 3.3 that
det(D*w) = (—¢)"det(D*2)s"2"¢~Y) 4 (—¢)"(s — 1)s"z"0~D"1(V2) B()Vz
= """V 2+ (s — 1)(V2) ' B(2) Vi,

where B(z) denotes the inverse of the matrix (zy,,).
Let
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Ay =z+ (s—1)(V2)'B(z)Vz.
Then, in the light of the definition of z, we get (zx,x/) is negative definite. It follows that
there exist constants ¢; and e, > 0 such that

—e1||Vz|* < (V2)'B(2)Vz< — e2|| V2|,

and trace(—le.xj) = —Az > 0on Q, and —z reaches its maximum on Q at each point of 0Q,

and then it follows from the maximum principle that there exist an open set U containing
0Q such that

IVz]| > e > 0.
Since that 0 <s <1, there exists M| > 0 such that
A > M.
Then we get
det(D*w)
> ngnpnls=1-1pf,

1 _ _ _
> | (et~ 4 e et ) oo
> (Mclz—xd + Cgcqsq|z|(s71)q|DZ|4)

MC1 —1
> Wﬁ—cg\csz‘ Dz)?

(cz
> b(x)f(—w) + g(IDw]),
where |z,

admits a strictly convex solution.
Similarly to the proof above, when it comes into problem (I'x), let

=max g lz| and |Dz],, = max g|Dz|. By Lemma 3.2, problem (I'+)

max

1- 1
O<s<min{u et },

n+d—q'n+d’

and

1 1/(n+d—q)
c = {M . (MC] |Z|n+lf.v(n+d) —|—MC]CgSq_n|Z|,(,:;17q)7s(n+d7q)|DZ|q )} +1.
18

max max

Then we obtain
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det(D*w)
> st n(x 1)— llu1

1
= |:M S ( |Z‘n+1 s(n+d) +MC1CgSq|Z‘ (n+1—q)—s(n+d—q) |D |max>:|cfd+qsnzn(sfl)71Ml
1

max

2M6167d17Sd +Mclcqfdcgsqusd|Z|(A‘71)q|DZ|q

Mc
= Mo+ sz e

> b(x)f (=w)(1 + g(IDw))).

By Lemma 3.2, problem (I'x) admits a strictly convex solution.
The uniqueness of solution can be derived immediately by Lemma 3.1. The proof of
Theorem 1.1 is completed. O

Proof of Theorem 1.2 For an arbitrary € € (0, min{1/2,b}), let

_ 1/(14n)
£ = b+e)(1+¢€)+e
T \mo(1 - C;1(1 - Dy)) ’

and

o emgu-g-c \"
- \Mo(1 -G (1 - Dy)) ’

where mg, My were given by (1.3), b, b were given by (1.2). Using Lemmas 2.1-2.3, we
see that

o)

d(x)—0 0(d(x))

1, O 0
-0 0°(d(x))

[(n+ DF(p(@d(x)))" )

A0 OEW (O

=1 — Dy;

Since
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we find €, for any x € Qs , such that

l—e< ﬁ(l —d(X)K;(x)) <1 +e¢,
i=1

and it follows from (b,) that for x € Qs_,
(b — 0 (d(x)) <b(x) < (B + 0" (d(x).
Letting

Uuc(x) = —p(¢-O(d(x)) and u.(x) = —¢ (¢, O(d(x))),

then we have

det(D*,) — b(x)f (~u.) — g(|Dit.])

< det(DzﬁC) — b(x)f (—u)

< det(D?;) — (b — €)0" ™ (d(x))f (@(¢_ O(d(x))))

o n 1y n— n— —K;()?)

= (—1)"[¢_.¢'(£_.O(d(x)))0(d(x))] lHi:]lm

X [&,¢"(6_Od(x))PP(d(x) + &g/ (¢_.Od(x)))0 (d(x))]

- )9"“(61()6))]‘(( 0(d(x))))
<(1— ¢ 0" (d()f (9(¢_Od(x))))

_@(d( )0 d()), [(n+ DF(@(E_ O N
[5 M“(l Pr) ) W) (e OW) ) SRS 6)}

<0,

which means %, is a supersolution to problem I'+ in Qs .
On the other hand, we can similarly show that u, = —@(£,.0(d(x))) is a subsolution to
problem (I'+) in Q;_ as follow
det(D?u.) — b(x)f (—u.) — g(|Dw|)
> det(D’u,) — b(x)f (—u,) — cg|Du,|’
> det(Du,) — (b + 0™ (d(x)f (0(E..OW())) — colDu,|?
(¢

= (~1)"[€4e0 (£, O(d(x)))0(d(x)))" " Hi”f%

% [E.0"(640(d(x)))0*(d(x)) + &40 (E4.O(d(x)))0' (d(x))]
—(B+ 0" (dx)f (9(£4Od()))) = et 0°(1)[(n + DF(9(cO))) ")
>(1+6) 0" (d)) (o (C+e d(x))))

en+1 Od(x))0' (d(x)), [(n+ 1)F(p(¢,.Od ()))]1 J(n+1) . 6
{€+ <1 0°(d(x)) ) ELOdX)f (0(E,.0(d(x)))) ) (b+e)(l+e)

Nk

(1 1 e [0 DFGo(E@@)
’ 0" (9(E4.0(1)))
>0.
Let v = —d(x). Then we can choose a sufficiently large constant M > O such that
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u+Mv<u.onTI:={xeQ:d(x) =09}
Since
u=v=ru,=0on0Q,
and

det(D?(u + Mv)) > det(D*u) = b(x)f (=u) + g(|Dul) > b(0)f (—(u + Mv)) + g(|D(u + Mv)]),

we deduce from Lemma 3.2 that
u+ Mv <u, in Q;s_,
which implies that

o M)
—p(E-0(dx) = —(¢_O(d())

Letting d(x) — 0, € — 0, then we get by Lemma 2.3 (5) that

.. u(x)
A0 g0 ~

in 95

e

Similarly, we derive

lim su u(x)

d(x)=0 xcQ m B

The estimate of the solution to problem I'x is similar to the proof above.
The proof of Theorem 1.2 is finished. U
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