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Abstract
We consider the normalized solutions of a Schrödinger system which arises naturally from

nonlinear optics, the Hartree–Fock theory for Bose–Einstein condensates. And we inves-

tigate the partial symmetry of normalized solutions to the system and their symmetry-

breaking phenomena. More precisely, when the underlying domain is bounded and radially

symmetric, we develop a kind of polarization inequality with weight to show that the first

two components of the normalized solutions are foliated Schwarz symmetric with respect

to the same point, while the latter two components are foliated Schwarz symmetric with

respect to the antipodal point. Furthermore, by analyzing the singularly perturbed limit

profiles of these normalized solutions, we prove that they are not radially symmetric at

least for large nonlinear coupling constant b, which seems a new method to prove the

symmetry-breaking phenomenons of normalized solutions.
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1 Introduction

We study the Schrödinger system with linear and nonlinear couplings(i.e., double

couplings):

�Du1 � lm11ðxÞu1 � lm12ðxÞu2 ¼ �bu1v
2
1 � bu1v

2
2; x 2 X;

�Du2 � lm21ðxÞu1 � lm22ðxÞu2 ¼ �bu2v
2
1 � bu2v

2
2; x 2 X;

�Dv1 � mm11ðxÞv1 � mm12ðxÞv2 ¼ �bv1u
2
1 � bv1u

2
2; x 2 X;

�Dv2 � mm21ðxÞv1 � mm22ðxÞv2 ¼ �bv2u
2
1 � bv2u

2
2; x 2 X;

u1; u2; v1; v2 2 H1
0ðXÞ;

8
>>>>>><

>>>>>>:

ð1:1Þ

where X � RNðN ¼ 2 or 3Þ is a bounded radial domain. Moreover, b is a given positive

nonlinear coupling constant, l; m[ 0 are undetermined linear coupling functions’ con-

stants and the coefficient matrix M ¼ mijðxÞ
� �

2�2
satisfies the following conditions:

(M1) mij xð Þ 2 C X;R
� �

; 8i; j 2 f1; 2g;

(M2) m12ðxÞ ¼ m21ðxÞ, 8x 2 X;

(M3) M ¼ mij xð Þ
� �

2�2
is cooperative, i.e., m12 xð Þ[ 0; 8x 2 X;

(M4) maxx2X maxfm11ðxÞ;m22ðxÞg[ 0;

(M5) mij xð Þ i; j 2 f1; 2gð Þ are radially symmetric, i.e., mij xð Þ ¼ mij jxjð Þ; x 2 X.

System (1.1) arises from Bose–Einstein condensations with four hyperfine spin states and

is also a natural model in nonlinear optics, see [1, 23, 35, 39] and the references therein. In

the last 15 years, system (1.1) has attracted considerable attention. When linear coupling

terms of system (1.1) don’t appear, there exist rich literatures to study the quantitative and

qualitative properties of its solutions, here we only list some but not all literatures for the

reader’s convenience(refer to the references and therein for more details). See

[2, 3, 11, 12, 26, 28–30, 34, 41] for the existence of ground state or bound state solutions,

see [6, 7, 10] for the bifurcation of the solutions, see [19, 21, 42, 47] for the singularly

perturbed, see [15, 22, 27] for the semiclassical states, and see [8, 9, 36] for the normalized

solutions. When system (1.1) admits the linear coupling only, we refer the reader to

[4, 5, 18, 37] and the references therein. When system (1.1) admit both the linear coupling

and nonlinear coupling terms(i.e., double couplings), thanks to our team’s sustainable

studies, we have a relatively good understanding of the system. More specifically, the

existence of bound state and ground state solutions have been investigated by the topo-

logical and variational methods in [14, 25, 31, 38], while the authors in [20, 44] study the

bifurcation of synchronized solutions with parameters j and b respectively. In [48], we

obtain the symmetry results of ground state solutions and analyse its asymptotic behavior.

Besides, we study the existence of normalized solutions to system (1.1) and their singularly

perturbed limits in [32]. Recently, Ma et al. [33] investigate system (1.1) under the

Neumann boundary conditions.

Based on the results obtained by [32], this paper aims to study the partial symmetry of

the normalized solutions to system (1.1) and their symmetry breaking phenomena. With

regard to the partial symmetry of solutions to elliptic systems, we have to mention the

following works. In [45], Wang and Willem study a cooperative system and show that the

least energy solutions are foliated Schwarz symmetry with respect to the same point.

Besides, Tavares and Weth deal with a competitive system and prove that the ground state

solutions are foliated Schwarz symmetric with respect to antipodal points in [43]. Recently,

we investigate a doubly coupled system and obtain the partial symmetry of ground state
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solutions in [48]. Moreover, we prove that ground state solutions must be radial when the

underlying domain is a ball with its center at the origin. However, it is worth noting that the

literatures mentioned above deal with the cases that l and m are given and the coupling

coefficients are the constants. In this paper, we assume that l and m are undetermined and

the linear coupling coefficients are functions. For this case, we study the partial symmetry

of the solutions to system (1.1).

Finally, we explain why we propose those assumptions on M. In 1999, Chang defined

the principal eigenvalue of a class of elliptic system with weight M and investigated its

properties in [17]. Next in [32], we study the optimal partition for the principal eigenvalue

of the elliptic system, which is approximated by the normalized solutions of system (1.1) as

the nonlinear coupling b ! 1. Our paper is based on the results obtained in [32] and

devoted to studying the partial symmetry of the normalized solutions to system (1.1) and

their symmetry breaking phenomenons.

To state our main results, now we first give some notations. The vector means the

column vector, that is, u ¼ ðu1; . . .; uhÞ>, u> denotes the transpose of u. We define

jjujj22 ¼
Z

X
jruj2; jujpp ¼

Z

X
jujp; 8u 2 H1

0ðXÞ;

and

ru ¼ ðru1; . . .;ruhÞ>; jruj2 ¼ jru1j2 þ � � � þ jruhj2;

and

juj ¼ ðu2
1 þ � � � þ u2

hÞ
1=2:

Here and hereafter, u� 0 (u[ 0) means that ui � 0 (ui [ 0), for every 1� i� h.

We define the energy functional by

Jbðu; vÞ :¼
1

2

Z

X
jruj2 þ 1

2

Z

X
jrvj2 þ b

2

Z

X
juj2jvj2

for every u ¼ ðu1; u2Þ; v ¼ ðv1; v2Þ 2 H1
0ðX;RÞ

� �2
.

Since N ¼ 2; 3, by Sobolev embedding theorem, Jbðu; vÞ is well defined on

½H1
0ðX;RÞ�

2 � ½H1
0ðX;RÞ�

2
, and Jbðu; vÞ 2 C1ð½H1

0ðX;RÞ�
2 � ½H1

0ðX;RÞ�
2Þ.

Let

eR :¼ fw ¼ ðw1;w2Þ> 2 ½H1
0ðX;RÞ�

2 :

Z

X
w>Mw ¼ 1g;

where w>Mw ¼ m11ðxÞw2
1ðxÞ þ 2m12ðxÞw1ðxÞw2ðxÞ þ m22ðxÞw2

2ðxÞ. In order to obtain the

least energy solutions of system (1.1), we study the energy minimization problem

cb :¼ inf
ðu;vÞ2eR�eR

Jbðu; vÞ:

If we set

R :¼ fw ¼ ðw1;w2Þ> 2 ½H1
0ðX;RÞ�

2 :

Z

X
w>Mw ¼ 1;wi � 0; i ¼ 1; 2g;
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then we also have

cb :¼ inf
ðu;vÞ2R�R

Jbðu; vÞ:

To see this point, we refer the reader to reference [32] and omit the details of the proof.

Therefore, the assumption that wi’s are nonnegative in the set R is a natural constraint

and hence Lagrange multiplier rules can be applied. For positive least energy solutions, we

have the following result, see [32, Theorem 1.1].

Theorem 1.1 Let X 	 RNðN ¼ 2; 3Þ be a smooth bounded domain. Suppose that the
matrix M satisfies ðM1Þ � ðM4Þ, then for every b[ 0 there exists ðub; vbÞ achieving cb,

which is a positive solution of the system (1.1) for some two Lagrange multipliers
lb [ 0; mb [ 0.

When the underlying domain X is radial, a very natural problem is whether the positive

solutions of (1.1) obtained by Theorem 1.1 inherit the symmetry or at least partial sym-

metry. To answer this question, we first recall the definition of foliated Schwarz symmetry.

A positive function u defined on a radially symmetric domain X is said to be foliated

Schwarz symmetric with respect to p 2 oB1ð0Þ if u depends only on ðr; hÞ ¼ ðjxj; arccosðx �
pÞ=jxjÞ and is non-increasing in h.

Now we state our main result on the partial symmetry of positive solutions of (1.1)

obtained by Theorem 1.1.

Theorem 1.2 Let X � RNðN ¼ 2 or 3Þ be a radially symmetric bounded domain with

smooth boundary (i.e., X ¼ BRð0Þ or BRð0Þ n Brð0Þ;R[ r[ 0), and suppose that the
matrix M satisfies ðM1Þ � ðM5Þ. For any given nonlinear coupling constant b[ 0, we
assume that ðub; vbÞ is a positive solution of (1.1) obtained by Theorem 1.1. Then there

exists p 2 oB1ð0Þ such that u1;b and u2;b are foliated Schwarz symmetric with respect to the

same point p, while v1;b and v2;b are foliated Schwarz symmetric with respect to the

antipodal point �p.

Remark 1.3 From Theorem 1.2, we see that u1;b and u2;b tends to be synchronized, does

also v1;b and v2;b. But ub and vb as two groups behave mutually repulsed.

Compared to the known results (see [43, 45, 48]), the first difficulty lies in the fact that l
and m are undetermined, which may make the operator of elliptic system indefinite. Our

idea is to divide the vector solution into two groups, and to prescribe the masses of the two

groups. The second difficulty results from the assumption that the linear coupling are

functions, which needs to an extra effort in proving the foliated Schwarz symmetry. We

overcome it by developing a kind of polarization inequality with weight, please see

Lemma 2.4 and Corollary 2.5. In addition, the mixed effect of both linear coupling and

nonlinear coupling gives rise to the obstacle in the proof. We deal with it by using the

different polarization techniques for the two groups.

Although we obtain the partial symmetry of positive solutions of (1.1) founded by

Theorem 1.1, there is an interesting problem: may ðub; vbÞ be radially symmetric func-

tions, at least when X is a ball? In the following, we give a negative answer for sufficiently

large b.
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Theorem 1.4 Let X � RNðN ¼ 2 or 3Þ be a radially symmetric bounded domain with

smooth boundary (i.e., X ¼ BRð0Þ or BRð0Þ n Brð0Þ;R[ r[ 0), and suppose that the
matrix M satisfies ðM1Þ � ðM5Þ. For every b[ 0, we assume that ðub; vbÞ is a positive

solution of (1.1) obtained by Theorem 1.1. Then for sufficiently large b[ 0, ðub; vbÞ are
not radially symmetric.

We briefly outline the ideas of the proof for Theorem 1.4. By Theorem 1.2, for any b[ 0,

we know ub and vb attain their maximum at a pair of antipodal points, say ðQb;�QbÞ.
Since X is bounded, up to a subsequence, we can assume ðQb;�QbÞ ! ðQ;�QÞ as

b ! þ1. Thanks to the asymptotic analysis of ðub; vbÞ as b ! þ1 given by our previous

paper [32, Theorem 1.4], there exist limit profiles u1 and v1 such that

ubðQbÞ ! u1ðQÞ; vbð�QbÞ ! v1ð�QÞ. In virtue of the properties of limit profiles, we

can show that u1ðQÞ[ 0; v1ð�QÞ[ 0 and u1ð�QÞ ¼ v1ðQÞ ¼ 0, which implies u1
and v1 are not radially symmetric functions, and hence ðub; vbÞ not radially symmetric

solutions, at least for sufficiently large b, which seems a new method.

This paper is organized as follows. In Sect. 2, we investigate partial symmetry of

positive least energy solutions to system (1.1). In this section, we develop a kind of

polarization inequality with weight (see Lemma 2.4 and Corollary 2.5) to give the proof of

Theorem 1.2. Next, the symmetry breaking phenomenon has been analysed in Sect. 3.

Compared with most of the literatures as before (for example, see [16, 24, 40]), our method

is not based on comparing the energy of between the radial solutions and the non-radial

solutions. In this article, we analyze the singularly perturbed limit profiles of these nor-

malized solutions and prove that the normalized solutions are not radially symmetric at

least for large nonlinear coupling constant b.

2 Proof of Theorem 1.2

In this section, for the sake of clarity, we will drop the subscript b for ub; vb; lb; mb and

abbreviate them into u; v; l; m. To show that u and v are foliated Schwarz symmetric, let us

introduce some useful notations. As in [46], we define the sets

H0 :¼ H � RN : H is a closed half-space in RN and 0 2 oH
� �

and, for p 6¼ 0, H0ðpÞ ¼ H 2 H0 : p 2 intðHÞf g. For each H 2 H0 we denote by rH :

RN ! RN the reflection in RN with respect to the hyperplane oH, and define the polar-

ization of a function u : X ! R with respect to H by

uHðxÞ :¼
maxfuðxÞ; uðrHðxÞÞg x 2 H \ X;

minfuðxÞ; uðrHðxÞÞg x 2 XnH:

�

Moreover, we will call H 2 H0 dominant for u if uðxÞ� uðrHðxÞÞ for all x 2 X \ H(or,

equivalently, uHðxÞ ¼ uðxÞ for all x 2 X \ H). On the other hand we will say that H 2 H0

is subordinate for u if uðxÞ� uðrHðxÞÞ for all x 2 X \ H.

With the concepts above at hand, we first recall the following characterization of

foliated Schwarz symmetry.

Lemma 2.1 [46, Proposition 2.4] Let u : X ! R be a continuous function. Then u is
foliated Schwarz symmetric with respect to p 2 oB1ð0Þ if and only if every H 2 H0ðpÞ is
dominant for u.
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Remark 2.2 By Lemma 2.1, noting that the definition of the polarization to a function, we

also know that u is foliated Schwarz symmetric with respect to �p 2 oB1ð0Þ if and only if

every H 2 H0ðpÞ is subordinate for u.

Besides, we will need the following properties, see for instance [13, Lemma 2.2] and [46,

Lemma 3.1].

Lemma 2.3 Let u : X ! R be a measurable function and H 2 H0.

(i) If F : X� R ! R is a continuous function such that Fðx; tÞ ¼ Fðy; tÞ for every

x; y 2 X such that jxj ¼ jyj and t 2 R and
R

X jFðx; uðxÞÞjdx\þ1, then
R

X Fðx; uHÞdx ¼
R

X Fðx; uÞdx.

(ii) Moreover, if u 2 H1
0ðXÞ then also uH 2 H1

0ðXÞ and
R

X jruH j2 ¼
R

X jruj2.

For every H 2 H0 we denote by bH 2 H0 the closure of the complementary half-space

RN n H. Then we give the following polarization inequalities with weight, which extends

the previous results, see for instance [43, Lemma 4.5] and [45, Lemma 2.2].

Lemma 2.4 If P : X� R� R ! R is a continuous function such that Pðx; t; sÞ ¼ Pðy; t; sÞ
for every x; y 2 X such that jxj ¼ jyj and t 2 R. In addition, we suppose P is C2 with

respect to t, s and Ptsðx; t; sÞ ¼ o2P
otos ðx; t; sÞ\0 for every t; s[ 0 and x 2 X. Take u; v[ 0

such that
R

X Pðx; u; vÞdx\þ1. Then for every H 2 H0 we have that
Z

X
Pðx; uH ; vHÞdx�

Z

X
Pðx; u; vÞdx�

Z

X
Pðx; uH ; vbH Þdx:

Proof We claim that

Pðx; a; cÞ þ Pðx; b; dÞ�P x;maxfa; bg;minfc; dgð Þ þ P x;minfa; bg;maxfc; dgð Þ; ð2:1Þ

Pðx; a; cÞ þ Pðx; b; dÞ�P x;maxfa; bg;maxfc; dgð Þ þ P x;minfa; bg;minfc; dgð Þ; ð2:2Þ

for every a; b; c; d[ 0 and every x 2 X. Thanks to the permutation of a, b, c and d, we

only suffice to consider two cases: a� b; c� d or a� b; c� d.

Case 1 a� b; c� d. In this case, the inequality (2.2) trivially holds, and inequality (2.1)

follows from

0�
Z a

b

Z c

d

Ptsðx; t; sÞdtds ¼
Z a

b

Ptðx; t; cÞ � Ptðx; t; dÞdt

¼ Pðx; a; cÞ � Pðx; b; cÞ � Pðx; a; dÞ þ Pðx; b; dÞ:

Case 2 a� b; c� d. In this case, the inequality (2.1) trivially holds, and inequality (2.2)

follows from
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0�
Z b

a

Z d

c

Ptsðx; t; sÞdtds ¼
Z b

a

Ptðx; t; dÞ � Ptðx; t; cÞdt

¼ Pðx; a; dÞ � Pðx; b; dÞ � Pðx; a; cÞ þ Pðx; b; cÞ:

By (2.1), we know

Z

X
Pðx; u; vÞdx ¼

Z

X\H
Pðx; uðxÞ; vðxÞÞ þ PðrHðxÞ; uðrHðxÞÞ; vðrHðxÞÞÞ½ �dx

¼
Z

X\H
Pðx; uðxÞ; vðxÞÞ þ Pðx; uðrHðxÞÞ; vðrHðxÞÞÞ½ �dx

�
Z

X\H
Pðx; uHðxÞ; vbH ðxÞÞ þ Pðx; uHðrHðxÞÞ; vbH ðrHðxÞÞÞ
h i

dx

¼
Z

X
Pðx; uH ; vbH Þdx:

Similarly, by (2.2), we get

Z

X
Pðx; u; vÞdx ¼

Z

X\H
Pðx; uðxÞ; vðxÞÞ þ PðrHðxÞ; uðrHðxÞÞ; vðrHðxÞÞÞ½ �dx

¼
Z

X\H
Pðx; uðxÞ; vðxÞÞ þ Pðx; uðrHðxÞÞ; vðrHðxÞÞÞ½ �dx

�
Z

X\H
Pðx; uHðxÞ; vHðxÞÞ þ Pðx; uHðrHðxÞÞ; vHðrHðxÞÞÞ½ �dx

¼
Z

X
Pðx; uH ; vHÞdx:

h

Corollary 2.5 For u 2 H1
0ðXÞ and every radial function w 2 CðX;RÞ we have

Z

X
jruj2dx ¼

Z

X
jruH j2dx;

Z

X
wðxÞuqdx ¼

Z

X
wðxÞuqHdx;

where q ¼ 2; 4. Moreover, if in addition wðxÞ[ 0; 8x 2 X, we have
Z

X
wðxÞuvdx�

Z

X
wðxÞuHvHdx;

Z

X
wðxÞu2

Hv
2

bH
dx�

Z

X
wðxÞu2v2dx�

Z

X
wðxÞu2

Hv
2
Hdx

for every u; v 2 H1
0ðXÞ. In particular, when wðxÞ 
 1, we obtain

Z

X
u2dx ¼

Z

X
u2
Hdx;

Z

X
u4dx ¼

Z

X
u4
Hdx

and
Z

X
uvdx�

Z

X
uHvHdx;

Z

X
u2
Hv

2

bH
dx�

Z

X
u2v2dx�

Z

X
u2
Hv

2
Hdx:
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Proof The first result follows directly from Lemma 2.3. To show the second result, we

first take Pðx; t; sÞ ¼ wðxÞðt � sÞ2
. Then it is easy to verify that P satisfies the assumptions

of Lemma 2.4. So we obtain
Z

X
wðxÞðuH � vHÞ2dx�

Z

X
wðxÞðu� vÞ2dx;

which together with the first result implies

Z

X
wðxÞuvdx�

Z

X
wðxÞuHvHdx:

Similarly, if we take Pðx; t; sÞ ¼ wðxÞðt2 � s2Þ2
, then we get

Z

X
wðxÞðu2

H � v2
HÞ

2dx�
Z

X
wðxÞðu2 � v2Þ2dx;

and hence

Z

X
wðxÞu2v2dx�

Z

X
wðxÞu2

Hv
2
Hdx:

In addition, we also get

Z

X
wðxÞðu2 � v2Þ2dx�

Z

X
wðxÞðu2

H � v2

bH
Þ2dx;

which implies

Z

X
wðxÞu2

Hv
2

bH
dx�

Z

X
wðxÞu2v2dx:

h

In what follows, if ðu; vÞ is a positive minimizer for cb, we show that ðuH ; vbH Þ is also a

minimizer for cb in virtue of the minimality of the energy that ðu; vÞ satisfies.

Proposition 2.6 If u ¼ ðu1; u2Þ>; v ¼ ðv1; v2Þ>
	 


is a positive minimizer for cb, then also

is uH ¼ ðu1;H ; u2;HÞ>; vbH ¼ ðv
1;bH

; v
2;bH

Þ>
	 


. Furthermore, we have

Z

X
m12ðxÞu1;Hu2;Hdx ¼

Z

X
m12ðxÞu1u2dx;

Z

X
m12ðxÞv

1;bH
v

2;bH
dx ¼

Z

X
m12ðxÞv1v2dx

and
Z

X
u2

1;Hv
2

1;bH
¼

Z

X
u2

1v
2
1;

Z

X
u2

1;Hv
2

2;bH
¼

Z

X
u2

1v
2
2

Z

X
u2

2;Hv
2

1;bH
¼

Z

X
u2

2v
2
1;

Z

X
u2

2;Hv
2

2;bH
¼

Z

X
u2

2v
2
2:
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Proof Since ui; vi 2 H1
0ðXÞ; i ¼ 1; 2, we know by Lemma 2.3 (ii) that ui;H ; v

i;bH
; i ¼ 1; 2

are also in H1
0ðXÞ. Let us consider ðtuH ; svbH Þ 2 R� R for some t[ 0; s[ 0. According to

Corollary 2.5 and the assumptions on M, we get
Z

X
m11ðxÞu2

1;Hdx ¼
Z

X
m11ðxÞu2

1dx;

Z

X
m22ðxÞu2

2;Hdx ¼
Z

X
m22ðxÞu2

2dx;

Z

X
m12ðxÞu1;Hu2;Hdx�

Z

X
m12ðxÞu1u2dx:

Since u ¼ ðu1; u2Þ> 2 R, combining with the previous three equalities/inequality, we infer

0\t� 1 to make tuH 2 R. Similarly, we can get 0\s� 1. Again by Corollary 2.5 and

recalling the definition of cb, we have

cb � JbðtuH ; svbH Þ ¼
t2

2

Z

X
jruH j2 þ

s2

2

Z

X
jrvbH

j2 þ bt2s2

2

Z

X
juH j2jvbH j

2

¼ t2

2

Z

X
jru1;H j2 þ jru2;H j2
h i

þ s2

2

Z

X
jrv

1;bH
j2 þ jrv

2;bH
j2

h i

þ bt2s2

2

Z

X
u2

1;H v2

1;bH
þ v2

2;bH

� �

þ u2
2;H v2

1;bH
þ v2

2;bH

� �
 �

� t2

2

Z

X
jru1j2 þ jru2j2
h i

þ s2

2

Z

X
jrv1j2 þ jrv2j2
h i

þ bt2s2

2

Z

X
u2

1 v2
1 þ v2

2

� �
þ u2

2 v2
1; þ v2

2

	 
h i

� 1

2

Z

X
jru1j2 þ jru2j2
h i

þ 1

2

Z

X
jrv1j2 þ jrv2j2
h i

þ b
2

Z

X
u2

1 v2
1 þ v2

2

� �
þ u2

2 v2
1; þ v2

2

	 
h i

¼cb:

That the equality above holds implies t ¼ s ¼ 1 and

Z

X
u2

1;Hv
2

1;bH
¼

Z

X
u2

1v
2
1;

Z

X
u2

1;Hv
2

2;bH
¼

Z

X
u2

1v
2
2

Z

X
u2

2;Hv
2

1;bH
¼

Z

X
u2

2v
2
1;

Z

X
u2

2;Hv
2

2;bH
¼

Z

X
u2

2v
2
2:

Thus, we know JbðuH ; vbH Þ ¼ cb. In addition, by using ðuH ; vbH Þ 2 R� R, we also get

Z

X
m12ðxÞu1;Hu2;Hdx ¼

Z

X
m12ðxÞu1u2dx;

Z

X
m12ðxÞv

1;bH
v

2;bH
dx ¼

Z

X
m12ðxÞv1v2dx:

h

Finally, with the previous preparations at hand, we now give the proof of our main result.
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Proof of Theorem 1.2 For clarity, we divide the proof into three steps.

Step 1: Let uH ; vbH
be the polarization functions of u and v. We show that ðu; vÞ and

ðuH ; vbH Þ satisfy the system (1.1) with the same Lagrange multipliers. As explained in the

introduction, cb can be written into

cb ¼ inf
ðu;vÞ2eR�eR

Jbðu; vÞ;

where

eR ¼ fw ¼ ðw1;w2Þ> 2 ½H1
0ðX;RÞ�

2 :

Z

X
w>Mw ¼ 1g:

Since ðu; vÞ is a positive minimizer for cb, by Proposition 2.6, we know ðuH ; vbH Þ is also a

minimizer for cb. Thus, there are by Lagrange multiplier rules l; m; lH ; mH [ 0 ( see [32]

for their positivity) such that ðu; vÞ (ðuH ; vbH Þ respectively) is a solution of system (1.1)

with Lagrange multipliers ðl; mÞ (ðlH ; mHÞ respectively). Next we claim that

l ¼ lH ; m ¼ mH :

In fact, when ðu; v; l; mÞ solves (1.1), multiplying the first equation and the third equation

of system (1.1) with u1 and v1 respectively, and then integrating over on X, we obtain

l
Z

X
m11ðxÞu2

1 þ m12ðxÞu1u2

� �
dx ¼

Z

X
jru1j2dxþ b

Z

X
u2

1 v2
1 þ v2

2

� �
dx

m
Z

X
m11ðxÞv2

1 þ m12ðxÞv1v2

� �
dx ¼

Z

X
jrv1j2dxþ b

Z

X
v2

1 u2
1 þ u2

2

� �
dx:

If ðuH ; vbH ; lH ; mHÞ solves (1.1), taking a similar argument, we get

lH

Z

X
m11ðxÞu2

1;H þ m12ðxÞu1;Hu2;H

	 

dx ¼

Z

X
jru1;H j2dx

þ b
Z

X
u2

1;H v2

1;bH
þ v2

2;bH

� �

dx

mH

Z

X
m11ðxÞv2

1;bH
þ m12ðxÞv

1;bH
v

2;bH

� �

dx ¼
Z

X
jrv

1;bH
j2dx

þ b
Z

X
v2

1;bH
u2

1;H þ u2
2;H

	 

dx:

By Proposition 2.6, we easily see that l ¼ lH ; m ¼ mH .

Step 2: Take r[ 0 such that oBrð0Þ � X and let p 2 oB1ð0Þ be such that

maxoBrð0Þ u ¼ uðrpÞ. Next we show that uH ¼ u; vbH
¼ v for every H 2 H0ðpÞ. Given

H 2 H0ðpÞ, by Step 1, we know

�Du1 ¼lm11ðxÞu1 þ lm12ðxÞu2 � bu1ðv2
1 þ v2

2Þ x 2 X;

�Du1;H ¼lm11ðxÞu1;H þ lm12ðxÞu2;H � bu1;Hðv2

1;bH
þ v2

2;bH
Þ x 2 X:

Therefore, we have
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�Dðu1;H � u1Þ ¼lm11ðu1;H � u1Þ þ lm12ðu2;H � u2Þ
þ bu1ðv2

1 þ v2
2Þ � bu1;Hðv2

1;bH
þ v2

2;bH
Þ

¼lm11ðu1;H � u1Þ þ lm12ðu2;H � u2Þ þ bu1ðv2
1 þ v2

2Þ
� bu1ðv2

1;bH
þ v2

2;bH
Þ

þ bu1ðv2

1;bH
þ v2

2;bH
Þ � bu1;Hðv2

1;bH
þ v2

2;bH
Þ:

Let wðxÞ :¼ u1;HðxÞ � u1ðxÞ; x 2 X, then

�Dwþ cðxÞw ¼ lm12ðxÞðu2;H � u2Þ þ bu1 ðv2
1 � v2

1;bH
Þ þ ðv2

2 � v2

2;bH
Þ


 �

; ð2:3Þ

where cðxÞ :¼ bðv2

1;bH
þ v2

2;bH
Þ � lm11ðxÞ. By Theorem 1.1, we know l[ 0. By the

assumption (M3) of M, it holds that m12ðxÞ[ 0; 8x 2 X. Besides, according to the defi-

nition of polarization functions and Theorem 1.1, we have

0\ui � ui;H and 0\v
i;bH

� vi; i ¼ 1; 2; x 2 X \ H:

Therefore, we obtain

�Dwþ cðxÞw� 0; wðxÞ� 0; x 2 X \ H:

By the strong maximum principle, we get that either w[ 0 or w 
 0 in X \ H. By the

choice of p, we have that rp 2 X \ H and that wðrpÞ ¼ 0. And then it must be u1 ¼ u1;H

and therefore w 
 0 in X \ H. Moreover, coming back to (2.3), we now see that

u2 
 u2;H ; v1 
 v
1;bH

; v2 
 v
2;bH

; x 2 X \ H:

Step 3: For every H 2 H0ðpÞ, we get by Step 2 that

ui 
 ui;H ; vi 
 v
i;bH

; i ¼ 1; 2; x 2 X \ H;

which implies that H is dominant for u1 and u2, and is subordinate for v1 and v2. By

Lemma 2.1 and Remark 2.2, we infer that u1 and u2 are foliated Schwarz symmetric with

respect to p, while v1 and v2 are foliated Schwarz symmetric with respect to the antipodal

point �p. h

3 Symmetry breaking

When considering the nonlinear coupling constant b ! þ1, we have the following

results, see [32, Theorem 1.2 and 1.4].

Theorem 3.1 Let ðub; vbÞ be the positive least energy solution obtained by Theorem 1.1.

Then there exists ðu1; v1Þ 2 R� R such that, up to a subsequence, as b ! þ1,

(i) ub ! u1; vb ! v1 in ½H1
0ðXÞ�

2 \ ½C0;aðXÞ�2; 8a 2 ð0; 1Þ;
(ii) u1 and v1 have disjoint supports, that is,
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ui;1 � vj;1 
 0; 8i; j 2 f1; 2g:

(iii) u1 and v1 are Lipschitz continuous in X. And the sets xu1 :¼ fx 2 X :

u2
1;1ðxÞ þ u2

2;1ðxÞ[ 0g; xv1 :¼ fx 2 X : v2
1;1ðxÞ þ v2

2;1ðxÞ[ 0g are open and

connected;
(iv)

�Du1 ¼ l1Mu1 in xu1 ; �Dv1 ¼ m1Mv1 in xv1 ;

and u1 [ 0 in xu1 , v1 [ 0 in xv1 , l1 ¼ limb!þ1 lb; m1 ¼ limb!þ1 mb, here

lb; mb are two Lagrange multipliers in Theorem1.1.

(v) X ¼ xu1 [ xu1 ;xu1 \ xv1 ¼ ;. Moreover, xu1 6¼ ;;xv1 6¼ ;.

Remark 3.2 Although Theorem 3.1 (v) has not been pointed out explicitly in [32], we

easily see this fact by checking the proof of Theorem 1.4 in [32].

Once we know the asymptotic behavior of ðub; vbÞ as b ! þ1, we can infer the shape of

ðub; vbÞ from their limit profiles. Thus, we now can give the proof of Theorem 1.4.

Proof of Theorem 1.4 By Theorem 1.2, for any given b[ 0, we know there exists pb ¼
pðbÞ 2 oB1ð0Þ (here we emphasize the dependence on b) such that u1;b and u2;b are foliated

Schwarz symmetric with respect to pb, while v1;b and v2;b are foliated Schwarz symmetric

with respect to the antipodal point �pb. Therefore, recalling the definition of foliated

Schwarz symmetry, we can assume that there exists Qb : b[ 0
� �

� X such that

ui;bðQbÞ ¼ max
x2X

ui;bðxÞ; vi;bð�QbÞ ¼ max
x2X

vi;bðxÞ; i ¼ 1; 2:

Since X is bounded, then there exists a subsequence fbkg with bk ! þ1 such that

Qbk ! Q 2 X; as k ! þ1: ð3:1Þ

On the other hand, by Theorem 3.1(i), we have

ui;bk ! ui;1; vi;bk ! vi;1 uniformly for x 2 X; i ¼ 1; 2 as k ! þ1: ð3:2Þ

Thus, we get

ui;bkðQbk Þ ! ui;1ðQÞ; vi;bk ð�Qbk Þ ! vi;1ð�QÞ; i ¼ 1; 2 as k ! þ1:

In fact, we take u1;bk ðQbkÞ ! u1;1ðQÞ for example to show this claim. For every e[ 0, by

(3.1) and the continuity of u1;1 (see Theorem 3.1(iii)), there exists K1 [ 0 such that

ju1;1ðQbk Þ � u1;1ðQÞj\ e
2

whenever k[K1. In addition, there exists K2 [ 0 from (3.2) such that when k[K2 we

have

u1;bk � u1;1
�
�

�
�
L1ðXÞ\

e
2
:

Taking K ¼ maxfK1;K2g[ 0, we obtain
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u1;bk ðQbk Þ � u1;1ðQÞ
�
�

�
�� u1;bkðQbk Þ � u1;1ðQbk Þ

�
�

�
�þ ju1;1ðQbk Þ � u1;1ðQÞj\e

whenever k[K.

In what follows, we claim that u1;1ðQÞ[ 0. Since u1;bk [ 0 in X, it holds that

u1;bk ðQbk Þ[ 0 and hence u1;1ðQÞ� 0. If we assume u1;1ðQÞ ¼ 0, then we get

u1;bk ðQbk Þ ¼ u1;bk

�
�

�
�
L1ðXÞ! 0. Therefore it must have u1;1 
 0. By Theorem 3.1(iii) and

(iv), we infer that

xu1 ¼ fx 2 X : u2
1;1ðxÞ þ u2

2;1ðxÞ[ 0g ¼ fx 2 X : u1;1ðxÞ[ 0g;

which together with u1;1 
 0 implies xu1 ¼ ;. This contradicts the result of Theo-

rem 3.1(v). So we have u1;1ðQÞ[ 0 and hence Q 2 X. Similarly, we can also prove that

u2;1ðQÞ[ 0; v1;1ð�QÞ[ 0; and v2;1ð�QÞ[ 0.

Finally, by Theorem 3.1(ii), we know ui;1ð�QÞ ¼ vi;1ðQÞ ¼ 0; i ¼ 1; 2, which shows

that u1 and v1 are not radially symmetric functions. From the strong convergence, we

conclude that ðub; vbÞ are not radially symmetric solutions, at least for sufficiently large

b. h
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