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Abstract

We consider the normalized solutions of a Schrodinger system which arises naturally from
nonlinear optics, the Hartree—Fock theory for Bose—Einstein condensates. And we inves-
tigate the partial symmetry of normalized solutions to the system and their symmetry-
breaking phenomena. More precisely, when the underlying domain is bounded and radially
symmetric, we develop a kind of polarization inequality with weight to show that the first
two components of the normalized solutions are foliated Schwarz symmetric with respect
to the same point, while the latter two components are foliated Schwarz symmetric with
respect to the antipodal point. Furthermore, by analyzing the singularly perturbed limit
profiles of these normalized solutions, we prove that they are not radially symmetric at
least for large nonlinear coupling constant f§, which seems a new method to prove the
symmetry-breaking phenomenons of normalized solutions.
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1 Introduction

We study the Schrodinger system with linear and nonlinear couplings(i.e., double
couplings):

—Auy — pmyy (x)uy — pmyp (x)uy = —Pupy? — Pupv3, xe€Q,
—Auy — pimyy (x)uy — pmay (xX)uy = —Pusv? — Pusy3, x€Q,
—Avy — vy (x)v; — vmpp(x)vy = —pviud — By, xeQ, (1.1)
—Avy — vmay (x)v1 — vimgp (x)v2 = —Bvaut — Bvau3, xeQ,

ur, uz,vi,v2 € H)(Q),

where Q C RY (N =2 or 3) is a bounded radial domain. Moreover, /3 is a given positive
nonlinear coupling constant, u,v > 0 are undetermined linear coupling functions’ con-

stants and the coefficient matrix M = (m,»]-()c))2X2 satisfies the following conditions:

M1 my(x) € C(QR),Vi,je{1,2};

M2)  mya(x) = my (x), Vx € Q;

(M3) M = (my(x)),_, is cooperative, i.e., mp>(x) > 0,Vx € Q;

(M4)  max,eq max{m;(x), mxn(x)} > 0;

(M5)  my(x)(i,j € {1,2}) are radially symmetric, i.e., m;(x) = my(|x|),x € Q.

System (1.1) arises from Bose—Einstein condensations with four hyperfine spin states and
is also a natural model in nonlinear optics, see [1, 23, 35, 39] and the references therein. In
the last 15 years, system (1.1) has attracted considerable attention. When linear coupling
terms of system (1.1) don’t appear, there exist rich literatures to study the quantitative and
qualitative properties of its solutions, here we only list some but not all literatures for the
reader’s convenience(refer to the references and therein for more details). See
[2, 3, 11, 12, 26, 28-30, 34, 41] for the existence of ground state or bound state solutions,
see [6, 7, 10] for the bifurcation of the solutions, see [19, 21, 42, 47] for the singularly
perturbed, see [15, 22, 27] for the semiclassical states, and see [8, 9, 36] for the normalized
solutions. When system (1.1) admits the linear coupling only, we refer the reader to
[4, 5, 18, 37] and the references therein. When system (1.1) admit both the linear coupling
and nonlinear coupling terms(i.e., double couplings), thanks to our team’s sustainable
studies, we have a relatively good understanding of the system. More specifically, the
existence of bound state and ground state solutions have been investigated by the topo-
logical and variational methods in [14, 25, 31, 38], while the authors in [20, 44] study the
bifurcation of synchronized solutions with parameters k and f§ respectively. In [48], we
obtain the symmetry results of ground state solutions and analyse its asymptotic behavior.
Besides, we study the existence of normalized solutions to system (1.1) and their singularly
perturbed limits in [32]. Recently, Ma et al. [33] investigate system (1.1) under the
Neumann boundary conditions.

Based on the results obtained by [32], this paper aims to study the partial symmetry of
the normalized solutions to system (1.1) and their symmetry breaking phenomena. With
regard to the partial symmetry of solutions to elliptic systems, we have to mention the
following works. In [45], Wang and Willem study a cooperative system and show that the
least energy solutions are foliated Schwarz symmetry with respect to the same point.
Besides, Tavares and Weth deal with a competitive system and prove that the ground state
solutions are foliated Schwarz symmetric with respect to antipodal points in [43]. Recently,
we investigate a doubly coupled system and obtain the partial symmetry of ground state
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solutions in [48]. Moreover, we prove that ground state solutions must be radial when the
underlying domain is a ball with its center at the origin. However, it is worth noting that the
literatures mentioned above deal with the cases that u and v are given and the coupling
coefficients are the constants. In this paper, we assume that y and v are undetermined and
the linear coupling coefficients are functions. For this case, we study the partial symmetry
of the solutions to system (1.1).

Finally, we explain why we propose those assumptions on M. In 1999, Chang defined
the principal eigenvalue of a class of elliptic system with weight M and investigated its
properties in [17]. Next in [32], we study the optimal partition for the principal eigenvalue
of the elliptic system, which is approximated by the normalized solutions of system (1.1) as
the nonlinear coupling § — co. Our paper is based on the results obtained in [32] and
devoted to studying the partial symmetry of the normalized solutions to system (1.1) and
their symmetry breaking phenomenons.

To state our main results, now we first give some notations. The vector means the

column vector, that is, u = (uy, .. ., uh)T, u" denotes the transpose of u. We define
2 _ 2 P _ 14 1
Il = [ (9l ufy = [ v < @),

Q o)

and
Vu = (Vuy,...,Vu) ', |Val* = |[Vig|* + - + |V,

and

jul = (i + -+ )2,

Here and hereafter, u >0 (u > 0) means that u; >0 (i; > 0), for every 1 <i<h.
We define the energy functional by

1 2 1 2 ﬂ/ 212
) =3 [ 1Vl 5 [ 1902+ [ Pl
for every u = (uy,u2),v = (vi,v2) € [Hj(; [R)]z.
Since N =2,3, by Sobolev embedding theorem, Jg(u,v) is well defined on
[Hy (@ R)]* x [Hy (@ R))%, and Jp(u,v) € C'([H(Q: R)]* x [Hy (4 R)]).
Let

S = {w = (w1, wa)| € [HAQR) - /QwTMw _ 1y,

where w' Mw = my; (x)w3(x) + 2myz(x)w; (x)wa(x) + maz(x)w3(x). In order to obtain the
least energy solutions of system (1.1), we study the energy minimization problem

cp:= inf _Jp(u,v).

(uy)eXxX

If we set

= {w = (w,wa) | € [HI QR : /wTMw w20, =1,2),
Q
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then we also have

cg:= inf Jg(u,v).
b (uy)eXxx ﬂ( )
To see this point, we refer the reader to reference [32] and omit the details of the proof.
Therefore, the assumption that w;’s are nonnegative in the set X is a natural constraint
and hence Lagrange multiplier rules can be applied. For positive least energy solutions, we
have the following result, see [32, Theorem 1.1].

Theorem 1.1 Let Q C RN(N =2,3) be a smooth bounded domain. Suppose that the
matrix M satisfies (M1) — (M4), then for every ff > 0 there exists (ug,vg) achieving cg,
which is a positive solution of the system (1.1) for some two Lagrange multipliers
up > 0,vp > 0.

When the underlying domain Q is radial, a very natural problem is whether the positive
solutions of (1.1) obtained by Theorem 1.1 inherit the symmetry or at least partial sym-
metry. To answer this question, we first recall the definition of foliated Schwarz symmetry.
A positive function u defined on a radially symmetric domain Q is said to be foliated
Schwarz symmetric with respect to p € 0B (0) if u depends only on (r, 0) = (|x|, arccos(x -
p)/)x|) and is non-increasing in 6.

Now we state our main result on the partial symmetry of positive solutions of (1.1)
obtained by Theorem 1.1.

Theorem 1.2 Let Q C RY(N =2 or 3) be a radially symmetric bounded domain with
smooth boundary (i.e., Q = Bg(0) or Bg(0)\ B,(0),R > r > 0), and suppose that the
matrix M satisfies (M1) — (M5). For any given nonlinear coupling constant f§ > 0, we
assume that (ug,vg) is a positive solution of (1.1) obtained by Theorem 1.1. Then there
exists p € OB (0) such that u; g and u, g are foliated Schwarz symmetric with respect to the
same point p, while vy g and v,y are foliated Schwarz symmetric with respect to the
antipodal point —p.

Remark 1.3 From Theorem 1.2, we see that u; g and u, g tends to be synchronized, does
also vy g and v, g. But up and vg as two groups behave mutually repulsed.

Compared to the known results (see [43, 45, 48]), the first difficulty lies in the fact that p
and v are undetermined, which may make the operator of elliptic system indefinite. Our
idea is to divide the vector solution into two groups, and to prescribe the masses of the two
groups. The second difficulty results from the assumption that the linear coupling are
functions, which needs to an extra effort in proving the foliated Schwarz symmetry. We
overcome it by developing a kind of polarization inequality with weight, please see
Lemma 2.4 and Corollary 2.5. In addition, the mixed effect of both linear coupling and
nonlinear coupling gives rise to the obstacle in the proof. We deal with it by using the
different polarization techniques for the two groups.

Although we obtain the partial symmetry of positive solutions of (1.1) founded by
Theorem 1.1, there is an interesting problem: may (ug,vs) be radially symmetric func-
tions, at least when Q is a ball? In the following, we give a negative answer for sufficiently

large f.
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Theorem 1.4 Let Q C RY(N =2 or 3) be a radially symmetric bounded domain with
smooth boundary (i.e., Q = Bg(0) or Br(0)\ B,(0),R > r > 0), and suppose that the
matrix M satisfies (M1) — (M5). For every f§ > 0, we assume that (up,vg) is a positive
solution of (1.1) obtained by Theorem 1.1. Then for sufficiently large f§ > 0, (ug,vg) are
not radially symmetric.

We briefly outline the ideas of the proof for Theorem 1.4. By Theorem 1.2, for any f§ > 0,
we know ug and vy attain their maximum at a pair of antipodal points, say (Qp, —Qp).
Since Q is bounded, up to a subsequence, we can assume (Qp, —Qp) — (Q,—Q) as
f — 4o0. Thanks to the asymptotic analysis of (us,vs) as § — oo given by our previous
paper [32, Theorem 1.4], there exist limit profiles u,, and v, such that
up(0p) — s (Q),vp(—Qp) — Voo (—Q). In virtue of the properties of limit profiles, we
can show that u..(Q) > 0,v5(—Q) > 0 and u(—0Q) = v (Q) = 0, which implies u
and v, are not radially symmetric functions, and hence (up,vs) not radially symmetric
solutions, at least for sufficiently large f, which seems a new method.

This paper is organized as follows. In Sect. 2, we investigate partial symmetry of
positive least energy solutions to system (1.1). In this section, we develop a kind of
polarization inequality with weight (see Lemma 2.4 and Corollary 2.5) to give the proof of
Theorem 1.2. Next, the symmetry breaking phenomenon has been analysed in Sect. 3.
Compared with most of the literatures as before (for example, see [16, 24, 40]), our method
is not based on comparing the energy of between the radial solutions and the non-radial
solutions. In this article, we analyze the singularly perturbed limit profiles of these nor-
malized solutions and prove that the normalized solutions are not radially symmetric at
least for large nonlinear coupling constant f3.

2 Proof of Theorem 1.2

In this section, for the sake of clarity, we will drop the subscript f§ for ug,vg, g, vp and
abbreviate them into u, v, 11, v. To show that u and v are foliated Schwarz symmetric, let us
introduce some useful notations. As in [46], we define the sets

Ho:={HCR":His a closed half-space in R" and 0 € 0H}

and, for p # 0, Ho(p) = {H € Ho : p € int(H)}. For each H € Hy we denote by oy :
RY — RY the reflection in RY with respect to the hyperplane 0H, and define the polar-
ization of a function u : Q — R with respect to H by

up (x) == { max{u(x), u(ox(x))} xEHNQ,
H min{u(x), u(op(x))} x € Q\H.

Moreover, we will call H € Hy dominant for u if u(x)>u(oy(x)) for all x € QN H(or,
equivalently, uy(x) = u(x) for all x € QN H). On the other hand we will say that H € H,
is subordinate for u if u(x) <u(oy(x)) for all x € QN H.

With the concepts above at hand, we first recall the following characterization of
foliated Schwarz symmetry.

Lemma 2.1 [46, Proposition 2.4] Let u:Q — R be a continuous function. Then u is
foliated Schwarz symmetric with respect to p € 0B1(0) if and only if every H € Ho(p) is
dominant for u.
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Remark 2.2 By Lemma 2.1, noting that the definition of the polarization to a function, we
also know that u is foliated Schwarz symmetric with respect to —p € 0B;(0) if and only if
every H € Hy(p) is subordinate for u.

Besides, we will need the following properties, see for instance [13, Lemma 2.2] and [46,
Lemma 3.1].

Lemma 2.3 Let u: Q — R be a measurable function and H € Hy.

() IfF:QxR— R is a continuous function such that F(x,t) = F(y,t) for every
x,y €Q such that |x|=|y| and t€ R and [,|F(x,u(x))|dx< + oo, then
Jo F(x,up)dx = [ F(x,u)dx.

(ii) Moreover, if u € HY(Q) then also uy € HY(Q) and [, |Vug|” = [, |Vul*.

For every H € 'Hy we denote by He ‘Ho the closure of the complementary half-space
R \ H. Then we give the following polarization inequalities with weight, which extends
the previous results, see for instance [43, Lemma 4.5] and [45, Lemma 2.2].

Lemma 24 IfP:Q xR x R — Risa continuous function such that P(x,t,s) = P(y,t,s)
for every x,y € Q such that |x| = |y| and t € R. In addition, we suppose P is C* with
_ P

respect to t, s and Py(x,t,5) = £ (x,1,5) <0 for every t,s > 0 and x € Q. Take u,v >0

such that [, P(x,u,v)dx < + oc. Then for every H € Hy we have that

/P(x7 up, vy )dx < /P(x,u,v)dxg /P(x7 up, v-)dx.
Q Q H

Q

Proof We claim that

P(x,a,c)+ P(x,b,d) < P(x,max{a, b}, min{c,d}) + P(x,min{a, b}, max{c,d}), (2.1)

P(x,a,c)+ P(x,b,d) > P(x,max{a, b}, max{c,d}) + P(x,min{a, b}, min{c,d}), (2.2)

for every a,b,c,d > 0 and every x € Q. Thanks to the permutation of a, b, ¢ and d, we
only suffice to consider two cases: a >b,c>d or a>b,c <d.

Case 1 a>b,c >d. In this case, the inequality (2.2) trivially holds, and inequality (2.1)
follows from

0> / / P(x,1,5)dtds = / Pi(x,1,¢) — Pi(x,t,d)dt
b Ja b
= P(x,a,c) — P(x,b,c) — P(x,a,d) + P(x,b,d).

Case 2 a>b,c <d. In this case, the inequality (2.1) trivially holds, and inequality (2.2)
follows from
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b pd b
0> / / P(x,1,8)dtds = / P,(x,t,d) — P,(x,t,c)dt
a c

a

= P(x,a,d) — P(x,b,d) — P(x,a,c) + P(x,b,c).

By (2.1), we know

QNH

/ ( ) . / [ ( u(x)7v(x)) P([ (x)7 ( H(‘x)) V( ( )))
Q H ulo og(X dx:
/ﬂ [ ( 7“(x) (x)) 1 ( 71‘([11(‘L))7V([h (())) ax

< /Q [Pl (0.5 + P 2). v (21

= / P(x,ug, v;l)dx.
Q
Similarly, by (2.2), we get
/ P, u, v)dx / [P(x, u(x), v(x)) + P(on(x), u(on (x), v(on(x))ldx
Q QNH

- /mH[P(x,u(x)w(x)) + P(x,u(op(x)), v(og(x)))]dx

>/ [P(x, upg (), vir (X)) + P(x, (01 (%)), vir (0 (x)))Jdx
QnH

= / P(x,ug,vy)dx.
Q

Corollary 2.5 For u € H}(Q) and every radial function w € C(Q, R) we have

/|Vu|2dx:/\VuH|2dx, /w(x)u"dxz/w(x)u';,dx7
Q Q Q Q

where q = 2,4. Moreover, if in addition w(x) > 0,Vx € Q, we have

/w(x)uvdxg /w(x)qude,
Q Q

/w(x)u,zivzgdxg /w(x)uzvzdxg /w(x)u,zivzdx
Q Q Q

for every u,v € H)(Q). In particular, when w(x) = 1, we obtain

/uzdx=/u§a’x, /uﬂz’x:/u}bdx

Q o) Q o)

/uvdxﬁ /qude, /uf,vzz\dxg /uzvzdxg/u%,v%dx.
Q Q Q H Q Q

and
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Proof The first result follows directly from Lemma 2.3. To show the second result, we

first take P(x,1,5) = w(x)(t — s). Then it is easy to verify that P satisfies the assumptions
of Lemma 2.4. So we obtain

[ = v < [ wia) (- v,

Q

which together with the first result implies

/Qw(x)uvdxg /Qw(x)qude.

Similarly, if we take P(x,,s) = w(x) (> — s2)%, then we get

[ vt —irac< [ w2

and hence

/Qw(x)u2vzdx§/Q w(x)ubvidsx.

In addition, we also get

/QW(X)(MZ B Vz)zdx < / W(x)(”é - va)zd)a

Q H

which implies
/w( )quAdx</ w(x)u*vdx.
Q Q
O

In what follows, if (u,v) is a positive minimizer for cg, we show that (uH,vl/;) is also a

minimizer for ¢y in virtue of the minimality of the energy that (u,v) satisfies.

Proposition 2.6 If (u = (uy, uz)T, v = (v, vz)T) is a positive minimizer for cg, then also

. T T
is (uH = (w1, U2.11) Vo= (v1 Y, [?) ) Furthermore, we have

/ X)uy gy gdx = /mlz Yuyupdx,

~V_ ~dx = mi2(x)vivodx
Vi n /Q 12(x)vivs

and
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Proof Since u;,v; € H}(Q),i = 1,2, we know by Lemma 2.3 (ii) that UitV oyl = 1,2
are also in H} (Q). Let us consider (fuy, svﬁ) € X x X for some ¢ > 0, s > 0. According to
Corollary 2.5 and the assumptions on M, we get

/m“(x)u%de: /m“(x)u%dx,
Q ’ Q
/ Moy (X)u5 ydx = / may (x)usdx,
Q ’ Q
/mlz(x)ul,guzﬂdxz /mlz(x)uluzdx.
Q Q

Since u = (uy, uz)T € 2, combining with the previous three equalities/inequality, we infer
0<t<1 to make tuy € . Similarly, we can get 0 <s < 1. Again by Corollary 2.5 and
recalling the definition of cg, we have

ﬁfz
cﬁ<Jﬁ(tuH,sv )= |VuH| + \V | H| |vA|
2

_2/[\V141H| +|VM2H|:| 2/[|Vv A| +|VV A‘}
ﬂfz g 2 2

> /Q{”lﬁ(vlﬁ_'—vzﬁ +u2”(v11?+V2H)}
’2/[\Vu1| +|Vu2|} 2/[|Vvll +|sz|}
+'Bisz/g[u%(lﬁ+vg) +u§(v%7+v§)}

< l/[|w1|2+ \vuzﬂ +1/Qﬂvm|2+ V0]
ﬂ/ 07+ + (0 +3)

That the equality above holds implies t = s = 1 and

Thus, we know J/;(uH,v;) = cp. In addition, by using (uH,VI?) € X x X, we also get
/mlz ulHqudxf /mlz(x)ulugdx,
Q Q

mp(x)v. ~v_ ~dx = /mlz X)vivadx.
/Q ) 1,H 2,H o (x)
O

Finally, with the previous preparations at hand, we now give the proof of our main result.
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Proof of Theorem 1.2 For clarity, we divide the proof into three steps.
Step 1: Let U, v~ be the polarization functions of u and v. We show that (u,v) and

(up, v;) satisfy the system (1.1) with the same Lagrange multipliers. As explained in the

introduction, cg can be written into

cg= inf _Jg(u,v),

(uy)eX XX

where

= fw=(w,m)" € [H(QR)]: /QwTMw _ 1y,

Since (u,v) is a positive minimizer for cj, by Proposition 2.6, we know (uy, vﬁ) is also a

minimizer for cg. Thus, there are by Lagrange multiplier rules pu, v, i, vy > 0 ( see [32]
for their positivity) such that (u,v) ((uH,v;;) respectively) is a solution of system (1.1)

with Lagrange multipliers (u,v) ((py, vir) respectively). Next we claim that

H= Uy, V=VH.

In fact, when (u,v, u,v) solves (1.1), multiplying the first equation and the third equation
of system (1.1) with u; and v; respectively, and then integrating over on Q, we obtain

,u/ (mll(x)u% + myp(X)urur)dx = / |V, |*dx + ﬁ/ u%(v% + v%)dx
Q Q Q

v/ (m”(x)v% + mlg(x)vlvz)dx = / Vv |2dx + /3/ v% (u% + u%)dx.
o Q Q

It (uH’va]’ U, ve) solves (1.1), taking a similar argument, we get

uH/(m“(x)u%ﬂ+m12(x)u]7Hu2_H)dx:/|Vu1‘H|2dx
Q Ja

2 2 2
+ ﬁAulaH <V17;1\+V2J/.I\)dx
2
VH/Q(m”(x)viﬁ+m12(x)v1ﬁvzﬁ)dx:/Q|Vv1ﬁ| dx
+p /Q v?ﬁ (u%H + u%"H) dx.

By Proposition 2.6, we easily see that p = py,v = vy.
Step 2: Take r>0 such that 0B,(0) C Q and let p € 0B;(0) be such that
maxgp, (o) 4 = u(rp). Next we show that uy = U,y =v for every H € Hy(p). Given

H € Hy(p), by Step 1, we know
—Auy = pmyy (X)uy + pmypp (x)up — ﬁul(v% + v%) x€Q,

—Auy g = pmyy (x)ur g + pmip(X)uy g — ﬁul.H(V? 7 + V; 1’1\) x€Q

Therefore, we have
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—A(ur g — wr) =pumyy (uy g — ur) + ump(uo g — ua)

2, o -
+ Pur (vi +v3) ﬁul,H(VlyH + VZ,H)

=pmyy (uy g — uy) + pmp(uog — uz) + Puy (V% + V%)

— ﬂul(vf;ldrvz ~)

2,H
2 2 N 2 42
+ Bul (VI,ITI\ + VZ,ZI\) ﬁul’H(VLH + VZAH).
Let w(x) := uy g(x) — us (x),x € Q, then
—Aw + c(x)w = pmp(x)(ua.g — u2) + Puy (V% - v? I?) + (v% - vz ;I\) , (2.3)

where ¢(x) := ﬂ(v?l;—i—v; 1?) — wmy1(x). By Theorem 1.1, we know u > 0. By the

assumption (M3) of M, it holds that ms(x) > 0,Vx € Q. Besides, according to the defi-
nition of polarization functions and Theorem 1.1, we have

O<u;<u;y and 0<v,§§v,-,i:1,2, xeQNH.
1,

Therefore, we obtain
—Aw+c(x)w>0, wx)>0, xe€QnNH.

By the strong maximum principle, we get that either w > 0 or w =0 in QN H. By the
choice of p, we have that rp € QN H and that w(rp) = 0. And then it must be u; = u; g
and therefore w = 0 in Q N H. Moreover, coming back to (2.3), we now see that

U=y, VI=V ~Vm=v ~ xEQNH.
2 2.H, V1 l,H’ 2 21’

Step 3: For every H € Ho(p), we get by Step 2 that
u,-Eu,;H,v,-EvA;,i:LZ, x€QNH,
: :

which implies that H is dominant for u; and u,, and is subordinate for v; and v,. By
Lemma 2.1 and Remark 2.2, we infer that u; and u, are foliated Schwarz symmetric with
respect to p, while v; and v, are foliated Schwarz symmetric with respect to the antipodal
point —p. |

3 Symmetry breaking

When considering the nonlinear coupling constant § — 400, we have the following
results, see [32, Theorem 1.2 and 1.4].

Theorem 3.1 Let (up,vg) be the positive least energy solution obtained by Theorem 1.1.
Then there exists Uy, Vo) € X X X such that, up to a subsequence, as f§ — +o0,

() wp— U, vp — Voo in [HY(Q))? N [CO*(Q))?, Vo € (0,1);
(i) uy and vy have disjoint supports, that is,

SN Partial Differential Equations and Applications
A SPRINGER NATURE journal



24 Page 12 of 15 SN Partial Differ. Equ. Appl. (2020) 1:24

Ujoo - Vj,oo = O:Viaj S {1a2}

(ili) s and v are Lipschitz continuous in Q. And the sets o, :={x€Q:
uioc (x) + u%po(x) >0}, o, ={xeQ: v%oc (x) + V%«,oc (x) > 0} are open and
connected;

(iv)

—Auy = p Muy, inow, , —Avg=v.Mvy, ino,_,
and uy > 0in w, , veo > 0in oy, pi = limg_ 4 Hps Voo = limp_, o vg, here
Ups vp are two Lagrange multipliers in Theorem].1.
V) Q= Ud,_,wu No,_=I0. Moreover, w,_#0,w,_# 0.

Remark 3.2 Although Theorem 3.1 (v) has not been pointed out explicitly in [32], we
easily see this fact by checking the proof of Theorem 1.4 in [32].

Once we know the asymptotic behavior of (ug,vg) as f — 400, we can infer the shape of
(ug,vp) from their limit profiles. Thus, we now can give the proof of Theorem 1.4.

Proof of Theorem 1.4 By Theorem 1.2, for any given f§ > 0, we know there exists pg =
p(B) € 9B (0) (here we emphasize the dependence on f3) such that u; g and u; g are foliated
Schwarz symmetric with respect to pg, while v g and v,y are foliated Schwarz symmetric
with respect to the antipodal point —pp. Therefore, recalling the definition of foliated
Schwarz symmetry, we can assume that there exists {Q,; p> 0} C Q such that

ui,ﬂ(Qﬂ):magui,ﬁ(x), vip(—Qp) = maxv;p(x), i=1,2.
XE

xeQ

Since Q is bounded, then there exists a subsequence {f;} with 5, — oo such that
Qs — Q€Q, ask— +oo. (3.1)
On the other hand, by Theorem 3.1(i), we have
Uip, — Ui, Vi, — Vieo Uniformly for x € Qi=12 ask— 4oo. (3.2)
Thus, we get

uivﬁk(Qﬁk) - ui-OC(Q)v vivﬁk(_QﬁA) - Vi,OO(_Q)vi =1,2 ask— +oo.
In fact, we take u; g, (Qp,) — u1,00(Q) for example to show this claim. For every ¢ > 0, by
(3.1) and the continuity of u; o, (see Theorem 3.1(ii7)), there exists K; > 0 such that

&

|ul,oo(Ql3k) - ul,oo(Q)‘ < 5

whenever k > K;. In addition, there exists K, > 0 from (3.2) such that when k > K, we
have

&
Hulsﬁk - ulooHLx(ﬁ) < 5

Taking K = max{K;,K,} > 0, we obtain

SN Partial Differential Equations and Applications
A SPRINGER NATURE journal



SN Partial Differ. Equ. Appl. (2020) 1:24 Page 13 of 15 24

|1, (Qp,) — u1,00(0)| <, (Qp,) — t1,00(Qp )| + 11,00(Qp,) — 1,00 (Q)| <&

whenever k > K.

In what follows, we claim that u;(Q) > 0. Since u; 5 >0 in €, it holds that
u1p,(Qp) >0 and hence u;.(Q)>0. If we assume u;.(Q)=0, then we get
urp, (0p,) = ||“1J>’k||Lx(§)_’ 0. Therefore it must have u; », = 0. By Theorem 3.1(iii) and

(iv), we infer that
oy, ={xeQ: u%oo(x) + u%ﬁoc(x) >0} ={x € Q:u (x) >0},

which together with u; ., =0 implies w, = (). This contradicts the result of Theo-
rem 3.1(v). So we have u; o, (Q) > 0 and hence Q € Q. Similarly, we can also prove that
MQOO(Q) > O,V]ﬂoo(*Q) > 0, and V2~OQ(*Q) > 0.

Finally, by Theorem 3.1(ii), we know u;(—Q) = v;»(Q) = 0,i = 1,2, which shows
that u,, and v, are not radially symmetric functions. From the strong convergence, we
conclude that (ug,vg) are not radially symmetric solutions, at least for sufficiently large
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