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Abstract
We study the existence of positive solutions to the following Kirchhoff type equation with

vanishing potential and general nonlinearity:

� ðe2aþ eb
Z
R3

jrvj2ÞDvþ VðxÞv ¼ f ðvÞ; x 2 R3;

v[ 0; v 2 H1ðR3Þ;

8><
>:

where e[ 0 is a small parameter, a; b[ 0 are constants and the potential V can vanish, i.e.,

the zero set of V, Z :¼ fx 2 R3jVðxÞ ¼ 0g is non-empty. In our case, the method of Nehari

manifold does not work any more. We first make a truncation of the nonlinearity and prove

the existence of solutions for the equation with truncated nonlinearity, then by elliptic

estimates, we prove that the solution of truncated equation is just the solution of our

original problem for sufficiently small e[ 0.
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1 Introduction

In this paper, we study the existence of positive solutions for Kirchhoff type equations with

vanishing potentials and general nonlinearity:

� ðe2aþ eb
Z
R3

jrvj2ÞDvþ VðxÞv ¼ f ðvÞ; x 2 R3;

v[ 0; v 2 H1ðR3Þ;

8><
>: ð1:1Þ

where e[ 0 is a small parameter, a; b[ 0 are constants. We assume that the potential

V(x) satisfies the following conditions:

(V1) V 2 CðR3;RÞ, VðxÞ� 0, and V1 :¼ lim inf
jxj!1

VðxÞ[ 0.

(V2) The zero set of V, Z :¼ fx 2 R3jVðxÞ ¼ 0g is non-empty. Without loss of

generality, we assume that 0 2 Z.

In recent years, the elliptic Kirchhoff type equations have been studied extensively by

many researchers. The problem is related to the stationary analogue of the equation

utt � aþ b

Z
X
jruj2

� �
Du ¼ gðx; tÞ ð1:2Þ

proposed by Kirchhoff [20] as an extension of the classical D’Alembert’s wave equation

for free vibrations of elastic strings, Kirchhoff’s model takes into account the changes in

length of the string produced by transverse vibrations. Several interesting existence and

uniqueness results can be found in [3, 22–24, 26, 35–37] etc.

On the other hand, if a ¼ 1, b ¼ 0, R3 replaced by RN ;N � 1 in (1.1), it reduces to the

well-known Schrödinger equation

�e2Duþ VðxÞu ¼ f ðuÞinRN ; ð1:3Þ

which has been paid much attention after the celebrated work of Floer and Weinstein [16].

For vanishing potentials in (1.3), we first point out the papers [8, 9]. In [8], Byeon and

Wang found many interesting results with vanishing potential V. For instance, they show

that there exists a standing wave (solution) which is trapped in a neighborhood of isolated

zero points of V and whose amplitude tends to 0 as e ! 0; moreover, depending on the

local behavior of the potential function V near the zero points, the limiting profiles of the

standing wave solutions are shown to exhibit quite different characteristic features. In [9],

they consider a more general nonlinearity and vanishing potential. This type of results for

Schrödinger type equations have been studied extensively over the years. Before [8, 9]

there had been some earlier works along this line such as [4, 5], in which equations with a

large parameter were considered, but a simple scaling taken to the equations could convert

them to a similar case as of (1.3). After [8, 9], there are also many papers closely related to

the subject. In [2], the authors studied nonlinear Schrödinger equations with vanishing and

decaying potentials. In [10], radially symmetric and vanishing potentials were considered.

In [7, 11–13], multi-bump standing waves with critical frequency for nonlinear Schrö-

dinger equations were studied. For more references about Schrödinger equations, we refer

to [1, 6, 8, 9, 14, 25, 31–33] and references therein.

Recently, many authors studied the existence and concentration behavior of ground

states for Kirchhoff type equations in R3. In [18], He and Zou studied (1.1) with
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infx2R3 VðxÞ[ 0 and subcritical nonlinearity. In [30], Wang et al. treated (1.1) with

infx2R3 VðxÞ[ 0 and critical growth. In [15], Figueiredo et al. obtained the existence and

concentration of positive solutions for (1.1) with infx2R3 VðxÞ[ 0 and the almost optimal

Berestycki–Lions type nonlinearity. In [27], Sun and Zhang investigated the uniqueness of

positive ground state solutions for Kirchhoff type equations with constant coefficients and

then studied the existence and concentration behaviour of Kirchhoff type problems in R3

with competing potentials. In [28], Sun and Zhang investigated the existence and

asymptotic behaviour of the positive ground state solutions to Kirchhoff type equations

with vanishing potentials. For more results, we refer to [19, 21, 29] etc.

In this paper, motivated by [9], we consider a more general nonlinearity than that in

[28], i.e., we assume that f : R ! Rþ is continuous and satisfies

(f1) lim
t!0þ

f ðtÞ
t ¼ 0.

(f2) There exists 4\l\6 such that lim inf
t!0þ

f ðtÞ
tl�1 [ 0.

(f3) 0\lFðtÞ� tf ðtÞ for t[ 0 where l is defined in (f2) and FðtÞ ¼
R t

0
f ðsÞds.

Since we look for positive solutions of (1.1), we assume that f ðtÞ ¼ 0 for t� 0. We have

the following result:

Theorem 1.1 Suppose that (V1), (V2), (f1)–(f3) hold. Then for sufficiently small e[ 0,

there exists a positive solution ve of (1.1)which satisfies

lim
e!0

kvekL1ðR3Þ ¼ 0:

Remark 1.2 Our assumption on f is more general than that in [27]. Actually, our non-

linearity here can be supercritical. Let f ðtÞ ¼ tl�1 þ tq�1 for t� 0 where q[ 6. Then

lim inf
t!0þ

f ðtÞ
tl�1

¼ 1[ 0;

and

tl þ l
q
tq ¼ lFðtÞ� tf ðtÞ ¼ tl þ tq;

which implies that f ðtÞ ¼ tl�1 þ tq�1 satisfies (f1),(f2) and (f3).

The paper is organized as follows. In Sect. 2 we give some preliminary results and in

Sect. 3 we give the proof of Theorem 1.1.

2 Preliminaries

First let uðxÞ ¼ vðexÞ, then the Eq. (1.1) becomes the following equivalent equation

� aþ b

Z
R3

jruj2
� �

Duþ VðexÞu ¼ f ðuÞinR3;

u[ 0; u 2 H1ðR3Þ:

8><
>: ð2:1Þ
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Let Ee :¼ fu 2 H1ðR3Þ :
R
R3VðexÞu2\þ1g be the Hilbert subspace of H1ðR3Þ with the

norm

kukEe
:¼

Z
R3

ajruj2 þ VðexÞu2
� �1=2

:

For any set A � R3, we define

A1
e
:¼ fx 2 R3jex 2 Ag:

By (V1), we can choose d[ 0 such that lim inf
jxj!1

VðxÞ� 2d. Then there exists D[ 0 such

that VðexÞ� d, for jxj � e�1D: Now we make a truncation of the nonlinearity f in (2.1).

Define

~f ðtÞ ¼
f ðtÞ; 0\t� 1;

f ð1Þtl�1; t� 1;

0; t� 0;

8><
>:

where l is defined in (f2). Since l
R 1

0
f ðsÞds� f ð1Þ, we know that for t[ 0,

0\l
Z t

0

~f ðsÞds� ~f ðtÞt:

Let ~FðtÞ :¼
R t
0
~f ðsÞds. Now we define a function g : R3 � Rþ ! Rþ by

gðx; tÞ ¼
~f ðtÞ; for jxj �D=e;

minf ~f ðtÞ; ktg; for jxj[D=e;

(

where

0\k\d � 2d

l
: ð2:2Þ

From above we know that for sufficiently small t[ 0, gðx; tÞ � f ðtÞ.
Now we define the functional Ie : Ee ! R by

IeðuÞ :¼
1

2

Z
R3

ðajruj2 þ VðexÞu2Þ þ b

4

Z
R3

jruj2
� �2

�
Z
R3

Gðx; uÞ;

where Gðx; tÞ ¼
R t

0
gðx; sÞds. Then we have that Ie 2 C1ðEe;RÞ and we want to show that

the critical point of Ie on Ee is just the solution of (2.1) for sufficiently small e[ 0, .

First we verify the mountain pass geometry of Ie.

Lemma 2.1 For any fixed e[ 0, there exists r0 [ 0such that

inf
kukEe¼r0

IeðuÞ[ 0:

Proof By (f1) and the definition of ~f ðtÞ, we know
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gðx; tÞ� ~f ðtÞ� hjtj þ Chjtjl�1;

where h[ 0 is arbitrary, Ch [ 0 is a constant dependent on h. Thus

IeðuÞ ¼
1

2
kuk2Ee

þ b

4

Z
R3

jruj2
� �2

�
Z
R3

Gðx; uÞ

� 1

2
kuk2Ee

� h

2

Z
R3

juj2 � Ch

l

Z
R3

jujl:

As the embedding Ee,!Lp(2� p� 6) is continuous, there exist constants C1;C2 [ 0 such

that

Z
R3

u2 �C1kuk2Ee
;

Z
R3

jujl �C2kuklEe
:

Choose h[ 0 sufficiently small such that h
2
C1\ 1

4
, then

IeðuÞ�
1

2
kuk2Ee

� h

2
C1kuk2Ee

� Ch

l
C2kuklEe

� 1

4
kuk2Ee

� Ch

l
C2kuklEe

:

Since l[ 2, from above we know there exists r0 [ 0 such that

inf
kukEe¼r0

IeðuÞ[ 0:

h

Lemma 2.2 Let / 2 C1
0 ðM1

e
Þbe fixed, where M :¼ fx 2 R3 : jxj �Dg, /� 0and / 6� 0.

Then for sufficiently large t[ 0, Ieðt/Þ\0.

Proof Notice that

Ieðt/Þ ¼
1

2
t2k/k2Ee

þ b

4
t4

Z
R3

jr/j2
� �2

�
Z
M1

e

~Fðt/Þ

� 1

2
t2k/k2Ee

þ b

4
t4

Z
R3

jr/j2
� �2

�tl
Z
M1

e

/l þ C;

then by 4\l\6 we know that for sufficiently large t[ 0, Ieðt/Þ\0. h

Now we show that Ie satisfies (PS) condition.

Lemma 2.3 For each fixed e[ 0, Iesatisfies (PS) condition.

Proof Let fung1n¼1 � Ee satisfy that IeðunÞ is bounded and lim
n!1

I0eðunÞ ¼ 0. Then there

exist C1;C2 [ 0 such that for sufficiently large n[ 0,
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C1 þ C2kunke � IeðunÞ �
1

l
\I0eðunÞ; un [ ¼ 1

2
� 1

l

� �
kunk2eþ

1

4
� 1

l

� � Z
R3

jrunj2Þ2 þ
1

l
ð
Z
R3

gðx; unÞun � lGðx; unÞ
� �

� 1

2
� 1

l

� �
kunk2e þ

1

l

Z
R3nM1

e

ðgðx; unÞun � lGðx; unÞÞ

� 1

2
� 1

l

� �
kunk2e �

k

2

Z
R3nM1

e

u2n �
1

2
� 1

l

� �
kunk2e �

k

2d

Z
R3nM1

e

VðexÞu2n

� 1

2
� 1

l
� k

2d

� �
kunk2e :

By 2.2, we know that fung is bounded in Ee. So if necessary to a subsequence, there exists

u0 2 Ee such that

un * u0; inEe;

un ! u0; inL
s
locðR3Þ; 1\s\6;

un ! u0; a.e. inR
3:

Now we show that fung converges to fu0g strongly in Ee. It is sufficient to prove that for

any d[ 0, there exists R[ 0 such that

lim sup
n!1

Z
R3nBRð0Þ

ðjrunj2 þ VðexÞu2nÞ\d; ð2:3Þ

where BRð0Þ is a ball centered at zero and with radius R and let M1
e
� BRð0Þ.

Choose uR 2 C1
0 ðR3Þ such that uR � 0 in BRð0Þ, uR � 1 in Bc

2Rð0Þ, 0�uR � 1, and

jruRj � 2
R. Thus for any R[ 0, we have

hI0eðunÞ;uRuni ! 0: ð2:4Þ

Then for R�D=e,
Z
R3

ðajrunj2 þ VðexÞu2nÞuR þ a

Z
R3

unrunruRþ

b

Z
R3

jrunj2
Z
R3

runrðuRunÞ ¼
Z
R3

gðx; unÞunuR þ oð1Þ:

It yields

Z
R3nB2Rð0Þ

ðajrunj2 þ VðexÞu2nÞ�
Z
R3

ðajrunj2 þ VðexÞu2nÞuR

� k

Z
R3

u2nuR � a

Z
R3

unrunruR � b

Z
R3

jrunj2
Z
R3

unrunruR þ oð1Þ:

By (2.2), we have

k

Z
R3

u2nuR �
k

d

Z
R3

VðexÞu2nuR\ 1� 2

l

� �Z
R3

ðajrunj2 þ VðexÞu2nÞuR:
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Then by the boundedness of
R
R3 jrunj2, we have constant C[ 0 such that

Z
R3nB2Rð0Þ

ðjrunj2 þ VðexÞu2nÞ�
C

R
kunkL2krunkL2 þ oð1Þ;

which implies (2.3). h

In this paper we will use Theorem 4.1 of [17]. We give the theorem here for readers’

convenience:

Theorem 2.4 Suppose y 2 Rn, aij 2 L1ðB1ðyÞÞand c 2 LqðB1ðyÞÞfor some q[ n=2

satisfy the following assumptions

aijðxÞninj � kjnj2 for any x 2 B1ðyÞ; n 2 Rn and jaijjL1 þ kckLq �K

for some positive constants kand K. Suppose that u 2 H1ðB1ðyÞÞis a subsolution in the
following sense

Z
B1ðyÞ

ðaijDiuDjuþ cuuÞ�
Z
B1

fu for anyu 2 H1
0ðB1ðyÞÞ andu� 0 in B1ðyÞ:

If f 2 LqðB1ðyÞÞ, then uþ 2 L1locðB1ðyÞÞ. Moreover, there holds for any h 2 ð0; 1Þ and any
p[ 0

sup
BhðyÞ

uþ �C
1

ð1� hÞn=p
kuþkLpðB1ðyÞÞ þ kfkLqðB1ðyÞÞ

( )

where C ¼ Cðn; k;K; p; qÞ is a positive constant.

3 Proof of Theorem 1.1

From Lemma 2.1, Lemma 2.2 and Lemma 2.3, we know that Ie satisfies mountain pass

geometry and (PS) condition. Now we define

ce ¼ inf
g2Ce

max
0� t� 1

IeðgðtÞÞ;

where

Ce :¼ fg 2 Cð½0; 1	;EeÞ : gð0Þ ¼ 0; Ieðgð1ÞÞ\0g:

Then by the general minimax theorem(Theorem 2.8, [34]), we can get a sequence fung �
Ee such that

IeðunÞ ! ce; I0eðunÞ ! 0 as n ! 1:

Since Ie satisfies (PS) condition, thus there exists ue 2 Ee such that un ! ue in Ee. Then ue
is the critical point of Ie and IeðueÞ ¼ ce. Furthermore, ue satisfies

� aþ b

Z
R3

jruej2
� �

Due þ VðexÞue ¼ gðx; ueÞ: ð3:1Þ

SN Partial Differential Equations and Applications
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By the elliptic regularity theory and maximum principle, we know that ue is continuous and
ue [ 0. Now we show that kuekL1 ! 0 as e ! 0, which implies that for sufficiently small

e[ 0, ue is just the positive solution of (2.1) since gðx; tÞ � f ðtÞ for sufficiently small

t[ 0. Then we equivalently prove Theorem 1.1.

Now we estimate the limit of ce as e ! 0þ:

Lemma 3.1 lim sup
e!0þ

ce ¼ 0:

Proof By (f2) and (f3), there exists C[ 0 such that ~FðtÞ�Ctl. For any R[ 0, consider

� ðaþ b

Z
BR

jrwj2ÞDw ¼ Clwl�1;

w[ 0 inBRð0Þ; w ¼ 0 on oBRð0Þ;

8><
>: ð3:2Þ

where BRð0Þ � R3 is a ball centered at zero and with radius R. Let wR be the least energy

solution of (3.2). We can take wR as a function defined on R3, with wR ¼ 0 outside the ball

BRð0Þ. Then for t[ 0 and sufficiently small e[ 0, we have

IeðtwRÞ ¼
1

2
t2
Z
R3

ðajrwRj2 þ VðexÞw2
RÞ þ

b

4
t4

Z
R3

jrwRj2
� �2

�
Z
R3

~FðtwRÞ

� t2

2
kwRk2e þ

b

4
t4

Z
R3

jrwRj2
� �2

�Ctl
Z
R3

wl
R:

Since 4\l\6, there exists t0 [ 0 such that IeðtwRÞ\0 for t[ t0. Then

lim sup
e!0þ

ce � lim sup
e!0þ

max
t2ð0;1Þ

IeðtwRÞ

� lim sup
e!0þ

max
t2ð0;1Þ

t2

2

Z
R3

ðajrwRj2 þ VðexÞw2
RÞ þ

b

4
t4

Z
R3

jrwRj2
� �2

"(

�Ctl
Z
R3

wl
R

��
� lim sup

e!0þ

t20
2

max
x2BRð0Þ

VðexÞ
Z
R3

w2
R

� �
þ max

t2ð0;1Þ

t2

2

Z
R3

ajrwRj2
�

þ b

4
t4

Z
R3

jrwRj2
� �2

�Ctl
Z
R3

wl
R

#
¼ 0þ IRðwRÞ;

where IR is the energy functional of (3.2). Thus in order to prove Lemma 3.1, we only need

to show that gðRÞ :¼ IRðwRÞ ! 0 as R ! 1.

Claim: gðRÞ ¼ IRðwRÞ ! 0 as R ! 1.

For any m[ 0, let cmR be the least energy level of the energy functional associated to the

equation

� ðaþ b

Z
BR

jrwj2ÞDwþ mw ¼ Clwl�1;

w[ 0 inBRð0Þ; w ¼ 0 on oBRð0Þ:

8><
>: ð3:3Þ

Then gðRÞ� cmR , and as the proof of Lemma 2.3 in [27], we can prove cmR ! cm as R ! 1,

where cm is the ground energy level of of the energy functional associated to the equation
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�ðaþ b

Z
R3

jruj2ÞDuþ mu ¼ Clul�1 inR3: ð3:4Þ

By the Lemma 3.6 of [27] (Claim 3.6.1 in the proof of it), cm ! 0 as m ! 0þ. Then from

the above arguments we can get gðRÞ ¼ IRðwRÞ ! 0 as R ! 1. h

Remark 3.2 As a result of condition (V2)(the zero set of potential V is not empty), we can

estimate in Lemma 3.1 that the energy level lim supe!0þ ce ¼ 0, this is very different to the

case infx2R3 VðxÞ[ 0(see Lemma 2.3 in [29] for instance) and this result can be used in the

subsequent arguments to prove kuekL1 ! 0 as e ! 0þ which in the end yields ue is the
solution of the original problem for sufficiently small e[ 0.

Now we estimate the limit of kueke and kuekLl as e ! 0þ.

Lemma 3.3 kueke ! 0, kuekLl ! 0 as e ! 0þ.

Proof We first prove kueke ! 0 as e ! 0þ. Since

ce ¼
1

2
kuek2e þ

b

4

Z
R3

jruej2
� �2

�
Z
M1

e

~FðueÞ �
Z
R3nM1

e

Gðx; ueÞ;

and

0 ¼ kuek2e þ b

Z
R3

jruej2
� �2

�
Z
M1

e

~f ðueÞue �
Z
R3nM1

e

gðx; ueÞue;

we get

ce ¼
1

2
� 1

l

� �
kuek2e þ b

1

4
� 1

l

� � Z
R3

jruej2
� �2

þ
Z
M1

e

1

l
~f ðue

� �
ue � ~FðueÞÞ þ

Z
R3nM1

e

1

l
gðx; ue

� �
ue � Gðx; ueÞÞ

� 1

2
� 1

l

� �
kuek2e �

k

2

Z
R3nM1

e

u2e �
1

2
� 1

l
� k

2d

� �
kuek2e :

Thus by (2.2) and Lemma 3.1, we have kueke ! 0 as e ! 0þ.

Now we show kuekLl ! 0 as e ! 0þ.
Since

ce ¼
1

2
kuek2e þ

b

4

Z
R3

jruej2
� �2

�
Z
R3

Gðx; ueÞ;

we know

Z
R3

Gðx; ueÞ ¼
1

2
kuek2e þ

b

4

Z
R3

jruej2
� �2

�ce ! 0; as e ! 0þ:

Then
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Z
M1

e

~FðueÞ ! 0; as e ! 0þ:

By (f2) and (f3), there exists C[ 0 such that ~FðtÞ�Ctl, thus

C

Z
M1

e

juejl �
Z
M1

e

~FðueÞ ! 0; as e ! 0þ: ð3:5Þ

On R3nM1
e
, we know

Z
R3nM1

e

ðjruej2 þ VðexÞu2e Þ ! 0 as e ! 0þ;

thus

kuekH1ðR3nM1
e
Þ ! 0 as e ! 0þ:

By the Sobolev embedding theorem, we know

juekLlðR3nM1
e
Þ ! 0 as e ! 0þ: ð3:6Þ

Thus by (3.5) and (3.6), we have

kuekLl ! 0 as e ! 0þ:

h

Now we apply Theorem 2.4 to estimate kuekL1 as e ! 0þ. We know ue satisfies

�ðaþ b

Z
R3

jruej2ÞDue þ VðexÞue ¼ gðx; ueÞ:

From the above arguments we know that there exist C1;C2 [ 0 such that

C1 � aþ b

Z
R3

jruej2 �C2;

for sufficiently small e[ 0. Since gðx; ueÞ� ~f ðueÞ, we have

� aþ b

Z
R3

jruej2
� �

Due þ VðexÞue � ~f ðueÞ� 0:

It yields

aþ b

Z
R3

jruej2ÞDue þ ~f ðue
� �

�VðexÞue � 0:

By the definition of ~f ðtÞ, there exist C3;C4 [ 0 such that

~f ðueÞ�C3ue þ C4u
l�1
e :

Thus from above arguments, there exist C;C0 [ 0 such that

Due þ Cue þ C0ul�1
e � 0:
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It implies that

Z
B1ð0Þ

rueruþ cueu� 0 for anyu 2 H1
0ðB1ð0ÞÞ; u� 0 inB1ð0Þ;

where c ¼ �C � C0ul�2
e ; B1ð0Þ is any ball in R3 with radius 1. We have that

cðxÞ 2 LqðB1ð0ÞÞ, q ¼ l
l�2

, and

q� 3

2
¼ l

l� 2
� 3

2
¼ 6� l

2ðl� 2Þ [ 0:

Thus q[ 3
2
and there exists K[ 0 such that kckLqðB1ð0ÞÞ\K. Now we can apply Theo-

rem 2.4 and get that ue 2 L1locðB1ð0ÞÞ and

kuekL1 � �CkuekLl ;

where �C is a constant only dependent on K and independent of e[ 0. Now by Lemma 3.3

we know kuekL1 ! 0 as e ! 0þ: Thus we have shown that for sufficiently small e[ 0, ue
is the solution of (2.1) and equivalently proved Theorem 1.1.

Acknowledgements The authors would like to express sincere thanks to the anonymous referees for their
carefully reading the manuscript and valuable comments and suggestions.

Funding Supported by the National Natural Science Foundation of China (11771428, 11926335), Natural
Science Foundation of Shandong Province (ZR2018MA009), Project of Shandong Province Higher Edu-
cational Science and Technology Program (J18KB103, J18KB109).

References

1. Ambrosetti, A., Badiale, M., Cingolani, S.: Semiclassical states of nonlinear Schrödinger equations with
potentials. Arch. Ration. Mech. Anal. 140(3), 285–300 (1997)

2. Ambrosetti, A., Wang, Z.Q.: Nonlinear Schrödinger equations with vanishing and decaying potentials.
Differ. Integral Equ. 18, 1321–1332 (2005)

3. Azzollini, A.: The elliptic Kirchhoff equation in RN perturbed by a local nonlinearity. Differ. Integral
Equ. 25(5–6), 543–554 (2012)

4. Bartsch, T., Wang, Z.Q.: Existence and multiplicity results for some superlinear elliptic problems on

RN . Commun. Partial Differ. Equ. 20, 1725–1741 (1995)
5. Bartsch, T., Pankov, A., Wang, Z.Q.: Nonlinear Schrödinger equations with steep potential well.

Commun. Contemp. Math. 3, 549–569 (2001)
6. Byeon, J., Jeanjean, L.: Standing waves for nonlinear Schrödinger equations with a general nonlinearity.

Arch. Ration. Mech. Anal. 185(2), 185–200 (2007)
7. Byeon, J., Oshita, Y.: Existence of multi-bump standing waves with a critical frequency for nonlinear

Schrödinger equations. Commun. Partial Differ. Equ. 29, 1877–1904 (2004)
8. Byeon, J., Wang, Z.Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations.

Arch. Ration. Mech. Anal. 165, 295–316 (2002)
9. Byeon, J., Wang, Z.Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations II.

Calc. Var. Partial Differ. Equ. 18(2), 207–219 (2003)
10. Byeon, J., Wang, Z.Q.: Spherical semiclassical states of a critical frequency for Schrödinger equations

with decaying potentials. J. Eur. Math. Soc. 8, 217–228 (2006)
11. Cao, D., Noussair, E.S.: Multi-bump standing waves with a critical frequency for nonlinear Schrödinger

equations. J. Differ. Equ. 203, 292–312 (2004)
12. Cao, D., Noussair, E., Yan, S.: Multiscale-bump standing waves with a critical frequency for nonlinear

Schrödinger equations. Trans. Am. Math. Soc. 360, 3813–3837 (2008)
13. Cao, D., Peng, S.: Multi-bump bound states of Schrödinger equations with a critical frequency. Math.

Ann. 336, 925–948 (2006)

SN Partial Differential Equations and Applications

SN Partial Differ. Equ. Appl. (2020) 1:8 Page 11 of 12 8



14. Del Pino, M., Felmer, P.L.: Local mountain pass for semilinear elliptic problems in unbounded
domains. Calc. Var. Partial Differ. Equ. 4(2), 121–137 (1996)

15. Figueiredo, G.M., Ikoma, N., Santos Júnior, J.R.: Existence and concentration result for the Kirchhoff
type equations with general nonlinearities. Arch. Ration. Mech. Anal 213(3), 931–979 (2014)

16. Floer, A., Weinstein, A.: Nonspreading wave packets for the cubic Schrödinger equation with a
bounded potential. J. Funct. Anal. 69(3), 397–408 (1986)

17. Han, Q., Lin, F.: Elliptic Partial Differential Equations, Lecture Notes. Am. Math. Soc, Providence
(2000)

18. He, X.M., Zou, W.M.: Existence and concentration behavior of positive solutions for a Kirchhoff

equation in R3. J. Differ. Equ. 252(2), 1813–1834 (2012)

19. He, Y., Li, G.B., Peng, S.J.: Concentrating bound states for Kirchhoff type problems in R3 involving
critical Sobolev exponents. Adv. Nonlinear Stud. 14(2), 483–510 (2014)

20. Kirchhoff, G.: Mechanik. Teubner, Leipzig (1883)
21. Li, G.B., Ye, H.Y.: Existence of positive ground state solutions for the nonlinear Kirchhoff type

equations in R3. J. Differ. Equ. 257(2), 566–600 (2014)
22. Li, Y.H., Li, F.Y., Shi, J.P.: Existence of a positive solution to Kirchhoff type problems without

compactness conditions. J. Differ. Equ. 253(7), 2285–2294 (2012)
23. Naimen, D.: The critical problem of Kirchhoff type elliptic equations in dimension four. J. Differ. Equ.

257(4), 1168–1193 (2014)
24. Perera, K., Zhang, Z.T.: Nontrivial solutions of Kirchhoff-type problems via the Yang index. J. Differ.

Equ. 221(1), 246–255 (2006)
25. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43(2),

270–291 (1992)
26. Sun, J.T., Wu, T.: Ground state solutions for an indefinite Kirchhoff type problem with steep potential

well. J. Differ. Equ. 256(4), 1771–1792 (2014)
27. Sun, D.D., Zhang, Z.T.: Uniqueness, existence and concentration of positive ground state solutions for

Kirchhoff type problems in R3. J. Math. Anal. Appl. 461(1), 128–149 (2018)
28. Sun, D.D., Zhang, Z.T.: Existence and asymptotic behaviour of ground States for Kirchhoff type

equations with vanishing potentials. Z. Angew. Math. Phys 70(1), 2 (2019)

29. Sun, D.D.: Multiple Positive Solutions to Kirchhoff equations with competing potential functions in R3.
Bound. Value Probl. 85, 1–18 (2019)

30. Wang, J., Tian, L.X., Xu, J.X., Zhang, F.B.: Multiplicity and concentration of positive solutions for a
Kirchhoff type problem with critical growth. J. Differ. Equ. 253(7), 2314–2351 (2012)

31. Wang, X.F.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun.
Math. Phys. 53(2), 224–229 (1993)

32. Wang, X.F., Zeng, B.: On concentration of positive bound states of nonlinear Schrödinger equations
with competing potential functions. SIAM J. Math. Anal. 28(3), 633–655 (1997)

33. Wang, Z.Q.: Existence and symmetry of multi-bump solutions for nonlinear Schrödinger equations.
J. Differ. Equ. 159, 102–137 (1999)

34. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)
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