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Abstract
For collision-free autonomous navigation, pose estimation plays a pivotal role as it enables the robot to localize itself in the 
environment in which it is operating. A broad range of sensors are available for position and orientation estimation which 
are highly accurate and precise, but are contrariwise expensive. This work introduces a simple yet a robust method for esti-
mating the robot pose via ArUco markers and particle filter. The proposed approach acquires position information from the 
tvec (translation vector) of the detected ArUco marker’s coordinate frame. Because of the flickering that incurs as a result of 
various factors in the detection of the ArUco markers, the measurement error and inaccuracy in establishing a feasible robot 
heading vector from the ArUco marker becomes more pronounced. Therefore, instead of acquiring the orientation informa-
tion head-on from rvec, forward filtering-backward smoothing recursions are used for generating the heading vector (and 
consequently for spawing steering commands) based on the observations acquired from the camera. The Q matrix values are 
chosen considering anticipated process noise from the target’s position, speed, acceleration, heading angle, and turning rate. 
For the R matrix, values are selected based on the deviation in target states over time. Increasing the number of smoothing 
levels substantially reduces estimation errors. The smoothing filter proves to be crucial for correcting unexpected sensor 
information errors caused by environmental lighting conditions, system network data transfer lag, and unstable number of 
frames per second (fps). This study integrates the pure pursuit (PP) algorithm into the navigation framework for path fol-
lowing. Discretized PID control equations are employed to eliminate errors between desired and actual heading and speed 
of the robot. The system is simulated in a Gazebo environment and implemented on a 4-wheeled Ackermann drive mobile 
robot. Performance of the proposed method is evaluated using average speed, position, and heading errors. The findings 
showcase efficacy and robustness of the proposed method.
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Introduction

Owing to the rapid technological advancements in artificial 
intelligence, sensing systems, and processing hardware, the 
capabilities of robots are enhancing at a great pace [1]. The 
increasing intelligence and robustness of robotic systems has 
evoked their adoption in a wide range of sectors, including 

manufacturing industry, logistics, defense, health care, and 
agriculture. In the past, mostly fixed base robots were used 
for performing repetitive and rule-based tasks in industries. 
But with the developments in technology, robots started 
exhibiting autonomy and locomotion in the form of autono-
mous mobile robots (AMRs), which further extended their 
capabilities beyond machine tending applications. AMRs 
possess the capability to navigate between distinct locations, 
effectively circumventing obstacles and, subsequently, deter-
mining optimal trajectories to fulfill assigned tasks. They 
rely on a complex system of computing hardware, sensors, 
software components, and control algorithms, to perceive 
its environment, detect obstacles, and plan appropriate paths 
[2]. The sensors commonly include cameras, LIDARs, ultra-
sonic sensors, Global Navigation Satellite System (GNSS), 
and infrared sensors, among others, and are critical to the 

 * Muhammad Shahab Alam 
 shahab@gtu.edu.tr

 Ali Ihsan Gullu 
 aliihsangullu@gtu.edu.tr

 Ahmet Gunes 
 ahmetgunes@gtu.edu.tr

1 Defense Technologies Institute, Gebze Technical University, 
Gebze 41400, Kocaeli, Turkey

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-03090-y&domain=pdf
http://orcid.org/0000-0002-5653-2503


 SN Computer Science           (2024) 5:748   748  Page 2 of 14

SN Computer Science

successful operation of AMRs [3]. Moreover, for solving the 
perception, planning, and control tasks, extensive computing 
hardware is required. The cost of these sensors, and comput-
ing hardware can be a significant barrier to their widespread 
adoption.

Additionally, the sine quo non for performing any task 
by an AMR is a robust navigation and localization system. 
A plethora of studies have been conducted to address this 
crucial challenge [4–9]. The most commonly used meth-
ods for localization and navigation include landmark-based 
approaches, odometry-based approaches, and simultaneous 
localization and mapping (SLAM) techniques.

Odometry-based methods [10–12] rely on motion sen-
sors, such as wheel encoders, to estimate precise position 
of the robot based on its movement. However, over time, 
errors can accumulate due to sensor noise, slip, or other 
factors, leading to inaccuracies in localization and naviga-
tion. Odometry-based methods are less accurate than other 
techniques, such as SLAM or landmark-based approaches. 
This is because they rely solely on sensor data and neglect 
the robot’s surrounding environment or external factors 
that may impact its movement. These methods are highly 
dependent on the terrain or surface over which the robot is 
moving. Changes in surface texture or incline can signifi-
cantly impact the accuracy of odometry-based localization. 
Even small errors in odometry measurements can cause the 
robot’s position estimate to drift over time. This can make it 
challenging for the robot to navigate accurately, particularly 
in dynamic or changing environments. Several reviews on 
Odometry-based techniques can be found in [13–15].

SLAM techniques [16–18] techniques synergistically 
integrate odometry-based methods with landmark-based 
approaches to generate a comprehensive map of the envi-
ronment while concurrently estimating the precise position 
of the robot. Expensive laser scanners are generally used for 
the construction of the environment map. These techniques 
require significant computational power and resources, par-
ticularly when mapping large or complex environments. This 
can limit the real-time performance of the AMR, leading to 
delays or inaccuracies in localization and navigation. Vari-
ous detailed surveys on SLAM techniques can be found in 
[19, 20].

Landmark-based approaches [21–23] rely on identifying 
specific features or markers in the environment and using 
them as reference points to estimate the robot’s position. 
These approaches are particularly immune to the disadvan-
tages that incur in case of the other sensors, demand mini-
mal computing resources, are economically viable, and 
simple to set up. However, Landmark-based approaches 
can be challenging to scale for larger environments, par-
ticularly if there are few distinguishable features or land-
marks. For this reason, these methods may not be suitable 
for localization in open or unstructured environments. 

Moreover, if the robot’s sensors are not calibrated or the 
landmarks are not accurately identified, localization accu-
racy can suffer.

The main focus of this study is to explore the fidu-
cial marker-based approach, which typically requires the 
installation of specific markers in the environment. Several 
types of artificial fiducial markers have been developed, 
including ARToolkit [24], ARTag [25], AprilTag [26], 
ArUco [27], TRIP [28], RUNE-Tag [29], ChromaTag [30], 
CCTag [31], and CALTag [32], etc. Each variant of fidu-
cial marker exhibits its own set of distinct characteristics, 
strengths, and weaknesses. The selection of the appropri-
ate fiducial marker type is contingent upon the specific 
requirements of each individual application. Recent stud-
ies show promising results for these marker-based systems 
for localization and navigation. However, there are still 
some limitations to these approaches, such as accuracy, 
scalability, and computational efficiency, that need to be 
addressed to enable these systems to become more robust 
and accurate.

In this paper a cost-effective markers-based localization 
and navigation approach is presented that relies on artificial 
fiducial markers and a vision sensor. The proposed system 
employs detection algorithms to identify the start and goal 
points, detect obstacles, and create an environment map. 
It then proceeds to plan a path between the start and goal 
points, generate motion commands for tracking the planned 
path, and estimate the robot’s position and orientation using 
particle filters (PF).

The subsequent sections are organized as follows: “Meth-
odology” presents a comprehensive description of the meth-
odology employed, “Implementation of the Framework” 
presents the results and corresponding discussions, and 
“Experimental Validation” concludes the work with a sum-
mary of findings.

Methodology

This research work presents a mobile robot localization and 
navigation framework using ArUco markers and PF. The 
markers, are strategically positioned at the goal point and 
atop the mobile robot, serving as reference points to estab-
lish the robot’s global position relative to the global refer-
ence frame. A vertically oriented camera module is installed 
on the ceiling or on a drone to capture a top-down view 
of the environment, encompassing the robot, markers, and 
obstacles, as illustrated in Fig. 1. A comprehensive descrip-
tion of each of the module involved in the system is provided 
in the subsequent sections.
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Robot Pose Estimation and Control

The robot’s pose in the environment is established by 
defining a relationship between an absolute global world 
reference frame {W} in which the robot operates, and an 
egocentric local robot reference frame {R} affixed to the 
robot, as shown in Fig. 2. A point P on robot at the center 
of the ArUco marker is chosen as the robot’s reference 
point. At the origin point P, the robot’s local reference 
frame R is positioned, featuring the two axes XR and YR . 
This local reference frame serves as the basis for the 
robot’s coordinate system within the environment. Posi-
tion of point P in the global reference frame {W} is estab-
lished by x and y coordinates, and the angular difference 
� between the global and local reference frames. Pose of 

the robot in world frame {W} and local frame {R} is repre-
sented by a vector with three components as �W = [x y �]⊺ 
and �R = [0 0 0]⊺ , respectively. A correlation between the 
global and the local reference frames for establishing pose 
of the robot is specified by the transformation matrix R, 
which converts motion from the global to the local refer-
ence frame. This operation is dependent on the value of �.

An Ackerman drive mobile robot model, shown in 
Fig. 2 is chosen in this study. The rear wheels are the driv-
ing wheels and the front wheels are the steering wheels. 
The steering angle � , measured in the counter-clockwise 
direction, represents the angle at which the front wheels 
deviate from the robot’s longitudinal axis YR . Similarly, the 
heading angle � , also measured in the counter-clockwise 
direction, signifies the angle between the longitudinal axis 
YR and the YW axis. The intersection point of the two lines 
passing through the wheel axes serves as the instantaneous 
center, dictating the rotation point of the robot.

The kinematic equations that govern motion of the 
robot in robot coordinates are comprised of

Upon conversion to earth coordinates, these equations trans-
form into

To ensure smooth and gradual changes in the steering angle 
and velocity, the derivatives or rates of these variables are 

(1)
⎡⎢⎢⎣

vx
vy
�̇�

⎤⎥⎥⎦
=

⎡⎢⎢⎣

0

v
v

L
tan(𝛼)
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ẏ
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L
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⎤⎥⎥⎦

Fig. 1  Overall framework of the 
system

Fig. 2  Environment and robot model
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adopted as the control signals, i.e., �̇� = u1 and v̇ = u2 . The 
discrete time model of the model, with a setting t = kTs 
(where k = 0, 1, 2, ..., n ) and sampling interval Δt = Ts (for 
evaluating at discrete-time instants), can be expressed as

Image Processing for Generation of Environment 
Map

An initial step in robot navigation involves providing the 
robot with a map that accurately represents the environment 
in which it operates. For generating a map of the environ-
ment, the obstacles within the environment, as well as the 
start and goal points needs to be detected. Before delving 
into this, a geometric relationship between the 3D world 
coordinate and the camera’s 2D image plane is established. 
This is done by utilizing the popular Zhang’s [33] camera 
calibration method that uses a checkerboard. First, several 
images of a checkerboard of known size and structure at dif-
ferent orientations are captured. Next, the intrinsic, extrinsic 
parameters, as well as the lens distortion parameters of the 
camera are computed using a camera calibration algorithm 
and OpenCV library. The relationship between the world 

(3)

x((k + 1)Ts) = x(kTs) −

(
vR(kTs) + vL(kTs)

2

)
Tssin�(kTs)

(4)

y((k + 1)Ts) = y(kTs) +

(
vR(kTs) + vL(kTs)

2

)
Tscos�(kTs)

(5)�((k + 1)Ts) = �(kTs) + Ts
v(kTs)

L
tan�(kTs)

(6)�((k + 1)Ts) = �(kTs) + Tsu1(kTs)

(7)v((k + 1)Ts) = v(kTs) + Tsu2(kTs)

coordinates, denoted by X, and image or pixel coordinates, 
denoted by x, is established through perspective transforma-
tion as

where R denotes the rotation matrix, t represents the trans-
lation vector, and K represents the camera matrix which 
encapsulates the intrinsic parameters. The matrix K is given 
by

where (fx, fy) represents the focal length, (cx, cy) represents 
the principal point offset, and s represents the axis skew. 
Hence, the parameters of the 3 × 4 matrix M of the perspec-
tive model for camera calibration are estimated as

Next, a global grid map of the real environment is gener-
ated while considering physical size of the actual robot. The 
global camera captures image of the scene, and the cap-
tured image is then passed to the computer/PC Laptop which 
utilizes obstacle and ArUo marker detection algorithms. 
The obstacles are detected based on their color. Next, the 
coordinate points of the vertices of the obstacles and the 
starting and destination points from the ArUco markers are 
extracted, and a map generator creates a complete map of 
the environment, as shown in Fig. 3.

Fixed cell decomposition approach is adopted for build-
ing a discretized occupancy grid map that comprises of two-
dimensional arrays of cells of arbitrary resolution. Each grid 
cell is assigned a binary state: 0 to the empty cell and 1 to 
the occupied or full cells. As the actual robot is not a point, 
therefore, the physical size of the robot is taken into account 

(8)x = K
[
R t

]
X

(9)K =

⎡
⎢⎢⎣

fx 0 0

s fy 0

cx cy 1

⎤
⎥⎥⎦

(10)M = K
[
R t

]

Fig. 3  Map generation: a detected obstacles, b generated map, and c planned path
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by performing obstacle inflation according to the physical 
size of the robot while generating the map. The purpose of 
this inflation is to introduce a safety margin around obsta-
cles, creating buffer zones between the robot and the obsta-
cles within the environment. A cell size of approximately 
10 cm is chosen for the grid map. Model of the occupancy 
gird cell is represented by the matrix C

where m and n indicate the maximum x and y indices of the 
occupancy grid.

After map generation, the markers positioned within 
the field of view of the imaging system, are detected. In 
this study, ArUco markers [27] are chosen for the proposed 
localization and navigation system. Among the three avail-
able mounting options, i.e., wall-mounting, floor-mounting, 
or ceiling-mounting, the floor mounting option is selected 
wherein one marker is placed on top of the robot, and the 
other marker is placed on the goal point. The robot/starting 
point is tagged with a marker ID 0, and the goal point is 
tagged with a marker ID 1. Each marker has a physical size 
of 12 × 12 cm, and a matrix size of 4 × 4.

For detecting the marker, the following steps are per-
formed: (1) the input RGB image is converted to a grayscale 
image, and then into a binary image using adaptive thresh-
olding, (2) contours are detected, and all the invalid contours 
are filtered out, (3) polygonal approximation is performed 
and only the squared shaped candidates are accepted, (4) 
Otsu’s thresholding is performed for separating the white 
and black cells, (5) the image is divided into cells and the 
black and white pixels in each cell are tallied, and finally 
6) the bits are analyzed and checked in the dictionary for 
identifying the marker.

The accumulation of relative pose error in a robot is a 
crucial factor that directly affects its successful navigation 
to desired locations. This discrepancy arises from the dif-
ference between the robot’s actual pose and its ideal pose. 
It is essential to regularly estimate and correct this error to 
ensure accurate navigation. The relative pose between the 
camera and marker can be determined using six components, 
with three related to translation (e.g., x, y, and z) and three 
related to rotation (e.g., roll, pitch, and yaw angles). These 
components are represented in a homogeneous transforma-
tion matrix (H) consisting of a rotation matrix (R) and a 
translation matrix (T). However, depending on the specific 
application, not all six components may be required. In our 
case, for instance, only the x, y, and yaw parameters are 
extracted to estimate the pose error by calculating the vari-
ance between these parameters and the ground truth values. 

(11)C =

⎡⎢⎢⎢⎣

C0,0 C1,0 … Cm,0

C0,1 C1,1 … Cm,1

⋮ ⋮ ⋮ ⋮

C0,n C1,n … Cm,n

⎤⎥⎥⎥⎦

The marker coordinate system is placed at the marker’s 
center (by default), with the Z-axis pointing up. The X-axis 
of the marker is represented by the color red, the Y-axis by 
green, and the Z-axis by blue. The x-axis of the marker is 
set to align with the x-axis, XR , of the robot frame {R} , and 
the y-axis of the marker is set to align with the y-axis, YR , 
of the robot frame {R} . The markers are detected relative to 
the camera with aruco_detect package by looking for mark-
ers in the images stream. The position and orientation of 
the detected markers are published in ROS topics and as 
TF frames.

Path Planning and Path Following

For the computation of a shortest and collision-free path 
from the start point to the goal point, numerous techniques 
are available [34, 35]. In this study we employ the A* algo-
rithm [36], which is an extension of Dijkstra’s algorithm 
[37]. The function A(n) is used to compute the shortest path 
between the starting and goal points as

where G(n) is the cost of moving from the starting cell to the 
current cell n, and H(n) is the heuristic value that estimates 
the cost of moving from the current cell n to the final goal 
cell. The algorithm computes the shortest path by choosing 
the smallest A(n)-valued cells until it reaches the goal cell. 
The Euclidean distance heuristic is adopted for computing 
the value of H(n) as

The optimum path computed between the start and goal 
point in the generated map populated with obstacles is illus-
trated with the red line in Fig. 3c. The obstacle grid, repre-
sented by black, marks the contour area in the map where the 
robot cannot pass. Conversely, the free grid, represented by 
white, indicates the areas where the robot is able to navigate.

Once the path is planned, the next step is to follow the 
computed path. This study employs pure pursuit (PP) algo-
rithm [38] for following the planned path. PP calculates 
angular velocity commands to guide the robot from its cur-
rent position towards a look-ahead point in front of it. The 
robot’s linear velocity is considered constant, hence, allow-
ing for changes at any point during the path. PP continually 
updates the look-ahead point based on the robot’s current 
position, moving it along the path until reaching the last 
point. This results in the concept of the robot consistently 
pursuing a point ahead of it. The parameter LookAhead-
Distance plays a crucial role in determining the placement 
of the look-ahead point. It specifies the distance along the 
path that the robot should consider when computing angular 

(12)A(n) = G(n) +H(n)

(13)H(n) =
‖‖‖‖‖

[
xstart
ystart

]
−

[
xgoal
ygoal

]‖‖‖‖‖
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velocity commands. Adjusting this parameter significantly 
impacts the robot’s path following behavior. Two primary 
goals are associated with it: regaining the path and maintain-
ing the path. A small LookAheadDistance allows the robot 
to quickly regain the path between waypoints, but it may 
cause overshooting and oscillations. Conversely, increasing 
the LookAheadDistance can help reduce oscillations, but it 
may also lead to higher curvatures around corners. Tuning 
the LookAheadDistance property is crucial and should be 
done based on the specific application requirements and the 
desired response of the robot. Figure 4 illustrates the con-
cept of the look-ahead point and desired heading vector. A � 
between 0◦ to 90◦ results in a turning to the right, whereas a 
� between 90◦ to 180◦ results in turning to the left.

As shown in Fig. 4, the center of the robot chassis is 
used as the reference point on the robot. The target point is 
the look-ahead point for the robot that is represented by the 
green point on the circumference of the circle. The angle 
between the current heading vector and the desired heading 
vector is referred to as � . The current heading vector aligns 
with the y-axis, YR of the robot frame. The goal is to make 
the vehicle steer at the angle � and then proceed to that point.

The errors between the desired and actual heading and 
speed are eliminated by using the following discretized PID 
control equations

(14)

u1(k) = Kpe�(k) + Ki

k∑
0

e�(k)Ts + Kd

e�(k) − e�(k − 1)

Ts

where e� = � − �des and eV = V − Vdes.

Particle Filtering and State Estimation

PF is used for the state estimation of dynamic nonlinear non-
Gaussian systems. It is composed of two phases: prediction 
and update. The prediction step is based on a motion model, 
which defines how the vehicle moves. There are two basic 
branches of motion models to choose from. The first one is 
when the vehicle is assumed as a point without orientation. 
In this work, the vehicle is an extended target and its orien-
tation is important. Hence, coordinated turn (CT) model is 
deployed [39]. In this model, the state vector of the vehicle 
is represented as

where x and y are positions along x- and y-axes, respectively, 
|v| and |a| are the speed and amplitude of acceleration, and � 
and � are the heading and rate of turn.

The update step of PF is based on the measurement 
model. The measurements in this work are positions of the 
ArUco markers. Hence, the measurement vector is defined as

Using the Chapman-Kolmogorov equation and Markov 
properties, the prediction step in optimal Bayes filter can 
be written as [40]

The update step is based on the Bayesian rule and can be 
written as

where z1∶k denotes the set of measurements from 1st to kth 
step.

When the motion and measurement equations are linear, 
optimal filtering is possible using the Kalman filter [41]. 

(15)

u2(k) = KpeV (k) + Ki

k∑
0

ev(k)Ts + Kd

ev(k) − eV (k − 1)

Ts

(16)x =
[
x, y, |v|, |a|,�,�]T

(17)z =
[
x, y

]T

(18)

P
(
xk ∣ z1∶k

)
= ∫ P

(
xk, xk−1 ∣ z1∶k−1

)
dxk−1

= ∫ P
(
xk ∣ xk−1, z1∶k−1

)
P
(
xk−1 ∣ z1∶k−1

)
dxk−1

= ∫ P
(
xk ∣ xk−1

)
P
(
xk−1 ∣ zk−1

)
dxk−1

(19)

P
(
xk ∣ z1∶k

)
= P

(
xk ∣ zk, z1∶k−1

)

=
P
(
zk ∣ xk

)
P
(
xk ∣ z1∶k−1

)

P
(
xk ∣ z1∶k−1

)

∝ P
(
zk ∣ xk

)
P
(
xk ∣ z1∶k−1

)

Fig. 4  Illustration of look ahead point in path following
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However, the coordinated turn model is nonlinear, neces-
sitating suboptimal approaches. PF provides a framework 
for nonlinear filtering problems, approximating the PDFs 
using weighted particles.

The weights, w, are calculated using the importance sam-
pling [42]. In the prediction step, PF propagates the state 
vectors. The update state updates the weights of the particles 
based on the Bayes’ rule.

The posterior distribution can be written as

As N → ∞ this approximation converges to P
(
xk ∣ zk

)
.

The pixel measurements flicker between pixels. Due 
to high frame per second (fps), the flicker causes high 
measurement errors. High measurement error does not 
cause serious problems in localization but the predicted 
heading of the vehicle is poor. A solution to this prob-
lem is smoothing [43]. The difference between filtering 
and smoothing is smoothing estimates P

(
xk−n ∣ zk

)
 where 

n > 0 . In other words, smoothing estimates past states 
using future measurements. This helps to smoothen the 
estimates. There are several strategies for smoothing. 
We have preferred forward filtering-backward smooth-
ing recursions [43, 44] because they reduce the errors and 
uncertainties associated with state estimation by refining 
the states based on a combination of the likelihoods of the 
future measurements with the present predicted states, as 
below.

This formulation requires only the last n measurements to be 
kept in the memory. n = 0, 5, 10, 15 are tested for smoothing 
filter. The motion model for CT is defined as

(20)P(x) ≈

N∑
i=1

wi�
(
x − xi

)

(21)wi
k
∝ wi

k−1
P
(
zk ∣ x

i
k

)

(22)P
(
xk ∣ zk

)
≈

N∑
i=1

wi
k
�
(
xk − xi

k

)

(23)P
(
xk−n ∣ zk−n∶k

)
∝ P

(
xk−n ∣ zk−n−1

)
P
(
zk−n∶k ∣ xk−n

)

The measurement model is linear.

where H is the measurement matrix. The parameters of the 
PF are

where diag indicates diagonal matrix. The measurement 
error matrix is R

The values for the Q matrix were selected based on our 
expectations of process noise stemming from the target’s 
position, speed, acceleration, heading angle, and turn-
ing rate, respectively. For instance, in terms of position, a 
deviation of 0.1 ms was anticipated during tracking due to 
model-mismatch or skidding error during take-off. As for 
the selection of values for the R matrix, target states over 
a period of time were gathered and the extent of deviation 
present in the measurements was observed.

To evaluate the smoothing performance, different sce-
narios with only one turn were setup. In each scenario, the 
vehicle turns to a direction. The vehicle starts the scenario 
moving along y-axis. Then, it turns to different directions as 
seen in Fig. 5. The average error at each scenario is as shown 
in the Table 1. The results indicate that the errors decrease 
with increasing smoothing amount.

To visually present the results, the predicted heading 
and speed values along the three scenarios, in which the 
vehicle moves in different directions, are presented in 

(24)xk∣k−1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x +
2�v�Δt+�a�Δt2

�Δt
sin

�
� + �

Δt

2

�
sin

�
�

Δt

2

�

y +
2�v�Δt+�a�Δt2

�Δt
cos

�
� + �

Δt

2

�
sin

�
�

Δt

2

�

�v� + �a�Δt
�a�

� + �Δt

�

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(25)
zk =

[
1 0 0 0 0 0

0 1 0 0 0 0

]

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
H

xk

(26)
Q = diag[10−1, 10−1, 10−1, 10−2, 15 × �∕180, 2 × �∕180]

(27)R = diag[10−1, 10−1]

Table 1  Average errors of 
smoothing filters with different 
n values for each scenario

Scenario 1 Scenario 2 Scenario 3

Heading Speed Heading Speed Heading Speed

(deg) (m/s) (deg) (m/s) (deg) (m/s)

Smoothing n = 0 46.34 0.96 21.84 0.70 30.93 0.72
n = 5 18.58 0.24 9.33 0.13 10.96 0.13
n = 10 6.50 0.07 3.68 0.02 4.17 0.02
n = 15 4.98 0.02 4.58 0.02 4.61 0.02
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Figs. 6 and 7. It is seen that the filtering results are poor. 
However, the results indicate that n = 15 provides the best 
results. The errors for the estimations are given in Figs. 8 
and 9, where GT represents the ground truth. The x-axis 
represents time in seconds, while the y-axis represents 
degrees in Fig. 6 and 8, and meters per second in Figs. 7 
and 9. It is evident from these estimation errors that as the 
number of smoothing levels increases, estimation errors 
decrease significantly. The smoothing filter proves invalu-
able in compensating for unforeseen sensor information 

errors that may arise from factors like light condition-
ing in the environment, system network data transfer lag, 
and an unstable number of frames per second (fps) for 
each iteration of the sensor, ensuring the robustness and 
trustworthiness of autonomous system. It is important to 
note that, as mentioned earlier, the smoothing filter pre-
dicts the target states from previous times. Consequently, 
the smoothing level must fall within a certain range and 
should not exceed a level higher than the motion velocity 
of the target relative to the camera’s frames per second 
in time elapsed manner. In certain scenarios, estimates 
from the smoothing filter may fall outside the performance 
range of the filter. Reliance on outdated states, instead of 
current information, for safety-driving maintenance can 
lead to significant errors such as collisions with obsta-
cles and inaccurate localization for path following, among 
other issues.

Fig. 5  Traveled paths with different amount of rotations

Fig. 6  Heading estimations: a scenario 1, b scenario 2, and c scenario 3

Fig. 7  Speed estimations: a scenario 1, b scenario 2, and c scenario 3
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Implementation of the Framework

The complete system in its entirety is schematically illus-
trated in the block diagram shown in Fig. 10. Detailed 
working of the implemented system is provided with refer-
ence to the block diagram thereof.

A retrofitted 4-wheeled Ackermann drive vehicle, as 
shown in Fig. 13, is used as the mobile robot platform in 
this study. Hardware of the robot comprises of a Rasp-
berry Pi 4, two 5V DC motors for driving and steering 
the robot, an L298D H-Bridge driver module connected 
with the GPIO pins of the Rasperry Pi 4 to control the 
DC motors, three 3.7v Lithium-ion batteries, and a 1000 
mAh power bank. The Raspberry Pi 4 is connected to the 
laptop PC via a wireless connection on a same network. In 
order to avoid overhead and latency that occurs in TCP/IP 
communication protocol, the fast and simple UDP com-
munication protocol is used for data transfer between the 
Raspberry Pi 4 and the Laptop PC. The Raspberry Pi 4 
(robot) serves as the server and the Laptop PC as the client 
in the communication protocol. The laptop PC is equipped 

with an Intel(R) Core (TM) i5-10300 H @ 2.50GHz (8 
CPUs), 8GB RAM, a 4GB NVIDIA GeForce GTX 1650 
graphics card, and Ubuntu 20.04.5 LTS (Focal Fossa) as 
the operating system. All the algorithms running on the 
laptop PC are implemented with ROS Noetic as the mid-
dleware suite, and Python as the development language. 
Since the official Linux distribution, i.e., Raspian can not 
support ROS Noetic, therefore the Raspberry Pi 4 mounted 
on the robot uses Ubuntu Mate as the operating system.

A camera mounted on the ceiling at a height of 190 cm 
from the ground, such that it points downward and provides 
a visual coverage of the environment, servers as a global 
vision sensor for the system. The start and goal points, and 
the obstacles are placed inside the field of view of the cam-
era. For detecting the start and goal points, visual markers 
are placed on top of the robot and the goal point. The marker 
on the robot serves as the starting/current point of the robot, 
and the marker at the goal point serves as the target point. 
Due to motion of the robot, the position and orientation of 
the robot changes and as a consequence so does the position 
and the orientation of the marker affixed on it. The camera 
captures a stream of images of the mobile robot and the 

Fig. 8  Heading estimation errors: a scenario 1, b scenario 2, and c scenario 3

Fig. 9  Speed estimation errors: a scenario 1, b scenario 2, and c scenario 3
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markers on the ground. The camera used has a resolution 
of 640x480 pixels and a frame rate of 30 FPS. The size of 
the data collected for one second is calculated. A resolution 
of 640 x 480 results in 307,200 different pixel values. With 
30 FPS this becomes 30 x 307,200 = 921,600 pixel values. 
Since each pixel normally is represented by a value between 
[0, 255] it requires 921,600 x 8 = 73.7 MB to store one sec-
ond worth of retrieved data. The camera is connected to the 
laptop PC via a USB connection.

Experimental Validation

The effectiveness of the proposed approach was tested 
through both simulation and real-world implementation 
scenarios. The tests were carried out in three different sce-
narios, with different number of obstacles placed at differ-
ent locations. The entire system was simulated in Gazebo 

simulation environment. Three different environment sce-
narios were generated for conducting the simulation tests in 
Gazebo, as shown in Fig. 11. Figure 12 shows the PF plots 
acquired for the simulation runs in these three scenarios.

Moreover, to illustrate the effectiveness of the proposed 
method, implementation tests were carried out using a real 
4-wheel Ackermann drive mobile robot, shown in Fig. 13. 
The implementation tests were conducted in three different 
environmental settings, as shown in Fig. 14. The acquired 
average position and heading errors for simulation and real 
implementation are illustrated in Table 2. For each of the 
three scenarios, the performance metrics were compared 
to a baseline method that did not utilize PF. The acquired 
results demonstrated that our proposed approach has supe-
rior performance over the baseline method. In Scenario 1, 
characterized by the presence of five obstacles along an 
almost straight trajectory, the proposed approach demon-
strated good performance in estimating the robot’s heading 

Fig. 10  Block diagram of the complete system

Table 2  Average position and 
heading errors

Simulation Implementation

Scenario No. of 
obstacles

Position (cm) Heading (deg) Position (cm) Heading (deg)

1 5 4.7 3.2 6.1 4.3
1 7 6.3 3.8 7.2 4.6
3 10 6.7 3.9 7.8 5.1
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and position. In Scenario 2, marked by the presence of 
seven obstacles and a complex curved/bent path, the system 

exhibited good adaptability and precision by adhering to 
the curved path. In scenario 3, comprising 10 obstacles 

Fig. 11  Gazebo simulation in different scenarios

Fig. 12  PF simulation results in different scenarios
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and a further complex path geometry with two significant 
bends, the average position and heading errors, increased 
slightly but remained in acceptable ranges. The simulation 
and implementation results highlight the system’s ability to 
consistently provide accurate robot pose estimates, under-
scoring its reliability in navigation tasks.

Conclusion

In this work, a simple approach for pose estimation of 
an autonomous mobile robot is presented. The proposed 
approach uses ArUco markers for acquiring position infor-
mation and PF for computing the desired heading vector 
of the robot. Due to high noise in the orientation informa-
tion from the ArUco markers, orientation information is not 
acquired from the marker, instead PF is used to generate the 
heading information (for generating steering commands). 
The proposed system enables the robot to navigis first simu-
lated in a Gazebo environment to assess its performance. 
Subsequently, the approach is implemented on a physical 
4-wheeled Ackermann drive mobile robot, allowing for real-
world validation of its effectiveness. The acquired findings 
show the robustness and effectiveness of the proposed low-
cost approach for robot localization and navigation. In future 
work, the proposed fiducial marker-based pose estimation 
technique can be integrated with auxiliary sensor modali-
ties using non-linear state estimators for more accuracy and 
robustness.

Fig. 13  Ackerman drive mobile robot used for experimentation

Fig. 14  Implementation results in different scenarios
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