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Abstract
Recently, various meta-heuristic algorithms have been considered to allocate the data into different clusters based on similar 
information. These algorithms have obtained state of the art clustering results compared to traditional algorithms and 
proven their capability in the field of data clustering. This work presents an improved version of the water flow optimizer, 
called the IWFO algorithm for effective cluster analysis. The proposed IWFO algorithm handles the performance issues 
associated with the water flow optimizer algorithm such as random initialization, unbalanced search mechanism and local 
optima. The random initialization issues are handled through the gaussian map that can generate the initial population 
systematically. The search mechanism of the WFO algorithm is enhanced using the combination of non-linear functions and 
the previous best solution. The local optima issue is alleviated by using a neighbourhood search mechanism. The efficacy 
of the proposed IWFO algorithm is evaluated using benchmark clustering datasets and results are compared with popular 
clustering algorithms. The simulation results are assessed using intra-cluster distance (intra), standard deviation (SD), rank, 
accuracy rate (AR) and detection rate (DR) parameters. Some statistical tests are also performed to validate the efficiency 
of the proposed IWFO algorithm. The proposed IWFO algorithm improves the clustering results (average accuracy rate of 
more than 7%) compared to the original WFO.

Keywords Clustering · Cluster analysis · Meta heuristics · Water flow optimizer

Introduction

Clustering is a well-known data analysis method that can 
be used to arrange the data into different clusters. Similar 
data are placed in the same cluster, while dissimilar data 
are put in another cluster. The dissimilarity between data 
is calculated using the distance function [1]. In literature, 
clustering can be used in a variety of fields including text 
mining, social network analysis, data exploration, medi-
cal science, finance, and multimedia data [2, 3]. Addition-
ally, the subcategories of clustering are (i) hard clustering 
and (ii) soft clustering. In hard clustering, the data can be 
assigned to a single cluster, while, in soft clustering, data 

can belong to several clusters depending on probability func-
tion value [4]. The main issue associated with clustering 
is the quality of partition. Based on the optimal partition 
(i.e., cluster centroids), a dataset is divided into numerous 
clusters, and the clustering techniques are utilized to cal-
culate optimal centroids for obtaining optimal partitioning 
(clusters). These partitions are validated based on internal, 
external, and relative cluster validation measures [5]. These 
validation methods have defined the quality of the clustering 
algorithm. The internal validation is based on cluster crea-
tion, such as compactness, separation, and connectivity. The 
closeness between the data within a cluster can be used to 
define compactness. If a cluster displays the bare minimum 
of compactness, it is sufficient. The distance between two 
or more clusters is used to calculate separation, and it can 
be on the extreme side. The identical cluster data is used to 
describe the connectivity. External validation is described 
by comparing the clustering result against the class labels 
that are mentioned in the dataset. It includes various perfor-
mance indicators like purity, rand index, entropy, etc. The 
relative validation evaluates the clustering structure through 

 * Yugal Kumar 
 yugalkumar.14@gmail.com

 Prateek Thakral 
 18.prateek@gmail.com

1 Jaypee University of Information Technology, Solan, 
Himachal Pradesh, India

2 School of Technology Management and Engineering, 
NMIMS, Chandigarh Campus, Chandigarh, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-03048-0&domain=pdf
http://orcid.org/0000-0003-3451-4897


 SN Computer Science           (2024) 5:715   715  Page 2 of 34

SN Computer Science

various user-defined parameter values that are provided by 
the algorithms [6].

In literature, different clustering algorithms based on 
diverse methodologies have been presented in the literature 
for addressing clustering problems and also considered 
the various viewpoints for solving these problems [7–12]. 
Further, the clustering techniques are divided into five 
categories such as partitional, hierarchical, grid, density, 
and model-based [13]. Additionally, each technique has 
several advantages and disadvantages. Recently, the 
research community has focused on grouping uncertain 
and high-dimensional data [14, 15]. Despite this, current 
developments in clustering can be described as fuzzy, 
evolutionary, meta-heuristic, and multimedia clustering 
[16, 17]. A few clustering studies also presented novel 
distance functions to improve the results of clustering. 
Some studies also focus on validation metrics to evaluate 
the effectiveness of clustering algorithms [11]. However, 
no one approach can more effectively handle the clustering 
problem with a wide range of datasets. Every algorithm 
has several advantages and disadvantages. According to a 
thorough literature review, it is identified that partitional 
clustering can be used more frequently than other clustering 
techniques, like the hierarchical, grid, and model-based 
clustering techniques due to being less time-consuming [18]. 
Partitional clustering determines a distinct set of clusters and 
allocates the data to a particular cluster based on distance 
measures. Additionally, prior knowledge of clusters (K) 
is the prerequisite for this clustering. K-Means is one of 
the popular partitional clustering algorithms [19], and it 
is important to anticipate the number of clusters. In turn, 
the clustering process can become more extensive and even 
more difficult to compute the optimal partitioning for the 
given dataset. Further, it is noticed that clustering results 
do not converge on the global optima [20]. Therefore, to 
solve the aforementioned problem, either cluster information 
should be provided beforehand, or the number of clusters 
should be calculated automatically to achieve optimal 
partitioning. Some meta-heuristic algorithms have been 
reported for handling partitional clustering in the literature. 
A few of these algorithms are summarized as PSO [21, 22], 
MOA [23, 24], CSSA [25], BH [26], BA [27, 28], ABC 
[29, 30], ACOA [31], BB-BC [32], BBO [33], etc. These 
algorithms have balanced search capabilities and produce 
prominent clustering results. However, these algorithms 
have some other drawbacks such as population diversity, 
trade-off, convergence rate, and sometimes trapped in local 
optima [34]. The aforementioned weaknesses of meta-
heuristic algorithms can be eliminated with the assistance 
of additional meta-heuristic algorithms. To achieve superior 
clustering results, the weak point of one meta-heuristic 
algorithm is substituted by the strong point of another meta-
heuristic algorithm. For example, the slow convergence rate 

of the PSO algorithm is handled by hybridizing the PSO 
with the k-harmonic mean [35]. Similarly, chaotic maps are 
incorporated into PSO to accelerate convergence speed [36]. 
To increase the performance of k-means and limit the effect 
of initial centroids on final clustering results, the k-mean and 
PSO algorithms are combined [37]. ABC trade-off problem 
is handled via a self-adaptive system [37, 38]. The BB-BC 
local optima problem is solved by integrating chaotic maps 
[39]. Based on approximation functions, these methods 
also provide near-to-optimal solutions for clustering issues. 
However, the No Free Lunch theorem [81] states that no 
single clustering approach can be used to solve all clustering 
problems as well as applicable to all datasets. Hence, there 
is a scope to develop a new clustering algorithm that can 
generate a more optimal solution for clustering problems 
and is also applicable to a wide range of datasets. As a 
result, a new algorithm for obtaining optimal solutions and 
solving large-scale clustering problems can be devised. 
Recently, a new meta-heuristic algorithm, named water flow 
optimizer (WFO) has been presented to handle a variety of 
constrained and unconstrained optimization problems [40, 
41]. The hydraulic processes of water particles inspired this 
method, which describes the flow of water from highland to 
lowland. Further, the laminar and turbulent flows are taken 
into account to devise the stochastic search operators for 
the optimization process. From an optimization viewpoint, 
the water flow can be classified into two types such as 
either to maximize or minimize an objective function that 
can be designed to solve the problems. Second, an iterative 
process can be used to find the best solution and convergence 
behaviour of an algorithm. Hence, this work aims to examine 
the efficacy of the WFO algorithm for solving clustering 
problems. However, before implementing the WFO in the 
clustering field, several modifications are integrated into 
the WFO algorithm to make it more effective and generate 
optimal clustering results.

Motivation and Objectives of the Work

This research work aims to examine the efficacy of the WFO 
algorithm for handling clustering problems. Clustering can 
be described as an optimization problem with constraints 
and it determines the groups of similar data objects. The 
data in groups are allocated using a distance function and 
the goodness of the groups is assessed using the centroids. 
Hence, the main objective of the WFO algorithm is to com-
pute optimal centroids to group the data objects into respec-
tive clusters. However, some improvements are proposed 
and integrated into WFO before its implementation. The 
reason for these improvements is to overcome the issues 
associated with the WFO algorithm. In the literature, it is 
mentioned that WFO has better optimization capability, but 
this algorithm also suffers from several shortcomings [42, 
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43]. These shortcomings are expressed as—(i) a random dis-
tribution function is utilized to seed the population of WFO 
in a pseudo-chaotic manner. Hence, the process of finding 
the optimal solution is sometimes blind. (ii) Further, the 

laminar flow (pl) operator and turbulent flow (pe) operator 
consist of constant values, which cannot adequately balance 
the exploration and exploitation ability of the algorithm. (iii) 

Start
Upload the data, set the 
number of clusters (K), 
UB, LB, and user-defined 
parameters.

Compute the initial 
centroids (water 
particles) for IWFO 
using eq. 9.

While(itercurr 
itermax)

Compute 
final 
cluster 
centroids

Compute the laminar 
probability (pl) and 
turbulent probability 
(pe) using eqs. 12-13.

Compute the potential 
energy (E) for each 
water particle (Ck) 
using eq. 17.

Allocate the data to 
respective clusters 
based on minimum 
Euclidian distance.

For each water particle, 
compute the objective 
function (Euclidian 
distance) using eq. 22.

if(rand<pl)

Determine the laminar 
flow direction based on 
eq. 15.

Compute the new 
position of water 
particles using eq.14 
and check the boundary 
constraints using eq. 
7.

Compute the potential 
energy (E) for each 
water particle (Ck) 
using eq. 17.

For each water particle 
(Ck), do following

Determine the trial 
position of water 
particles (Ck) in 
random order.

Randomly chose the 
jostling operator (p) 
using the eq. 4 such 
that k  j.

Compute the PE (E) 
for each water 
particle (Ck) using 
eq. 17.

Compute the new 
position of water 
particles using eq.14 
and check the boundary 
constraints using eq. 
7.

Stop
n

,

Compute the global 
best position (gbest) 
and store in the list 
in increasing order 
of potential energy.

Iter = iter + 1 Call Multi Strategy 
Search Process.

If (f(Ck)) is not 
improved up to limit 
parameter.

N

Y

N

Y

Y

N

Fig. 1  Flowchart of the proposed IWFO clustering algorithm
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It is also observed that the laminar flow phase includes a par-
allel one-way search strategy that may result in search holes, 
and in turn, WFO may fall into local optima. The aforemen-
tioned shortcomings of the WFO are handled through the 
gaussian chaotic map, an improved balance mechanism and 
a search strategy method. The main objectives of the work 
are highlighted below.

• The random distribution function is utilized to generate 
the initial population of the WFO algorithm in search 
space. This distribution function cannot generate a 
uniform population. Hence, a gaussian chaotic map is 
utilized to generate the population in a more systematic 
manner instead of random.

• The exploration and exploitation ability of the WFO 
algorithm cannot be well balanced due to constant values 
of the laminar flow (pl) operator and turbulent flow (pe) 
operator. The constant values of the laminar flow (pl) 
operator and turbulent flow (pe) operator are substituted 
by dynamic values that can be changed in each iteration. 
Hence, an improved balance mechanism is designed to 
improve the exploration and exploitation ability of the 
WFO algorithm.

• The one-way strategy is adopted in the laminar flow 
phase of the WFO algorithm to search the candidate 
solutions and in turn, an algorithm may stuck in local 
optima. This issue is resolved by using a neighbourhood 
search process.

• These improvements are integrated into the WFO 
algorithm for generating more optimal solutions, called 
the improved WFO (IWFO) algorithm. The proposed 
algorithm is adopted for solving the clustering problems. 
The task of this algorithm is to determine the optimal 
centroid for a given dataset.

• The efficacy of the proposed IWFO algorithm is 
evaluated using several well-known clustering datasets 
downloaded from the UCI repository based on SSE, AR 
and DR rates. The simulation results are compared with 
conventional as well as meta-heuristic algorithms. The 
findings stated that the proposed WFO algorithm obtains 
superior clustering results compared to other algorithms.

The rest of the manuscript is organized as related works 
based on meta-heuristic algorithms for clustering are 
summarized in "Literature Review". The information on the 
original water flow optimizer is discussed in "Water Flow 
Optimizer". "Proposed Improved Water Flow Optimizer 
Algorithm (IWFO)" presents the proposed improved water 
flow optimizer for clustering problems. The findings of the 
IWFO algorithm are discussed in "Experimental Results". 
The outcomes of this work are mentioned in "Conclusion".

Literature Review

The latest works on partitional clustering are discussed in 
this section.

Qtaish et al. [44] presented a hybrid capuchin search 
algorithm (HCSA) to deal with the local optima and 
initialization issues of the K-means clustering algorithm. 
Further, the chameleon swarm (CS) algorithm is adopted 
to strengthen the search mechanisms of the CSA algorithm. 
In addition, the aforementioned combination of the 
CS-CSA is used to generate the initial centroids for the 
K-means algorithm, called HCSA. The sixteen datasets 
are considered to evaluate the performance of the HCSA 
based on well-known clustering metrics. The simulation 
results are compared with nine meta-heuristic algorithms 
including k-means. The results revealed that the combination 
of CS-CSA-K-means successfully overrides the issues of 
K-means.

Kuo et al. [45] combined the three algorithms such as 
PSO, GA and GE with possibilistic fuzzy c-means (PFCM) 
for effective cluster analysis. Further, this study also 
integrates Atanassov’s intuitionistic fuzzy sets (IFSs) to 
PFCM, called PIFCM. These algorithms are summarized as 
MOGA-PIFCM, MOPSO-PIFCM and MOGE-PIFCM. The 
performances of these algorithms are evaluated using fifteen 
standard clustering datasets. The simulation results are 
assessed using well-known clustering metrics. The results 
showed that the MOGE–PIFCM algorithm outperforms 
other clustering algorithms in terms of validation indices.

Premkumar et  al. [46] introduced a K-means-based 
grey wolf optimizer (KCGWO) for handling the clustering 
problems. In KCGWO, the K-means algorithm is used to 
enhance the optimization capabilities of the traditional 
GWO. This integration aims to improve the diversity and 
convergence rate of the GWO algorithm. A new weight 
factor is also added in GWO to improve its performance. 
The performance of the KCGWO is assessed over a set of 
benchmark clustering datasets and results are examined 
using well-defined metrics. The results stated that KCGWO 
achieves more stable clustering results compared to other 
algorithms. This integration also obtains optimal centroids.

Demirci et  al. [47] presented a new meta-heuristic 
algorithm called the electrical search algorithm (ESA) to 
solve the clustering problems. This algorithm is inspired 
by the movement of electricity. Further, the inilization 
process is defined through the special structures called 
poles. The search mechanism is described by the movement 
of electrons. The four benchmark datasets such as iris, 
wine, seeds and hepatitis C virus are considered to examine 
the performance of the ESA algorithm and the results are 
compared with seven existing meta-heuristic algorithms 
including K-means. This work also considers the Friedman 
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Signed Rank and post hoc Wilcoxon tests to evaluate the 
efficacy of ESA. The results showed that the ESA improves 
the clustering results in a significant manner compared to 
other algorithms.

Gharehchopogh and Khargoush [48] presented an 
improved version of the interactive autodidactic school 
(IAS) algorithm to solve the data clustering problems. To 
improve the exploitation process and also generate better 
populations, some chaotic maps are integrated into the ISA 
algorithm. The working of the ISA algorithm is described by 
three operators -individual training sessions, group training 
sessions, and new student challenges. The performance of 
the proposed chaotic ISA algorithm is examined over twenty 
clustering datasets. The results are evaluated using the best, 
average and worst solutions, and compared with state of art 
meta-heuristic algorithms. It is revealed that the Chebyshev 
chaotic function-based IAS algorithm obtains superior 
clustering results than other algorithms.

Ezgi combined the LaF and DE algorithms to discover 
the optimal centroids for data clustering problems [49]. The 
weak exploitation process of the LaF algorithm is improved 
using the DE/best/1 mutation operator. The performance 
of the proposed LaF-DE algorithm is evaluated using 
twelve clustering datasets based on the SSE and accuracy 
parameters. The results showed that the proposed LaF-DE 
provides better clustering results with eight datasets out of 
twelve. It is also noticed that the proposed algorithm also 
obtains satisfactory clustering results with the rest of the 
dataset compared to most of the algorithms being compared.

Duan et  al. [50] handled the automatic clustering 
problem in high dimensional data by an improved 
affinity propagation based on an optimization algorithm. 
Initially, the dimensionality of data is reduced using the 
t-distributed stochastic neighbour method. Further, an 
improved equilibrium optimizer is utilized for optimizing 
the preference selection. The local search and convergence 
efficiency are enhanced using the crisscross strategy. Finally, 
the performance of the above-mentioned combination is 
assessed using seven high-dimensional datasets and results 
are compared with well-known four clustering algorithms 
based on NMI and RI. It is stated that the performance of 
the improved affinity propagation is significantly improved 
using the above-mentioned improvements.

An effective data clustering algorithm based on the 
chimp optimization algorithm (ChOA), generalized normal 
distribution algorithm (GNDA), and opposition-based 
learning (OBL) is reported for handling clustering problems 
[51]. Three different clustering algorithms are proposed 
for solving clustering problems and these algorithms 
are ChOA(I) and ChOA(II) based on chaotic maps, the 
combination of ChoAGNDA-OBL, and SO-ChOAGNDA. 
The performance of these algorithms is evaluated using 
five clustering datasets based on SSE and error rate. The 

simulation results are compared with a wide variety of 
meta-heuristic clustering algorithms. It is analyzed that the 
SO-ChOAGNDA algorithm obtains lower SSE and error 
rates compared to other algorithms.

Singh et  al. [52] presented an enhanced whale 
optimization algorithm (EWOA) for handling the clustering 
problems effectively. The whale optimization algorithm 
(WOA) suffers from local optima, convergence rate and 
trade-off issues. The trade-off issue of WOA is addressed 
through searching behaviour water wave optimization 
algorithms. The local optima and convergence issues 
are resolved through the neighbourhood mechanism and 
tabu search algorithm. The eight benchmark datasets are 
considered to examine the performance of the EWOA based 
on average intra-cluster distance and f-measure. The results 
showed that superior clustering results are obtained by the 
EWOA with most of the datasets.

A variable neighbourhood strategy-based firefly algorithm 
(VNS-FA) is presented for effective data clustering [53]. It is 
observed that the firefly algorithm (FA) converges on prema-
ture solutions due to a lack of exploitation capability. Further, 
variable neighbourhood strategy (VNS) is incorporated into 
FA to resolve the aforementioned issues. The efficacy of the 
proposed VNS-FA is evaluated using eight well-known clus-
tering datasets. The results are assessed using intra-cluster 
distance, internal CH metric, entropy and F-measure param-
eters. The results stated that the proposed VNS-FA method 
obtains superior results with most of the datasets.

An improved grey wolf’s optimization (IGWO) algorithm 
is presented for clustering and dynamic social networks [54]. 
This work aims to improve the accuracy rate of clustering 
problems. To achieve this, a label propagation algorithm is 
integrated into the GWO algorithm. The performance of the 
IGWO is examined using six well-known datasets based on 
NMI, intra-cluster distance, and error rate parameters. The 
results confirmed that the proposed IGWO algorithm obtains 
a better NMI rate than other clustering algorithms. It is also 
seen the hat proposed IGWO algorithm also gets a minimum 
error rate and intra-cluster distance than other algorithms.

A cat-based meta-heuristic algorithm is reported 
for addressing the partitional clustering [55]. Before 
implementing this algorithm, several modifications are 
inculcated into the cat algorithm in terms of tradeoff 
mechanism between local and global searches, diversity 
issues and premature convergence. In turn, an improved 
search mechanism, accelerated velocity equation and 
neighborhood mechanism are introduced for handling the 
aforementioned issues. The efficiency of the cat algorithm 
is examined over eight clustering datasets based on intra-
cluster distance and f-measure parameters. It is analyzed 
that the proposed cat algorithm has a minimum intra-cluster 
distance with most of the dataset while obtaining a better 
f-measure rate than other algorithms.
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Kushwaha et al. [56] presented an electromagnetic field 
optimization (EFO) method for resolving the issues of the 
k-mean algorithm. The k-mean algorithm suffers from 
poor selection of initial centroid and in turn traps in local 
optima. To overcome this issue of the k-mean algorithm, the 
EFO algorithm is utilized for generating the optimal initial 
centroid for the k-mean algorithm. It is also reported that 
the EFO algorithm may not stuck in local optima due to 
attraction and repulsion mechanisms. Several well-known 
datasets are considered for assessing the efficacy of the 
proposed clustering algorithm based on normalized mutual 
information (NMI), rand index (RI), and purity. The results 
showed that the proposed algorithm gets far better clustering 
results than the same class of algorithms.

To perform the clustering in massive data, Hashemi 
et al. [57] designed an updated PSO method. The proposed 
method utilizes the multi-start pattern reduction mechanism 
to decrease the calculation time for clustering. The clustering 
time is reduced using a reduction operator while the multi-
start operator is utilized for ensuring population diversity 
and local minima. The six clustering datasets are considered 
to evaluate the performance of the proposed method based 
on accuracy and execution time. The results confirmed that 
better clustering results are obtained by the proposed PSO 
method.

Prior information on the cluster is the main prerequisite 
for partitional clustering, so the research community is 
paying close attention to automatic partitional clustering. 
The aforementioned problem of partitional clustering was 
also taken into account by Zhu et al. [58] who presented 
the AC-DPHS dynamic parameter-based HS algorithm 
for automatic data clustering. In the proposed AC-DPHS 
algorithm, the parameter is modified dynamically instead of 
static. The efficiency of the proposed AC-DPHS is assessed 
using five datasets. The results are evaluated using ARI, 
FM, and PBM parameters. It is stated that the proposed 
algorithm obtains superior results than other algorithms 
being compared.

A hybrid k-prototype clustering method based on 
enhanced SCA is developed by Kuo and Wang [59]. SCA 
algorithm is utilized to compute the optimal weight of 
attributes as well as initial attribute selection. Furthermore, 
the k-prototype method incorporates different mutation 
strategies, like Gaussian, Cauchy, levy, and single-point to 
produce better clustering outcomes. The ten datasets are 
chosen from the UCI repository to examine the efficacy of 
the k-prototype algorithm based on accuracy and Cohen 
kappa. The findings showed that the proposed k-prototype 
algorithm produces better clustering results than other 
algorithms.

A meta-heuristic clustering approach based on the 
behaviour of micro-bats is proposed by Kaur and Kumar 

[60]. Several modifications are designed to resolve the issues 
related to the algorithms such as convergence rate, local 
optima, and trade-off issues. The elitist process handles the 
slow convergence rate, the initialization issue is handled by 
a collaborative approach. The effectiveness of the proposed 
bat-based metaheuristic algorithm is evaluated using several 
healthcare and non-healthcare datasets utilizing well-known 
performance metrics like intra-cluster distance, standard 
deviation, accuracy, and rand index. The results of the 
proposed approach are compared to conventional clustering 
algorithms and it is claimed that the proposed approach 
achieves a better accuracy rate than conventional algorithms.

A learning automata-based hybrid MPA and JS algorithm 
is presented for handling the data clustering problem 
effectively [61]. The MPA and learning automata are utilized 
for enhancing proficiency and reducing the complexity of the 
JS algorithm. MPA is applied to memorize the best solution 
achieved so far while learning automata is used to improve 
the learning strategy of the JS algorithm. The efficiency 
of the hybrid MPA-JS algorithm is evaluated using ten 
clustering datasets based on SSE, average execution time 
and CHC. The results are compared with several state of art 
meta-heuristic algorithms and it is found that the proposed 
hybrid MPA-JS algorithm gets better results than other 
algorithms.

To handle the automatic clustering problems, Ikotun and 
Ezugwu [62] hybridized the symbiotic organisms search 
algorithm with K-means. A global threshold function is 
also utilized for computing the outliers in the dataset and 
further, such data points are eliminated from the dataset. 
Moreover, a three-way mutation mechanism is also 
designed and integrated into the symbiotic organisms search 
algorithm to improve the performance of the aforementioned 
hybridization. The efficacy of the hybrid SOS-KM algorithm 
is examined over forty-two datasets based on DB index, CS 
index and computational time. The findings stated that the 
hybrid SOS-KM algorithm gets superior results for most of 
the dataset in terms of DB index, and CS index.

A hybrid algorithm based on a firefly algorithm (FA) and 
self-organizing map (SOM) is presented for the clustering 
task, called FA-SOM [63]. In the proposed FA-SOM 
algorithm, initial cluster centroids are selected using the 
FA. Further, the weight of SOM is optimized using optimal 
cluster centroids generated by FA. The six clustering datasets 
are utilized for evaluating the performance of the FA-SOM 
based on SSE parameters. A statistical test is also adopted to 
investigate the efficacy of the proposed FA-SOM algorithm. 
The findings stated that the proposed FA-SOM algorithm 
obtains superior clustering results than other methods.

To achieve better computational time, Suryanarayana 
et al. [64] developed a dynamic k-mode clustering algorithm 
for effective cluster analysis. The PSO algorithm is adopted 
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to compute the optimal centroid for the k-Mode algorithm. 
Further, a frequency-based technique is also utilized for 
updating the modes and decreasing the cost function 
for clustering tasks. The efficacy of the dynamic k-mode 
algorithm is evaluated using six well-known clustering 
datasets using accuracy, f-measure and NMI parameters. 
The results demonstrated that the proposed dynamic k-mode 
algorithm obtains more accurate clustering results than 
others (Table 1).

Water Flow Optimizer

Recently, a new meta-heuristic algorithm, called WFO 
based on the water flow theory has been developed for 
solving global optimization problems [40]. This algorithm 
is inspired by the shapes of water flow which is described 
through laminar and turbulent flows. Hence, the WFO 
algorithm also comprises two different evolutionary 
operators (laminar and turbulent) as stated above. In turn, 
the WFO algorithm imitates the hydraulic phenomenon of 
water particles i.e. flowing from highland to lowland by 
using two operators. The optimization process of the WFO is 
designed by using the laminar and turbulent operators. The 
optimization problems are described as either minimization 
or maximization problems. So, an objective function can be 
defined either in terms of minimization or maximization and 
this objective function is being solved by the optimization 
steps of the WFO algorithm. As WFO is inspired by the 
flow of water from highland to lowland, hence there exists 
a similar pattern among water flow and searching of the 
solutions in optimization problems. So, in WFO, a water 
particle can act as a possible solution, the position of the 
water particle corresponds to the solution value, and the 
objective function is described in terms of the potential 
energy of the water particle. The description of the laminar 
and turbulent operators is mentioned below.

Laminar Operator

The working of this operator is inspired by a laminar flow 
of water and this flow specified that water particles should 
be moved in parallel straight lines as mentioned in Fig. 1. 
Further, the particle velocities can differ depending on the 
viscosity of water. The particles that are far from obstacles 
or walls, can move faster than those closer to obstacles and 
walls. Mathematically, this behaviour of water flow is dem-
onstrated using Eq. (1), called the laminar operator.

(1)yt(i) = xt(i) + R × ��⃗V∀t = {1, 2, 3, 4,…m}

In Eq. (1), yt(i) described as the moving position of tth 
water particle after ith iteration, xt(i) corresponds to the 
position of tth water particle in ith iteration, R is a random 
number in the range of [0, 1] , called water coefficient and ��⃗V  
defines a vector value corresponding to a common motional 
direction (dimension) and m is the total number of water 
particles. The direction of common motional using Eq. (2).

In Eq. (2), xe(i) ≤ xo(i) describes the potential energy 
of water particles that can be used to select the best water 
particle in the ith iteration. If eth particle energy is lower 
than oth particle energy, then the best particle is xe(i) , 
otherwise xo(i).

Turbulent Operator

The working of this operator is inspired by the turbulent flow 
of water and this can be described as a contingent pushing of 
water particles. In turn, an inconsistent motion can disrupt 
the bonding of water particles, and produce the fast flow of 
water to destabilize the obstruction and cause a local oscil-
lation. In turn, amplitude is generated for oscillation, and the 
amplitude can grow with time. A shearing force is produced 
due to the aforementioned process, known as torque, which 
is responsible for swirling water particles. If the dimension 
of the problem to be solved can be described through a layer 
of water, then the dimension transformation of problems can 
be viewed as an irregular motion of water particles in turbu-
lent flow. Mathematically, it can be understood as randomly 
selecting the dimension and position of particles during 
oscillation. Finally, the behaviour of the turbulent operator 
is described through Eq. (3).

(2)
��⃗V = xe(i) − xo(i) such that

(
e ≠ f,

(
f
(
xe(i)

)
≤ f

(
xo(i)

)))

Table 2  Description of the datasets

Sr. no. Data sets Cluster (K) Dimension 
(D)

Instance (N)

1 Iris 3 4 150
2 Glass 6 9 214
3 Wine 3 13 178
4 Ionosphere 2 34 351
5 Control 6 60 600
6 Vowel 6 3 871
7 Balance 3 4 625
8 Crude oil 3 5 511
9 CMC 3 9 1,473
10 LD 2 6 416
11 WBC 2 9 699
12 Thyroid 3 5 215
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In Eq. (3), 'p’ corresponds to the jostling operator, and it 
can be described through Eq. (4).

In Eq. (4), j describes the index of the randomly chosen 
particle (e) such as j ∈ {1, 2, 3,… s} and i ≠ j.‘d + 1’ 
defines a dimension that can be chosen randomly such that 
d + 1 ≠ d . pe can be defined as an eddying parameter and 
r is a random number in the range of [0, 1]. Further, it is 
observed that the eddy shape is similar to the Archimedean 
spiral and it can be expressed using the Eq. (5).

In Eq. (5), Ɵ is a random value in the range of [−�,�] 
and � corresponds to the shearing force between tth and 
eth particles. The shearing force (�) between tth and eth 
particles is determined using Eq. (6).

Further, the general behaviour of water particles is 
described through a transformation function and this 
function is summarized in Eq. (7).

In Eq. (7), ubd denotes the upper bound in dth dimension, 
lbd denotes the lower bound of the dth dimension. xd+1

j
(i) 

denotes the jth index of eth particle in dimension (d + 1).

Evolutionary Rule

This subsection discusses that the water flow can be either 
laminar or turbulent. The distinction between laminar and 
turbulent flows can be made with the help of the Reynolds 
number. It is stated that a threshold function is defined to 
determine the flow of water. If the flow of water is less than 
a threshold, then it can be considered as laminar, otherwise 
turbulent. Further, laminar flow probability can be denoted 
through 

(
Pl

)
 , whereas, turbulent flow probability is defined 

using 
(
1 −

(
Pl

))
 . Moreover, laminar probability can be 

described as a control parameter and it is a random number 
in the range of [ 0, 1] . The flow of water is determined using 
Pl. However, it is also discussed that water can be flowed 

(3)
yt(i) =

(

xdt (i), p, x
d+1
t (i), p, xd+2t (i), p, xd+3t (i),… p, xd+nt (i)

)

where d = {1,2, 3,… n}

(4)p =

⎧
⎪⎨⎪⎩

𝛾
�
xd
t
(i), xd

j
(i)
�
, if r < pe

𝜗
�
xd
t
(i), xd+1

j
(i)
�
, otherwise

(5)γ
(
xd
t
(i), xd

j
(i)
)
= xd

t
(i) + φ × θ × cos (θ)

(6)φ =
|||x

d
t
(i), xd

j
(i)
|||

(7)ϑ
(
xd
t
(i), xd+1

j
(i)
)
=
(
ubd − lbd

)xd+1j
(i) − lbd+1

ubd+1 − lbd+1

from highland to low land, in turn, the position of water 
particles may change. Hence, this behaviour of water can be 
characterized using the evolutionary rule. As par this rule, 
the moving position of the water particles can be changed 
according to their potential energy, if potential energy is 
less than the threshold, a new moving position is calculated 
for the water particles otherwise, there is no change in the 
current position. This behaviour is illustrated using Eq. (8).

Proposed Improved Water Flow Optimizer 
Algorithm (IWFO)

This section presents the improved water flow optimizer 
algorithm for solving the hard clustering problems. It 
is observed that several limitations are associated with 
the water flow algorithm such as (i) random distribution 
function is utilized to generate the initial population, 
(ii) adequately less balance between exploration and 
exploitation mechanisms, and (iii) due to one-way strategy 
adopted in laminar flow phase, WFO may be stuck in local 
optima. Firstly, these aforementioned limitations of the 
WFO algorithm are handled through a logistic chaotic 
map-based function for generating the initial population, the 
balance between exploration and exploitation mechanisms is 
enhanced using improved solution search equations, and the 
local optima issue is handled through a multi-strategy search 
process. The proposed improvements are discussed below.

Chaotic Map‑Based Distribution Function

In WFO, a random function is applied to generate the initial 
population. But, a rand () function provides a random 
number between 0 and 1. Further, it cannot provide random 
numbers in uniform order. Hence, the population cannot be 
generated uniformly throughout the search space. The initial 
population for WFO is computed using Eq. (9).

In Eq. (9), x denotes the initial population of water par-
ticles, lb and ub denote the lower and upper bounds of the 
search space, N represents the total number of water particles 
and D can be defined as the dimension of the search space. 
Suppose, the number of water particles (N) is 4, dimension 
(D) is 3 and lb for the search space is given as (0, 10, 25) 
and ub is given as (30, 50, 60) . Now, a rand(⋅) function is 
used to generate four numbers in the range of [0, 1] . These 
numbers are integrated with Eq. 9 for generating the initial 
population of the water particles and the initial population 

(8)Xt(i + 1) =

{
yt(i), if f

(
yt(i)

)
≤ f

(
xt(i)

)
xt(i), otherwise

(9)x = lb + rand(N,D) ⋅ [ub − lb]
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is expressed as (24.6270, 27.4879, 29.0764), (27.2680, 
19.3384, 56.8596) and (4.6826, 13.8287, 28.7677). By ana-
lyzing the population, it is noticed that the population cannot 
explore the entire search space effectively. On the other side, 
search space can be examined more systematically using 
chaotic maps rather than rand() function. This work employs 
the gaussian chaotic map for generating the initial population 
of water particles and it is computed using Eq. (10).

Here, x denotes the population of water particles, lb and 
ub are lower and upper bounds, N is the number of water 
particles and D is the dimension, ck denotes kth Gaussian 
map and it is computed using Eq. (11).

In Eq. (11), � is a user-defined parameter in between − 1 
to 1 4, but the optimal value of � is − 0.2, ck denotes the kth 
Gaussian map, and ck+1 denotes the (k + 1)th chaotic map, 
and the value of c0 is set to 0.6.

Balancing Exploration and Exploitation Mechanisms

The exploration and exploitation mechanisms are an inte-
gral part of every meta-heuristic algorithm. The explora-
tion can be understood as a global search, while exploita-
tion can be described as a local search. However, these 
mechanisms should be balanced to achieve effective solu-
tions. It is noticed that a weak local search cannot exploit 
then search space efficiently. On the other side, the global 
search is responsible for exploring the solution that can be 
found during the local search. This search also determines 
the capability of a local solution weather it can be acted as 
either a global solution or not. Moreover, the global search 
is also directed the search towards the global optima. To 
guide the solution towards global optima, the search pro-
cess also knows the direction of the previously best solu-
tion. Hence, two nonlinear (sigmoid and tanh) functions 
are taken into consideration for obtaining a better tradeoff 
between the search mechanisms. In WFO, the search mech-
anisms are described by the laminar operator (pl) and tur-
bulent operator (pe) which are summarized in Eqs. (12–13).

Here, c1 and c2 are two cognitive parameters whose val-
ues are 0.5 and 0.3. tcurr is the current iteration and tmax is 

(10)x = lb + ck(N,D) ⋅ [ub − lb]

(11)ck+1 = � × eck� ∈ [−1,1]

(12)pl =
(
c1 − c2

)
×

(
1

1 + e−tcurr∕tmax

)

(13)pe = c2 ×

(
2

1 + e−2tcurr∕tmax
− 1

)
+ c1
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maximum iteration. If, (pl > rand) , the updated position of 
water particles (y) is computed by Eq. (14).

In Eq. (14), xt(i) is the current position of the water 
particle in ith iteration, xbest is the best position, r is a 
random number in between [0, 1], �⃗d is the direction of 
water particles and dt is a decrement operator inspired 
by the whale optimization algorithm. The direction of 
water particles is computed using Eq. (15), while dt is 
determined by Eq. (16).

Here, xt(i) and xs denote the tth and sth water particles 
in ith iteration, f

(
xt(i)

)
 and f

(
xs(i)

)
 is the potential energy 

of tth and sth water particles. Further, the potential energy 
of the particle ( xt ) is computed using the Eq. (17)

In Eq. (16), l is a random number in the range of [0.6, 
1]. Further, the potential energy 

(
f
(
xt(i)

))
 is computed 

using the Eq. (17).

Here, f
(
xt(i)

)
 is the potential energy of the tth water 

particle (xt) , and SSE(xt(i)) is the sum of the squared error. 
It can be defined as the sum of the squared error of the 
given particle divided by the sum of the squared error of 
all particles.

Neighborhood Search Process

This subsection discusses the neighbourhood search process 
to overcome the single search strategy of WFO. This 
process also handles the local optima issue of the WFO 
algorithm effectively. In the literature, neighbourhood 
search mechanisms have been employed to overcome local 
optima issues [65, 66]. This work proposes three methods 
to overwhelm the local optima- (i) Gaussian local search 
strategy, (ii) Mutation strategy, and (iii) Crossover strategy.

Gaussian local search strategy: It is observed that local 
search is responsible for finding the optimal solutions 
by exploring the search space and this solution is called 
local optimal solution. On the other side, it is also noticed 
that local search sometimes converges quickly and in turn 
solution sticks in local optima. Hence, to avoid the solu-

(14)yt(i) =

{
xt(i) + r × �⃗d, if rand < pl

xt(i) + dt.(xbest − xt(i)), otherwise

(15)�⃗d = xt(i) − xs(i) such that
(
t ≠ s, f

(
xt(i)

)
≤ f

(
xs(i)

))

(16)dt =
1

1 − cos(�l)

(17)f
�
xt(i)

�
=

n�
i

SSE(xt(i))∑n

t=1
SSE(xt(i))
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tion stuck in local optima, this work explores the Gauss-
ian local search strategy for computing the local optimal 
solution. This process is summarized below.

In Eq.  (18), xt�(i) represents the new position of the 
water particle, xt(i) denotes the current position of the water 
particle that can be responsible for local optima, �c is a 
Gaussian chaotic variable which is computed using the Eq. 
(19).

In Eq.  (19), lbd and ubd denote the lower and upper 
constraints in the dth dimension, gd

best
 denotes the best 

position of water particles, ck denotes the logistic chaotic 
map that can be computed using Eq. (11).

Mutation-based strategy: The local optima issue arises 
due to similar populations in successive iterations. In 
turn, there is no change in the allocation of data objects to 
the respective clusters. Hence, this work also explores the 
capability of the mutation operator to generate a diverse 
population to avoid the local optima condition. The new 

(18)xt
�(i) = (1 − �) × xt(i) + �c

(19)
�c = lbd + ck

(
ubd − lbd

)
× gd

best
where d ∈ (1,2, 3, ..,D)

position of water particles is generated by considering the 
three previous personal best positions of water particles 
in a random fashion such as xe, xf , xg where, e ≠ f ≠ g and 
this behaviour is depicted using Eq. (20).

In Eq. (20), ck denotes the gaussian chaotic map computed 
using Eq. (11) and it is also utilized to control the chaos of 
mutation parameter.

Crossover-based strategy: This strategy is derived from 
the concept of the crossover operator. The new position 
is generated by performing the two-point crossover 
between two randomly chosen gbest water particles and 
it is expressed in Eq. (21).

In Eq. 21, xt�(i) denotes the new position of water parti-
cle, xt(i) denotes the previous position of the water particle, 
xp, and xq are two randomly chosen water particles from the 
list of gbest particles, f

(
xp
)
and f

(
xq
)
 describe the potential 

(20)xt
�(i) = xe(i) + ck ×

(
xf (i) − xg(i)

)

(21)xt
�(i) =

{
xt(i) + ck

(
xp − xq

)
if , rand <

(
f
(
xp

)||f(xq
))

xt(i) + ck ×
(
1 −

tcurr

tmax

)
otherwise

Table 5  Simulation results of the proposed IWFO and other standard existing clustering algorithms using AR and DR parameters

Dataset Parameter KM PSO ACO ABC DE GA BB-BC BAT WFO Proposed IWFO

Iris AR 0.673 0.833 0.789 0.887 0.842 0.741 0.868 0.904 0.908 0.961
DR 0.696 0.857 0.794 0.892 0.868 0.773 0.882 0.907 0.914 0.968

Glass AR 0.519 0.537 0.374 0.489 0.481 0.49 0.555 0.484 0.692 0.717
DR 0.538 0.572 0.384 0.509 0.492 0.511 0.586 0.504 0.687 0.743

Wine AR 0.739 0.711 0.746 0.773 0.741 0.729 0.766 0.787 0.858 0.873
DR 0.752 0.737 0.781 0.793 0.762 0.749 0.794 0.813 0.891 0.896

Ionosphere AR 0.712 0.648 0.607 0.644 0.63 0.601 0.626 0.621 0.708 0.789
DR 0.728 0.647 0.612 0.664 0.653 0.618 0.634 0.632 0.724 0.804

Control AR 0.597 0.412 0.395 0.356 0.393 0.467 0.394 0.668 0.754 0.801
DR 0.614 0.452 0.437 0.396 0.417 0.492 0.421 0.695 0.783 0.819

Vowel AR 0.763 0.753 0.775 0.796 0.698 0.745 0.813 0.832 0.781 0.886
DR 0.846 0.795 0.806 0.832 0.747 0.79 0.856 0.859 0.896 0.914

Balance AR 0.85 0.898 0.743 0.767 0.75 0.78 0.797 0.868 0.887 0.913
DR 0.863 0.904 0.772 0.783 0.776 0.824 0.835 0.879 0.896 0.932

Crude oil AR 0.655 0.765 0.591 0.568 0.665 0.632 0.636 0.632 0.664 0.796
DR 0.684 0.773 0.645 0.587 0.681 0.654 0.649 0.654 0.675 0.823

CMC AR 0.357 0.514 0.369 0.416 0.437 0.403 0.447 0.426 0.595 0.613
DR 0.455 0.598 0.465 0.489 0.466 0.435 0.512 0.487 0.671 0.686

LD AR 0.522 0.541 0.529 0.499 0.52 0.493 0.502 0.531 0.565 0.685
DR 0.635 0.587 0.564 0.549 0.648 0.59 0.613 0.654 0.634 0.746

Cancer AR 0.698 0.721 0.749 0.786 0.654 0.691 0.67 0.792 0.781 0.836
DR 0.751 0.748 0.773 0.824 0.678 0.715 0.698 0.836 0.816 0.868

Thyroid AR 0.638 0.689 0.649 0.644 0.658 0.632 0.639 0.658 0.669 0.738
DR 0.661 0.692 0.654 0.661 0.697 0.643 0.674 0.703 0.783 0.786
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energy of pth and qth particles, ck denotes the gaussian cha-
otic map which is computed using Eq. 11, tcurr denotes the 
current iteration and tmax denotes the maximum number of 
iterations.

Algorithmic Steps of the IWFO Algorithm

This subsection presents the algorithmic steps of the 
proposed IWFO algorithm for clustering problems. The 
IWFO algorithm aims to determine the optimal centroids 
for the given dataset. The working of the IWFO algorithm 
is defined through six major steps. These steps are (i) 
Initialization, (ii) Objective Function and Data Allocation, 
(iii) Laminar Flow, (iv) Turbulent Flow, (v) Evolving and 
updation. The descriptions of these steps are mentioned 
below.

 (i) Initialization: This step corresponds to user-defined 
parameters of the IWFO algorithm. The param-
eters include the number of particles (clusters (K)), 
dimension (D), laminar probability ( pl ), eddying 
probability (pe) , lb, ub, and maximum iteration. The 
initial position of the water particles is computed by 

Eq. (10). Further, initial positions are also described 
as the initial centroids for cluster problems.

 (ii) Objective function and data allocation: This step 
defines a problem-related objective function. For 
clustering problems, the objective function is 
defined using a distance function and this function 
is used to allocate the data to clusters. So, in this 
work, an objective function is defined in terms of 
the Euclidean distance and the allocation of data to 
respective clusters is done based on the minimum 
Euclidean distance. This function is defined in 
Eq. (22).

Here, D
(
xi, cj

)
 is the Euclidean distance between data 

(xi) and centroids (cj) , d denotes the dimension of data, and 
it is expressed as m = 1, 2, 3,… .d.

 (iii) Laminar flow: When data is allocated to respective 
clusters, the next step is to compute the direction of 
water flow. It can be achieved by comparing the lami-

(22)D
(
xi, cj

)
=

√√√√ d∑
m=1

(
xim, cjm

)2

Table 6  Simulation results of the proposed IWFO and recent clustering algorithms based on AR and DR parameters using recent clustering 
algorithms

Dataset Parameter VS MBOA WOA ICSO TLBO CS GSA LION GWO Proposed IWFO

Iris AR 0.941 0.954 0.946 0.914 0.912 0.885 0.783 0.852 0.852 0.961
DR 0.956 0.959 0.951 0.932 0.928 0.893 0.774 0.812 0.868 0.968

Glass AR 0.589 0.593 0.684 0.691 0.695 0.689 0.664 0.681 0.678 0.717
DR 0.602 0.625 0.693 0.726 0.742 0.726 0.684 0.713 0.709 0.743

Wine AR 0.697 0.7031 0.684 0.732 0.725 0.803 0.79 0.878 0.792 0.873
DR 0.737 0.717 0.703 0.754 0.767 0.824 0.818 0.908 0.837 0.896

Ionosphere AR 0.633 0.646 0.611 0.687 0.694 0.735 0.752 0.769 0.746 0.789
DR 0.649 0.683 0.629 0.725 0.737 0.746 0.762 0.779 0.753 0.804

Control AR 0.578 0.603 0.620 0.713 0.728 0.698 0.674 0.738 0.814 0.801
DR 0.629 0.634 0.673 0.747 0.734 0.722 0.694 0.762 0.833 0.819

Vowel AR 0.640 0.569 0.587 0.653 0.649 0.835 0.847 0.851 0.815 0.886
DR 0.678 0.581 0.618 0.682 0.652 0.866 0.858 0.897 0.842 0.914

Balance AR 0.713 0.720 0.693 0.786 0.810 0.917 0.849 0.855 0.793 0.913
DR 0.732 0.756 0.728 0.816 0.856 0.938 0.887 0.896 0.845 0.932

Crude oil AR 0.623 0.652 0.635 0.746 0.734 0.704 0.761 0.805 0.748 0.796
DR 0.647 0.663 0.658 0.779 0.752 0.713 0.792 0.834 0.768 0.823

CMC AR 0.411 0.442 0.424 0.468 0.465 0.571 0.547 0.534 0.516 0.613
DR 0.456 0.482 0.443 0.501 0.483 0.614 0.582 0.558 0.548 0.686

LD AR 0.509 0.507 0.514 0.530 0.532 0.659 0.631 0.662 0.615 0.685
DR 0.568 0.549 0.583 0.571 0.609 0.689 0.654 0.713 0.648 0.746

Cancer AR 0.792 0.853 0.834 0.918 0.921 0.820 0.728 0.789 0.824 0.836
DR 0.826 0.884 0.876 0.946 0.952 0.841 0.786 0.841 0.872 0.868

Thyroid AR 0.604 0.594 0.621 0.682 0.714 0.691 0.678 0.724 0.706 0.738
DR 0.647 0.628 0.655 0.697 0.748 0.748 0.729 0.759 0.739 0.786
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Table 7  Depicts the execution 
time of clustering algorithms (in 
seconds)

Dataset Clustering algorithm

KM DE ACO PSO ABC GA BB-BC BAT WFO Proposed IWFO

CMC 11.31 19.25 17.4 14.58 14.97 16.1 16.73 15.7 13.6 14.23
Glass 11.19 15.19 15.9 14.01 16.22 16.8 14.98 14.7 15.3 16.11
crude 9.15 14.56 14.2 14.02 13.79 13.2 12.79 14.1 11.3 12.09
Liver 13.76 15.96 15.7 14.07 12.69 13.7 15.67 11.9 12.2 13.01
Cancer 13.09 15.88 14.3 13.34 13.98 13.3 14.09 13.1 13.2 13.83
Thyroid 17.47 15.09 15.3 15.24 15.95 14.5 14.73 14.6 14.5 14.89
Ionosphere 10.48 12.46 12.8 14.11 13.63 11.8 11.56 11.1 11.5 12.61
balance 10.37 14.72 13.8 13.51 13.58 13.2 13.1 14 11 11.33
Iris 14.91 19.12 16.4 14.52 10.29 11 10.98 11.9 12.2 11.03
Wine 13.52 15.11 14.9 14.3 11.73 12.2 11.65 13 11.6 12.17
Vowel 11.24 16.05 16 14.47 14.27 14.8 14.18 13.8 11.4 12.52
Control 12.72 15.86 14.6 14.95 14.48 15.4 14.66 14.2 14.9 15.81

Table 8  Depicts the execution 
time of clustering algorithms (in 
seconds)

Dataset Clustering algorithm

VS MBOA WOA ICSO TLBO CS GSA LION GWO Proposed IWFO

CMC 14.43 13.94 16 18.96 15.61 13.6 12.38 14.3 16.1 14.23
Glass 13.78 11.22 18.8 18.43 14.72 15.9 13.63 13.8 14.7 16.11
crude 12.02 14.86 14.2 13.05 12.96 13.7 13.05 12.7 15 12.09
Liver 13.74 14.01 13.6 12.86 12.56 14.8 14.21 13.9 13.4 13.01
Cancer 14.01 12.52 14.1 13.8 13.48 14 13.29 14.2 15.6 13.83
Thyroid 15.63 13.74 14.9 13.74 14.64 17 14.38 15.1 14.2 14.89
Ionosphere 12.63 11.89 11.3 11.97 12.02 10.3 11.04 10.9 11.1 12.61
balance 11.32 12.08 12.3 14.16 11.21 12.8 11.93 11.2 10.6 11.33
Iris 11.05 11.16 11.8 10.94 10.46 11 11.78 10.3 10.4 11.03
Wine 13.59 12.27 13.2 13.48 10.59 11.3 12.08 11.6 12.1 12.17
Vowel 12.11 9.78 12.7 12.29 12.17 13.7 12.47 11.5 11.8 12.52
Control 15.44 14.04 13.8 14.73 15.01 13.6 15.89 14.6 14 15.81

nar probability (pl) with a rand() function such as If 
(rand(.) < pl). If the condition is true, then water flow 
is defined as laminar flow, and the position of water 
particles is updated using the laminar flow mecha-
nism. The process of the laminar flow is highlighted 
in Algorithm 1.

Algorithm 1  Steps for the laminar flow phase

1. Determine the laminar flow direction based on equation 15.
2. Compute the new position of water particles using the 

equation 14. Check boundary constraints, if these are not 
satisfied, generate the new position using equation 7.  

3. Compute the potential energy ( ( ( ))) of water particles 
(Ck)using the equation 17.
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 (iv) Turbulent flow: If water flow is not defined as lami-
nar, then it can be turbulent and the position of water 

particles is updated using the turbulent flow mecha-
nism. This mechanism is mentioned in Algorithm 2.

Algorithm 2  Steps for the turbulent flow phase

1. Determine the trial position of water particles ) in 
random order.

2. Randomly choose the jostling operator (p) using equation 
4 such that ≠ .

3. Compute the new position of water particles using the 
equation 3. Check boundary constraints, if these are not 
satisfied, generate the new position using equation 7.  

4. Compute the potential energy ( ( ( ))) of water particles 
)using the equation 17.

Table 9  Average ranking of each algorithm based on execution time 
using all datasets

Algorithm Average time Average 
ranking

KM 12.43 1
DE 15.77 19
ACO 15.11 18
PSO 14.26 17
ABC 13.8 13
GA 13.83 14
BB-BC 13.76 12
BAT 13.5 11
VS 13.31 9
MBOA 12.63 2
WOA 13.89 15
ICSO 14.03 16
TLBO 12.95 5
CS 13.47 10
GSA 13.01 6
LION 12.85 4
GWO 13.25 8
WFO 12.72 3
Proposed IWFO 13.3 7

(v) Evolving and Updation: This step corresponds to 
determining the final updated position of water par-
ticles (cluster centroids) after laminar and turbu-
lent mechanisms. To determine the final position of 
water particles, the potential energy of new particles 
is compared with the previous potential energy of 
particles. If 

(
f
(
xt,new(i)

)
> f

(
xt,old(i)

))
 is higher, then 

the new centroid is as xt(i + 1) ← xt,new(i) , otherwise 
xt(i + 1) ← xt,old(i). This step also includes a limit oper-
ator for alleviating the local optima problem and it is 
set to 5. If, potential energy 

(
f
(
Ck(i)

))
 is not improved 

in five successive iterations, it is assumed that the algo-
rithm sticks in local optima and the neighbourhood 
search procedure is called to compute the new position 
of the water particles. If the termination condition is not 
met, then steps (ii)-(v) are repeated. Otherwise, obtain 
the optimal position of water particles (optimal clus-
ter centroids). The algorithmic steps of the proposed 
IWFO algorithm are listed in Algorithm 3, while the 
flowchart of the IWFO-based clustering algorithm is 
depicted in Fig. 1.
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Algorithm 3  Proposed IWFO algorithm for cluster analysis

1. Upload the dataset and set the user-defined parameters of the 
proposed IWFO algorithm. 

2. Choose the initial population of the water particles )  using 
the equation 9.  

3. While ( ≤ ), do following
4. Compute the objective function (Euclidean distance) using the 

equation 22 and arrange the data ( ) into different clusters 
) based on the minimum value of Euclidean distance. 

5. Compute the potential energy (E) for each water particle( k)
using the equation 17. 

6. Compute the laminar probability ( ) and turbulent operator ( )
using the equations 12-13.

7. If  () < )
8. Call the algorithm 2 (Laminar Flow Phase) 
9. Else 
10. Call the algorithm 2 (Turbulent Flow Phase)
11. For each water particle ), do following 
12. If ( ( , ) > ( , ))
13. ( )← ( , )
14. ← ,
15. Else
16. ← , 
17. Compute the global best position( ) and store in the list in 

increasing order of potential energy.
18. If( ( )) is not improved up to limit parameter \*local optima 

issue*/

19. Call Multi-Strategy Search Process
20. If( ( ) < 0.4)
21. Invoke chaotic local search strategy using equation 18.
22. Else If(0.4 ≤ ( ) < 0.7)
23. Invoke mutation-based strategy using equation 20.
24. Else 
25. Invoke crossover-based strategy using equation 21. 
26. End if
27. If maximum iteration is not reached, repeat the steps 4-27.
28. Otherwise, obtain optimal centroids ( ). 
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Fig. 2  Demonstrates the differ-
ent clusters of data in a variety 
of datasets using the proposed 
IWFO algorithm
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Fig. 2  (continued)

Experimental Results

This section presents the simulation result of the proposed 
IWFO algorithm and other algorithms. The efficacy of the 
IWFO algorithm is examined using twelve standard cluster-
ing datasets. These datasets are downloaded from the UCI 
repository and the description of these datasets is mentioned 
in Table 2. The simulation results of the proposed IWFO 

algorithm are compared with a wide variety of meta-heuris-
tic algorithms. These algorithms are described as K-means 
[67], PSO [21], ACO [68], ABC [69], DE [70], GA [71], 
BB-BC [72], BAT [73], VS [74], MBOA [75], WOA [46], 
ICSO [76], TLBO [77], CS [78], GSA [79], LION [80], 
WWO[82] and GWO [52]. The simulation results are eval-
uated using intra, SD, rank, AR and DR parameters. The 
results indicate an average of thirty separate runs. The intra-
parameter can be defined as the sum of the distance between 
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data objects and respective cluster centres. This parameter 
indicates the closeness between data objects and cluster cen-
tres. Standard deviation (SD) is also computed for validating 
the intra-results. Further, AR denotes the accuracy rate while 
DR denotes the detection rate. The maximum iteration is 
set to 100. The parameter settings of the other algorithms 
except the proposed IWFO are recommended the same as 
reported in the corresponding literature. The parameters 
setting of the proposed IWFO are given as population size 
(P) is defined in terms of clusters (K), laminar probability 
(Pla) ∈ (0.2, 0.5) , eddying probability (Pe) ∈ (0.5, 0.9) , limit 
operator 

(
limtop

)
= 5 , maximum iteration (max_iter) is set to 

100. The experiment is conducted in a Matlab environment 
using a Core i5-based processor with 32 GB of RAM.

Simulation Results

This subsection discusses the simulation results of the pro-
posed IWFO and other clustering algorithms using intra-
cluster distance (intra), standard deviation (SD), rank, 
accuracy (AR) and detection rate (DR) parameters. Table 3 
presents the simulation results of the proposed IWFO and 
other standard existing clustering algorithms based on 
intra, SD and rank parameters. The simulation results of the 
proposed algorithm are compared with the original WFO, 
K-means, PSO, ACO, ABC, DE, GA, BB-BC, and BAT 
algorithms. A variety of datasets are considered for evaluat-
ing the efficacy of the proposed IWFO and other clustering 
algorithms. It is seen that the proposed IWFO algorithm 

obtains the minimum value of intra-parameter with most 
of the datasets. The proposed algorithm achieves minimum 
intra with iris (9.21E+01), glass (2.03E+02), ionosphere 
(9.04E+02), vowel (1.56E+05), balance (5.78E+04), cancer 
(1.23E+03), and thyroid (1.27E+03) except wine, control, 
crude oil, CMC and LD datasets. For the wine dataset, the 
DE algorithm obtains the minimum intra-value (1.58E+04) 
while the proposed IWFO algorithm obtains the second 
minimum intra-value (1.59E+04) among all algorithms. It is 
also seen that the BB-BC algorithm gets minimum intra val-
ues (2.38E+04 and 3.13E+03) for the control and LD data-
set, while the proposed IWFO algorithm achieves (2.41E+04 
and 2.85E+03) minimum intra values for both datasets. For 
the crude oil dataset, the ACO algorithm achieves minimum 
intra value (2.47E+02), whereas the proposed IWFO algo-
rithm obtains (2.63E+02) value for intra parameter. For the 
CMC dataset, the K-means algorithm achieves minimum 
intra-cluster distance (5.59E+03), while the proposed IWFO 
algorithm obtains the second minimum intra-distance rate 
i.e. (5.64E+03) which is the second minimum among all 
algorithms. It is also noticed that for the LD dataset, the 
BB-BC algorithm achieves minimum intra-cluster distance 
(1.13E+03), while the proposed IWFO algorithm obtains 
second minimum intra-distance rate i.e. (1.23E+03).

SD is also an important parameter that can verify the 
performance of the proposed IWFO algorithm in succes-
sive iterations. By analyzing the SD parameter, it is revealed 
that the proposed IWFO algorithm obtains a minimum 
SD rate for most datasets compared to other algorithms. 

Table 10  Statistical results of 
the Wilcoxon rank test using 
proposed IWFO and other 
clustering algorithms based on 
accuracy parameter

Algorithm Sum Mean Median Z value p-value Significance level Proposed IWFO H0

Sum Mean Median

GWO 8.899 0.740 0.770 2.8829 0.0039 0.05 9.608 0.800 0.798 Reject
Lion 9.138 0.760 0.779 2.8045 0.0050 Reject
GSA 8.704 0.730 0.740 3.0398 0.0024 Reject
CS 9.007 0.750 0.719 2.9614 0.0031 Reject
TLBO 8.579 0.710 0.720 2.5691 0.0102 Reject
ICSO 8.520 0.710 0.702 2.6476 0.0081 Reject
WOA 7.853 0.650 0.628 3.0398 0.0024 Reject
MBOA 7.836 0.650 0.624 2.8829 0.0039 Reject
VS 7.730 0.640 0.628 3.0398 0.0024 Reject
WFO 8.862 0.740 0.731 3.0600 0.0022 Reject
BAT 8.203 0.680 0.663 3.0398 0.0024 Reject
BB-BC 7.713 0.640 0.637 3.0398 0.0024 Reject
GA 7.404 0.620 0.632 3.0398 0.0024 Reject
DE 7.469 0.620 0.656 3.0398 0.0024 Reject
ABC 7.625 0.640 0.644 3.0398 0.0024 Reject
ACO 7.316 0.610 0.628 3.0398 0.0024 Reject
PSO 8.022 0.670 0.700 3.0600 0.0022 Reject
KM 7.723 0.640 0.664 3.0398 0.0024 Reject
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The proposed IWFO algorithm gets minimum SD rate 
with wine (4.34E+01), ionosphere (1.53E+01), vowel 
(1.41E+01), balance (3.34E+02), crude oil (1.08E+01), 
CMC (2.14E+01), LD (1.27E+01), cancer (1.46E+02), 
and thyroid (1.12E+01). For the iris dataset, the ACO algo-
rithm obtains a minimum SD rate (1.31E+00), while the 
proposed IWFO algorithm obtains a (3.20E+00) SD rate. 
For the glass dataset, the GA algorithm gets a minimum 
SD rate (4.14E+00) while the proposed IWFO algorithm 
achieves a (9.98E+00) SD rate. For the control dataset, the 
BB-BC algorithm achieves a minimum SD rate (1.09E+02), 
while the proposed algorithm obtains a (1.42E+02) SD rate. 
It is analyzed that the proposed algorithm achieves compa-
rable SD results with the aforementioned datasets. Further, 
a rank parameter is also used to describe the ranking of each 
algorithm and this parameter is devised based on the mini-
mum intra parameter. By analyzing the rank parameter, it 
is revealed that the proposed IWFO algorithm obtains the 
first rank with eight datasets (iris, glass, ionosphere, vowel, 
CMC, cancer, thyroid). For wine, control and LD datasets, 
the proposed algorithm obtains the second rank. For the 
crude oil dataset, the proposed algorithm gets third rank. 
The average ranking of the proposed IWFO algorithm is 1.5 
using all datasets, while, the DE algorithm exhibits the worst 
rank (7.83) among all algorithms. It is also noticed that the 
average rank of the original WFO algorithm is 3.83. Hence, 
it is stated that the proposed algorithm obtains superior clus-
tering results with most of the datasets.

Further, the performance of the proposed IWFO algo-
rithm is also compared with the recently developed meta-
heuristic algorithms. These algorithms are VS, MBOA, 
WOA, ICSO, TLBO, CS, GSA, LION and GWO. The results 
are evaluated using intra, SD and rank parameters. The intra-
parameter is utilized to compute the compactness among the 
data objects within clusters. Table 4 presents the simulation 
results of the proposed IWFO and other algorithms based 
on the intra, SD and rank parameters. It is noticed that the 
proposed IWFO algorithm gets the minimum value of intra 
parameter with most of the datasets except vowel, balance, 
crude oil and thyroid datasets. The proposed IWFO algo-
rithm obtains minimum intra values with iris (9.21E+01), 
wine (1.59E+04), glass (2.03E+02), ionosphere (9.04E+02), 
balance (5.78E+04), CMC (5.64E+03), cancer(1.23E+03), 
and LD (2.85E+03) except wine, control, crude oil and LD 
datasets. For vowel and thyroid datasets, the ICSO algorithm 
obtains minimum intra values (1.55E+05 and 9.90E+02) Ta
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Table 12  Friedman test statistical results using intra-cluster distance 
(intra) parameter

Statistical value p-value DF critical value Hypothesis

114.6065 4.339e−16 18 28.8693 Rejected
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while the proposed IWFO algorithm obtains (1.56E+05 and 
1.27E+03) intra values. It is also seen that the TLBO algo-
rithm gets minimum intra values (5.36E+04 and 2.59E+02) 
for balance and crude oil datasets, while the proposed IWFO 
algorithm achieves (5.78E+04 and 2.63E+02) intra values 
for both datasets. SD is also a significant parameter that can 
verify the performance of the proposed IWFO algorithm 
in successive iterations. By analyzing the SD parameter, 
it is revealed that the proposed IWFO algorithm obtains a 
minimum SD rate for most of the datasets except iris, wine, 
control and balance compared to other algorithms. The pro-
posed IWFO algorithm gets a minimum SD rate with glass 
(9.98E+00), ionosphere (1.53E+01), vowel (1.41E+01), 
crude oil (1.08E+01), CMC (2.14E+01), LD (1.27E+01), 
cancer (1.46E+02), and thyroid (1.12E+01). For the iris 
dataset, the WOA algorithm obtains a minimum SD rate 
(1.06E+00), while the proposed IWFO algorithm obtains 
a (3.20E+00) SD rate. For the wine dataset, the TLBO 
algorithm gets a minimum SD rate (2.94E+01) while the 
proposed IWFO algorithm achieves a (4.34E+01) SD rate. 
For control and balance datasets, the VS algorithm achieves 
minimum SD rates (1.17E+02 and 1.04E+02), while the 
proposed algorithm obtains (1.42E+02 and 3.34E+02) SD 
rates. For the crude oil dataset, the ABC algorithm gets a 
minimum SD rate (1.09E+01), while the proposed IWFO 
algorithm obtains a (3.80E+01) SD rate. It is analyzed that 
the proposed algorithm achieves comparable SD results with 
the aforementioned datasets. Further, a rank parameter is 
also used to describe the ranking of each algorithm and this 
parameter is devised based on the minimum intra param-
eter. By analyzing the rank parameter, it is revealed that the 
proposed IWFO algorithm obtains the first rank with most 
of the datasets except vowel, CMC, balance, crude oil and 
thyroid datasets. The proposed algorithm obtains the second 
rank with vowel, crude oil and thyroid datasets. For CMC 
and balance datasets, the proposed algorithm obtains the 
third rank among all algorithms being compared. Hence, it 
is stated that the proposed algorithm obtains better cluster-
ing results with most of the datasets based on intra, SD and 
rank parameters.

The efficacy of the proposed IWFO algorithm is also 
assessed using AR and DR parameters. The simulation 
results of the proposed IWFO and other standard exist-
ing algorithms including the original WFO algorithm are 
reported in Table 5. It is seen that the proposed IWFO algo-
rithm gets superior clustering results based on AR parameter 
compared to KM, PSO, ACO, ABC, DE, GA, BB-BC and 
BAT algorithms. The proposed IWFO algorithm obtains bet-
ter AR results with most of the datasets such as iris (0.961), 
glass (0.717), wine (0.873), ionosphere (0.789), control 

(0.801), vowel (0.878), balance (0.913), crude oil (0.796), 
CMC (0.613), LD (0.685), cancer (0.836), and thyroid 
(0.738). DR is also described as one of the potential param-
eters for analyzing the performance of the clustering algo-
rithms. By analyzing the DR parameter, it is stated that the 
proposed IWFO algorithm gets superior results with most 
of datasets such as iris (0.968), glass (0.743), wine (0.896), 
ionosphere (0.804), control (0.819), vowel (0.904), balance 
(0.932), crude oil (0.823), CMC (0.646), LD (0.746), can-
cer (0.868), and thyroid (0.786). It is also observed that the 
proposed IWFO algorithm obtains better AR and DR rates 
as compared to the original WFO algorithm. Hence, it is 
stated that the proposed IWFO algorithm obtains better AR 
and DR results than similar classes of algorithms.

Moreover, the performance of the proposed IWFO algo-
rithm is also compared with several recent clustering algo-
rithms reported in the literature. The simulation results of 
the proposed IWFO and other algorithms based on AR and 
DR parameters are presented in Table 6. It is revealed that 
the proposed IWFO algorithm obtains better AR results with 
most of the datasets except wine, balance, control and can-
cer. The proposed algorithm achieves a higher accuracy rate 
with iris (0.961), glass (0.717), wine (0.873), ionosphere 
(0.789), control (0.801), vowel (0.878), balance (0.913), 
crude oil (0.796), CMC (0.613), LD (0.685), cancer (0.836), 
and thyroid (0.738). For the wine dataset, the LION algo-
rithm obtains a higher AR rate (0.878) among all algorithms, 
while the proposed IWFO gets (0.873) AR rate. It is also 
noticed that the GWO algorithm obtains a higher AR rate 
(0.814) for the control dataset, whereas, the proposed algo-
rithm obtains a (0.801) AR rate. For the balanced dataset, 
the CS algorithm achieves a superior AR rate (0.917), while 
the proposed algorithm gets (0.913) AR results. Further-
more, the TLBO algorithm achieves a better AR rate (0.921) 
for the cancer dataset, while the proposed algorithm obtains 
(0.836) AR rates. It is also analyzed that the proposed algo-
rithm gets comparable AR results for the aforementioned 
datasets. By analyzing the DR parameter, it is said that the 
proposed IWFO algorithm obtains better DR results with 
most of the datasets except wine, balance, control and can-
cer. The proposed algorithm achieves higher DR results with 
iris (0.968), glass (0.743), wine (0.896), ionosphere (0.804), 
control (0.819), vowel (0.904), balance (0.932), crude oil 
(0.823), CMC (0.646), LD (0.746), cancer (0.868), and 
thyroid (0.786). For the wine dataset, the LION algorithm 
obtains a higher DR rate (0.908) among all algorithms, while 
the proposed IWFO gets a (0.896) DR rate. It is also noticed 
that the GWO algorithm obtains a higher DR rate (0.833) for 
the control dataset, whereas, the proposed algorithm obtains 
(0.819) DR rate. For the balance dataset, the CS algorithm 
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achieves a superior DR rate (0.938), while the proposed 
algorithm gets (0.932) DR results. Furthermore, the TLBO 
algorithm achieves a better DR rate (0.952) for the cancer 
dataset, while the proposed algorithm obtains (0.868) DR 
rates. Finally, it is stated that the proposed IWFO algorithm 
gets superior clustering with most datasets in terms of intra, 
SD, rank, AR and DR parameters.

Apart from the well-known clustering measure, several 
researchers also adopt the execution time for comparing the 
performance of the clustering algorithms. This work also 
compares the performances of the proposed IWFO and other 
clustering algorithms using the execution time parameters. 
Tables 7, 8 and 9 illustrate the execution time of each clus-
tering algorithm using different datasets. The execution time 
is measured in seconds. Tables 7 and 8 present the execution 
time of the proposed IWFO and other clustering algorithms. 
It is analyzed that the proposed IWFO has a competitive exe-
cution time compared to other algorithms. Table 9 depicts 
the average execution time of each technique. It is found 
that the KM algorithm obtains minimum average execution 
times using all datasets and its rank is 1. The average rank-
ing of the proposed IWFO algorithm is seven in the context 
of execution time. It is also said that the proposed IWFO 
has a better average execution time compared to most of the 
clustering algorithms.

Figure 2 illustrates the grouping of the data into different 
clusters based on the proposed IWFO clustering algorithm. 
This work considers the well-known clustering datasets 
such as iris, glass, wine, ionosphere, control, vowel, bal-
ance, crude oil, CMC, LD, cancer, and thyroid. The cluster-
ing results using optimal centroids are presented in Fig. 2. 
Hence, it is summarized that the proposed algorithm allo-
cates the data to appropriate clusters more accurately.

Statistical Test Results

This subsection demonstrates the statistical results of the 
Wilcoxon signed-rank test and Friedman test. The signifi-
cance of the statistical tests is to validate the performance 
of the newly proposed algorithm compared to existing algo-
rithms. This work considers the Wilcoxon signed-rank test 
and the Friedman test to check the significant difference 
between the performances of the proposed IWFO and other 
existing clustering algorithms. Wilcoxon rank test is a non-
parametric statistical test that can be used to check whether 
the samples belong to the same population or not. So, this 
test considers one pair of data and checks whether the mean 
rank is equal or not. In this work, the simulation results of 
the proposed IWFO are compared with eighteen clustering 
algorithms. So, as per the Wilcoxon rank test, eighteen pairs 
of data samples are designed to perform this test. Before 
conducting this test, two hypotheses are designed such as 
 H0 stands for no significant difference between the median/

mean values of data samples and  H1 stands for a signifi-
cant difference between the mean/median values of the data 
samples. Further, the significance level is set to 0.05. The 
statistical results of the Wilcoxon rank test are presented in 
Table 10 using sum, mean, median, z-value, p-value and 
Hypothesis  (H0). It is analyzed that the p-value for each 
pair of the data samples is less than the z-value. Hence, 
the hypothesis  (H0) is rejected at the significance level of 
0.05. So, it is concluded that a significant difference occurs 
between the performances of the proposed IWFO and other 
clustering algorithms.

The existence of the proposed IWFO algorithm is also 
validated using the Friedman statistical test. This test also 
requires two hypotheses such as  H0 and  H1. H0 claimed 
that the performances of the proposed IWFO and other 
clustering algorithms are similar. While, H1 claimed that 
the performances of the proposed IWFO and other cluster-
ing algorithms are dissimilar. Firstly, this test computes 
the ranking of each algorithm using each dataset and fur-
ther, an average ranking of each technique is computed. 
The Friedman test utilizes the Friedman statistics to obtain 
the average rank of each algorithm. Table 11 illustrates 
the average ranking of each algorithm using the accu-
racy parameter. It is seen that the proposed IWFO algo-
rithm gets first rank (1.58) compared to other algorithms. 
Whereas, GA exhibits the worst rank (16.04) among all. It 
is noticed that the rank of the WFO algorithm is 6.25. So, 
it is claimed that the proposed IWFO is an outperformer 
and significantly different from other algorithms.

Moreover, Table 12 depicts the statistics of the Fried-
man test at a significance level of 0.05. The degree of 
freedom for this test is 18 and the critical value is 28.8693. 
Further, the statistical value for the Friedman test is 
114.6065 and the p-value is 4.339e−16. The p-value for 
the Friedman test is lower than the critical value. In turn, 
the null hypothesis ( H0 ) is rejected and the rejection of 
the null hypothesis stated that the performances of the 
proposed IWFO and other clustering algorithms are sig-
nificantly dissimilar.

This work considers the two statistical tests (Wilcoxon 
signed-rank test and Friedman test) for validating the per-
formance of the proposed IWFO in the clustering field. 
These tests aim to evaluate the performance of the pro-
posed IWFO algorithm concerning other existing cluster-
ing algorithms and validate the proposed algorithm statis-
tically. The findings of these tests stated that the proposed 
IWFO algorithm is significantly different from existing 
clustering algorithms. This existence is duly verified by 
the results of the aforementioned tests. Hence, it is said 
that the proposed IWFO algorithm is an effective algo-
rithm for solving the clustering problems and it can be 
certified both experimentally and statistically in this work.



 SN Computer Science           (2024) 5:715   715  Page 26 of 34

SN Computer Science

Conclusion

This work presents an improved WFO algorithm to han-
dle the clustering problems. The source of inspiration for 
this algorithm is the flow of water. This work incorporates 
some improvements in the WFO to handle the shortcom-
ings associated with it. These improvements are summa-
rized as the initialization issue of the WFO is handled 
by a Gaussian-based chaotic map, nonlinear functions are 
considered for improving the balance between local and 
global searches, and the local optima issue is alleviated 
by a neighbourhood search mechanism. A set of twelve 
benchmark datasets is downloaded to examine the perfor-
mance of the proposed IWFO algorithm. The results are 
evaluated using well-known clustering measures such as 
intra, rank, SD, AR and DR, and compared with popular 
clustering algorithms. The results showed that the pro-
posed IWFO algorithm is superior to most of the cluster-
ing algorithms and also gets better results with most of 
the datasets. Further, two statistical tests are also adopted 
to validate the existence of the proposed IWFO algorithm 

in the clustering field. The statistical results showed that 
the proposed IWFO algorithm is significantly different 
from other clustering algorithms. Hence, it is stated that 
both simulation and statistical results certify the efficacy 
of the IWFO algorithm in the clustering field. It can also 
be concluded that IWFO is one of the most efficient and 
robust clustering algorithms. The future perspective will 
explore the IWFO for spherical-shaped clusters, feature 
engineering, optimizing the weights, and multi-objective 
clustering.

Appendix 1: Comparative Illustrations 
of Simulation Results of the Proposed IWFO 
and Other Clustering Algorithms

Intra Cluster Distance Parameter (Intra)

See Fig. 3.
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Fig. 3  Depicts the comparison of the intra cluster distance (Intra) parameter of the proposed IWFO and other clustering algorithms using bench-
mark clustering datasets
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Fig. 3  (continued)
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Accuracy Rate (AR) Parameter

See Fig. 4.

Fig. 4  Depicts the comparison of the accuracy rate (AR) parameter of the proposed IWFO and other clustering algorithms using benchmark 
clustering datasets
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Fig. 4  (continued)
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Detection Rate (DR) Parameter

See Fig. 5.

Fig. 5  Depicts the comparison of the detection rate (DR) parameter of the proposed IWFO and other clustering algorithms using benchmark 
clustering datasets
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