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Abstract
House floorplan generation entails crafting efficient spatial layouts within buildings, harmonizing functionality, aesthetics, 
and usability. The automation of this process is pivotal, expediting design timelines, reducing errors, conserving resources, 
and facilitating swift exploration of diverse design alternatives for optimal functionality and aesthetics. Nonetheless, the field 
grapples with inherent challenges, including the provision of diverse layouts to accommodate varied preferences, striking a 
balance between visual and functional realism, meeting customization demands, and aligning with architectural constraints. 
In this article, we delve into the transformative impact of computational methods on house floorplan generation. Our study 
offers a nuanced review and innovative categorization of computational techniques, distinguishing between procedural and 
deep generative learning approaches. Additionally, we examine representation methods and their interactive capabilities, 
providing a comprehensive analysis of the advancements, merits, and limitations of contemporary techniques. Furthermore, 
we critically assess unresolved challenges and delineate promising avenues for future research in computational-based 
floorplan generation.

Keywords  Generative adversarial networks · Floorplan generation · Deep learning · Interactivity · Procedural methods · 
Representation

Introduction

In the realm of architectural design, interior planning, and 
spatial optimization, the creation of efficient floorplans 
stands as a foundational challenge. The arrangement of 
rooms, corridors, and open spaces within a building sig-
nificantly influences its functionality, aesthetics, and over-
all usability. Over the years, architects and designers have 
employed manual techniques to create floorplans, relying 
on their expertise and creativity to meet the specific needs 
of clients and occupants [1]. However, the digital era has 
opened up new possibilities with advanced computer-aided 
design (CAD) (Carpo 2017) and the fusion of computational 
algorithms. This has sparked a revolution in floorplan gen-
eration, with various techniques ranging from Procedural 

Methods [2–6] to deep generative models [7–9]. Procedural 
Methods is an approach that relies on algorithms and pre-
defined rules to automatically generate floorplans for build-
ings or interior spaces [10]. While procedural methods offer 
a structured approach to floorplan generation, they often 
struggle to capture the nuanced design elements and con-
textual relevance present in modern architecture. Another 
cutting-edge approach that leverages artificial intelligence, 
particularly deep learning techniques to automatically cre-
ate floorplans is deep generative models [11]. These models 
use complex neural network architectures to learn patterns 
and relationships from existing floorplan data and then gen-
erate new, coherent, and contextually relevant floor plans. 
This technology has gained significant attention in recent 
years due to its ability to produce highly realistic and diverse 
designs. Generative models in floorplan generation encom-
pass Generative Adversarial Networks (GANs) [12–18] by 
a generator-discriminator interplay, Diffusion generative 
model [19] by iterative diffusions, Autoregressive Mod-
els [20] for sequential generation, and other deep learning 
techniques [21–23].
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The emerging landscape of computational-based archi-
tectural software presents a diverse array of tools tailored to 
streamline and enhance various stages of the design process. 
Qbiq stands out as an efficient planning solution for office 
spaces, providing architects with three ’Test fit’ alternatives 
backed by analytical furniture plans and immersive 3D vir-
tual tours. Its performance analysis reports offer insights 
into crucial factors like privacy, daylight access, and den-
sity ratios, facilitating rapid decision-making toward optimal 
layouts. TestFit, on the other hand, focuses on feasibility 
studies and urban planning, automating tedious tasks like 
counting housing units and parking spots to empower archi-
tects to delve deeper into creativity. Its real-time rendering 
capabilities and integration with popular design programs 
underscore its potential to revolutionize large-scale pro-
jects. Meanwhile, Aino transforms site analysis data into 
actionable maps, Finch facilitates data-driven architectural 
plans, CONIX.AI offers tailored solutions for residential 
designs, and Laiout emerges as a promising tool for early-
stage design projects, showcasing the diverse applications 
and advancements in AI-driven architecture.

The significant benefits offered by those computational 
methods in the floorplan creation process strongly under-
score the urgency and relevance of computational methods 
in contemporary architectural practices. This groundbreak-
ing technology enhances efficiency by automating repetitive 
tasks such as drafting and 3D modeling [24], freeing archi-
tects to focus on higher-level design decisions and optimize 
project timelines [25]. Moreover, computational methods 
enable predictive analysis, allowing architects to anticipate 
building performance, energy consumption, and structural 
integrity, facilitating informed design choices that prioritize 
sustainability and efficiency [26]. By integrating computa-
tional methods, architects can leverage big data to gain a 
deeper understanding of urban patterns and trends, ultimately 
creating structures that are more attuned to their environment 
and inhabitants [27]. With the rapid pace of urbanization and 
the growing demand for sustainable, efficient design solu-
tions, architects are increasingly turning to computational 
tools to meet these complex challenges effectively. It enables 
architects to expedite design iterations, optimize layouts, and 
enhance design quality while simultaneously reducing labor 
costs. This not only streamlines the design process but also 
empowers architects to respond more efficiently to the evolv-
ing needs of clients, communities, and the environment. As 
such, the adoption of computational methods represents a 
fundamental shift in architectural practices, emphasizing the 
critical importance of embracing technological advancements 
to ensure the continued relevance and success of the profes-
sion in an ever-changing world.

This advancement addresses various user needs and 
industry trends by revolutionizing the architectural and real 
estate sectors. By harnessing different algorithms, floorplan 

generation tools have become remarkably efficient, enabling 
the creation of accurate floorplans in a fraction of the time 
and effort required by manual drafting [28]. These tools offer 
a high degree of customization and flexibility, accommodat-
ing various design preferences and specific requirements. 
Moreover, it optimizes space utilization, ensuring that floor-
plans are practical and well-designed by considering factors 
such as traffic flow and natural lighting [29]. Additionally, 
this method provides valuable design assistance and inspi-
ration by analyzing vast amounts of data, offering creative 
suggestions, and adhering to industry best practices [20]. 
Collaboration is enhanced through computational methods, 
facilitating the involvement of multiple stakeholders and 
enabling iterative design processes [30]. Lastly, the acces-
sibility and democratization of AI-powered tools have revo-
lutionized the field, empowering individuals without formal 
training to engage in architectural design.

While notable progress has been achieved in the field of 
floorplan generation, a set of persistent challenges remains 
to be addressed. These encompass ensuring the diversity of 
generated floorplans[15, 16], maintaining functional real-
ism [20] and visual realism [19], addressing interactivity 
concerns for user engagement [22], and effectively tackling 
customization complexities [20]. Another challenge within 
floorplan optimization stems from the adaptable nature 
of walls and rooms, which frequently lack predetermined 
dimensions. This inherent variability can pose difficulties 
in achieving convergence for the subsequent optimization 
model[12]. Overcoming these hurdles is essential to harness 
the full potential of floorplan generation, enabling it to cater 
to a wide range of preferences, enhance user experiences, 
and provide practical yet imaginative solutions within the 
realm of architectural design.

Figure 1 presents the taxonomy used in this comprehen-
sive review, consisting of three core divisions: Constraint, 
Representation, and Methods. Input constraint or inter-
activity refers to how a user or designer can interact with 
or provide input to the floorplan generation system. This 
interaction can take various forms such as images [18, 31], 
text [23], sketches [12], or bubble diagrams [14–16, 19], and 
it significantly impacts the final output of the floorplan gen-
eration process. Another crucial category is representation 
methods [32], which involves translating input data into a 
more abstract and meaningful format that facilitates com-
prehension and seamless interaction for the models. Lastly, 
the Methods category encompasses the specific techniques, 
algorithms, and approaches used to create floorplan layouts, 
such as procedural, and/or deep learning methods. These 
methods play a critical role in determining the quality, effi-
ciency, and variety of the generated floorplans.

Although there is a shortage of comprehensive and sys-
tematic reviews in the realm of floorplan generation through 
computational techniques, Table 1 provides an overview of 
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survey studies focused on floorplan generation, along with 
their corresponding objectives. The columns of the table 
indicate the theme and scope, and the symbol “ ✓ ” tells the 
topic is covered in the survey. Yong et al. [28] endeavor to 
provide an encompassing assessment of floorplan genera-
tion through generative models, while also exploring their 
applications. In contrast to their approach, our review seeks 
to delve into the impact of interactivity on floorplan genera-
tion and the role of representation in influencing generative 
models. Diverging from their focus solely on generative 
models, our review aims to encompass procedural as well. 
Within each subcategory, we present a comprehensive anal-
ysis of general algorithms and pivotal attributes in cutting-
edge solutions, accompanied by their respective advantages 
and disadvantages. Moreover, we undertake a comparative 
assessment of these methods alongside models. As the main 
contributions in this article, we:

•	 Investigate the role of interactivity in floorplan genera-
tion, including how user engagement influences design 
outcomes and how interactive techniques enhance user-
centric solutions.

•	 Analyze the significance of representation methods in 
floorplan generation, exploring how different ways of 

encoding input data affect the quality and diversity of gen-
erated floorplans.

•	 Present a taxonomy of Floorplan Generation methods into 
subcategories of Procedural, and deep learning methods.

•	 Conduct a comprehensive evaluation of the discussed 
methods, comparing their strengths and weaknesses in 
terms of output quality, diversity, user engagement, and 
computational efficiency.

•	 Identifying existing challenges and limitations in floorplan 
generation such as handling irregular shapes, maintaining 
user customization, or ensuring compatibility with archi-
tectural constraints.

In the upcoming parts of this review, we’ll explore interac-
tivity in "User Interaction and Engagement" section and rep-
resentation techniques in "Representation Methods". In "Com-
putational Methods" section will provide an in-depth look into 
different approaches used for floorplan generation, covering 
procedural, and deep learning methods. We’ll analyze each 
category’s main contributions, strengths, and limitations. Mov-
ing on, in  "The Importance of Generating Floorplans Using 
Computational Method" section discusses the importance, and 
in "Open Challenges and Possible Solutions" will address chal-
lenges and potential future paths. Lastly, in "Future research 
Directions" section discusses the future directions and "Con-
clusion" section will offer the conclusion for the entire review.

User Interaction and Engagement

Interactivity has ushered in a new era of creative possibilities 
and practical applications. This multifaceted concept spans 
various types of engagement, each tailored to distinct artistic 
or functional objectives. From direct manipulation to guided 
customization, interactive techniques allow users to influ-
ence the artistic process and contribute their unique vision. 
For instance, within the realm of image generation, interac-
tivity enables the transformation of various inputs such as 
images [33, 34], text descriptions [35, 36], and other modali-
ties, thereby bridging the chasm between different modes of 
expression. Similarly, the converse holds with text generation, 
where users’ inputs in the form of text [37–39] or images [40] 
can be translated into coherent textual narratives, uniting the 
realms of language and visual representation. This symphony 
of interactivity thus amplifies creativity, forging connections 

Fig. 1   Taxonomy of floorplan generation techniques

Table 1   Comparison of survey 
works on floorplan generation

Note: PM represents procedural methods, while DL signifies Deep learning

Name Theme Interactivity Representation PM DL

Yong et al, 2023 [28] Deep learning ✓

Our Survey Computational methods ✓ ✓ ✓ ✓
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between different forms of communication and enabling an 
enriched exchange of ideas and artistic visions.

Types of Interactivity

The field of floorplan generation has experienced a sig-
nificant transformation with the advent of interactivity, 
enabling active user participation in the design process. 
This innovative approach empowers architects, design-
ers, and homeowners to actively shape and refine their 
ideal floorplans using user-friendly interfaces and receiv-
ing real-time feedback. While floorplans are commonly 
generated automatically without human intervention [41], 
interactivity further enhances the process by allowing 
users to effortlessly incorporate, customize, and visual-
ize rooms and components according to their preferences. 
In the process of generating floor plans, four types of 
input constraints play a crucial role: image, text, bubble 
diagram, and sketch. These input constraints effectively 
govern the layout and design considerations, allowing for 
a comprehensive approach to floor plan creation.

Image‑to‑Floorplan

It is the transformation of an input image, such as a ref-
erence image (with normal boundaries [12] or masked 
boundaries [18, 42]) into a corresponding output floor-
plan layout. This transformation utilizes computational 
techniques to automate the conversion process while opti-
mizing spatial arrangement, architectural elements, and 
aesthetic considerations.

Text‑to‑Floorplan

It is a transformation of written descriptions of a build-
ing’s layout, room arrangements, dimensions, and other 
architectural details into a visual representation of the 
floorplan  [23]. This process involves interpreting the 
natural language description, understanding spatial 

relationships and design elements, and then creating a 
digital floorplan that accurately reflects the described 
space.

Buble Diagram‑to‑Floorplan

Generating a floor plan from a bubble diagram involves 
translating the conceptual layout and relationships depicted 
in the bubble diagram into a detailed architectural floor-
plan [14–16, 19, 20]. A bubble diagram is a rough sketch 
or diagram that uses simple geometric shapes (often circles 
or bubbles) to represent different spaces or functional areas 
within a building [43]. These bubbles are interconnected 
with lines to show the flow and adjacency between spaces. 
The process of generating a floorplan from a bubble diagram 
typically entails refining the rough spatial arrangement, 
determining specific room dimensions, adding walls, doors, 
windows, and other architectural elements, and ultimately 
transforming the abstract representation of the diagram into 
a practical and functional architectural layout. This con-
version process helps architects and designers turn initial 
conceptual ideas into concrete designs that can be further 
developed and realized.

Sketch‑to‑Floorplan

Generating a floorplan from a sketch drawing refers to the 
process of using computational algorithms, to convert a 
rough sketch of a building’s boundary into a more precise 
and detailed digital floorplan [22]. This involves analyzing 
the lines, and shapes and translating them into accurately 
scaled measurements, and architectural elements.

Discussion

Table 2 provides an overview of various tools that effec-
tively control different aspects of control room design. It 
categorizes the user experience into three levels of intui-
tiveness: “High” represents a capability that is effective 
and user-friendly, ensuring a seamless and intuitive expe-
rience. The term “Moderate” indicates a medium level of 

Table 2   Comparisons based on Interactivity

Constraint Speed Customize Flexibility Room size Room shape Room Type Room 
adjacency

Layout 
Boundary

Text [23] Moderate High High ✓ ✓ ✓

Sketch [12] Moderate Moderate High – – – – ✓

Image [13, 17, 18, 31, 42, 44] High Low Low – – – – ✓

Bubble_Diagram [14–17, 19, 20] Low High Moderate – ✓ ✓
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capability, implying that there may be some complexities 
or considerations to take into account while using the tool. 
On the other hand, the term “Low” suggests a lack of capa-
bility, meaning that the tool is not equipped to address 
the specific issue or requirement. The table also utilizes 
symbols to indicate the capability of each input constraint 
in addressing specific issues: a “ ✓ ” signifies the presence 
of the capability, “ ” denotes a moderate capability with 
some complexities, and “-” represents the absence of the 
capability.

In addition, the input modalities for floorplan generation 
possess several fundamental and desirable properties. Speed 
is a crucial aspect, determining the efficiency of generating 
floor plans using a particular method. Customization options 
play a significant role, allowing users to personalize and 
tailor the generated floor plans to their specific preferences 
and needs. This flexibility encourages creativity and explora-
tion, enabling users to experiment with diverse design ideas 
and approaches.

Geometric properties, such as room size and shape, are 
important spatial characteristics that define the layout and 
arrangement of elements within a floorplan. Room size 
influences functionality, furniture placement, and overall 
comfort, while room shape affects aesthetics and flow of 
movement. Semantic properties encompass attributes like 
the number of rooms and their types, enabling dynamic 
adjustments and assigning specific functions or purposes 
to each room. This adaptability allows users to create floor 
plans that align with their intended uses and requirements.

Topological properties focus on the abstract arrangement 
and connectivity of spaces, particularly room adjacency. The 
flow and accessibility between different areas are determined 
by the relationships and connections between rooms. Lastly, 
the layout boundary establishes spatial boundaries, serving 
as a framework for organizing the floorplan and defining its 
overall shape and size.

Text-based floorplan generation, as shown in Table 2, 
empowers users to express their floorplan preferences 
through descriptive textual input, covering room quantities, 
sizes, types, and spatial relationships. The system interprets 
this textual data to create corresponding floorplans, show-
casing its impressive capabilities. However, this approach 
faces challenges in accurately representing irregular room 
shapes and layout boundaries. Moreover, text-based repre-
sentations have their limitations, including potential ambi-
guities and misinterpretations in the input [45], reduced con-
textual understanding for longer inputs [46], and difficulties 
in handling unique or domain-specific terminologies. Con-
sequently, these factors can impact the overall accuracy of 
text-based floorplan generation and make the moderate ease 
of use an additional consideration. Another constraint that 
poses difficulties in terms of usability is sketching, as dis-
cussed in[12]. Sketching, by its nature, requires experience 

or a natural talent, which contributes to a lower level of ease 
of use. Additionally, controlling each room’s size, shape, 
type, and number through sketching alters the concept of 
generation. Therefore, this method is primarily important for 
controlling the boundary of the generated floorplan, rather 
than for the overall generation process.

Fortunately, there is an alternative method that over-
comes these challenges by directly generating floorplans 
from input images [13, 17, 18, 31, 42, 44]. This method 
allows users to insert masked or normal boundaries as con-
trollable constraints. However, it is important to note that, 
similar to sketching, this method may also encounter dif-
ficulties in precisely controlling room size, shape, number, 
and sizes. Nonetheless, compared to text-based floorplan 
generation or sketching, the direct generation from input 
images approach offers a more visually-oriented and acces-
sible means of expressing floorplan preferences. It provides 
a starting point that can be further refined and adjusted to 
meet specific requirements.

Another commonly employed constraint in floorplan gen-
eration is the bubble diagram, as discussed in [14–16, 19, 
20]. The bubble diagram approach enables users to experi-
ment with different room arrangements, room types, and the 
number of rooms, facilitating a process of creative explora-
tion. It offers a quick and easy way to visualize and iterate on 
floorplan designs. However, one limitation of the bubble dia-
gram method is its inability to effectively represent irregular 
room shapes and articulate precise room sizes. The focus of 
the bubble diagram is primarily on the overall layout and 
spatial relationships between rooms, rather than capturing 
intricate details of individual room shapes or specific sizes. 
Despite this limitation, the bubble diagram remains a valu-
able tool for generating floorplan concepts and facilitating 
quick iterations. It allows users to explore various room 
arrangements and types, providing a foundation for further 
refinement and customization in terms of room shapes and 
sizes through subsequent steps or alternative approaches in 
the floorplan generation process.

In this analysis, we examine the impact of interactivity 
from the users’ perspective, considering its implications on 
speed, customization, and flexibility as shown in table 2. 
The speed ratings are based on how quickly users can make 
floor plans using each method. With image-based genera-
tion, which receives a high rating, users simply need to insert 
existing plans, making the process relatively fast. Sketch-
based generation, rated moderate, can be relatively fast for 
skilled users who can quickly sketch their ideas, which are 
then interpreted into plans by the model. Text-based gen-
eration involves describing plans in writing, which can be 
done pretty quickly if users are good at explaining their 
ideas. Bubble diagrams take more time because users have 
to place bubbles to represent spaces and then refine them 
iteratively. These speeds can vary depending on factors like 
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how complex the design is and how skilled users are with 
each method.

The extent of customization options available varies across 
the different methods of floor plan generation. Image-based 
generation, rated as limited, typically offers fewer opportuni-
ties for customization due to its reliance on existing plans, 
which may have limited flexibility for modification. In con-
trast, text-based generation, rated high, provides extensive 
customization options as users can specify detailed design 
parameters and preferences in written form, granting precise 
control over the generated floor plans. Similarly, bubble dia-
grams, also rated high, afford ample customization opportu-
nities as users can iteratively refine the layout by adjusting the 
placement and size of bubbles to accurately represent their 
design intentions. Sketch-based generation, rated moderate, 
offers a moderate level of customization, allowing users to 
sketch out their ideas with some flexibility. However, this 
may be constrained by the interpretative capabilities of the 
generative model. These ratings reflect the spectrum of 
customization options available within each method, with 
text-based and bubble diagram methods offering the highest 
degree of flexibility and control over the resulting floor plans.

Text-based generation and sketch-based generation meth-
ods are attributed with a high flexibility rating due to their 
capacity to offer users a broad spectrum of options and 
adaptability. These methods facilitate creativity and explora-
tion by allowing users to specify detailed design parameters 
in textual or visual form, thereby enabling diverse design 
ideas and approaches to be easily explored and experimented 
with. Conversely, bubble diagrams, rated moderately for 
flexibility, provide users with some degree of adaptability 
as they can manipulate the placement and size of bubbles to 
represent various spatial relationships within the constraints 
of the diagram format. However, image-based generation 
is assigned a low flexibility rating primarily because users 
are constrained to working with existing plans, limiting the 
scope for innovative experimentation and creative explo-
ration. In summary, while text and sketch-based methods 
afford significant flexibility, bubble diagrams offer a mod-
erate level of adaptability, and image-based generation 
presents the least amount of flexibility in accommodating 
diverse design approaches.

Notably, textual descriptions have emerged as a robust 
method for determining optimal control room sizes, offer-
ing a precise and straightforward approach. However, 
when considering control number of rooms and types, the 
combined use of text and bubble diagrams has proven to 
be particularly advantageous, facilitating a comprehensive 
understanding of these crucial factors. Additionally, the use 
of images and sketches has been found to be instrumen-
tal in defining the boundaries and aiding in visualizing the 
extent of influence. Furthermore, the survey underscores that 
boundary(sketch or image) and graph-based methods emerge 

as ideal approaches for effectively managing the physical 
boundaries of floorplans and the spatial relationship between 
rooms [22]. While dealing with the challenge of room shape 
regulation, it is acknowledged that managing irregular room 
shapes can be intricate.

Representation Methods

The representation method refers to how the raw input data is 
transformed, described, and encoded into a format that can be 
effectively processed and used by computational models [32]. 
It’s a way of transforming the architectural elements (room 
type, size, position) and spatial relationships of the house into 
a format that can be manipulated and processed by algorithms. 
Understanding representation methods is pivotal in floorplan 
generation as they dictate how diverse forms of input data are 
translated into structured formats that computational models 
can comprehend, ultimately influencing the accuracy, creativ-
ity, and efficiency of the generated floorplans.

Types

The choice of representation method has a significant impact 
on the performance of generative models. A well-chosen 
representation can make the underlying patterns and rela-
tionships in the data more apparent and relevant to the task 
at hand. There are several types of representation methods 
used to capture different aspects of the input data and suited 
for specific types of tasks:

Pixel‑Based Representation

Pixel-based representations are the most direct way to rep-
resent data [47]. Each pixel is treated as a separate data 
point, and the color or intensity values of pixels are directly 
manipulated to generate images. While pixel-based meth-
ods are straightforward, they may lack a high-level semantic 
understanding of the content they generate.

Vector‑Based Representation

Vector-based representations use vector space mathematics 
to represent data [48]. These representations often involve 
encoding various floorplan attributes, such as color, shape, 
texture, room type, and more, into vectors that can be manip-
ulated to generate.

Feature‑Based Representation

In this approach, images are represented as a set of high-
level features or attributes, extracted using techniques like 
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convolutional neural networks (CNNs) [49] or other feature 
extraction methods. These features capture meaningful infor-
mation from the images and can be used to generate new 
images with specific attributes.

Graph‑Based Representation

Graph-based representation is a method used to model and 
depict complex relationships between entities using a graph 
structure. A graph is a mathematical structure that consists 
of nodes (vertices) and edges (connections) between those 
nodes [50]. Nodes signify distinct entities with associated 
attributes, while edges denote connections or relationships 
between nodes. This approach adeptly captures intricate 
relationships in diverse datasets, enabling comprehensive 
analysis and visualization across various fields.

Discussion

When it comes to generating intricate floorplans, selecting 
the right representation method is a pivotal decision. Floor-
plans are inherently structured and geometric data, contain-
ing a wealth of relationships between various elements like 
rooms, walls, doors, and windows. A representation method 
that can effectively capture and convey these intricate geo-
metric relationships is essential for accurate and meaning-
ful floorplan generation. The chosen representation method 
influences how the problem is formulated and how solutions 
are generated. As shown in Table: 3, we introduce a clas-
sification system to categorize representations based on the 
subsequent desirable properties:

•	 Handling geometry: entails effectively encoding the 
shapes, sizes, positions, and orientations of architectural 
components to accurately represent the layout of a floor-
plan.

•	 Capturing geometric relationships: involves represent-
ing the spatial connections and arrangements between 
architectural elements such as rooms, walls, doors, and 
windows within a floorplan.

•	 Loss of detail: It is the extent to which fine-grained or 
specific information is not fully captured or represented 
in a particular representation or model.

•	 Scalability: It pertains to the representation’s ability to 
efficiently accommodate and process floorplans of vary-
ing sizes and complexities, without sacrificing accuracy 
or computational efficiency.

•	 Computational efficiency (Performance): Efficient rep-
resentations enable faster processing, which is especially 
important when dealing with large datasets or real-time 
applications.

In the context of the comparison Table 3, “High” signifies 
a high level of effectiveness and suitability for the property, 
“Moderate” indicates a reasonable but not extensive effec-
tiveness, “Limited” points to a deficiency in addressing the 
property, and “Variable” conveys fluctuating effectiveness 
based on varying factors.

Pixel-based representation, though effective for image-
based tasks, might fall short in encapsulating the nuanced 
spatial relationships within floorplans. While pixels can 
encode color and visual features, they might not inherently 
convey the precise positioning and connections that are inte-
gral to floorplan generation. Similarly, feature-based repre-
sentation’s [21, 22, 31, 42, 51] efficacy hinges on meticulous 
feature design that accurately captures geometric properties. 
This approach might not naturally lend itself to capturing 
complex architectural arrangements.

On the other hand, Vector-based representation [14, 20], 
meanwhile, holds promise due to its potential to encode geo-
metric shapes and layouts efficiently. Vectors can represent 
lines, angles, and curves, allowing for the representation 
of intricate architectural components. Moreover, they can 
encode spatial relationships and dimensions, a crucial aspect 
of floorplan accuracy. Nevertheless, vector-based represen-
tation might demand careful handling to ensure the repre-
sentation effectively captures the rich geometry of floorplan 
elements without sacrificing interpretability.

Graph-based representation [14–16, 19] emerges as a 
compelling choice due to its prowess in capturing com-
plex relationships. Graphs excel at modeling connections 
between elements, directly aligning with the interplay 
between architectural components in a floorplan. Nodes 
can signify individual elements, while edges elegantly rep-
resent adjacency and spatial relationships. This structured 

Table 3   A comparison of representation methods using desirable properties

Representation Capturing Geometric 
Relationships

Handling Geometry Loss of detail Scalability Performance

Pixel-Based [47] Limited Limited Limited Variable High
Vector-Based [14, 20] Moderate High Moderate Variable Moderate
Feature-Based [21, 22, 31, 42, 51] Limited Limited Moderate Moderate Moderate
Graph-Based [14–16, 19, 23] High High Limited High High
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approach ensures that the generated floorplans maintain 
the intended spatial arrangement and proportions. How-
ever, graph-based methods might require careful inter-
pretation, especially for complex layouts, and might pose 
scalability challenges for large-scale floorplans.

Pixel-based representations excel in retaining detailed 
spatial information and fine-grained features, resulting in 
a limited loss of detail. However, their high-dimensional 
input space demands significant computational resources. 
On the other hand, vector-based representations strike a 
balance between detail preservation and computational 
efficiency, though they may lose some fine-grained details 
while encoding numerical features. Feature-based repre-
sentations capture high-level semantic information and 
domain-specific knowledge while being computationally 
efficient, but they require a feature extraction process that 
may lead to a moderate loss of low-level details. Graph-
based representations minimize the loss of detail by cap-
turing complex relationships, making them suitable for 
interconnected structured data and facilitating reasoning 
over graph structures. However, processing large graphs 
can impose moderate to high computational demands.

In conclusion, the choice of representation method for 
floorplan generation holds the key to creating accurate, 
intricate, and visually appealing layouts. While pixel-
based and feature-based representations might not fully 
capture the structural intricacies of floorplans, graph-
based and vector-based methods show promise in their 
ability to preserve spatial relationships, handle geometry, 
and capture the complex web of architectural connections. 
The decision ultimately hinges on the intricacy of the task, 
the level of accuracy required, and the trade-offs between 
representation complexity and interpretability.

Computational Methods

Computational-based methods for floorplan generation 
refer to the application of computational techniques, 
including algorithms, mathematical models, and data-
driven approaches, to automatically create architectural 
layouts for buildings and interior spaces. These methods 
encompass a wide range of techniques, from rule-based 
systems that follow architectural guidelines to more 
advanced approaches utilizing machine learning to cre-
ate innovative and aesthetically pleasing floorplans. By 
harnessing the power of computers and artificial intel-
ligence, they analyze input parameters such as spatial 
requirements, user preferences, and design constraints 
to generate floorplans that optimize spatial organization, 
functionality, and aesthetics. These methods offer an effi-
cient and innovative way to design floorplans, catering to 

various design objectives and scenarios across architecture 
and related fields.

Types of Computational Methods

As shown in Fig. 2, various types of computational meth-
ods are integral to the process of floorplan generation. These 
methods are grouped into procedural methods [3, 47] and 
deep learning methods [12, 15, 16, 19, 20, 52]. Procedural 
methods encompass algorithms like SubDivision [2], Tip 
Placement  [4], Inside Out  [5], and Growth-based algo-
rithms  [53], which rely on rule-based and algorithmic 
approaches to generate floorplans. Deep learning methods, 
including Diffusion Models [52], GANs [7], AutoRegres-
sive models [9], and others, harness the power of artificial 
intelligence and neural networks to learn from existing floor-
plan data and generate innovative and aesthetically pleasing 
designs. This comprehensive range of computational meth-
ods empowers architects, designers, and urban planners to 
efficiently create and explore floorplan variations tailored to 
diverse design requirements and challenges.

Procedural Methods

It is a technique used to generate and create complex struc-
tures, scenes, or content automatically through the use of 
algorithms, rules, and parameters [54]. Instead of manually 
designing each element of the content, procedural mod-
eling allows for the creation of detailed and varied assets 
by defining a set of rules and procedures that determine 

Fig. 2   Computational methods in floorplan generation



SN Computer Science           (2024) 5:589 	 Page 9 of 33    589 

SN Computer Science

their appearance, arrangement, and behavior. While proce-
dural content generation has a long history in gaming (e.g 
Elite [55]), recent efforts have started exploring large-scale, 
man-made 3D environments, particularly in city and build-
ing generation projects [56, 57]. In the realm of floorplan 
generation, some notable procedural techniques include Sub-
Division [2], Tip Placement [4], Inside Out [5], and Growth-
based algorithms [53], each offering unique approaches to 
creating architectural layouts.

Procedural techniques for floorplan generation vary 
across different areas, However, four types of procedural 
techniques are commonly used as the foundation for creating 
diverse and customizable floorplans.

A. Depth Peeling Algorithm

Depth peeling is an effective technique used in computer 
graphics for achieving order-independent transparency ren-
dering [58]. This method involves rendering the image mul-
tiple times to accurately handle complex transparent objects 
and ensure correct depth sorting. With each iteration, the 
algorithm peels away the layers of transparent geometry, 
progressively capturing the depth information of each frag-
ment. By iteratively blending the colors of the peeled layers, 
depth peeling resolves the visibility and occlusion issues 
associated with transparent objects, allowing for accurate 
and visually pleasing rendering of scenes that involve over-
lapping and translucent elements. This approach is particu-
larly useful in various applications, such as architectural 
renderings [5, 6], medical imaging [59], and interactive 
simulations [60], where maintaining the correct visual hier-
archy and transparency effects is crucial for realistic and 
immersive graphics.

B. Tile Placement Algorithm

Tile placement algorithms are computational methods 
employed to arrange tiles or tiles with specific properties 
in a manner that optimally fills a given space or adheres to 
predefined constraints [61]. These algorithms aim to effi-
ciently position tiles while taking into account factors such 
as aesthetics, space utilization, and design requirements. By 
employing these algorithms, the goal is to achieve an opti-
mal arrangement that maximizes the visual appeal, effec-
tively utilizes the available space, and satisfies the desired 
design criteria. These techniques find applications in various 
domains, including interior design, urban planning, com-
puter graphics [62], and game development, enabling the 
creation of visually pleasing and well-utilized tile layouts 
systematically and efficiently.

C. Subdivision Algorithm

It is a procedural technique that recursively divides space 
into smaller, more detailed components to generate com-
plex structures by iteratively subdividing and refining basic 
shapes [2]. Subdivision algorithms are used in geometric 
modeling to generate smooth and detailed curves, surfaces, 
or structures.

D. Growth‑Based Algorithm

A growth-based algorithm is a computational methodology 
used to model the emergence and development of complex 
structures, organisms, or systems by iteratively applying pre-
defined rules and interactions [53]. These algorithms simu-
late natural growth processes, imitating how components 
evolve, interact, and organize themselves over time. Starting 
from an initial configuration, such as a seed or basic element, 
the algorithm progressively adds new components based on 
local interactions and specified growth rules. These rules 
dictate how new components connect, position themselves, 
and adapt to their environment. As the algorithm advances 
through iterations, the components’ interactions lead to the 
emergence of intricate patterns and forms that resemble 
natural phenomena. Growth-based algorithms are applied 
in diverse domains, including 3D modelings [56], analy-
sis [63], and medical modeling [64] to generate dynamic 
and visually appealing structures that mimic the behavior 
of living organisms or evolving systems.

Discussion

The discussion section on floorplan generation using proce-
dural methods focuses on the utilization of computational 
algorithms to create floorplans based on predefined rules 
and constraints. Table 4, presents a summary of floorplan 
generation using different methods, outlining the following 
desirable properties achieved through this approach:

•	 Type: the type of procedural floor plan generation. The 
types are subdivision, tile placement, depth peeling, and 
room growth algorithms.

•	 Window constraint: determines whether the method 
uses windows as a constraint for room placement.

•	 Space criteria: This concerns whether user-provided 
requirements for a room’s shape and placement in the 
floor plan are respected by the method.

•	 Spatial Connectivity: determines whether user-provided 
connection requirements (for example, the need for two 
rooms to be adjacent) are respected by the method.

•	 Visualization: It refers to the visual representation of the 
generated floor plans.
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•	 Space Utilization: It focuses on optimizing the efficient 
use of available space within the floor plan.

The introduction of [5] presents the utilization of the pro-
cedural approach to generate customized floor plans spe-
cifically designed for residential buildings. This method 
comprises three key stages. During the initial stage, the 
fundamental layout of a house is portrayed through a graph, 
wherein nodes represent rooms and edges symbolize room 
connections. The graph is constructed with the front door 
as the root node, followed by the inclusion of public rooms, 
and subsequently private rooms. Specific room types are 
assigned after distributing public rooms, based on user-
informed attributes. Progressing to the second stage, all 
rooms are assigned types and room connections are deter-
mined; however, the rooms are yet to be positioned spatially. 
In this phase, the algorithm calculates the 2D position of 
each room using a tree structure, treating the room adjoining 
the front door as the root and evenly distributing child nodes 
adjacent to it. This even distribution applies to both the spac-
ing between child nodes and their distance from the root. 
The third stage encompasses room expansion to their final 
dimensions. Each room exerts an outward “pressure” pro-
portional to its required size, leading to its expansion to fill 
the remaining space within the building. If two rooms share 
a wall, the algorithm assesses the pressures both inside and 
outside the wall to determine the extent of room expansion.

In their work, Merrell et al. [6] introduce a method for 
generating realistic residential building floor plans based on 
high-level user specifications. Recognizing the complexity 
and ambiguity of architectural rules, which prove challeng-
ing for conventional rule-based systems, the authors employ 
machine learning techniques. They develop a Bayesian net-
work trained on real-world building data to infer subjective 
architectural design aspects that are difficult to explicitly 
define, such as room adjacencies, area, aspect ratio, and 
open versus door-adjoined adjacencies. The procedural 

generation process unfolds in two stages. Initially, a set 
of flexible high-level requirements, like bedroom count or 
approximate square footage, is defined. The Bayesian net-
work then extends these requirements into a comprehensive 
architectural program, specifying room relationships and 
desired room attributes. Moving to the second stage, the 
architectural program is transformed into detailed floor plans 
for each building floor. This stage employs stochastic opti-
mization within the space of potential building layouts. The 
algorithm iteratively generates new layouts, incorporating 
local and global reconfigurations that significantly alter the 
overall arrangement. These reconfigurations encompass slid-
ing walls and room swaps, and the quality of each proposed 
layout is assessed by a cost function. This function considers 
factors such as accessibility, area, aspect ratio, and room 
shape, alongside a term penalizing irregular floor outlines. 
The combined method, involving machine learning-driven 
architectural inference and stochastic optimization, yields 
a practical approach to creating realistic and diverse resi-
dential building floor plans from user-specified high-level 
requirements.

The paper titled Persistent Realtime Building Interior 
Generation [65] introduces a novel approach for generating 
virtual building interiors in real-time. This method follows 
a top-down methodology guided by architectural guidelines, 
selectively generating only the necessary portions. By adopt-
ing a lazy generation scheme, it optimizes memory usage, 
utilizing significantly less memory compared to a complete 
interior model. This efficient memory management enables 
real-time frame rates, making it highly suitable for inter-
active applications. Moreover, the approach ensures that 
changes made within deleted regions are not lost, allow-
ing for persistent modifications and creating a dynamic and 
consistent environment. This capability empowers develop-
ers to have greater control over the content by facilitating 
changes that persist beyond the lifespan of specific regions. 
To simplify implementation, the interior generation process 

Table 4   Desirable properties 
for Procedural floorplan 
generations

Type Name Window 
constraint

Number of 
story

Space criteria Spatial con-
nectivity

Visualization

Depth peeling Martin 2006 [5] – Single ✓ – 2D
Merrell 2010 [6] – Multiple ✓ ✓ 2D and 3D
Hahn 2006 [65] – Single – – 2D

Subdivision Marson 
2010 [66]

– Single ✓ – 2D

Rinde 2008[3] ✓ Single ✓ – 3d
Growth Based Tutenel 

2009 [67]
– Single – ✓ 2D

Lopes 2010 [68] – Single – ✓ 2D
Tile plac Peng 2014 [4] – Single – – 2D
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is divided into multiple stages, each marked by the assign-
ment of a type to temporary regions. The stages encompass 
Building Setup, Floor Division, Hallway Division, Room 
Cluster Division, and Built Region Generation. Building 
Setup focuses on elements affecting multiple floors, includ-
ing elevators, stairwells, and global aspects like textures. 
Floor Division uniformly divides the building into floors. 
Hallway Division constructs hallways around rectangular 
regions, while Room Cluster Division further subdivides the 
regions into rooms based on portal locations. The final stage, 
Built Region Generation, generates visible built regions by 
creating geometry within bounding box boundaries and plac-
ing objects accordingly. This staged approach streamlines 
the interior generation process, ensuring efficient memory 
utilization and facilitating the coherent and dynamic creation 
of virtual building interiors.

Another subdivision approach which generate house 
floor plans with semantic information is Automatic real-
time generation of floor plans based on squarified treemaps 
algorithm [66]. The algorithm uses the squarified treemaps 
algorithm to divide the available space and connect the 
rooms together, placing doors between them based on a 
connection graph that is randomly produced at a previous 
stage based on some rules. The algorithm generates every 
aspect of the house randomly, resulting in dissimilar floor 
plans. The random generation includes the outer shape of 
the house, its area, number of rooms and their functional-
ity, and the position of windows and doors. The algorithm 
generates the floor plan in a step-by-step approach, placing 
the rooms in the first level of the hierarchy, and then placing 
the smaller rooms below it inside. The algorithm provides 
real-time generation of floor plans, making it attractive for 
real-time interactive applications.

Rinde and Dahl [3] proposed to generate an indoor envi-
ronment by using subdivsion method. The algorithm starts 
the process by taking the existing exteriors as input rather 
than creating the exterior by itself. The creation of a skeleton 
is another thing that needs to be considered and created by 
pushing all walls inwards at a constant rate and creating a 
skeleton edge where two walls meet. Now it’s time to create 
a transition area, if the distance from the root node to clos-
est wall is big enough, coridors are needed to minimize the 
number of rooms without windows. after the creation of cor-
ridors, the remaining space is split into maximum connected 
area, each with a continuous boundary the regions have been 
created, and they are further subdivided into sub-regions 
(in this case apartments). For apartments, it is important to 
make sure that each one has at least one window, windowless 
apartments being very rare. With sub-regions designed, the 
actual rooms within them should be created. When the room 
walls are created for an apartment, they are used to build the 
individual rooms. These are then connected to each other 

through entry points doors), and allocated a room type start-
ing with a room which is connected to the transition area.

The papers authored by Tutenel et al.  [67] introduce 
pioneering methodologies in interior generation and layout 
solving. Their approach for generating floor plans employs 
a growth-based method that utilizes a semantic library, rep-
resenting each room type as a class with predefined relation-
ships and constraints. Through iterative expansion of rooms 
and strategic placement of feature areas based on these rela-
tionships, the resulting floor plans adhere to specific con-
straints, resulting in well-structured and functional building 
layouts. Furthermore, their rule-based layout solving tech-
nique combines a semantic class library with a layout solver, 
enabling the generation of appropriate layouts for building 
floor plans and room arrangements. This comprehensive 
approach enhances various modeling techniques, including 
manual, automated, and mixed methods, leading to a more 
efficient layouting process for game worlds. The effective-
ness of the approach is demonstrated through diverse layout 
problems addressed in the paper. Collectively, these papers 
provide valuable insights and practical solutions to advance 
interior generation and layout solving, facilitating the crea-
tion of impressive virtual building interiors and optimizing 
the layout generation process.

The paper titled “A constrained growth method for pro-
cedural floor plan generation” [68] introduces an algorithm 
that facilitates the growth of rooms based on a regular grid 
consisting of square cells. This grid structure imposes cer-
tain limitations on the growth process, as it aligns with the 
predetermined length of the cells and confines the expansion 
to the utilization of exterior walls exclusively. Consequently, 
the algorithm necessitates the placement of openings in the 
floor plan as the final step, in accordance with the proce-
dural generation approach employed. Moreover, the algo-
rithm incorporates a mechanism for controlling the expan-
sion of rooms through the assignment of priority levels. By 
assigning higher priority values, rooms are granted a greater 
degree of expansion, resulting in proportional increases in 
size. For instance, a room with twice the priority of another 
will expand to twice its size. However, it is important to 
note that the algorithm lacks control over the final shape 
of the room and does not provide any guarantees regard-
ing the attainment of a minimum size requirement. Despite 
these limitations, the proposed method offers a promising 
approach to procedural floor plan generation, enabling the 
creation of diverse layouts that adhere to user-defined con-
straints within the constraints of the grid-based framework.

Peng et al [4], present a method for tiling a domain with 
a set of deformable templates, such that the domain is 
completely covered and the templates do not overlap. The 
approach is suitable for a large class of applications like 
floorplans, urban layouts, and art and design. The method 
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involves a two-step process. The first step focuses on laying 
out the approximate positions of templates, while the sec-
ond step refines the shapes of these templates. During the 
initial discrete stage, the layout algorithm tessellates both 
the domain and the templates into quadrilateral meshes. This 
tessellation breaks down the domain and template shapes 
into smaller quadrilateral elements, facilitating the sub-
sequent layout and refinement processes. The next phase 
involves finding a tiling solution where the quadrangulated 
domain is seamlessly filled with copies of the quadrangu-
lated templates. This gap-free tiling is achieved using an 
integer programming approach. However, since the placed 
tiles might not exactly match the original template shape 
due to deformations, the algorithm further refines the tiles. 
It employs a continuous quadratic optimization process that 
iteratively adjusts the placement of tiles until either a conver-
gence criterion is met or a predefined time limit is reached. 
This optimization aims to improve the layout and alignment 
of tiles for better visual quality and coverage.

In their research, Martine [5], Merrel [6], Marson [66], 
and Rinde  [3] focused on addressing space criteria, 
while also considering spatial connectivity. Merrel  [5], 
Tutenel [67], and Lopes [68] also contributed to the discus-
sion on spatial connectivity. However, Rinde’s [3] specific 
focus was on addressing windows constraints. Overall, their 
work examines various aspects of addressing space and spa-
tial constraints, providing valuable insights into the field.

Deep Generative Learning Method

While procedural methods have long been effective at gener-
ating structured and rule-based content, they often face limi-
tations when it comes to capturing the intricate details and 
complexity found in real-world data. Procedural techniques 
rely on predefined algorithms and rules, which can result in 
repetitive and predictable outputs. This restricts their ability 
to accurately represent the rich and diverse nature of real-
world environments. Moreover, procedural methods can be 
time-consuming and require significant manual effort to fine-
tune parameters and achieve desired results [54]. They may 

struggle to achieve high levels of realism and variability, 
as they lack the ability to learn and generalize from large 
datasets. Procedural methods also face challenges in cap-
turing the nuances of natural textures, lighting, and spatial 
relationships, resulting in outputs that may appear artificial 
or lacking in visual appeal. The evolution towards deep gen-
erative models has been driven by the need to overcome 
these limitations.

Generative Models have an extensive history in the field 
of artificial intelligence, dating back to the 1950s. Early 
models like Hidden Markov Models [69], Naive Bayes [70], 
and Gaussian Mixture Models [71] generated simple data. 
The development of these traditional generative models has 
impacted how contemporary generative models are designed 
and conceived, particularly within the framework of deep 
learning. A deep generative model belongs to a category of 
machine learning models that leverage deep neural networks 
to grasp and depict intricate data distributions. Unlike conven-
tional discriminative models [72, 73], which prioritize predict-
ing labels or making classifications, deep generative models 
strive to comprehend the fundamental structure of the data and 
generate new samples that resemble the original data. By using 
multiple layers of neural networks, these models can capture 
intricate patterns and dependencies present in the data. Deep 
generative models, such as Diffusion models [52], autoregres-
sive model [9], Generative Adversarial Networks (GANs)[7], 
and others have demonstrated remarkable capabilities in tasks 
like image generation[33–36], text synthesis [37, 38], and so. 
They have significantly advanced the field of generative mod-
eling and hold promise for various applications, ranging from 
creative art generation to scientific data synthesis [74, 75] and 
beyond.

In this section, our focus is on a specific category of 
generative models that have played a significant role in the 
generation of floorplans. While there are various types of 
generative models, we will delve into three types that have 
been particularly beneficial in the creation and design of 
floorplans: Generative Adversarial Networks (GANs) [7], 
autoregressive models  [9], and diffusion models  [52]. 
Each of these models brings unique contributions to the 

Fig. 3   Generative Adversarial 
Network
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field, revolutionizing the way floorplans are generated and 
designed. We will explore how these models have advanced 
the process and brought something special to the domain of 
floorplan creation.

 Generative Adversarial Network (GAN)

A Generative Adversarial Network (GAN) is a powerful 
and innovative deep-learning framework introduced by Ian 
Goodfellow and his colleagues in 2014 [7]. As shown in 
Fig. 3, GANs consist of two neural networks, the genera-
tor and the discriminator, which are trained in a competi-
tive manner. The generator creates synthetic data samples, 
while the discriminator attempts to distinguish between 
real data and generated data. Through a process of itera-
tive training, the generator improves its ability to produce 
realistic data, while the discriminator becomes more adept 
at differentiating real from fake data. Generative Adversar-
ial Networks (GANs) have undergone significant evolution, 
resulting in various types and improvements that have revo-
lutionized generative modeling. From Vanilla GANs’ [7] 
adversarial setup to conditional GANs [76], DCGANs [77], 
PGANs  [78], and WGANs  [79]. Each of these variants 
brings unique advancements to the field. Additionally, Info-
GANs [80] have contributed to promoting disentanglement 
in generated outputs. StyleGAN [81] and its variations have 
enabled realistic and controlled image synthesis by incor-
porating disentangled latent and hierarchical architectures. 
This evolution leads to the development of highly realis-
tic synthetic data, making GANs widely used for tasks like 

image synthesis [82, 83], data augmentation [84], super-
resolution[85], and style transfer [86, 87].

Mathematical Representation

Generative Adversarial Networks (GANs) can be described 
as an interplay between two distinct models: the generator 
and the discriminator. Let’s denote the generator as G and 
the discriminator as D. The generator takes a noise vector z 
as input and generates fake samples G(z). The discriminator 
takes both real samples x and fake samples G(z) as input and 
outputs a probability score indicating the likelihood of the 
input being real or fake.

The generator loss, denoted as L_G, aims to minimize 
the divergence between the generated samples and the real 
samples. One commonly used loss function for the generator 
is the binary cross-entropy loss:

The discriminator loss, denoted as L_D, aims to accurately 
classify real and fake samples. It involves two terms: the loss 
for real samples and the loss for fake samples. The discrimi-
nator tries to minimize this loss function while the generator 
tries to maximize it. By engaging in this adversarial training 
process, the discriminator and generator networks learn and 
improve their performance over time.

(1)L_G = − log(D(G(z)))

(2)L_D = −log(D(x)) − log(1 − D(G(z)))

Table 5   Deep generative Model 
based floorplan Generation

Methods Name Diversity Compatibility Visual 
Realism

Functional 
Realism

Sampling 
Time

GAN Wang et al. [12] – ✓ – ✓ –
Chaillou et al. [13] – ✓ – –
Nauata et al [15] ✓ ✓ ✓ – –
Nauata et al. [16] ✓ ✓ ✓ – –
Tang et al. [14] ✓ ✓ ✓ – –
Chailou et al. [18] – ✓ ✓ – –
Zheng et al. [31] ✓ ✓ – – –
Liu et al. [17] – ✓ ✓ – –
Chen et al. [42] – ✓ – –
Lim et al. [44] ✓ ✓ – – –
Schiller et al. [51] – ✓ – –

Diffusion model Shabani et al. [19] ✓ ✓ ✓ – –
Autoregressive Liu et al. [20] ✓ ✓ ✓ ✓ –
Others Liu et al. [21] – ✓ ✓ – –

Hu et al. [22] ✓ ✓ ✓ – –
Chen et al. [23] – ✓ ✓ – –
Wu et al. [90] – ✓ ✓ – –
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Training of GAN

The training of Generative Adversarial Networks (GANs) 
involves optimizing the discriminator and generator net-
works through multiple training iterations (epochs). The 
assessment of its time complexity is framed in terms of 
the product of three key factors. Firstly, the number of 
training iterations (T) signifies the frequency of processing 
the entire dataset. Secondly, the dataset size (N) influences 
the computational load, with larger datasets demanding 
more time per epoch. Lastly, the complexity of the GAN’s 
model architecture (f(model_architecture)), encompassing 
parameters, layers, and network intricacies, contributes 
significantly to the computation required.

The Eq. (3), succinctly captures the interplay of these fac-
tors in gauging the computational cost of GAN training, a 
critical consideration in the realm of generative models. The 
general intuition is that increasing T, N, or the complexity of 
the model architecture will generally lead to a higher time 
complexity for training the GAN.
Algorithm 1   Training a Generative Adversarial Network 
(GAN)

(3)O(T ⋅ N ⋅ f (model_architecture))

The algorithm 1 involves alternating updates between 
the discriminator and generator networks over a specified 
number of training iterations (epochs). During each itera-
tion, a mini-batch of real data is sampled, and the genera-
tor produces fake data samples from random noise. The 
discriminator and generator losses are computed based on 
their abilities to distinguish between real and fake sam-
ples. These losses guide parameter updates, where the dis-
criminator aims to improve its ability to differentiate real 
from fake data, while the generator aims to produce more 
convincing data to fool the discriminator. This adversarial 
training process continues iteratively, resulting in trained 
discriminator and generator networks capable of generat-
ing data resembling the training dataset’s distribution.

Sampling of GAN

Sampling of GAN refers to the process of generating new 
samples from the generator network, typically producing 
synthetic data that resembles the training data distribu-
tion. The time complexity for sampling from a Generative 
Adversarial Network (GAN) hinges upon the intricacies of 
the generator network’s architecture and the dimensional-
ity of the latent space (D). In practice, the computational 
effort required for generating samples is largely influenced 
by the complexity of the generator, encompassing factors 
such as the number of layers, parameters, and the compu-
tational operations involved in transforming latent noise 
into data samples. The latent space dimension (D) also 
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plays a pivotal role, as it determines the size of the space 
from which random vectors are drawn to generate data.

The time complexity can be succinctly expressed as:

As shown in Eq. (4), the time required for sampling depends 
on the intricacy of the generator architecture and the number 
of samples to be generated. As the complexity of the gen-
erator architecture increases or the number of samples to 
be generated grows, the computational resources and time 
needed for sampling also increase. Therefore, careful consid-
eration of the generator architecture and the desired number 
of samples is necessary to manage the time complexity of 
the sampling process effectively in GANs.

(4)O(f (generator_architecture) ⋅ D)

Algorithm 2   Sampling from a Generative Adversarial Network (GAN)

The above algorithm 2 outlines the process of sampling 
from a trained Generative Adversarial Network (GAN), 
a core element in generative modeling. By leveraging a 
trained generator network, this algorithm generates syn-
thetic data samples from random latent noise vectors. 
During each iteration, a random noise vector is sampled 
from a prior distribution and passed through the genera-
tor network to produce a synthetic sample. The generated 
samples are then accumulated into a collection.

Discussion

Previous research into the utilization of Generative Adver-
sarial Networks (GANs) within architectural design spans 
a wide array of domains. Examples of these investigations 
include transforming city maps into satellite imagery [88], 
generating furniture layouts [89], and urban planning [27]. 
Furthermore, GANs have found more recent applications 
in simplifying layout design processes, such as generating 
layouts for residential buildings.

Table 5, presents a summary of floorplan generation 
using different generative models, outlining various desir-
able properties achieved through this approach.

•	 Method: represents a specific approach or Model used 
to create a new floorplan.

•	 Name: highlights the paper name or used method with 
reference.

•	 Diversity: refers to the count of unique floorplans gener-
ated during a single sampling instance. It encompasses 
a range of distinct designs that adhere to specified con-
straints and layout arrangements.

•	 Compatibility : The ability of generated floorplans to 
seamlessly fit and adhere to the given design boundaries 
and spatial requirements.

•	 Visual Realism: The extent of similarity between gener-
ated designs and actual architectural layouts.

•	 Functional Realism: The extent to which generated 
floorplans accurately represent functional and logical 
relationships between rooms and spaces, ensuring prac-
ticality and usability.

•	 Sampling Efficiency: The effectiveness of the floorplan 
generation process in exploring diverse design possibili-
ties while using minimal computational resources and 
iterations.

And also the “ ✓ ” symbol signifies that the papers have 
addressed the specified constraint, while the “-” symbol indi-
cates that the constraint was not taken into consideration by 
those papers. From the analysis, it appears that a significant 
number of researchers have focused on addressing compat-
ibility and enhancing visual realism in floorplan genera-
tion, with some attention given to diversity. However, the 
functional realism of floorplans has often been overlooked. 
Another aspect that has not received much consideration is 
the sampling efficiency of floorplan generation, particularly 
its suitability for real-time applications.

To harness the advantages of GAN, different research-
ers use GAN at different times to generate various elements 
in architectural designs, including the generation of furni-
ture Arangments [91], the recognition of different rooms, 
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the transformation of city maps [92], and volumetric design 
generation [93].

The findings presented in the Table 5 reveal a discern-
ible pattern among researchers, particularly those denoted 
as [14–16, 44] and others who have demonstrated a pro-
nounced capability to generate diverse images. Addition-
ally, the majority of generative models rooted in GAN archi-
tecture exhibit a commendable ability to create compatible 
floorplans. Another noteworthy consideration involves the 
facets of visual realism and functional realism. Research-
ers [14–18] stand out for their proficiency in generating visu-
ally captivating floorplans; however, an omission in their 
approach pertains to the oversight of functional realism—an 
aspect which ensures that the generated floorplans are not 
just aesthetically pleasing, but also practically viable.

The paper presented by [31] for generating floorplans, 
aiming to create a tool that transforms input images featuring 
design boundaries into detailed interior designs within those 
boundaries. The method involves training on two distinct 
datasets and includes preprocessing steps such as bound-
ary production and masking. The model’s training employs 
Pix2pixHD on labeled datasets comprising resized images 
and their corresponding masked versions. While the model 
tackles compatibility challenges, it faces drawbacks such 
as extended training times and difficulty in accurately plac-
ing key spaces like living rooms, kitchens, and bedrooms. 
Moreover, issues related to achieving visual and functional 
realism and customization remain to be addressed.

The paper presented by [12] for generating floorplans, 
aims to generate diverse floorplans for residential buildings 
that meet the conditions of human-environment interac-
tion outlined in the activity map. Unlike other methods, 
they use a human activity map which is extracted from the 
input boundary and used to guide the floorplan generations 
from the input boundaries. This human activity maps is 
performed either automatically with a GAN model trained 
from synthetic human-activity maps or semi-automatic 
approach by using bi-RRT [94] based on user-specified 
furniture locations. To produce the vectorized floorplans 
the paper proposes two-stage approaches, the first stage is 
named as ActFloorr-GAN and aims to synthesize a raster-
ized human activity map from the input boundary. Then 
this pixel-wise representation is converted into a vectorized 
way in the second stage. While they didnt provide the exact 
measurement, they tried to address functional realism by 

using a human activity map. They generate diverse floor-
plans but they didn’t show is it possible to generate more 
than one floorplans. In extracting the Human activity map 
the modis not optimal. Uss DCGAN model.

A new approach introduced by [15] is HouseGAN by 
involving a generative adversarial network with graph con-
straints, where both the generator and discriminator utilize 
a relational architecture. The central concept is to incor-
porate the constraint within the relational network’s graph 
structure. To achieve this, the model employs conv-MPN 
(Convolutional Message Passing Network) [95] for graph 
updates and upsampling in the generator, as well as down-
sampling in the discriminator. However, it’s essential to 
recognize the approach’s limitations, including restricted 
rectangular shape generation, the absence of room size 
incorporation, and the omission of door placements in the 
graph’s edges due to spatial adjacency, all of which sug-
gest potential avenues for future refinements and expan-
sions of the proposed method.

In order to solve the problem of houseGAN [15, 16] pro-
vides an updated version by combining a relational GAN 
constrained by graphs and a conditional GAN. This integra-
tion allows for iterative improvement, as a previously gener-
ated layout serves as the next input constraint. Notably, this 
research unveils the effectiveness of a simple non-iterative 
training approach known as component-wise GT-condi-
tioning in training such a generator. Moreover, the iterative 
generator presents a new avenue for refining chosen metrics 
through meta-optimization strategies by regulating the tim-
ing of input constraint passage during the iterative layout 
enhancement process.

Furthering the analysis, researcher [12] method stands out 
as it employs trace movement, effectively striding towards 
achieving functional realism by accounting for the move-
ment dynamics within the floorplan’s layout. This particu-
lar emphasis on functionality adds a layer of practicality 
to the generated designs. The discourse also shifts towards 
computational resources, an aspect that many researchers 
regrettably do not explicitly address. Nevertheless, through 
an inference drawn from the methods employed, it becomes 
conceivable to speculate about potential computational con-
straints. Notably, researcher [14] methodology emerges as 
a standout, showcasing superior resource efficiency in com-
parison to its counterparts. In conclusion, the implications of 
this exploration underscore a blend of capabilities, spanning 

Fig. 4   Forward and backward 
Diffusion Process



SN Computer Science           (2024) 5:589 	 Page 17 of 33    589 

SN Computer Science

diversity, compatibility, visual and functional realism, and 
judicious utilization of computational resources across vari-
ous approaches in the field of generative floorplan design.

 Generative Diffusion Model

The diffusion generative model is a type of generative model 
that operates by iteratively transforming a random noise sig-
nal to generate high-quality samples. It leverages the concept 
of diffusion processes, which involve gradually spreading 
or diffusing information over time [52]. In the context of 
generative modeling, diffusion models learn a sequence of 
transformations that progressively refine the initial noise 
signal, leading to the generation of realistic samples. These 
models are trained by optimizing the parameters to mini-
mize the difference between the generated samples and the 
target data distribution. Diffusion generative models have 
gained attention for their ability to generate diverse and 
high-fidelity samples, and they have found applications 
in various domains, including image synthesis  [96], style 
transfer  [97], text   [98], and audio [99]. They offer a prom-
ising approach to generative modeling by utilizing diffusion 
processes to capture complex dependencies and generate 
realistic and coherent samples.

Mathematical Representation

As shown in Fig. 4, the diffusion model comprises two pro-
cesses Forward and Backward, where the forward process 
involves generating noise through a fixed noise vector, con-
taining random values or samples from basic distributions 
like Gaussian noise, with the vector’s size aligned with the 
size of the intended generated data, such as images or text 
sequences. The noise vector is passed through a sequence 
of diffusion steps.

The Eq. (5) above embodies the forward diffusion process 
within a probabilistic framework. This equation character-
izes how a random variable x evolves over discrete time 
steps, with xt representing its state at time t . The conditional 
distribution q(xt|xt−1) captures the likelihood of xt given the 
previous value xt−1 , and is modeled as a Gaussian distribu-
tion N  . The mean �t of this distribution is determined by 
(1 − �t)xt−1 , reflecting how xt depends on its prior state xt−1 
with the influence controlled by the parameter �t . Addition-
ally, the covariance matrix Σt is specified as �t times the 
identity matrix I , regulating the variability of xt and indi-
cating the level of uncertainty. Noise scheduling [100] is an 
important aspect of diffusion models that involves adding 
the right amount of noise to arrive at an isotropic Gaussian 

(5)q(xt|xt−1) = N(xt;�t = (1 − �t)xt−1,Σt = �tI)

distribution with various types of schedules like linear [52], 
cosine [100], or combined approaches that determine how 
the noise increases over time.

Another integral component of the diffusion model is 
the Reverse Process, which involves a sequence of iterative 
steps that typically extend over hundreds to thousands of 
iterations. During each iteration of the reverse process, the 
noise vector undergoes sequential updates aimed at refining 
its representation. This refinement is accomplished through 
conditioning based on the actual training data. By progres-
sively applying these iterative updates, the model learns to 
align the noise vector with the underlying patterns and struc-
tures present in the training data.

In the backward diffusion process (Eq. 6), the model iter-
atively updates the noise vector by conditioning it on the 
actual training data. In the conditional distribution where 
xt represents the current value in the diffusion process, and 
xt−1 represents the previous value. This conditional distribu-
tion is assumed to follow a multivariate normal distribution, 
with mean ��(xt, t) and covariance Σ�(xt, t) . These mean and 
covariance parameters are learned during the training of the 
diffusion model. To refine the noise vector in the backward 
diffusion process, the model samples from the conditional 
distribution. This sampling step allows the noise vector to 
progressively align with the target data distribution, capturing 
the complex patterns and dependencies present in the training 
data. By iteratively applying the backward diffusion process, 
the model updates the noise vector over a series of steps, 
often spanning from hundreds to thousands. This sequential 
refinement facilitates the generation of high-quality samples 
that closely resemble the training data. The backward diffu-
sion process, along with the forward diffusion process, ena-
bles the diffusion generative model to generate diverse and 
realistic samples by leveraging the learned conditional distri-
bution and the associated mean and covariance parameters.

Training of Diffusion Model

Training diffusion models entails an iterative process 
wherein data is denoised and reconstructed to learn the 
underlying probability distribution. The worst-case time 
complexity of training diffusion models depends on multiple 
factors, including the number of denoising steps (S), dataset 
size (N), model architecture complexity, and the number of 
training iterations (T). As the number of denoising steps 
increases, so does the complexity, with each step requir-
ing the processing of the entire dataset. A larger dataset 
demands more computational resources, and the model’s 
architectural intricacy and the number of training iterations 
also impact the overall training time. As shown in Eq. (7), 

(6)p�(xt−1|xt) = N(xt−1;��(xt, t),Σ�(xt, t))
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the worst-case time complexity often reflects the interplay 
of these factors in determining the computational cost of 
training diffusion models.

The algorithm 3 trains a diffusion model by adjusting its 
parameters based on a given dataset. It shuffles and divides 
the dataset into smaller parts, called mini-batches. Within 
each mini-batch, the algorithm performs denoising steps to 
improve the generated samples. It uses random noise sam-
pled from a standard normal distribution to create new sam-
ples by applying the model architecture. The quality of the 
generated samples is assessed using a denoising loss func-
tion. The model parameters are then updated using gradient 
descent, with the learning rate determining the step size. By 
repeating this process for a specified number of iterations, 
the diffusion model learns to generate high-quality samples 
that resemble the training dataset.

(7)O(T ∗ S ∗ N ∗ f (model_architecture))

Algorithm 3   Training a Diffusion Model

Sampling of Diffusion Model

The sampling from a diffusion model is the process of gen-
erating new data points that follow the learned distribution. 
The time complexity depends on the number of diffusion 
steps (S), the model architecture, and the sequence length (L).

The provided algorithm 4 outlines the process of sampling from 
a diffusion model, a generative model used in deep learning. 
This algorithm starts with an initial data point and iteratively 
adds noise to it, then gradually removes the noise to produce a 
new data point. The number of denoising steps, determined by 
the hyperparameter, influences the complexity of the sampling 
process. At each step, the noise is sampled from a standard 
Gaussian distribution. The model architecture, represented by 
the function f(model_architecture), guides the denoising and 
controls how the noise is incorporated. After all the denoising 
steps are completed, the final data point represents a sample 
generated from the diffusion model, capturing the underlying 
data distribution’s characteristics. This algorithm is crucial for 
various generative tasks and data generation applications.

(8)O(S ∗ f (model_architecture) ∗ L)

Algorithm 4   Sampling from a Diffusion Model
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Discussion

The incorporation of diffusion models spans various lay-
out generation applications, including document layout 
generation [8, 101], where diffusion models organized 
the arrangement of document elements to shape compre-
hensive layouts. Demonstrating this versatility, the house-
Diffusion generative model [19], as indicated in Table 5, 
endeavors to generate vectorized floorplans seamlessly 
using diffusion processes. This paper introduces a ground-
breaking approach that leverages a diffusion model and a 
core Transformer architecture [102] for the generation of 
intricate vector-based floorplans. These floorplans, com-
prised of interconnected polygons outlining rooms and 
doors, are created through a process guided by attention 
masks based on graph-constraints. This process involves 
a combined discrete and continuous noise reduction 
approach, resulting in accurate geometric relationships 
among architectural elements.

The model’s direct generation of vector-based repre-
sentations, facilitated by a Diffusion Model and enhanced 
by a Transformer network module, ensures the refinement 
of 2D pixel coordinates in both discrete and continuous 
forms. Notably, this approach integrates three attention 
mechanisms within the Transformer module, leveraging 
the structural connections among architectural compo-
nents. The paper substantiates its claims through qualita-
tive and quantitative evaluations, exhibiting remarkable 
advancements over prevailing methods across diverse met-
rics. A standout achievement is the model’s ability to gen-
erate non-Manhattan structures and regulate corner counts 
with precision. As an innovative approach, this method 
introduces a direct generation of structured vector-graphic 
geometries for floorplans. However, it is important to note 
that the method does not specifically address the issues of 
sampling time and functional realism. These aspects may 
require further exploration and consideration, especially 
when dealing with larger-scale buildings.

 Autoregressive Model

Autoregressive models are a class of generative models that 
capture dependencies within sequential or structured data. 
As shown in Fig. 5, the model is designed to generate new 
samples by estimating the conditional probability of each 
element in the sequence given the previous elements. By 
iteratively generating data elements, autoregressive models 
excel at capturing intricate patterns, making them espe-
cially effective in scenarios where the order and context 
of elements matter significantly. Autoregressive models 
have shown significant success in various domains, includ-
ing natural language processing [103, 104] and computer 
vision  [105, 106]. Notably, autoregressive models have 
witnessed substantial advancements, with innovative archi-
tectures like Transformer-based models [102] achieving 
exceptional performance in language understanding and 
generation tasks.

Mathematical Representation

The Eq. (9), above encapsulates the foundational concept of 
an autoregressive model, widely employed across various 
generative tasks. In this context, x denotes a sequence of ele-
ments, often corresponding to pixels within images, while xi 
signifies the i th element within the sequence. The equation’s 
essence lies in expressing the probability distribution of the 
entire sequence x as a product of conditional probabilities. 
Each element’s likelihood p(xi|x<i) is intricately modeled 
with respect to all prior elements, thus capturing complex 
dependencies existing within the sequence. This formulation 
allows autoregressive models to generate new samples by 
iteratively predicting each element in the sequence, resulting 
in the generation of outputs that exhibit complex patterns 
and closely resemble the characteristics of the training data.

Training of Autoregressive Model

Training autoregressive models is a fundamental process in 
deep learning where a model learns to generate sequences 
of data. The primary objective is to capture the underlying 
probability distribution of the sequences in the training data. 
During training, the model is exposed to input sequences one 
step at a time, and it sequentially predicts each element in the 
sequence based on previously generated elements. The train-
ing process involves minimizing a loss function that quan-
tifies the difference between the model’s predictions and 
the actual sequence data. Autoregressive models often use 

(9)p(x) =

n∏

i=1

p(xi|x1, x2,… , xi−1) =

n∏

i=1

p(xi|x<i)

Fig. 5   Auto regresive Process
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techniques like teacher forcing, where the model is provided 
with ground-truth data during training, and autoregressive 
sampling during inference, where it generates sequences step 
by step. As shown in Eq. (10) the complexity of training 
depends on the sequence length (L), the number of model 
parameters (P), and the number of training iterations (T).

The training algorithm for autoregressive models, as 
depicted in Algorithm 5, follows an iterative optimization 
approach to update the model parameters by minimizing pre-
diction errors over sequential data. The algorithm processes 
a training dataset, splits it into mini-batches, and predicts 
each element in a sequence while updating hidden states 
iteratively. The loss incurred at each prediction step is accu-
mulated to compute the batch loss, and model parameters 
are adjusted using backpropagation through time (BPTT). 
Through a series of training iterations, this process enables 
autoregressive models to capture sequential dependencies 
and generate coherent sequences, making it fundamental 
for tasks like natural language processing and time series 
forecasting.

(10)O(T ∗ L ∗ P)

Algorithm 5   Training an Autoregressive Model

Sampling of Autoregressive Model

In autoregressive models, the process of sampling unfolds 
sequentially, with each element of a sequence generated 
based on the preceding ones. The worst-case time com-
plexity for this sampling procedure depends on two key 
factors: the desired sequence length (L) and the intricacies 
of the model architecture (f(model_architecture)). Longer 
sequences naturally require more computation, as each ele-
ment must be generated in sequence, while the complex-
ity of the model architecture impacts the efficiency of each 
generation step.

The Eq. (11), signifying that the computational cost of 
sampling from autoregressive models scales with both the 
sequence length and the intricacy of the underlying model 
architecture.

(11)O(f (model_architecture) ⋅ L)
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Algorithm 6   Sampling from an Autoregressive Model

The algorithm 6 outlines the process of sampling from an 
autoregressive model, a fundamental approach in sequen-
tial data generation and prediction tasks. Beginning with an 
initial context, it sequentially generates a new element for 
each position in the desired sequence length. This generation 
process relies on the autoregressive model’s learned param-
eters and architecture, which conditions each prediction on 
the preceding elements in the sequence. The resulting sam-
pled sequence encapsulates the model’s understanding of 
sequential dependencies and serves as a valuable tool for 
tasks like text generation, time series forecasting, and vari-
ous sequential data applications.

Discussion

The paper [20] introduces a novel autoregressive approach to 
synthesizing floorplans using 1-D vector sequences, enhanc-
ing user interaction and customization. The framework con-
sists of a two-stage process involving a draft stage and a 
multi-round refining stage. The initial floorplan sequence 
is generated using a graph convolutional network (GCN) 
and an autoregressive transformer network. A panoptic 
refinement network (PRN) refines the design in the second 
stage, aided by a geometric loss to ensure proper room con-
nectivity. As shown in 5, in contrast to prior methods this 
vectorized approach produces more realistic and functional 
designs, achieving higher usability and visual appeal by 

using panoptic refinement network (PRN). The framework’s 
effectiveness is demonstrated through experiments on real-
world floorplan data, showcasing its superiority over previ-
ous state-of-the-art methods.

 Others

In contrast to the previously mentioned generative mod-
els such as GANs, diffusion models, and autoregressive 
models, this approach delves into the realm of floorplan 
generation using distinct techniques like Convolutional 
Neural Networks (CNNs) [49], Graph convolutional Net-
works (GCNs) [107] or other techniques. By leveraging 
CNNs, the model harnesses spatial hierarchies and patterns 
to create floorplans that adhere to architectural constraints 
and aesthetic considerations. In parallel, GCNs enable the 
incorporation of spatial relationships and connectivity in 
the design, ensuring coherent room layouts and functional 
arrangements. This departure from traditional methodolo-
gies showcases an innovative direction in floorplan genera-
tion, emphasizing the power of CNNs and GNNs in captur-
ing spatial intricacies and offering novel avenues for creating 
intelligent and user-centric architectural layouts.

Discussion

Prior to the utilization of conventional generative models [7, 
9, 19] in the domain of floorplan generation, researchers 
employed a variety of deep learning techniques to explore 
innovative approaches. As shown in Table 5, in 2018 [21] 
proposes a Unified Framework for Floorplan Reconstruc-
tion from 3D Scans. The research focuses on automating 
indoor floorplan reconstruction by utilizing a smartphone’s 
RGBD streams captured while walking through a house. 
The proposed solution, FloorNet, introduces a unique deep 
neural architecture that effectively addresses the challenge 
of processing vast 3D space data. FloorNet employs three 

Table 6   Cross over comparisons

Attributes GAN Diffusion Model Autoregressive 
Model

Realism ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆

Diversity ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆

Sampling-effi-
ciency

⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆⋆
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neural network branches: PointNet for 3D point processing, 
CNN with 2D point density images for enhanced local spa-
tial reasoning, and CNN with RGB images to utilize full 
image information. These branches exchange intermedi-
ate features to harness the strengths of all architectures. A 
benchmark was established using RGBD video streams from 
155 residential spaces, demonstrating FloorNet’s efficacy in 
improving reconstruction quality through both qualitative 
and quantitative evaluations.

Another groundbreaking study [22] introduces an auto-
mated approach to floorplan generation that fuses deep 
neural networks with user-guided design.Their framework, 
Graph2Plan, employs a layout graph and user-defined con-
straints to produce floorplans that adhere to layout and 
boundary requirements. By allowing users to input room 
counts and constraints, the system retrieves floorplans from a 
database and uses Graph2Plan to convert layout graphs into 
refined room representations. The neural network, trained 
on a sizable annotated dataset, employs graph neural net-
works and conventional image convolution to process layout 
graphs, building boundaries, and raster floorplan images. 
The method’s versatility and quality are demonstrated 
through its ability to accommodate diverse user inputs.

Addressing the intricate challenge of generating 3D house 
models based on linguistic descriptions, [23] introduces 
a House Plan Generative Model (HPGM) that uniquely 
divides the process into two sub-tasks: constructing layouts 
and synthesizing textures. To effectively tackle these tasks, 
two specialized modules, the Graph Conditioned Layout Pre-
diction Network (GC-LPN) and the Language Conditioned 
Texture GAN (LCT-GAN), are proposed. These modules 
focus on generating floor plans and corresponding interior 
textures guided by provided descriptions. The generation 
of building layouts that fulfill the specified requirements is 
facilitated by the Graph Conditioned Layout Prediction Net-
work (GC-LPN), which integrates adjacent information into 

the extracted features using a Graph Convolutional Network 
(GCN) [107], thereby enhancing the performance of layout 
generation.

The predominant focus of existing research revolves 
around addressing issues of compatibility and visual realism 
in the context of floorplan generation. However, both [21] 
and [23] encounter challenges when attempting to generate 
diverse floorplans within a single sampling, thereby com-
promising diversity. Furthermore, the mechanisms by which 
these models efficiently conduct sampling remain largely 
unaddressed. Another significant gap in the literature per-
tains to the issue of functional realism, a dimension that 
most papers fail to adequately consider or explore in their 
floorplan generation methodologies.

Comparative Analysis of Generative Learning Approaches 
with Cross‑Over

As shown in Table 6, we provide a Comparative analysis of 
Generative Learning Approaches for floorplan generation 
based on sampling efficiency, realism, and diversity. The 
assessment is presented in a tabular format, featuring star 
rankings ranging from 1 to 5. The star rankings are catego-
rized as follows: 5 stars represent “High,” 4 stars indicate 
“Moderate,” 3 stars signify “Medium,” and, 2 stars reflect 
“Low,” This systematic comparison enables a comprehen-
sive understanding of the relative strengths and weaknesses 
of different approaches within the realm of Generative 
Learning for floorplan generation.

Realism: The underlying methodologies of generative 
models such as GANs, Diffusion models, and autoregressive 
models shape the realism achieved in floorplan generation. 
GANs [7], through a competitive training process between a 
generator and discriminator, generate highly realistic images 
and can extend this capability to floor plan generation by 

Table 7   Comparison of procedural methods and deep generative models

Proporties Procedural methods Deep generative models

Capturing intricate details and complexity Often struggle to capture the intricate details 
and complexity found in real-world data

Excel at capturing intricate details and complexity 
through learning from large datasets

Time consumption May require significant time and manual effort 
to fine-tune parameters and achieve desired 
results

Training phase can be time-consuming, but once 
trained, generation is typically faster

Realism and variability Limited realism and variability compared to 
real-world data

Offer greater realism and variability by learning 
from large datasets

Capturing nuances of natural textures May face challenges in capturing the nuances of 
natural textures, resulting in outputs appearing 
artificial

Can capture the nuances of natural textures, 
resulting in more realistic and visually appealing 
outputs

Visual appeal Lack visual appeal due to limited realism and 
inability to capture fine details

Generate visually appealing outputs by capturing 
intricate details

Energy consumption – Can potentially achieve energy efficiency benefits 
compared to procedural methods
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learning and analyzing patterns, spatial relationships, room 
adjacencies, and circulation patterns from a dataset, enabling 
the generation of realistic layouts. Conversely, diffusion 
models, with their iterative refinement process and focus 
on data distribution modeling, tend to generate more real-
istic floorplans by progressively capturing intricate spatial 
relationships and details [19]. Autoregressive models, while 
capable of producing coherent and structured outputs, might 
encounter challenges in capturing global context and spatial 
coherence due to their sequential generation process [108].

Diversity: In the context of generating floorplans, the 
diversity of designs produced by Generative Adversarial 
Networks (GANs), Diffusion Models, and Autoregressive 
Models varies due to their distinct mechanisms. GANs 
engage in a generator-discriminator interplay, prioritizing 
realistic samples that mimic training data, which can lead 
to limited diversity due to mode collapse [7]. Conversely, 
Diffusion Models, operating through iterative diffusion pro-
cesses, inherently explore a broader range of data variations, 
yielding more diverse floorplans [52]. Autoregressive Mod-
els generate diversity based on a sequential placement of 
components, but they might struggle to capture global layout 
variations, leading to moderate diversity [108].

Sampling Efficiency: Generative Adversarial Networks 
(GANs) are often perceived to have better sampling effi-
ciency compared to diffusion models and autoregressive 
models in certain contexts. GANs employ a generator-dis-
criminator interplay during training, allowing them to learn 
the data distribution more directly and potentially yield 
faster convergence [109]. However, diffusion models and 
autoregressive models can experience slower sampling effi-
ciency due to their inherent mechanisms. Diffusion models 
require multiple iterative steps to refine a sample, which can 
become computationally intensive and slow down the gen-
eration process [110]. Similarly, The sampling process of 
autoregressive models is sequential in nature and typically 
scales linearly with respect to the data dimension [108] This 
means that the generation of each data point depends on the 
previous points, which can slow down the process.

Comparison of Procedural Methods and Deep 
Generative Models

The comparison between procedural methods and deep 
generative models as shown in the Table 7, highlights sev-
eral important factors for floorpan generation. Procedural 
methods [54] excel at generating structured and rule-based 
content but often struggle to capture the intricate details and 
complexity found in real-world data. This limitation arises 
due to the reliance on predefined algorithms and rules, 
resulting in outputs that may appear repetitive and predicta-
ble [3]. Procedural methods also face challenges in achieving 

high levels of realism and variability, as they lack the ability 
to learn and generalize from large datasets [54]. Addition-
ally, capturing the nuances of natural textures and achieving 
visual appeal can be difficult for procedural methods, leading 
to artificial-looking outputs. These limitations can hinder 
their suitability in domains where realism, variability, and 
fine-grained details are crucial.

In contrast, deep generative models offer significant 
advantages in addressing the shortcomings of procedural 
methods. By leveraging powerful machine learning tech-
niques, deep generative models can learn from extensive 
datasets, allowing them to capture intricate details and com-
plexity in content generation. This ability to learn from data 
results in outputs that are more realistic, visually appeal-
ing, and diverse compared to procedural methods  [90]. 
Deep generative models excel at capturing the nuances 
of natural textures, enabling them to generate outputs that 
closely resemble real-world counterparts [11]. Moreover, 
the training phase of deep generative models can be time-
consuming, but once trained, the generation process is typi-
cally faster [7]. The ability of deep generative models to 
capture intricate details, achieve realism, and generate visu-
ally appealing outputs has led to a noticeable transition from 
procedural methods to deep generative learning in floorplan 
generation.

The Importance of Generating Floorplans 
Using Computational Method

Generating floorplans using computational method can offer 
several important advantages:

•	 Speed and Efficiency
	   Generative models revolutionize the architectural 

design process by vastly enhancing speed and efficiency. 
Unlike traditional methods, which often demand substan-
tial time and labor investments, generative models auto-
mate the generation of floorplans, producing multiple 
designs swiftly and with minimal human intervention. 
This automation not only accelerates the design phase 
but also conserves valuable resources. By expediting the 
creation of floorplans, architects and designers can allo-
cate more time to refining designs and exploring innova-
tive solutions, ultimately streamlining the entire design 
process and enhancing productivity.

•	 Variety and Creativity
	   Generative models herald a transformative shift in 

architectural design by offering architects and design-
ers an expansive canvas to explore uncharted territories 
of creativity. Through their capacity to generate diverse 
floorplan designs, these models empower professionals to 
transcend conventional boundaries and delve into layouts 
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and configurations previously unexplored. By freeing 
designers from the constraints of traditional methodolo-
gies, generative models unlock a realm of possibili-
ties, fostering an environment ripe for innovation. This 
flexibility not only broadens the scope of architectural 
imagination but also encourages the discovery of uncon-
ventional yet highly functional design solutions. Conse-
quently, architects can push the boundaries of creativity, 
resulting in more inventive and original designs that cater 
to the evolving needs and aspirations of inhabitants.

•	 Customization and Personalization
	   Computational methods represent a pivotal advance-

ment in architectural design, particularly in the realm of 
residential spaces, where individual preferences and spe-
cific requirements reign supreme. By training these models 
on predefined design preferences or constraints, architects 
can harness the power of customization to craft floorplans 
tailored precisely to the needs and desires of homeowners. 
Whether it’s optimizing for open spaces to accommodate 
social gatherings or prioritizing privacy with secluded 
areas, generative models offer the flexibility to translate 
abstract ideas into tangible floorplans. This level of cus-
tomization not only enhances the functionality and comfort 
of living spaces but also fosters a deeper sense of personal 
connection and satisfaction for homeowners, ensuring that 
their homes truly reflect their unique lifestyles and aspira-
tions.

•	 Sustainablity and energy efficiency
	   The utilization of computational methods holds 

immense promise in advancing sustainable development 
goals, particularly within the framework of the United 
Nations’ Sustainable Development Goals (SDGs), nota-
bly SDG 11 (Sustainable Cities [111] and Communities) 
and SDG 13 (Climate Action) [112]. A compelling case 
study emerges from the Municipality of Athens, showcas-
ing the transformative potential of AI-driven approaches 
in energy management, climate modeling, and sustainable 
energy optimization. Through harnessing the capabilities 
of Generative models, Athens serves as a beacon of tech-
nological innovation, illustrating how advancements in AI 
can catalyze a shift towards greener, more resilient urban 
environments. This convergence of cutting-edge technol-
ogy, environmental consciousness, and strategic poli-
cymaking propels Athens to the forefront of sustainable 
urban development, demonstrating a holistic approach to 
environmental stewardship and community well-being. In 
this context, the significance of AI-based floorplan genera-
tion lies in its transformative impact on the architectural 
industry’s ability to create environmentally responsible 
buildings. By harnessing AI algorithms, architects can 
optimize resource utilization, enhance energy efficiency, 
and improve indoor environmental quality from the earli-

est stages of the design process. This technology enables 
the generation of floorplans that prioritize sustainability 
metrics such as natural lighting, energy consumption, and 
material usage, leading to the creation of buildings that are 
both environmentally conscious and economically viable. 
Furthermore, AI-driven simulations and predictive ana-
lytics empower architects to evaluate the environmental 
performance of designs in real-time, facilitating informed 
decision-making and iterative improvements throughout 
the design process. Ultimately, this computational-based 
floorplan generation not only accelerates the adoption of 
sustainable design practices but also contributes to the 
development of healthier, more resilient, and resource-
efficient built environments for future generations.

Open Challenges and Possible Solutions

Computational Complexity

Generative models, while offering remarkable capabilities in 
generating data similar to a given training set, often exhibit 
significant computational complexity. This complexity arises 
due to several factors inherent in their architecture and train-
ing process. Firstly, the intricate network architectures of 
generative models, such as Diffusion Model [52], Generative 
Adversarial Networks (GANs) [7], and Autoregressive Mod-
els [9], contribute to computational demands. These models 
typically comprise numerous layers and parameters, neces-
sitating extensive computations during both training and 
inference phases. Additionally, the optimization algorithms 
used for training, such as stochastic gradient descent [113] 
or variants like Adam [114], require iterative calculations 
over large datasets, further increasing computational load. 
Furthermore, the scale and complexity of the training data 
also play a crucial role; larger datasets demand more com-
putational resources for processing.

In order to tackle the problem of computational complex-
ity in generative models, several strategies can be employed. 
One approach involves optimizing the model architecture 
itself by designing more efficient and streamlined network 
structures, reducing the number of parameters [115], or 
utilizing model compression techniques like knowledge 
distilation [116], pruning [117, 118] or quantization [119]. 
This optimization allows for a reduction in computational 
complexity without compromising performance. Another 
method is parallelization and distributed computing, where 
generative models take advantage of parallel computing 
architectures such as GPUs or distributed systems to per-
form computations simultaneously [120]. By distributing 
the workload, the training and inference processes can be 
accelerated, leading to more efficient generative modeling.
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Additionally, approximate inference methods like Bayes-
ian inference [121], or Monte Carlo sampling [122] can be 
used to approximate complex probability distributions, 
providing fast and tractable approximations when exact 
inference is computationally infeasible. Pre-training mod-
els on large datasets or employing transfer learning tech-
niques [123] can help overcome computational complex-
ity by leveraging learned representations and reducing the 
computational burden during training or inference. Finally, 
optimization algorithms and heuristics like stochastic gradi-
ent descent or early stopping can optimize the model param-
eters and improve convergence, reducing computational 
overhead [124]. By employing these strategies, researchers 
and practitioners can effectively address computational com-
plexity in generative models, making them more efficient, 
practical, and accessible for a wide range of applications.

Handling Large‑Scale Floorplans

With the growing demand for large and complex architec-
tural projects, floorplan generation methods must adapt to 
handle the scaling requirements. Handling large-scale floor-
plans presents a challenge in floorplan generation due to 
increased computational complexity and the availablity of 
training data [19]. As floorplans grow in size and complex-
ity, the number of elements, relationships, and details to be 
considered escalates significantly, demanding more memory 
and processing power. This can lead to longer training times, 
higher resource requirements, and slower sampling, hinder-
ing the efficiency of generative models.

To address the challenge of handling large-scale floor-
plans, potential solutions include model optimization, which 
entails designing efficient neural network architectures, 
employing model distillation, or implementing pruning 
techniques to reduce model complexity. Model optimization 
techniques, as highlighted in [125], focus on refining neural 
network architectures to better suit the requirements of han-
dling large-scale floorplans. By streamlining the architecture 
and reducing unnecessary computational overhead, these 
methods aim to improve efficiency without compromis-
ing performance. Model distillation, as discussed in [126], 
involves training a smaller, distilled model to mimic the 
behavior of a larger, more complex model. This approach 
can help reduce memory and processing requirements while 
retaining the generative capabilities of the original model. 
Additionally, pruning techniques, as outlined in [117, 118], 
involve removing redundant connections or parameters from 
the neural network to reduce its size and complexity. By 
eliminating unnecessary components, pruning techniques 
can lead to more efficient inference and sampling processes.

Moreover, adopting a progressive generation approach, 
as suggested in [110], can be beneficial for handling large-
scale floorplans. This strategy involves generating floorplans 
incrementally, starting with a coarse layout and iteratively 
refining details. By breaking down the generation process 
into smaller, more manageable steps, progressive genera-
tion promotes faster convergence and enhances overall sam-
pling efficiency. This iterative refinement allows the model 
to focus on capturing finer details as it progresses, leading 
to more realistic and coherent floorplan designs. Addition-
ally, by generating floorplans in stages, this approach can 
help mitigate the computational complexity associated with 
processing large-scale datasets, making it well-suited for 
addressing the challenges of handling complex architectural 
projects.

Ensuring Diversity in Generated Floorplans

The challenge in diverse floorplan generation lies in accom-
plishing the task of producing a broad spectrum of visually 
unique and original floorplans from a given distribution. 
Here are some of the key technical reasons:

A. Mode collapse

Generative models like GANs [7] face challenges such as 
vanishing gradients and mode collapse during training. GAN 
model collapse is characterized by the generator’s failure to 
produce diverse and meaningful outputs. where only a few 
sample modes are generated. This is evident through a near-
zero gradient norm (‖∇�g

LG‖ ≈ 0) in the generator’s loss 
(LG) with respect to its parameters (�g) , leading to slow 
learning. As a consequence, parameter updates are restricted, 
hindering exploration of the entire data space and leading to 
single-mode approximations (pg(x) ≈ �(x −M)) , severely 
limiting sample diversity. Basically, GAN mode collapse can 
occur due to factors such as an imbalance between the gen-
erator and discriminator (D(G(z)) ≈ 0.5) , mode collapse 
(G(z) ≈ G(z�)) , lack of exploration in the latent space (lim-
ited z variations), gradient vanishing, and training instability 
(oscillating loss functions).

Architectural modifications are pivotal in mitigating the 
issue of mode collapse encountered in Generative Adver-
sarial Networks (GANs). By enhancing the depth of the 
generator network, as suggested in [127], GANs can pro-
duce more diverse and intricate outputs, thereby reducing 
the tendency to overfit on a limited set of modes. Multi-scale 
architectures, as explored in [128], prove effective in captur-
ing both global and local features, thus promoting diversity 
and expanding the range of generated samples. Furthermore, 
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Conditional GANs (CGANs), as discussed in [76], integrate 
additional input features to guide the generator towards spe-
cific modes, thereby mitigating mode collapse by providing 
more explicit control over the generated outputs. Addition-
ally, regularization techniques such as weight decay, drop-
out, and batch normalization, as outlined in [129], are instru-
mental in preventing overfitting and encouraging exploration 
of different modes, thus fostering diversity in the generated 
samples. Moreover, training strategies such as alternating 
learning rates or updating frequencies, as suggested in vari-
ous sources, contribute to the stability and convergence of 
GAN training, further alleviating the limitations posed by 
mode collapse. By implementing these architectural modi-
fications and training strategies, GANs can effectively over-
come mode collapse limitations, generate a wider range of 
diverse and realistic samples, and consequently address the 
issue of diversity in the generated outputs.

B. Optimization techniques

Optimization techniques play a significant role in influenc-
ing the diversity of generated outputs in various generative 
methods. The choice of optimization algorithms and strate-
gies can impact how a generative model explores the data 
space and generates diverse samples. When optimization 
is too aggressive or constrained, it may prevent the model 
from adequately exploring different modes of data distri-
bution, leading to reduced diversity in generated samples. 
Conversely, well-tailored optimization methods can promote 
a smoother convergence, allowing the model to capture a 
broader range of patterns and modes, thereby enhancing 
diversity in the generated outputs. Techniques such as gra-
dient clipping [130], weight regularization and learning rate 
scheduling can affect the convergence behavior of the model.

To address the challenges associated with optimization 
techniques and promote diversity in generated outputs, 
several solutions can be implemented. One approach is to 
explore advanced optimization algorithms such as evolution-
ary algorithms [131] or Bayesian optimization [132], which 
can provide a more robust exploration of the data space and 
help overcome local optima. Additionally, incorporating reg-
ularization techniques [133] like dropout or batch normaliza-
tion can introduce controlled noise during training, encour-
aging the model to explore different modes and increasing 
output diversity. Another strategy involves adjusting the 
learning rate dynamically during training, using techniques 
like learning rate annealing [134] to strike a balance between 
exploration and convergence. Furthermore, promoting diver-
sity can be achieved by incorporating diversity-inducing 

objectives or introducing specific constraints on the model’s 
parameters to encourage exploration. By carefully selecting 
and combining these solutions, generative models can pro-
duce diverse and high-quality outputs, addressing the chal-
lenges associated with optimization techniques.

Handling Non‑Regular Shapes

Generating irregular floorplans poses a challenge due to the 
lack of existing data with non-regular layouts. The currently 
available floorplan datasets predominantly consist of regu-
lar and common patterns, making it difficult for generative 
models to learn and generate irregular designs [15]. This 
limitation arises because the models tend to rely on the pat-
terns and biases present in the training data. As a result, 
creating floorplans with irregular shapes requires innovative 
approaches that go beyond the existing dataset limitations.

To address the challenge of generating irregular shapes in 
floorplan layouts and enhance a generative model’s capacity 
for diversity and creativity, several strategies can be effec-
tively combined. One key strategy is to enrich the training 
dataset with a diverse range of irregular floorplan layouts, 
exposing the model to a wider variety of configurations. 
By including floorplans with non-standard shapes, such as 
irregular polygons or curved walls, the model can learn to 
generate more diverse and unconventional layouts. Another 
approach is to employ data augmentation techniques [135], 
such as random transformations and deformations, during 
the training process. These techniques introduce artificial 
variations that simulate irregularities in real-world floorplan 
layouts. By applying random rotations, translations, or dis-
tortions to the input data, the model can learn to generate 
irregular shapes that go beyond the limitations of regular 
grid-based layouts. Conditional generative models [16] have 
also been utilized for irregular floorplan generation. These 
models take into account specific constraints or input fea-
tures that guide the generation process. By incorporating 
constraints related to room sizes, connectivity, or specific 
architectural requirements, the generative model can produce 
irregular shapes that align with desired criteria. This allows 
for more precise control over the generated layouts while 
still promoting diversity and creativity. Moreover, hybrid 
approaches that combine generative models with proce-
dural methods specialized in handling irregular shapes can 
be employed. Procedural methods, such as shape grammars 
or procedural modeling techniques [136], excel at gener-
ating irregular shapes and intricate details. By integrating 
these methods with generative models, the strengths of both 
techniques can be leveraged, resulting in more accurate and 
creative floorplan layouts with irregular shapes.
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Compatibility

Architectural design encompasses subjective decisions that 
are heavily influenced by individual user preferences. To cre-
ate floorplans that truly connect with people, it becomes cru-
cial to incorporate user feedback and preferences through-
out the generation process, despite the added complexity. 
Among the various factors affecting this interaction, compat-
ibility emerges as a pivotal element [19]. Addressing com-
patibility issues becomes essential to strike a harmonious 
balance between user preferences and architectural practical-
ity, ensuring that the resulting spaces not only reflect per-
sonal tastes but also function seamlessly within the overall 
environment. By tackling compatibility challenges, floorplan 
designs can achieve a cohesive integration of user prefer-
ences and architectural considerations, leading to spaces that 
are both aesthetically pleasing and functionally efficient. Let:

The compatibility metric (C) can be conceptualized as a 
function of several factors: 

1.	 Semantic Alignment (SA): How well the semantics of 
the input match the design elements in the floorplan.

2.	 Spatial Alignment (SPA): How closely the spatial 
arrangement of design elements in the floorplan matches 
the intended layout from the input.

3.	 Constraint Adherence (CA): The extent to which 
the generated floorplan adheres to various design con-
straints, including structural, functional, and regulatory 
requirements.

4.	 Expressiveness (EX): The ability of the input modality 
to capture the complexity and details required for accu-
rate floorplan generation.

5.	 Information Completeness (IC): The degree to which 
the input provides all necessary information to generate 
a complete and accurate floorplan.

The compatibility metric (C) between the input modality (I) 
and the generated floorplan (G) is given by:

Here, wSA , wSPA , wCA , wEX , and wIC are weighting coefficients 
that determine the relative importance of each factor. These 
weights are assigned based on the specific requirements and 
priorities of the design process.

I ∶ Input modality (bubble diagram, text, image or other. )

G ∶ Generated floorplan.

C ∶ Compatibility metric between input and generated floorplan.

(12)
C(I,G) = wSA ⋅ SA(I,G) + wSPA ⋅ SPA(I,G)

+ wCA ⋅ CA(G) + wEX ⋅ EX(I) + wIC ⋅ IC(I)

To improve the compatibility between input modalities 
and generated floorplans in floorplan generation, enhanc-
ing data representation is crucial. This entails refining the 
way input modalities such as textual descriptions are pre-
sented, either by offering more detailed descriptions or by 
incorporating multiple modalities for a more comprehensive 
input [137]. By enhancing data representation, the model 
gains a clearer understanding of the relationships between 
different modalities, thus facilitating more accurate floorplan 
generation. Additionally, employing multi-modal learning 
techniques enables the model to leverage information from 
various modalities simultaneously, enhancing its ability to 
capture intricate relationships and generate floorplans that 
better align with the input data [137].

Integrating attention mechanisms into the generation 
process enables the model to focus on pertinent aspects 
of the input modalities, ensuring that the resulting floor-
plans accurately represent the contained information. This 
attention-based strategy enhances the model’s ability to 
discern crucial details and incorporate them into the gen-
erated output [138]. Implementing a feedback loop, where 
the generated floorplans are continuously evaluated against 
input modalities and used to refine the model iteratively, 
further improves compatibility. Through this iterative refine-
ment process, the model learns to better align the generated 
floorplans with the input modalities, ultimately enhancing 
the quality and fidelity of the output over time. Combin-
ing vectorized generation with bubble diagram modality, as 
advocated by [19], emerges as a highly effective approach 
for enhancing interactivity accessibility. This integrated 
method offers a dependable solution for creating interactive 
floorplans that are both accessible and engaging.

Balancing Customization and Quality in Floorplan 
Generations

Customization serves as a crucial aspect in floorplan gen-
eration, enabling layouts to be finely tuned to meet specific 
requirements and preferences. Despite its significance, 
numerous generative models employed in this domain are 
trained on and produce raster floorplans, presenting con-
siderable obstacles for direct customization due to inherent 
limitations in raster data representation [16]. Raster-based 
floorplans lack the structural flexibility necessary for seam-
less adaptation to individualized needs, hindering efficient 
customization efforts. Consequently, while generative 
models excel in generating initial layouts, the transition to 
tailored designs confronts hurdles stemming from the con-
strained nature of raster data.

Addressing the limitations posed by raster-based floor-
plan generation, the field often turns to post-processing tech-
niques [16], yet these methods may introduce drawbacks 
affecting the quality of generated floorplans. To overcome 
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these challenges, the exploration of end-to-end vectorization 
methods [20] gains prominence, as they operate with vector 
data, offering enhanced flexibility and precision in customi-
zation. However, the development of such methods entails 
complexities in data transformations. Balancing customiza-
tion with high-quality results remains a complex challenge 
in floorplan generation.

And the integration of quality control mechanisms within 
generative models, serving as safeguards to ensure that cus-
tomization aligns with user preferences and design con-
straints without compromising the overall quality, function-
ality, and coherence of the generated floorplans. Prioritizing 
research in vectorization and quality control holds the key 
to empowering users to customize floorplans while ensuring 
optimal outcomes.

Ensuring Realism for Generated Floorplans

Ensuring realism in generated floorplans is a complex 
task involving the creation of architectural layouts that 
closely resemble real-world designs. Realism encompasses 
various aspects such as architectural accuracy, functional 
considerations, aesthetic appeal, room proportions, spa-
tial flow, and compliance with regulations. Unrealistic 
floorplans may exhibit issues like improper room size and 
shape, non-connected rooms, jagged boundaries, and bro-
ken lines. To address these challenges, various computa-
tional methods and techniques can be employed.

One approach to achieving realism in generated floor-
plans is through leveraging architectural modifications 
using graph neural networks [16]. By representing floor-
plans as graphs and utilizing graph neural networks, it 
becomes possible to capture spatial relationships and 
generate layouts that adhere to architectural principles. 
This method enables the model to understand the con-
nections between different rooms and elements within the 
floorplan, resulting in more coherent and accurate designs. 
User feedback and iterative design play a crucial role in 
enhancing realism. By involving users in the generation 
process and incorporating their preferences and feedback, 
the floorplans can be iteratively refined to better align with 
real-world design standards and meet users’ expectations. 
This iterative approach ensures that the generated floor-
plans are tailored to individual needs and preferences, 
resulting in more realistic and user-centric designs.

Another technique is procedural generation  [136], 
which offers a way to create diverse and realistic floor-
plans. Procedural generation algorithms can automatically 
generate a large number of floorplans with varying room 
arrangements, spatial flows, and aesthetic appeal while still 
adhering to functional and regulatory constraints [78]. By 
incorporating attention mechanisms [102], such as those 
used in transformer models, the generation process can 

focus on relevant architectural details and capture depend-
encies and long-range interactions within the floorplans, 
ensuring coherence and realism. Sequential generation 
models, such as diffusion models [52] or autoregressive 
models  [9], allow for step-by-step generation of floor-
plans while considering dependencies between different 
parts of the layout. These models capture complex spa-
tial relationships and can generate realistic floorplans by 
sequentially adding rooms or modifying existing ones. 
Increasing the amount of data available for training is also 
crucial for improving realism. By expanding the dataset 
of real floorplans used during the training phase, models 
can learn from a wider range of architectural designs and 
patterns, resulting in more realistic and diverse generated 
floorplans that align with real-world architectural stand-
ards and aesthetics. By leveraging computational methods 
like architectural modifications, user feedback, procedural 
generation, attention mechanisms, sequential generation 
models, and increasing the training data, it becomes possi-
ble to generate floorplans that closely resemble real-world 
designs while adhering to architectural principles, func-
tional considerations, and aesthetic appeal.

Future Research Directions

The rapid advancement of computational methods across 
various real-time industries has notably influenced the 
architectural sector as well. With technology continually 
evolving, the integration of computational techniques into 
architectural practices has become increasingly prevalent. 
In response to this trend, numerous avenues for future 
research in floorplan generation using computational-
based methods have emerged. By examining the inter-
section of computational techniques and architectural 
innovation, this study seeks to identify key areas ripe 
for exploration and advancement, paving the way for the 
development of more efficient, sustainable, and customiz-
able floorplan generation processes.

•	 Exploring Modalities for Diverse User Engagement:
	   Future research in floorplan generation could explore 

innovative modalities to cater to diverse user needs, 
including non-domain experts and individuals with 
disabilities. By embracing different modalities, such 
as natural language processing, gesture recognition, 
or multimodal interfaces, computational tools can 
empower a broader range of users to participate in the 
design process and customize floorplans according to 
their preferences and requirements. Moreover, incor-
porating accessibility features and design guidelines 
tailored to individuals with disabilities can ensure that 
generated floorplans are inclusive and barrier-free. 
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This research could involve developing algorithms 
that dynamically adjust floorplan layouts based on 
real-time input from users, resulting in more person-
alized and satisfactory designs. By adopting a multi-
faceted approach that considers various modalities and 
user perspectives, future research has the potential to 
democratize architectural design and create more inclu-
sive and user-centric built environments.

•	 Energy Efficiency Modeling:
	   Future research in energy-efficient floorplan genera-

tion using AI holds promise for revolutionizing sustain-
able architecture. By harnessing the capabilities of AI 
algorithms, researchers can explore novel approaches 
to optimize building layouts and spatial configurations 
to minimize energy consumption and maximize effi-
ciency. This research could involve the development 
of AI models that integrate data on building orienta-
tion, thermal performance, and occupant behavior to 
inform the design process and generate floorplans that 
prioritize energy efficiency. Additionally, AI-driven 
simulations and predictive analytics can be employed 
to evaluate the performance of generated floorplans 
under different environmental conditions and usage 
scenarios, allowing architects to make informed deci-
sions that lead to more sustainable building designs. 
Overall, advancing the intersection of AI and energy-
efficient floorplan generation offers significant potential 
for reducing carbon footprints and creating buildings 
that are environmentally friendly and cost-effective in 
the long term.

•	 Balancing efficiency and diversity:
	   Future research in floorplan generation could focus on 

optimizing the balance between sampling time and the 
diversity of generated floorplans. This entails developing 
efficient algorithms that can quickly explore a wide range 
of design possibilities while ensuring that the result-
ing floorplans maintain diversity and creativity. One 
approach could involve leveraging techniques from evo-
lutionary algorithms or reinforcement learning to dynam-
ically adjust the exploration-exploitation trade-off during 
the generation process. Additionally, researchers could 
explore the use of surrogate models or parallel computing 
to accelerate the sampling process without sacrificing the 
quality or diversity of the generated designs. By address-
ing this challenge, future research has the potential to 
streamline the floorplan generation process and enable 
architects to efficiently explore a diverse range of design 
options to meet various project requirements and con-
straints.

•	 Ethical and Societal Implications:
	   Future research should delve into the ethical and soci-

etal implications arising from AI-generated floorplans, 

delving into critical issues such as privacy, equity, and cul-
tural sensitivity. By scrutinizing these aspects, researchers 
can pave the way for the responsible implementation of 
AI technologies in architectural practice. This involves 
developing comprehensive guidelines to navigate com-
plex ethical considerations, ensuring that AI-generated 
floorplans prioritize privacy protection, promote equity 
in access to design resources, and respect diverse cul-
tural perspectives. Moreover, this research seeks to foster 
a deeper understanding of the broader societal impacts of 
AI in architecture, facilitating informed decision-making 
and promoting the development of ethically sound prac-
tices that benefit all stakeholders.

•	 3D floorplan Generation:
	   3D floorplan generation is an exciting area of research 

aimed at expanding the capabilities of floorplan genera-
tion by incorporating the third dimension. By moving 
beyond traditional 2D representations, 3D floorplan gen-
eration aims to provide a more immersive and realistic 
depiction of architectural spaces. This involves consid-
ering factors such as room height, furniture placement, 
and spatial arrangement in the vertical dimension. By 
incorporating the third dimension, AI models can gener-
ate floorplans that capture the true volume and depth of a 
space, allowing architects, designers, and users to better 
visualize and understand the layout. This advancement 
opens up possibilities for more accurate and detailed rep-
resentations of architectural designs, enabling better deci-
sion-making, enhanced spatial planning, and improved 
communication between stakeholders involved in the 
design and construction process. The exploration of 3D 
floorplan generation holds great potential in revolution-
izing the way architectural spaces are conceptualized, 
designed, and experienced.

Conclusion

House floorplan generation is a complex endeavor that bal-
ances functionality and aesthetics in interior layouts. Auto-
mation in this process accelerates design, reduces errors, 
and offers creative exploration. In this article, we address 
the computational methods which aim to synthesize floor-
plans. We provide a comprehensive and novel classification 
of computational-based floorplan generation into subcatego-
ries of Procedural and machine-learning methods. Represen-
tation and interactivity methods were also discussed in the 
review. For the recent developments in the area, we identify 
the types, key features, representations, and algorithms in 
each category. Furthermore, we propose general sampling 
and training time complexity for each deep learning model 
and present comparative analysis with cross-over. Detailed 
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information on the characteristics of state-of-the-art solu-
tions for each category, their advantages, and drawbacks are 
provided.

While there are existing solutions for various dimensions 
of floorplan generation, the field still faces open research 
issues, challenges, and areas in need of improvement. In this 
article, we not only present state-of-the-art methods for com-
putational-based floorplan generation, including their key 
properties, classification, and algorithms but also delve into 
open questions and research directions within this domain. In 
the Challenges and Possible Directions section, we delve into 
the computational aspects and highlight the significance of 
incorporating diversity and realism into the generated floor-
plans. We also discuss the need for effectively managing 
irregularities and taking compatibility issues into account.

This comprehensive overview provides architects with a 
valuable resource to enhance their design process, improve 
efficiency, and create innovative spaces using computational 
floorplan generation techniques. It also empowers individu-
als to customize their own floor plans, fostering a sense of 
ownership. On a societal level, adopting these techniques 
leads to enhanced resource utilization, improved energy 
efficiency, optimized space utilization, and better living and 
working environments. The review identifies opportuni-
ties for future development, further enhancing the societal 
benefits of computational floorplan generation. Ultimately, 
policymakers, researchers, and professionals can utilize this 
review to make informed decisions and contribute to sustain-
able and functional spaces for diverse communities.
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