
Vol.:(0123456789)

SN Computer Science (2024) 5:589
https://doi.org/10.1007/s42979-024-02907-0

SN Computer Science

SURVEY ARTICLE

From Algorithms to Architecture: Computational Methods for House
Floorplan Generation

Azmeraw Bekele Yenew1 · Beakal Gizachew Assefa1 

Received: 30 December 2023 / Accepted: 17 April 2024
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024

Abstract
House floorplan generation entails crafting efficient spatial layouts within buildings, harmonizing functionality, aesthetics,
and usability. The automation of this process is pivotal, expediting design timelines, reducing errors, conserving resources,
and facilitating swift exploration of diverse design alternatives for optimal functionality and aesthetics. Nonetheless, the field
grapples with inherent challenges, including the provision of diverse layouts to accommodate varied preferences, striking a
balance between visual and functional realism, meeting customization demands, and aligning with architectural constraints.
In this article, we delve into the transformative impact of computational methods on house floorplan generation. Our study
offers a nuanced review and innovative categorization of computational techniques, distinguishing between procedural and
deep generative learning approaches. Additionally, we examine representation methods and their interactive capabilities,
providing a comprehensive analysis of the advancements, merits, and limitations of contemporary techniques. Furthermore,
we critically assess unresolved challenges and delineate promising avenues for future research in computational-based
floorplan generation.

Keywords  Generative adversarial networks · Floorplan generation · Deep learning · Interactivity · Procedural methods ·
Representation

Introduction

In the realm of architectural design, interior planning, and
spatial optimization, the creation of efficient floorplans
stands as a foundational challenge. The arrangement of
rooms, corridors, and open spaces within a building sig-
nificantly influences its functionality, aesthetics, and over-
all usability. Over the years, architects and designers have
employed manual techniques to create floorplans, relying
on their expertise and creativity to meet the specific needs
of clients and occupants [1]. However, the digital era has
opened up new possibilities with advanced computer-aided
design (CAD) (Carpo 2017) and the fusion of computational
algorithms. This has sparked a revolution in floorplan gen-
eration, with various techniques ranging from Procedural

Methods [2–6] to deep generative models [7–9]. Procedural
Methods is an approach that relies on algorithms and pre-
defined rules to automatically generate floorplans for build-
ings or interior spaces [10]. While procedural methods offer
a structured approach to floorplan generation, they often
struggle to capture the nuanced design elements and con-
textual relevance present in modern architecture. Another
cutting-edge approach that leverages artificial intelligence,
particularly deep learning techniques to automatically cre-
ate floorplans is deep generative models [11]. These models
use complex neural network architectures to learn patterns
and relationships from existing floorplan data and then gen-
erate new, coherent, and contextually relevant floor plans.
This technology has gained significant attention in recent
years due to its ability to produce highly realistic and diverse
designs. Generative models in floorplan generation encom-
pass Generative Adversarial Networks (GANs) [12–18] by
a generator-discriminator interplay, Diffusion generative
model [19] by iterative diffusions, Autoregressive Mod-
els [20] for sequential generation, and other deep learning
techniques [21–23].

 *	 Azmeraw Bekele Yenew
	 azmeraw.bekele@aait.edu.et

 *	 Beakal Gizachew Assefa
	 beakal.gizachew@aait.edu.et

1	 School of Information Technology and Engineering, Addis
Ababa University, Addis Ababa, Ethiopia

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-02907-0&domain=pdf
http://orcid.org/0000-0001-9510-5216

	 SN Computer Science (2024) 5:589 589   Page 2 of 33

SN Computer Science

The emerging landscape of computational-based archi-
tectural software presents a diverse array of tools tailored to
streamline and enhance various stages of the design process.
Qbiq stands out as an efficient planning solution for office
spaces, providing architects with three ’Test fit’ alternatives
backed by analytical furniture plans and immersive 3D vir-
tual tours. Its performance analysis reports offer insights
into crucial factors like privacy, daylight access, and den-
sity ratios, facilitating rapid decision-making toward optimal
layouts. TestFit, on the other hand, focuses on feasibility
studies and urban planning, automating tedious tasks like
counting housing units and parking spots to empower archi-
tects to delve deeper into creativity. Its real-time rendering
capabilities and integration with popular design programs
underscore its potential to revolutionize large-scale pro-
jects. Meanwhile, Aino transforms site analysis data into
actionable maps, Finch facilitates data-driven architectural
plans, CONIX.AI offers tailored solutions for residential
designs, and Laiout emerges as a promising tool for early-
stage design projects, showcasing the diverse applications
and advancements in AI-driven architecture.

The significant benefits offered by those computational
methods in the floorplan creation process strongly under-
score the urgency and relevance of computational methods
in contemporary architectural practices. This groundbreak-
ing technology enhances efficiency by automating repetitive
tasks such as drafting and 3D modeling [24], freeing archi-
tects to focus on higher-level design decisions and optimize
project timelines [25]. Moreover, computational methods
enable predictive analysis, allowing architects to anticipate
building performance, energy consumption, and structural
integrity, facilitating informed design choices that prioritize
sustainability and efficiency [26]. By integrating computa-
tional methods, architects can leverage big data to gain a
deeper understanding of urban patterns and trends, ultimately
creating structures that are more attuned to their environment
and inhabitants [27]. With the rapid pace of urbanization and
the growing demand for sustainable, efficient design solu-
tions, architects are increasingly turning to computational
tools to meet these complex challenges effectively. It enables
architects to expedite design iterations, optimize layouts, and
enhance design quality while simultaneously reducing labor
costs. This not only streamlines the design process but also
empowers architects to respond more efficiently to the evolv-
ing needs of clients, communities, and the environment. As
such, the adoption of computational methods represents a
fundamental shift in architectural practices, emphasizing the
critical importance of embracing technological advancements
to ensure the continued relevance and success of the profes-
sion in an ever-changing world.

This advancement addresses various user needs and
industry trends by revolutionizing the architectural and real
estate sectors. By harnessing different algorithms, floorplan

generation tools have become remarkably efficient, enabling
the creation of accurate floorplans in a fraction of the time
and effort required by manual drafting [28]. These tools offer
a high degree of customization and flexibility, accommodat-
ing various design preferences and specific requirements.
Moreover, it optimizes space utilization, ensuring that floor-
plans are practical and well-designed by considering factors
such as traffic flow and natural lighting [29]. Additionally,
this method provides valuable design assistance and inspi-
ration by analyzing vast amounts of data, offering creative
suggestions, and adhering to industry best practices [20].
Collaboration is enhanced through computational methods,
facilitating the involvement of multiple stakeholders and
enabling iterative design processes [30]. Lastly, the acces-
sibility and democratization of AI-powered tools have revo-
lutionized the field, empowering individuals without formal
training to engage in architectural design.

While notable progress has been achieved in the field of
floorplan generation, a set of persistent challenges remains
to be addressed. These encompass ensuring the diversity of
generated floorplans[15, 16], maintaining functional real-
ism [20] and visual realism [19], addressing interactivity
concerns for user engagement [22], and effectively tackling
customization complexities [20]. Another challenge within
floorplan optimization stems from the adaptable nature
of walls and rooms, which frequently lack predetermined
dimensions. This inherent variability can pose difficulties
in achieving convergence for the subsequent optimization
model[12]. Overcoming these hurdles is essential to harness
the full potential of floorplan generation, enabling it to cater
to a wide range of preferences, enhance user experiences,
and provide practical yet imaginative solutions within the
realm of architectural design.

Figure 1 presents the taxonomy used in this comprehen-
sive review, consisting of three core divisions: Constraint,
Representation, and Methods. Input constraint or inter-
activity refers to how a user or designer can interact with
or provide input to the floorplan generation system. This
interaction can take various forms such as images [18, 31],
text [23], sketches [12], or bubble diagrams [14–16, 19], and
it significantly impacts the final output of the floorplan gen-
eration process. Another crucial category is representation
methods [32], which involves translating input data into a
more abstract and meaningful format that facilitates com-
prehension and seamless interaction for the models. Lastly,
the Methods category encompasses the specific techniques,
algorithms, and approaches used to create floorplan layouts,
such as procedural, and/or deep learning methods. These
methods play a critical role in determining the quality, effi-
ciency, and variety of the generated floorplans.

Although there is a shortage of comprehensive and sys-
tematic reviews in the realm of floorplan generation through
computational techniques, Table 1 provides an overview of

SN Computer Science (2024) 5:589 	 Page 3 of 33  589

SN Computer Science

survey studies focused on floorplan generation, along with
their corresponding objectives. The columns of the table
indicate the theme and scope, and the symbol “ ✓ ” tells the
topic is covered in the survey. Yong et al. [28] endeavor to
provide an encompassing assessment of floorplan genera-
tion through generative models, while also exploring their
applications. In contrast to their approach, our review seeks
to delve into the impact of interactivity on floorplan genera-
tion and the role of representation in influencing generative
models. Diverging from their focus solely on generative
models, our review aims to encompass procedural as well.
Within each subcategory, we present a comprehensive anal-
ysis of general algorithms and pivotal attributes in cutting-
edge solutions, accompanied by their respective advantages
and disadvantages. Moreover, we undertake a comparative
assessment of these methods alongside models. As the main
contributions in this article, we:

•	 Investigate the role of interactivity in floorplan genera-
tion, including how user engagement influences design
outcomes and how interactive techniques enhance user-
centric solutions.

•	 Analyze the significance of representation methods in
floorplan generation, exploring how different ways of

encoding input data affect the quality and diversity of gen-
erated floorplans.

•	 Present a taxonomy of Floorplan Generation methods into
subcategories of Procedural, and deep learning methods.

•	 Conduct a comprehensive evaluation of the discussed
methods, comparing their strengths and weaknesses in
terms of output quality, diversity, user engagement, and
computational efficiency.

•	 Identifying existing challenges and limitations in floorplan
generation such as handling irregular shapes, maintaining
user customization, or ensuring compatibility with archi-
tectural constraints.

In the upcoming parts of this review, we’ll explore interac-
tivity in "User Interaction and Engagement" section and rep-
resentation techniques in "Representation Methods". In "Com-
putational Methods" section will provide an in-depth look into
different approaches used for floorplan generation, covering
procedural, and deep learning methods. We’ll analyze each
category’s main contributions, strengths, and limitations. Mov-
ing on, in "The Importance of Generating Floorplans Using
Computational Method" section discusses the importance, and
in "Open Challenges and Possible Solutions" will address chal-
lenges and potential future paths. Lastly, in "Future research
Directions" section discusses the future directions and "Con-
clusion" section will offer the conclusion for the entire review.

User Interaction and Engagement

Interactivity has ushered in a new era of creative possibilities
and practical applications. This multifaceted concept spans
various types of engagement, each tailored to distinct artistic
or functional objectives. From direct manipulation to guided
customization, interactive techniques allow users to influ-
ence the artistic process and contribute their unique vision.
For instance, within the realm of image generation, interac-
tivity enables the transformation of various inputs such as
images [33, 34], text descriptions [35, 36], and other modali-
ties, thereby bridging the chasm between different modes of
expression. Similarly, the converse holds with text generation,
where users’ inputs in the form of text [37–39] or images [40]
can be translated into coherent textual narratives, uniting the
realms of language and visual representation. This symphony
of interactivity thus amplifies creativity, forging connections

Fig. 1   Taxonomy of floorplan generation techniques

Table 1   Comparison of survey
works on floorplan generation

Note: PM represents procedural methods, while DL signifies Deep learning

Name Theme Interactivity Representation PM DL

Yong et al, 2023 [28] Deep learning ✓

Our Survey Computational methods ✓ ✓ ✓ ✓

	 SN Computer Science (2024) 5:589 589   Page 4 of 33

SN Computer Science

between different forms of communication and enabling an
enriched exchange of ideas and artistic visions.

Types of Interactivity

The field of floorplan generation has experienced a sig-
nificant transformation with the advent of interactivity,
enabling active user participation in the design process.
This innovative approach empowers architects, design-
ers, and homeowners to actively shape and refine their
ideal floorplans using user-friendly interfaces and receiv-
ing real-time feedback. While floorplans are commonly
generated automatically without human intervention [41],
interactivity further enhances the process by allowing
users to effortlessly incorporate, customize, and visual-
ize rooms and components according to their preferences.
In the process of generating floor plans, four types of
input constraints play a crucial role: image, text, bubble
diagram, and sketch. These input constraints effectively
govern the layout and design considerations, allowing for
a comprehensive approach to floor plan creation.

Image‑to‑Floorplan

It is the transformation of an input image, such as a ref-
erence image (with normal boundaries [12] or masked
boundaries [18, 42]) into a corresponding output floor-
plan layout. This transformation utilizes computational
techniques to automate the conversion process while opti-
mizing spatial arrangement, architectural elements, and
aesthetic considerations.

Text‑to‑Floorplan

It is a transformation of written descriptions of a build-
ing’s layout, room arrangements, dimensions, and other
architectural details into a visual representation of the
floorplan [23]. This process involves interpreting the
natural language description, understanding spatial

relationships and design elements, and then creating a
digital floorplan that accurately reflects the described
space.

Buble Diagram‑to‑Floorplan

Generating a floor plan from a bubble diagram involves
translating the conceptual layout and relationships depicted
in the bubble diagram into a detailed architectural floor-
plan [14–16, 19, 20]. A bubble diagram is a rough sketch
or diagram that uses simple geometric shapes (often circles
or bubbles) to represent different spaces or functional areas
within a building [43]. These bubbles are interconnected
with lines to show the flow and adjacency between spaces.
The process of generating a floorplan from a bubble diagram
typically entails refining the rough spatial arrangement,
determining specific room dimensions, adding walls, doors,
windows, and other architectural elements, and ultimately
transforming the abstract representation of the diagram into
a practical and functional architectural layout. This con-
version process helps architects and designers turn initial
conceptual ideas into concrete designs that can be further
developed and realized.

Sketch‑to‑Floorplan

Generating a floorplan from a sketch drawing refers to the
process of using computational algorithms, to convert a
rough sketch of a building’s boundary into a more precise
and detailed digital floorplan [22]. This involves analyzing
the lines, and shapes and translating them into accurately
scaled measurements, and architectural elements.

Discussion

Table 2 provides an overview of various tools that effec-
tively control different aspects of control room design. It
categorizes the user experience into three levels of intui-
tiveness: “High” represents a capability that is effective
and user-friendly, ensuring a seamless and intuitive expe-
rience. The term “Moderate” indicates a medium level of

Table 2   Comparisons based on Interactivity

Constraint Speed Customize Flexibility Room size Room shape Room Type Room
adjacency

Layout
Boundary

Text [23] Moderate High High ✓ ✓ ✓

Sketch [12] Moderate Moderate High – – – – ✓

Image [13, 17, 18, 31, 42, 44] High Low Low – – – – ✓

Bubble_Diagram [14–17, 19, 20] Low High Moderate – ✓ ✓

SN Computer Science (2024) 5:589 	 Page 5 of 33  589

SN Computer Science

capability, implying that there may be some complexities
or considerations to take into account while using the tool.
On the other hand, the term “Low” suggests a lack of capa-
bility, meaning that the tool is not equipped to address
the specific issue or requirement. The table also utilizes
symbols to indicate the capability of each input constraint
in addressing specific issues: a “ ✓ ” signifies the presence
of the capability, “ ” denotes a moderate capability with
some complexities, and “-” represents the absence of the
capability.

In addition, the input modalities for floorplan generation
possess several fundamental and desirable properties. Speed
is a crucial aspect, determining the efficiency of generating
floor plans using a particular method. Customization options
play a significant role, allowing users to personalize and
tailor the generated floor plans to their specific preferences
and needs. This flexibility encourages creativity and explora-
tion, enabling users to experiment with diverse design ideas
and approaches.

Geometric properties, such as room size and shape, are
important spatial characteristics that define the layout and
arrangement of elements within a floorplan. Room size
influences functionality, furniture placement, and overall
comfort, while room shape affects aesthetics and flow of
movement. Semantic properties encompass attributes like
the number of rooms and their types, enabling dynamic
adjustments and assigning specific functions or purposes
to each room. This adaptability allows users to create floor
plans that align with their intended uses and requirements.

Topological properties focus on the abstract arrangement
and connectivity of spaces, particularly room adjacency. The
flow and accessibility between different areas are determined
by the relationships and connections between rooms. Lastly,
the layout boundary establishes spatial boundaries, serving
as a framework for organizing the floorplan and defining its
overall shape and size.

Text-based floorplan generation, as shown in Table 2,
empowers users to express their floorplan preferences
through descriptive textual input, covering room quantities,
sizes, types, and spatial relationships. The system interprets
this textual data to create corresponding floorplans, show-
casing its impressive capabilities. However, this approach
faces challenges in accurately representing irregular room
shapes and layout boundaries. Moreover, text-based repre-
sentations have their limitations, including potential ambi-
guities and misinterpretations in the input [45], reduced con-
textual understanding for longer inputs [46], and difficulties
in handling unique or domain-specific terminologies. Con-
sequently, these factors can impact the overall accuracy of
text-based floorplan generation and make the moderate ease
of use an additional consideration. Another constraint that
poses difficulties in terms of usability is sketching, as dis-
cussed in[12]. Sketching, by its nature, requires experience

or a natural talent, which contributes to a lower level of ease
of use. Additionally, controlling each room’s size, shape,
type, and number through sketching alters the concept of
generation. Therefore, this method is primarily important for
controlling the boundary of the generated floorplan, rather
than for the overall generation process.

Fortunately, there is an alternative method that over-
comes these challenges by directly generating floorplans
from input images [13, 17, 18, 31, 42, 44]. This method
allows users to insert masked or normal boundaries as con-
trollable constraints. However, it is important to note that,
similar to sketching, this method may also encounter dif-
ficulties in precisely controlling room size, shape, number,
and sizes. Nonetheless, compared to text-based floorplan
generation or sketching, the direct generation from input
images approach offers a more visually-oriented and acces-
sible means of expressing floorplan preferences. It provides
a starting point that can be further refined and adjusted to
meet specific requirements.

Another commonly employed constraint in floorplan gen-
eration is the bubble diagram, as discussed in [14–16, 19,
20]. The bubble diagram approach enables users to experi-
ment with different room arrangements, room types, and the
number of rooms, facilitating a process of creative explora-
tion. It offers a quick and easy way to visualize and iterate on
floorplan designs. However, one limitation of the bubble dia-
gram method is its inability to effectively represent irregular
room shapes and articulate precise room sizes. The focus of
the bubble diagram is primarily on the overall layout and
spatial relationships between rooms, rather than capturing
intricate details of individual room shapes or specific sizes.
Despite this limitation, the bubble diagram remains a valu-
able tool for generating floorplan concepts and facilitating
quick iterations. It allows users to explore various room
arrangements and types, providing a foundation for further
refinement and customization in terms of room shapes and
sizes through subsequent steps or alternative approaches in
the floorplan generation process.

In this analysis, we examine the impact of interactivity
from the users’ perspective, considering its implications on
speed, customization, and flexibility as shown in table 2.
The speed ratings are based on how quickly users can make
floor plans using each method. With image-based genera-
tion, which receives a high rating, users simply need to insert
existing plans, making the process relatively fast. Sketch-
based generation, rated moderate, can be relatively fast for
skilled users who can quickly sketch their ideas, which are
then interpreted into plans by the model. Text-based gen-
eration involves describing plans in writing, which can be
done pretty quickly if users are good at explaining their
ideas. Bubble diagrams take more time because users have
to place bubbles to represent spaces and then refine them
iteratively. These speeds can vary depending on factors like

	 SN Computer Science (2024) 5:589 589   Page 6 of 33

SN Computer Science

how complex the design is and how skilled users are with
each method.

The extent of customization options available varies across
the different methods of floor plan generation. Image-based
generation, rated as limited, typically offers fewer opportuni-
ties for customization due to its reliance on existing plans,
which may have limited flexibility for modification. In con-
trast, text-based generation, rated high, provides extensive
customization options as users can specify detailed design
parameters and preferences in written form, granting precise
control over the generated floor plans. Similarly, bubble dia-
grams, also rated high, afford ample customization opportu-
nities as users can iteratively refine the layout by adjusting the
placement and size of bubbles to accurately represent their
design intentions. Sketch-based generation, rated moderate,
offers a moderate level of customization, allowing users to
sketch out their ideas with some flexibility. However, this
may be constrained by the interpretative capabilities of the
generative model. These ratings reflect the spectrum of
customization options available within each method, with
text-based and bubble diagram methods offering the highest
degree of flexibility and control over the resulting floor plans.

Text-based generation and sketch-based generation meth-
ods are attributed with a high flexibility rating due to their
capacity to offer users a broad spectrum of options and
adaptability. These methods facilitate creativity and explora-
tion by allowing users to specify detailed design parameters
in textual or visual form, thereby enabling diverse design
ideas and approaches to be easily explored and experimented
with. Conversely, bubble diagrams, rated moderately for
flexibility, provide users with some degree of adaptability
as they can manipulate the placement and size of bubbles to
represent various spatial relationships within the constraints
of the diagram format. However, image-based generation
is assigned a low flexibility rating primarily because users
are constrained to working with existing plans, limiting the
scope for innovative experimentation and creative explo-
ration. In summary, while text and sketch-based methods
afford significant flexibility, bubble diagrams offer a mod-
erate level of adaptability, and image-based generation
presents the least amount of flexibility in accommodating
diverse design approaches.

Notably, textual descriptions have emerged as a robust
method for determining optimal control room sizes, offer-
ing a precise and straightforward approach. However,
when considering control number of rooms and types, the
combined use of text and bubble diagrams has proven to
be particularly advantageous, facilitating a comprehensive
understanding of these crucial factors. Additionally, the use
of images and sketches has been found to be instrumen-
tal in defining the boundaries and aiding in visualizing the
extent of influence. Furthermore, the survey underscores that
boundary(sketch or image) and graph-based methods emerge

as ideal approaches for effectively managing the physical
boundaries of floorplans and the spatial relationship between
rooms [22]. While dealing with the challenge of room shape
regulation, it is acknowledged that managing irregular room
shapes can be intricate.

Representation Methods

The representation method refers to how the raw input data is
transformed, described, and encoded into a format that can be
effectively processed and used by computational models [32].
It’s a way of transforming the architectural elements (room
type, size, position) and spatial relationships of the house into
a format that can be manipulated and processed by algorithms.
Understanding representation methods is pivotal in floorplan
generation as they dictate how diverse forms of input data are
translated into structured formats that computational models
can comprehend, ultimately influencing the accuracy, creativ-
ity, and efficiency of the generated floorplans.

Types

The choice of representation method has a significant impact
on the performance of generative models. A well-chosen
representation can make the underlying patterns and rela-
tionships in the data more apparent and relevant to the task
at hand. There are several types of representation methods
used to capture different aspects of the input data and suited
for specific types of tasks:

Pixel‑Based Representation

Pixel-based representations are the most direct way to rep-
resent data [47]. Each pixel is treated as a separate data
point, and the color or intensity values of pixels are directly
manipulated to generate images. While pixel-based meth-
ods are straightforward, they may lack a high-level semantic
understanding of the content they generate.

Vector‑Based Representation

Vector-based representations use vector space mathematics
to represent data [48]. These representations often involve
encoding various floorplan attributes, such as color, shape,
texture, room type, and more, into vectors that can be manip-
ulated to generate.

Feature‑Based Representation

In this approach, images are represented as a set of high-
level features or attributes, extracted using techniques like

SN Computer Science (2024) 5:589 	 Page 7 of 33  589

SN Computer Science

convolutional neural networks (CNNs) [49] or other feature
extraction methods. These features capture meaningful infor-
mation from the images and can be used to generate new
images with specific attributes.

Graph‑Based Representation

Graph-based representation is a method used to model and
depict complex relationships between entities using a graph
structure. A graph is a mathematical structure that consists
of nodes (vertices) and edges (connections) between those
nodes [50]. Nodes signify distinct entities with associated
attributes, while edges denote connections or relationships
between nodes. This approach adeptly captures intricate
relationships in diverse datasets, enabling comprehensive
analysis and visualization across various fields.

Discussion

When it comes to generating intricate floorplans, selecting
the right representation method is a pivotal decision. Floor-
plans are inherently structured and geometric data, contain-
ing a wealth of relationships between various elements like
rooms, walls, doors, and windows. A representation method
that can effectively capture and convey these intricate geo-
metric relationships is essential for accurate and meaning-
ful floorplan generation. The chosen representation method
influences how the problem is formulated and how solutions
are generated. As shown in Table: 3, we introduce a clas-
sification system to categorize representations based on the
subsequent desirable properties:

•	 Handling geometry: entails effectively encoding the
shapes, sizes, positions, and orientations of architectural
components to accurately represent the layout of a floor-
plan.

•	 Capturing geometric relationships: involves represent-
ing the spatial connections and arrangements between
architectural elements such as rooms, walls, doors, and
windows within a floorplan.

•	 Loss of detail: It is the extent to which fine-grained or
specific information is not fully captured or represented
in a particular representation or model.

•	 Scalability: It pertains to the representation’s ability to
efficiently accommodate and process floorplans of vary-
ing sizes and complexities, without sacrificing accuracy
or computational efficiency.

•	 Computational efficiency (Performance): Efficient rep-
resentations enable faster processing, which is especially
important when dealing with large datasets or real-time
applications.

In the context of the comparison Table 3, “High” signifies
a high level of effectiveness and suitability for the property,
“Moderate” indicates a reasonable but not extensive effec-
tiveness, “Limited” points to a deficiency in addressing the
property, and “Variable” conveys fluctuating effectiveness
based on varying factors.

Pixel-based representation, though effective for image-
based tasks, might fall short in encapsulating the nuanced
spatial relationships within floorplans. While pixels can
encode color and visual features, they might not inherently
convey the precise positioning and connections that are inte-
gral to floorplan generation. Similarly, feature-based repre-
sentation’s [21, 22, 31, 42, 51] efficacy hinges on meticulous
feature design that accurately captures geometric properties.
This approach might not naturally lend itself to capturing
complex architectural arrangements.

On the other hand, Vector-based representation [14, 20],
meanwhile, holds promise due to its potential to encode geo-
metric shapes and layouts efficiently. Vectors can represent
lines, angles, and curves, allowing for the representation
of intricate architectural components. Moreover, they can
encode spatial relationships and dimensions, a crucial aspect
of floorplan accuracy. Nevertheless, vector-based represen-
tation might demand careful handling to ensure the repre-
sentation effectively captures the rich geometry of floorplan
elements without sacrificing interpretability.

Graph-based representation [14–16, 19] emerges as a
compelling choice due to its prowess in capturing com-
plex relationships. Graphs excel at modeling connections
between elements, directly aligning with the interplay
between architectural components in a floorplan. Nodes
can signify individual elements, while edges elegantly rep-
resent adjacency and spatial relationships. This structured

Table 3   A comparison of representation methods using desirable properties

Representation Capturing Geometric
Relationships

Handling Geometry Loss of detail Scalability Performance

Pixel-Based [47] Limited Limited Limited Variable High
Vector-Based [14, 20] Moderate High Moderate Variable Moderate
Feature-Based [21, 22, 31, 42, 51] Limited Limited Moderate Moderate Moderate
Graph-Based [14–16, 19, 23] High High Limited High High

	 SN Computer Science (2024) 5:589 589   Page 8 of 33

SN Computer Science

approach ensures that the generated floorplans maintain
the intended spatial arrangement and proportions. How-
ever, graph-based methods might require careful inter-
pretation, especially for complex layouts, and might pose
scalability challenges for large-scale floorplans.

Pixel-based representations excel in retaining detailed
spatial information and fine-grained features, resulting in
a limited loss of detail. However, their high-dimensional
input space demands significant computational resources.
On the other hand, vector-based representations strike a
balance between detail preservation and computational
efficiency, though they may lose some fine-grained details
while encoding numerical features. Feature-based repre-
sentations capture high-level semantic information and
domain-specific knowledge while being computationally
efficient, but they require a feature extraction process that
may lead to a moderate loss of low-level details. Graph-
based representations minimize the loss of detail by cap-
turing complex relationships, making them suitable for
interconnected structured data and facilitating reasoning
over graph structures. However, processing large graphs
can impose moderate to high computational demands.

In conclusion, the choice of representation method for
floorplan generation holds the key to creating accurate,
intricate, and visually appealing layouts. While pixel-
based and feature-based representations might not fully
capture the structural intricacies of floorplans, graph-
based and vector-based methods show promise in their
ability to preserve spatial relationships, handle geometry,
and capture the complex web of architectural connections.
The decision ultimately hinges on the intricacy of the task,
the level of accuracy required, and the trade-offs between
representation complexity and interpretability.

Computational Methods

Computational-based methods for floorplan generation
refer to the application of computational techniques,
including algorithms, mathematical models, and data-
driven approaches, to automatically create architectural
layouts for buildings and interior spaces. These methods
encompass a wide range of techniques, from rule-based
systems that follow architectural guidelines to more
advanced approaches utilizing machine learning to cre-
ate innovative and aesthetically pleasing floorplans. By
harnessing the power of computers and artificial intel-
ligence, they analyze input parameters such as spatial
requirements, user preferences, and design constraints
to generate floorplans that optimize spatial organization,
functionality, and aesthetics. These methods offer an effi-
cient and innovative way to design floorplans, catering to

various design objectives and scenarios across architecture
and related fields.

Types of Computational Methods

As shown in Fig. 2, various types of computational meth-
ods are integral to the process of floorplan generation. These
methods are grouped into procedural methods [3, 47] and
deep learning methods [12, 15, 16, 19, 20, 52]. Procedural
methods encompass algorithms like SubDivision [2], Tip
Placement [4], Inside Out [5], and Growth-based algo-
rithms [53], which rely on rule-based and algorithmic
approaches to generate floorplans. Deep learning methods,
including Diffusion Models [52], GANs [7], AutoRegres-
sive models [9], and others, harness the power of artificial
intelligence and neural networks to learn from existing floor-
plan data and generate innovative and aesthetically pleasing
designs. This comprehensive range of computational meth-
ods empowers architects, designers, and urban planners to
efficiently create and explore floorplan variations tailored to
diverse design requirements and challenges.

Procedural Methods

It is a technique used to generate and create complex struc-
tures, scenes, or content automatically through the use of
algorithms, rules, and parameters [54]. Instead of manually
designing each element of the content, procedural mod-
eling allows for the creation of detailed and varied assets
by defining a set of rules and procedures that determine

Fig. 2   Computational methods in floorplan generation

SN Computer Science (2024) 5:589 	 Page 9 of 33  589

SN Computer Science

their appearance, arrangement, and behavior. While proce-
dural content generation has a long history in gaming (e.g
Elite [55]), recent efforts have started exploring large-scale,
man-made 3D environments, particularly in city and build-
ing generation projects [56, 57]. In the realm of floorplan
generation, some notable procedural techniques include Sub-
Division [2], Tip Placement [4], Inside Out [5], and Growth-
based algorithms [53], each offering unique approaches to
creating architectural layouts.

Procedural techniques for floorplan generation vary
across different areas, However, four types of procedural
techniques are commonly used as the foundation for creating
diverse and customizable floorplans.

A. Depth Peeling Algorithm

Depth peeling is an effective technique used in computer
graphics for achieving order-independent transparency ren-
dering [58]. This method involves rendering the image mul-
tiple times to accurately handle complex transparent objects
and ensure correct depth sorting. With each iteration, the
algorithm peels away the layers of transparent geometry,
progressively capturing the depth information of each frag-
ment. By iteratively blending the colors of the peeled layers,
depth peeling resolves the visibility and occlusion issues
associated with transparent objects, allowing for accurate
and visually pleasing rendering of scenes that involve over-
lapping and translucent elements. This approach is particu-
larly useful in various applications, such as architectural
renderings [5, 6], medical imaging [59], and interactive
simulations [60], where maintaining the correct visual hier-
archy and transparency effects is crucial for realistic and
immersive graphics.

B. Tile Placement Algorithm

Tile placement algorithms are computational methods
employed to arrange tiles or tiles with specific properties
in a manner that optimally fills a given space or adheres to
predefined constraints [61]. These algorithms aim to effi-
ciently position tiles while taking into account factors such
as aesthetics, space utilization, and design requirements. By
employing these algorithms, the goal is to achieve an opti-
mal arrangement that maximizes the visual appeal, effec-
tively utilizes the available space, and satisfies the desired
design criteria. These techniques find applications in various
domains, including interior design, urban planning, com-
puter graphics [62], and game development, enabling the
creation of visually pleasing and well-utilized tile layouts
systematically and efficiently.

C. Subdivision Algorithm

It is a procedural technique that recursively divides space
into smaller, more detailed components to generate com-
plex structures by iteratively subdividing and refining basic
shapes [2]. Subdivision algorithms are used in geometric
modeling to generate smooth and detailed curves, surfaces,
or structures.

D. Growth‑Based Algorithm

A growth-based algorithm is a computational methodology
used to model the emergence and development of complex
structures, organisms, or systems by iteratively applying pre-
defined rules and interactions [53]. These algorithms simu-
late natural growth processes, imitating how components
evolve, interact, and organize themselves over time. Starting
from an initial configuration, such as a seed or basic element,
the algorithm progressively adds new components based on
local interactions and specified growth rules. These rules
dictate how new components connect, position themselves,
and adapt to their environment. As the algorithm advances
through iterations, the components’ interactions lead to the
emergence of intricate patterns and forms that resemble
natural phenomena. Growth-based algorithms are applied
in diverse domains, including 3D modelings [56], analy-
sis [63], and medical modeling [64] to generate dynamic
and visually appealing structures that mimic the behavior
of living organisms or evolving systems.

Discussion

The discussion section on floorplan generation using proce-
dural methods focuses on the utilization of computational
algorithms to create floorplans based on predefined rules
and constraints. Table 4, presents a summary of floorplan
generation using different methods, outlining the following
desirable properties achieved through this approach:

•	 Type: the type of procedural floor plan generation. The
types are subdivision, tile placement, depth peeling, and
room growth algorithms.

•	 Window constraint: determines whether the method
uses windows as a constraint for room placement.

•	 Space criteria: This concerns whether user-provided
requirements for a room’s shape and placement in the
floor plan are respected by the method.

•	 Spatial Connectivity: determines whether user-provided
connection requirements (for example, the need for two
rooms to be adjacent) are respected by the method.

•	 Visualization: It refers to the visual representation of the
generated floor plans.

	 SN Computer Science (2024) 5:589 589   Page 10 of 33

SN Computer Science

•	 Space Utilization: It focuses on optimizing the efficient
use of available space within the floor plan.

The introduction of [5] presents the utilization of the pro-
cedural approach to generate customized floor plans spe-
cifically designed for residential buildings. This method
comprises three key stages. During the initial stage, the
fundamental layout of a house is portrayed through a graph,
wherein nodes represent rooms and edges symbolize room
connections. The graph is constructed with the front door
as the root node, followed by the inclusion of public rooms,
and subsequently private rooms. Specific room types are
assigned after distributing public rooms, based on user-
informed attributes. Progressing to the second stage, all
rooms are assigned types and room connections are deter-
mined; however, the rooms are yet to be positioned spatially.
In this phase, the algorithm calculates the 2D position of
each room using a tree structure, treating the room adjoining
the front door as the root and evenly distributing child nodes
adjacent to it. This even distribution applies to both the spac-
ing between child nodes and their distance from the root.
The third stage encompasses room expansion to their final
dimensions. Each room exerts an outward “pressure” pro-
portional to its required size, leading to its expansion to fill
the remaining space within the building. If two rooms share
a wall, the algorithm assesses the pressures both inside and
outside the wall to determine the extent of room expansion.

In their work, Merrell et al. [6] introduce a method for
generating realistic residential building floor plans based on
high-level user specifications. Recognizing the complexity
and ambiguity of architectural rules, which prove challeng-
ing for conventional rule-based systems, the authors employ
machine learning techniques. They develop a Bayesian net-
work trained on real-world building data to infer subjective
architectural design aspects that are difficult to explicitly
define, such as room adjacencies, area, aspect ratio, and
open versus door-adjoined adjacencies. The procedural

generation process unfolds in two stages. Initially, a set
of flexible high-level requirements, like bedroom count or
approximate square footage, is defined. The Bayesian net-
work then extends these requirements into a comprehensive
architectural program, specifying room relationships and
desired room attributes. Moving to the second stage, the
architectural program is transformed into detailed floor plans
for each building floor. This stage employs stochastic opti-
mization within the space of potential building layouts. The
algorithm iteratively generates new layouts, incorporating
local and global reconfigurations that significantly alter the
overall arrangement. These reconfigurations encompass slid-
ing walls and room swaps, and the quality of each proposed
layout is assessed by a cost function. This function considers
factors such as accessibility, area, aspect ratio, and room
shape, alongside a term penalizing irregular floor outlines.
The combined method, involving machine learning-driven
architectural inference and stochastic optimization, yields
a practical approach to creating realistic and diverse resi-
dential building floor plans from user-specified high-level
requirements.

The paper titled Persistent Realtime Building Interior
Generation [65] introduces a novel approach for generating
virtual building interiors in real-time. This method follows
a top-down methodology guided by architectural guidelines,
selectively generating only the necessary portions. By adopt-
ing a lazy generation scheme, it optimizes memory usage,
utilizing significantly less memory compared to a complete
interior model. This efficient memory management enables
real-time frame rates, making it highly suitable for inter-
active applications. Moreover, the approach ensures that
changes made within deleted regions are not lost, allow-
ing for persistent modifications and creating a dynamic and
consistent environment. This capability empowers develop-
ers to have greater control over the content by facilitating
changes that persist beyond the lifespan of specific regions.
To simplify implementation, the interior generation process

Table 4   Desirable properties
for Procedural floorplan
generations

Type Name Window
constraint

Number of
story

Space criteria Spatial con-
nectivity

Visualization

Depth peeling Martin 2006 [5] – Single ✓ – 2D
Merrell 2010 [6] – Multiple ✓ ✓ 2D and 3D
Hahn 2006 [65] – Single – – 2D

Subdivision Marson
2010 [66]

– Single ✓ – 2D

Rinde 2008[3] ✓ Single ✓ – 3d
Growth Based Tutenel

2009 [67]
– Single – ✓ 2D

Lopes 2010 [68] – Single – ✓ 2D
Tile plac Peng 2014 [4] – Single – – 2D

SN Computer Science (2024) 5:589 	 Page 11 of 33  589

SN Computer Science

is divided into multiple stages, each marked by the assign-
ment of a type to temporary regions. The stages encompass
Building Setup, Floor Division, Hallway Division, Room
Cluster Division, and Built Region Generation. Building
Setup focuses on elements affecting multiple floors, includ-
ing elevators, stairwells, and global aspects like textures.
Floor Division uniformly divides the building into floors.
Hallway Division constructs hallways around rectangular
regions, while Room Cluster Division further subdivides the
regions into rooms based on portal locations. The final stage,
Built Region Generation, generates visible built regions by
creating geometry within bounding box boundaries and plac-
ing objects accordingly. This staged approach streamlines
the interior generation process, ensuring efficient memory
utilization and facilitating the coherent and dynamic creation
of virtual building interiors.

Another subdivision approach which generate house
floor plans with semantic information is Automatic real-
time generation of floor plans based on squarified treemaps
algorithm [66]. The algorithm uses the squarified treemaps
algorithm to divide the available space and connect the
rooms together, placing doors between them based on a
connection graph that is randomly produced at a previous
stage based on some rules. The algorithm generates every
aspect of the house randomly, resulting in dissimilar floor
plans. The random generation includes the outer shape of
the house, its area, number of rooms and their functional-
ity, and the position of windows and doors. The algorithm
generates the floor plan in a step-by-step approach, placing
the rooms in the first level of the hierarchy, and then placing
the smaller rooms below it inside. The algorithm provides
real-time generation of floor plans, making it attractive for
real-time interactive applications.

Rinde and Dahl [3] proposed to generate an indoor envi-
ronment by using subdivsion method. The algorithm starts
the process by taking the existing exteriors as input rather
than creating the exterior by itself. The creation of a skeleton
is another thing that needs to be considered and created by
pushing all walls inwards at a constant rate and creating a
skeleton edge where two walls meet. Now it’s time to create
a transition area, if the distance from the root node to clos-
est wall is big enough, coridors are needed to minimize the
number of rooms without windows. after the creation of cor-
ridors, the remaining space is split into maximum connected
area, each with a continuous boundary the regions have been
created, and they are further subdivided into sub-regions
(in this case apartments). For apartments, it is important to
make sure that each one has at least one window, windowless
apartments being very rare. With sub-regions designed, the
actual rooms within them should be created. When the room
walls are created for an apartment, they are used to build the
individual rooms. These are then connected to each other

through entry points doors), and allocated a room type start-
ing with a room which is connected to the transition area.

The papers authored by Tutenel et al. [67] introduce
pioneering methodologies in interior generation and layout
solving. Their approach for generating floor plans employs
a growth-based method that utilizes a semantic library, rep-
resenting each room type as a class with predefined relation-
ships and constraints. Through iterative expansion of rooms
and strategic placement of feature areas based on these rela-
tionships, the resulting floor plans adhere to specific con-
straints, resulting in well-structured and functional building
layouts. Furthermore, their rule-based layout solving tech-
nique combines a semantic class library with a layout solver,
enabling the generation of appropriate layouts for building
floor plans and room arrangements. This comprehensive
approach enhances various modeling techniques, including
manual, automated, and mixed methods, leading to a more
efficient layouting process for game worlds. The effective-
ness of the approach is demonstrated through diverse layout
problems addressed in the paper. Collectively, these papers
provide valuable insights and practical solutions to advance
interior generation and layout solving, facilitating the crea-
tion of impressive virtual building interiors and optimizing
the layout generation process.

The paper titled “A constrained growth method for pro-
cedural floor plan generation” [68] introduces an algorithm
that facilitates the growth of rooms based on a regular grid
consisting of square cells. This grid structure imposes cer-
tain limitations on the growth process, as it aligns with the
predetermined length of the cells and confines the expansion
to the utilization of exterior walls exclusively. Consequently,
the algorithm necessitates the placement of openings in the
floor plan as the final step, in accordance with the proce-
dural generation approach employed. Moreover, the algo-
rithm incorporates a mechanism for controlling the expan-
sion of rooms through the assignment of priority levels. By
assigning higher priority values, rooms are granted a greater
degree of expansion, resulting in proportional increases in
size. For instance, a room with twice the priority of another
will expand to twice its size. However, it is important to
note that the algorithm lacks control over the final shape
of the room and does not provide any guarantees regard-
ing the attainment of a minimum size requirement. Despite
these limitations, the proposed method offers a promising
approach to procedural floor plan generation, enabling the
creation of diverse layouts that adhere to user-defined con-
straints within the constraints of the grid-based framework.

Peng et al [4], present a method for tiling a domain with
a set of deformable templates, such that the domain is
completely covered and the templates do not overlap. The
approach is suitable for a large class of applications like
floorplans, urban layouts, and art and design. The method

	 SN Computer Science (2024) 5:589 589   Page 12 of 33

SN Computer Science

involves a two-step process. The first step focuses on laying
out the approximate positions of templates, while the sec-
ond step refines the shapes of these templates. During the
initial discrete stage, the layout algorithm tessellates both
the domain and the templates into quadrilateral meshes. This
tessellation breaks down the domain and template shapes
into smaller quadrilateral elements, facilitating the sub-
sequent layout and refinement processes. The next phase
involves finding a tiling solution where the quadrangulated
domain is seamlessly filled with copies of the quadrangu-
lated templates. This gap-free tiling is achieved using an
integer programming approach. However, since the placed
tiles might not exactly match the original template shape
due to deformations, the algorithm further refines the tiles.
It employs a continuous quadratic optimization process that
iteratively adjusts the placement of tiles until either a conver-
gence criterion is met or a predefined time limit is reached.
This optimization aims to improve the layout and alignment
of tiles for better visual quality and coverage.

In their research, Martine [5], Merrel [6], Marson [66],
and Rinde [3] focused on addressing space criteria,
while also considering spatial connectivity. Merrel [5],
Tutenel [67], and Lopes [68] also contributed to the discus-
sion on spatial connectivity. However, Rinde’s [3] specific
focus was on addressing windows constraints. Overall, their
work examines various aspects of addressing space and spa-
tial constraints, providing valuable insights into the field.

Deep Generative Learning Method

While procedural methods have long been effective at gener-
ating structured and rule-based content, they often face limi-
tations when it comes to capturing the intricate details and
complexity found in real-world data. Procedural techniques
rely on predefined algorithms and rules, which can result in
repetitive and predictable outputs. This restricts their ability
to accurately represent the rich and diverse nature of real-
world environments. Moreover, procedural methods can be
time-consuming and require significant manual effort to fine-
tune parameters and achieve desired results [54]. They may

struggle to achieve high levels of realism and variability,
as they lack the ability to learn and generalize from large
datasets. Procedural methods also face challenges in cap-
turing the nuances of natural textures, lighting, and spatial
relationships, resulting in outputs that may appear artificial
or lacking in visual appeal. The evolution towards deep gen-
erative models has been driven by the need to overcome
these limitations.

Generative Models have an extensive history in the field
of artificial intelligence, dating back to the 1950s. Early
models like Hidden Markov Models [69], Naive Bayes [70],
and Gaussian Mixture Models [71] generated simple data.
The development of these traditional generative models has
impacted how contemporary generative models are designed
and conceived, particularly within the framework of deep
learning. A deep generative model belongs to a category of
machine learning models that leverage deep neural networks
to grasp and depict intricate data distributions. Unlike conven-
tional discriminative models [72, 73], which prioritize predict-
ing labels or making classifications, deep generative models
strive to comprehend the fundamental structure of the data and
generate new samples that resemble the original data. By using
multiple layers of neural networks, these models can capture
intricate patterns and dependencies present in the data. Deep
generative models, such as Diffusion models [52], autoregres-
sive model [9], Generative Adversarial Networks (GANs)[7],
and others have demonstrated remarkable capabilities in tasks
like image generation[33–36], text synthesis [37, 38], and so.
They have significantly advanced the field of generative mod-
eling and hold promise for various applications, ranging from
creative art generation to scientific data synthesis [74, 75] and
beyond.

In this section, our focus is on a specific category of
generative models that have played a significant role in the
generation of floorplans. While there are various types of
generative models, we will delve into three types that have
been particularly beneficial in the creation and design of
floorplans: Generative Adversarial Networks (GANs) [7],
autoregressive models [9], and diffusion models [52].
Each of these models brings unique contributions to the

Fig. 3   Generative Adversarial
Network

SN Computer Science (2024) 5:589 	 Page 13 of 33  589

SN Computer Science

field, revolutionizing the way floorplans are generated and
designed. We will explore how these models have advanced
the process and brought something special to the domain of
floorplan creation.

 Generative Adversarial Network (GAN)

A Generative Adversarial Network (GAN) is a powerful
and innovative deep-learning framework introduced by Ian
Goodfellow and his colleagues in 2014 [7]. As shown in
Fig. 3, GANs consist of two neural networks, the genera-
tor and the discriminator, which are trained in a competi-
tive manner. The generator creates synthetic data samples,
while the discriminator attempts to distinguish between
real data and generated data. Through a process of itera-
tive training, the generator improves its ability to produce
realistic data, while the discriminator becomes more adept
at differentiating real from fake data. Generative Adversar-
ial Networks (GANs) have undergone significant evolution,
resulting in various types and improvements that have revo-
lutionized generative modeling. From Vanilla GANs’ [7]
adversarial setup to conditional GANs [76], DCGANs [77],
PGANs [78], and WGANs [79]. Each of these variants
brings unique advancements to the field. Additionally, Info-
GANs [80] have contributed to promoting disentanglement
in generated outputs. StyleGAN [81] and its variations have
enabled realistic and controlled image synthesis by incor-
porating disentangled latent and hierarchical architectures.
This evolution leads to the development of highly realis-
tic synthetic data, making GANs widely used for tasks like

image synthesis [82, 83], data augmentation [84], super-
resolution[85], and style transfer [86, 87].

Mathematical Representation

Generative Adversarial Networks (GANs) can be described
as an interplay between two distinct models: the generator
and the discriminator. Let’s denote the generator as G and
the discriminator as D. The generator takes a noise vector z
as input and generates fake samples G(z). The discriminator
takes both real samples x and fake samples G(z) as input and
outputs a probability score indicating the likelihood of the
input being real or fake.

The generator loss, denoted as L_G, aims to minimize
the divergence between the generated samples and the real
samples. One commonly used loss function for the generator
is the binary cross-entropy loss:

The discriminator loss, denoted as L_D, aims to accurately
classify real and fake samples. It involves two terms: the loss
for real samples and the loss for fake samples. The discrimi-
nator tries to minimize this loss function while the generator
tries to maximize it. By engaging in this adversarial training
process, the discriminator and generator networks learn and
improve their performance over time.

(1)L_G = − log(D(G(z)))

(2)L_D = −log(D(x)) − log(1 − D(G(z)))

Table 5   Deep generative Model
based floorplan Generation

Methods Name Diversity Compatibility Visual
Realism

Functional
Realism

Sampling
Time

GAN Wang et al. [12] – ✓ – ✓ –
Chaillou et al. [13] – ✓ – –
Nauata et al [15] ✓ ✓ ✓ – –
Nauata et al. [16] ✓ ✓ ✓ – –
Tang et al. [14] ✓ ✓ ✓ – –
Chailou et al. [18] – ✓ ✓ – –
Zheng et al. [31] ✓ ✓ – – –
Liu et al. [17] – ✓ ✓ – –
Chen et al. [42] – ✓ – –
Lim et al. [44] ✓ ✓ – – –
Schiller et al. [51] – ✓ – –

Diffusion model Shabani et al. [19] ✓ ✓ ✓ – –
Autoregressive Liu et al. [20] ✓ ✓ ✓ ✓ –
Others Liu et al. [21] – ✓ ✓ – –

Hu et al. [22] ✓ ✓ ✓ – –
Chen et al. [23] – ✓ ✓ – –
Wu et al. [90] – ✓ ✓ – –

	 SN Computer Science (2024) 5:589 589   Page 14 of 33

SN Computer Science

Training of GAN

The training of Generative Adversarial Networks (GANs)
involves optimizing the discriminator and generator net-
works through multiple training iterations (epochs). The
assessment of its time complexity is framed in terms of
the product of three key factors. Firstly, the number of
training iterations (T) signifies the frequency of processing
the entire dataset. Secondly, the dataset size (N) influences
the computational load, with larger datasets demanding
more time per epoch. Lastly, the complexity of the GAN’s
model architecture (f(model_architecture)), encompassing
parameters, layers, and network intricacies, contributes
significantly to the computation required.

The Eq. (3), succinctly captures the interplay of these fac-
tors in gauging the computational cost of GAN training, a
critical consideration in the realm of generative models. The
general intuition is that increasing T, N, or the complexity of
the model architecture will generally lead to a higher time
complexity for training the GAN.
Algorithm 1   Training a Generative Adversarial Network
(GAN)

(3)O(T ⋅ N ⋅ f (model_architecture))

The algorithm 1 involves alternating updates between
the discriminator and generator networks over a specified
number of training iterations (epochs). During each itera-
tion, a mini-batch of real data is sampled, and the genera-
tor produces fake data samples from random noise. The
discriminator and generator losses are computed based on
their abilities to distinguish between real and fake sam-
ples. These losses guide parameter updates, where the dis-
criminator aims to improve its ability to differentiate real
from fake data, while the generator aims to produce more
convincing data to fool the discriminator. This adversarial
training process continues iteratively, resulting in trained
discriminator and generator networks capable of generat-
ing data resembling the training dataset’s distribution.

Sampling of GAN

Sampling of GAN refers to the process of generating new
samples from the generator network, typically producing
synthetic data that resembles the training data distribu-
tion. The time complexity for sampling from a Generative
Adversarial Network (GAN) hinges upon the intricacies of
the generator network’s architecture and the dimensional-
ity of the latent space (D). In practice, the computational
effort required for generating samples is largely influenced
by the complexity of the generator, encompassing factors
such as the number of layers, parameters, and the compu-
tational operations involved in transforming latent noise
into data samples. The latent space dimension (D) also

SN Computer Science (2024) 5:589 	 Page 15 of 33  589

SN Computer Science

plays a pivotal role, as it determines the size of the space
from which random vectors are drawn to generate data.

The time complexity can be succinctly expressed as:

As shown in Eq. (4), the time required for sampling depends
on the intricacy of the generator architecture and the number
of samples to be generated. As the complexity of the gen-
erator architecture increases or the number of samples to
be generated grows, the computational resources and time
needed for sampling also increase. Therefore, careful consid-
eration of the generator architecture and the desired number
of samples is necessary to manage the time complexity of
the sampling process effectively in GANs.

(4)O(f (generator_architecture) ⋅ D)

Algorithm 2   Sampling from a Generative Adversarial Network (GAN)

The above algorithm 2 outlines the process of sampling
from a trained Generative Adversarial Network (GAN),
a core element in generative modeling. By leveraging a
trained generator network, this algorithm generates syn-
thetic data samples from random latent noise vectors.
During each iteration, a random noise vector is sampled
from a prior distribution and passed through the genera-
tor network to produce a synthetic sample. The generated
samples are then accumulated into a collection.

Discussion

Previous research into the utilization of Generative Adver-
sarial Networks (GANs) within architectural design spans
a wide array of domains. Examples of these investigations
include transforming city maps into satellite imagery [88],
generating furniture layouts [89], and urban planning [27].
Furthermore, GANs have found more recent applications
in simplifying layout design processes, such as generating
layouts for residential buildings.

Table 5, presents a summary of floorplan generation
using different generative models, outlining various desir-
able properties achieved through this approach.

•	 Method: represents a specific approach or Model used
to create a new floorplan.

•	 Name: highlights the paper name or used method with
reference.

•	 Diversity: refers to the count of unique floorplans gener-
ated during a single sampling instance. It encompasses
a range of distinct designs that adhere to specified con-
straints and layout arrangements.

•	 Compatibility : The ability of generated floorplans to
seamlessly fit and adhere to the given design boundaries
and spatial requirements.

•	 Visual Realism: The extent of similarity between gener-
ated designs and actual architectural layouts.

•	 Functional Realism: The extent to which generated
floorplans accurately represent functional and logical
relationships between rooms and spaces, ensuring prac-
ticality and usability.

•	 Sampling Efficiency: The effectiveness of the floorplan
generation process in exploring diverse design possibili-
ties while using minimal computational resources and
iterations.

And also the “ ✓ ” symbol signifies that the papers have
addressed the specified constraint, while the “-” symbol indi-
cates that the constraint was not taken into consideration by
those papers. From the analysis, it appears that a significant
number of researchers have focused on addressing compat-
ibility and enhancing visual realism in floorplan genera-
tion, with some attention given to diversity. However, the
functional realism of floorplans has often been overlooked.
Another aspect that has not received much consideration is
the sampling efficiency of floorplan generation, particularly
its suitability for real-time applications.

To harness the advantages of GAN, different research-
ers use GAN at different times to generate various elements
in architectural designs, including the generation of furni-
ture Arangments [91], the recognition of different rooms,

	 SN Computer Science (2024) 5:589 589   Page 16 of 33

SN Computer Science

the transformation of city maps [92], and volumetric design
generation [93].

The findings presented in the Table 5 reveal a discern-
ible pattern among researchers, particularly those denoted
as [14–16, 44] and others who have demonstrated a pro-
nounced capability to generate diverse images. Addition-
ally, the majority of generative models rooted in GAN archi-
tecture exhibit a commendable ability to create compatible
floorplans. Another noteworthy consideration involves the
facets of visual realism and functional realism. Research-
ers [14–18] stand out for their proficiency in generating visu-
ally captivating floorplans; however, an omission in their
approach pertains to the oversight of functional realism—an
aspect which ensures that the generated floorplans are not
just aesthetically pleasing, but also practically viable.

The paper presented by [31] for generating floorplans,
aiming to create a tool that transforms input images featuring
design boundaries into detailed interior designs within those
boundaries. The method involves training on two distinct
datasets and includes preprocessing steps such as bound-
ary production and masking. The model’s training employs
Pix2pixHD on labeled datasets comprising resized images
and their corresponding masked versions. While the model
tackles compatibility challenges, it faces drawbacks such
as extended training times and difficulty in accurately plac-
ing key spaces like living rooms, kitchens, and bedrooms.
Moreover, issues related to achieving visual and functional
realism and customization remain to be addressed.

The paper presented by [12] for generating floorplans,
aims to generate diverse floorplans for residential buildings
that meet the conditions of human-environment interac-
tion outlined in the activity map. Unlike other methods,
they use a human activity map which is extracted from the
input boundary and used to guide the floorplan generations
from the input boundaries. This human activity maps is
performed either automatically with a GAN model trained
from synthetic human-activity maps or semi-automatic
approach by using bi-RRT [94] based on user-specified
furniture locations. To produce the vectorized floorplans
the paper proposes two-stage approaches, the first stage is
named as ActFloorr-GAN and aims to synthesize a raster-
ized human activity map from the input boundary. Then
this pixel-wise representation is converted into a vectorized
way in the second stage. While they didnt provide the exact
measurement, they tried to address functional realism by

using a human activity map. They generate diverse floor-
plans but they didn’t show is it possible to generate more
than one floorplans. In extracting the Human activity map
the modis not optimal. Uss DCGAN model.

A new approach introduced by [15] is HouseGAN by
involving a generative adversarial network with graph con-
straints, where both the generator and discriminator utilize
a relational architecture. The central concept is to incor-
porate the constraint within the relational network’s graph
structure. To achieve this, the model employs conv-MPN
(Convolutional Message Passing Network) [95] for graph
updates and upsampling in the generator, as well as down-
sampling in the discriminator. However, it’s essential to
recognize the approach’s limitations, including restricted
rectangular shape generation, the absence of room size
incorporation, and the omission of door placements in the
graph’s edges due to spatial adjacency, all of which sug-
gest potential avenues for future refinements and expan-
sions of the proposed method.

In order to solve the problem of houseGAN [15, 16] pro-
vides an updated version by combining a relational GAN
constrained by graphs and a conditional GAN. This integra-
tion allows for iterative improvement, as a previously gener-
ated layout serves as the next input constraint. Notably, this
research unveils the effectiveness of a simple non-iterative
training approach known as component-wise GT-condi-
tioning in training such a generator. Moreover, the iterative
generator presents a new avenue for refining chosen metrics
through meta-optimization strategies by regulating the tim-
ing of input constraint passage during the iterative layout
enhancement process.

Furthering the analysis, researcher [12] method stands out
as it employs trace movement, effectively striding towards
achieving functional realism by accounting for the move-
ment dynamics within the floorplan’s layout. This particu-
lar emphasis on functionality adds a layer of practicality
to the generated designs. The discourse also shifts towards
computational resources, an aspect that many researchers
regrettably do not explicitly address. Nevertheless, through
an inference drawn from the methods employed, it becomes
conceivable to speculate about potential computational con-
straints. Notably, researcher [14] methodology emerges as
a standout, showcasing superior resource efficiency in com-
parison to its counterparts. In conclusion, the implications of
this exploration underscore a blend of capabilities, spanning

Fig. 4   Forward and backward
Diffusion Process

SN Computer Science (2024) 5:589 	 Page 17 of 33  589

SN Computer Science

diversity, compatibility, visual and functional realism, and
judicious utilization of computational resources across vari-
ous approaches in the field of generative floorplan design.

 Generative Diffusion Model

The diffusion generative model is a type of generative model
that operates by iteratively transforming a random noise sig-
nal to generate high-quality samples. It leverages the concept
of diffusion processes, which involve gradually spreading
or diffusing information over time [52]. In the context of
generative modeling, diffusion models learn a sequence of
transformations that progressively refine the initial noise
signal, leading to the generation of realistic samples. These
models are trained by optimizing the parameters to mini-
mize the difference between the generated samples and the
target data distribution. Diffusion generative models have
gained attention for their ability to generate diverse and
high-fidelity samples, and they have found applications
in various domains, including image synthesis [96], style
transfer [97], text [98], and audio [99]. They offer a prom-
ising approach to generative modeling by utilizing diffusion
processes to capture complex dependencies and generate
realistic and coherent samples.

Mathematical Representation

As shown in Fig. 4, the diffusion model comprises two pro-
cesses Forward and Backward, where the forward process
involves generating noise through a fixed noise vector, con-
taining random values or samples from basic distributions
like Gaussian noise, with the vector’s size aligned with the
size of the intended generated data, such as images or text
sequences. The noise vector is passed through a sequence
of diffusion steps.

The Eq. (5) above embodies the forward diffusion process
within a probabilistic framework. This equation character-
izes how a random variable x evolves over discrete time
steps, with xt representing its state at time t . The conditional
distribution q(xt|xt−1) captures the likelihood of xt given the
previous value xt−1 , and is modeled as a Gaussian distribu-
tion N  . The mean �t of this distribution is determined by
(1 − �t)xt−1 , reflecting how xt depends on its prior state xt−1
with the influence controlled by the parameter �t . Addition-
ally, the covariance matrix Σt is specified as �t times the
identity matrix I , regulating the variability of xt and indi-
cating the level of uncertainty. Noise scheduling [100] is an
important aspect of diffusion models that involves adding
the right amount of noise to arrive at an isotropic Gaussian

(5)q(xt|xt−1) = N(xt;�t = (1 − �t)xt−1,Σt = �tI)

distribution with various types of schedules like linear [52],
cosine [100], or combined approaches that determine how
the noise increases over time.

Another integral component of the diffusion model is
the Reverse Process, which involves a sequence of iterative
steps that typically extend over hundreds to thousands of
iterations. During each iteration of the reverse process, the
noise vector undergoes sequential updates aimed at refining
its representation. This refinement is accomplished through
conditioning based on the actual training data. By progres-
sively applying these iterative updates, the model learns to
align the noise vector with the underlying patterns and struc-
tures present in the training data.

In the backward diffusion process (Eq. 6), the model iter-
atively updates the noise vector by conditioning it on the
actual training data. In the conditional distribution where
xt represents the current value in the diffusion process, and
xt−1 represents the previous value. This conditional distribu-
tion is assumed to follow a multivariate normal distribution,
with mean ��(xt, t) and covariance Σ�(xt, t) . These mean and
covariance parameters are learned during the training of the
diffusion model. To refine the noise vector in the backward
diffusion process, the model samples from the conditional
distribution. This sampling step allows the noise vector to
progressively align with the target data distribution, capturing
the complex patterns and dependencies present in the training
data. By iteratively applying the backward diffusion process,
the model updates the noise vector over a series of steps,
often spanning from hundreds to thousands. This sequential
refinement facilitates the generation of high-quality samples
that closely resemble the training data. The backward diffu-
sion process, along with the forward diffusion process, ena-
bles the diffusion generative model to generate diverse and
realistic samples by leveraging the learned conditional distri-
bution and the associated mean and covariance parameters.

Training of Diffusion Model

Training diffusion models entails an iterative process
wherein data is denoised and reconstructed to learn the
underlying probability distribution. The worst-case time
complexity of training diffusion models depends on multiple
factors, including the number of denoising steps (S), dataset
size (N), model architecture complexity, and the number of
training iterations (T). As the number of denoising steps
increases, so does the complexity, with each step requir-
ing the processing of the entire dataset. A larger dataset
demands more computational resources, and the model’s
architectural intricacy and the number of training iterations
also impact the overall training time. As shown in Eq. (7),

(6)p�(xt−1|xt) = N(xt−1;��(xt, t),Σ�(xt, t))

	 SN Computer Science (2024) 5:589 589   Page 18 of 33

SN Computer Science

the worst-case time complexity often reflects the interplay
of these factors in determining the computational cost of
training diffusion models.

The algorithm 3 trains a diffusion model by adjusting its
parameters based on a given dataset. It shuffles and divides
the dataset into smaller parts, called mini-batches. Within
each mini-batch, the algorithm performs denoising steps to
improve the generated samples. It uses random noise sam-
pled from a standard normal distribution to create new sam-
ples by applying the model architecture. The quality of the
generated samples is assessed using a denoising loss func-
tion. The model parameters are then updated using gradient
descent, with the learning rate determining the step size. By
repeating this process for a specified number of iterations,
the diffusion model learns to generate high-quality samples
that resemble the training dataset.

(7)O(T ∗ S ∗ N ∗ f (model_architecture))

Algorithm 3   Training a Diffusion Model

Sampling of Diffusion Model

The sampling from a diffusion model is the process of gen-
erating new data points that follow the learned distribution.
The time complexity depends on the number of diffusion
steps (S), the model architecture, and the sequence length (L).

The provided algorithm 4 outlines the process of sampling from
a diffusion model, a generative model used in deep learning.
This algorithm starts with an initial data point and iteratively
adds noise to it, then gradually removes the noise to produce a
new data point. The number of denoising steps, determined by
the hyperparameter, influences the complexity of the sampling
process. At each step, the noise is sampled from a standard
Gaussian distribution. The model architecture, represented by
the function f(model_architecture), guides the denoising and
controls how the noise is incorporated. After all the denoising
steps are completed, the final data point represents a sample
generated from the diffusion model, capturing the underlying
data distribution’s characteristics. This algorithm is crucial for
various generative tasks and data generation applications.

(8)O(S ∗ f (model_architecture) ∗ L)

Algorithm 4   Sampling from a Diffusion Model

SN Computer Science (2024) 5:589 	 Page 19 of 33  589

SN Computer Science

Discussion

The incorporation of diffusion models spans various lay-
out generation applications, including document layout
generation [8, 101], where diffusion models organized
the arrangement of document elements to shape compre-
hensive layouts. Demonstrating this versatility, the house-
Diffusion generative model [19], as indicated in Table 5,
endeavors to generate vectorized floorplans seamlessly
using diffusion processes. This paper introduces a ground-
breaking approach that leverages a diffusion model and a
core Transformer architecture [102] for the generation of
intricate vector-based floorplans. These floorplans, com-
prised of interconnected polygons outlining rooms and
doors, are created through a process guided by attention
masks based on graph-constraints. This process involves
a combined discrete and continuous noise reduction
approach, resulting in accurate geometric relationships
among architectural elements.

The model’s direct generation of vector-based repre-
sentations, facilitated by a Diffusion Model and enhanced
by a Transformer network module, ensures the refinement
of 2D pixel coordinates in both discrete and continuous
forms. Notably, this approach integrates three attention
mechanisms within the Transformer module, leveraging
the structural connections among architectural compo-
nents. The paper substantiates its claims through qualita-
tive and quantitative evaluations, exhibiting remarkable
advancements over prevailing methods across diverse met-
rics. A standout achievement is the model’s ability to gen-
erate non-Manhattan structures and regulate corner counts
with precision. As an innovative approach, this method
introduces a direct generation of structured vector-graphic
geometries for floorplans. However, it is important to note
that the method does not specifically address the issues of
sampling time and functional realism. These aspects may
require further exploration and consideration, especially
when dealing with larger-scale buildings.

 Autoregressive Model

Autoregressive models are a class of generative models that
capture dependencies within sequential or structured data.
As shown in Fig. 5, the model is designed to generate new
samples by estimating the conditional probability of each
element in the sequence given the previous elements. By
iteratively generating data elements, autoregressive models
excel at capturing intricate patterns, making them espe-
cially effective in scenarios where the order and context
of elements matter significantly. Autoregressive models
have shown significant success in various domains, includ-
ing natural language processing [103, 104] and computer
vision [105, 106]. Notably, autoregressive models have
witnessed substantial advancements, with innovative archi-
tectures like Transformer-based models [102] achieving
exceptional performance in language understanding and
generation tasks.

Mathematical Representation

The Eq. (9), above encapsulates the foundational concept of
an autoregressive model, widely employed across various
generative tasks. In this context, x denotes a sequence of ele-
ments, often corresponding to pixels within images, while xi
signifies the i th element within the sequence. The equation’s
essence lies in expressing the probability distribution of the
entire sequence x as a product of conditional probabilities.
Each element’s likelihood p(xi|x<i) is intricately modeled
with respect to all prior elements, thus capturing complex
dependencies existing within the sequence. This formulation
allows autoregressive models to generate new samples by
iteratively predicting each element in the sequence, resulting
in the generation of outputs that exhibit complex patterns
and closely resemble the characteristics of the training data.

Training of Autoregressive Model

Training autoregressive models is a fundamental process in
deep learning where a model learns to generate sequences
of data. The primary objective is to capture the underlying
probability distribution of the sequences in the training data.
During training, the model is exposed to input sequences one
step at a time, and it sequentially predicts each element in the
sequence based on previously generated elements. The train-
ing process involves minimizing a loss function that quan-
tifies the difference between the model’s predictions and
the actual sequence data. Autoregressive models often use

(9)p(x) =

n∏

i=1

p(xi|x1, x2,… , xi−1) =

n∏

i=1

p(xi|x<i)

Fig. 5   Auto regresive Process

	 SN Computer Science (2024) 5:589 589   Page 20 of 33

SN Computer Science

techniques like teacher forcing, where the model is provided
with ground-truth data during training, and autoregressive
sampling during inference, where it generates sequences step
by step. As shown in Eq. (10) the complexity of training
depends on the sequence length (L), the number of model
parameters (P), and the number of training iterations (T).

The training algorithm for autoregressive models, as
depicted in Algorithm 5, follows an iterative optimization
approach to update the model parameters by minimizing pre-
diction errors over sequential data. The algorithm processes
a training dataset, splits it into mini-batches, and predicts
each element in a sequence while updating hidden states
iteratively. The loss incurred at each prediction step is accu-
mulated to compute the batch loss, and model parameters
are adjusted using backpropagation through time (BPTT).
Through a series of training iterations, this process enables
autoregressive models to capture sequential dependencies
and generate coherent sequences, making it fundamental
for tasks like natural language processing and time series
forecasting.

(10)O(T ∗ L ∗ P)

Algorithm 5   Training an Autoregressive Model

Sampling of Autoregressive Model

In autoregressive models, the process of sampling unfolds
sequentially, with each element of a sequence generated
based on the preceding ones. The worst-case time com-
plexity for this sampling procedure depends on two key
factors: the desired sequence length (L) and the intricacies
of the model architecture (f(model_architecture)). Longer
sequences naturally require more computation, as each ele-
ment must be generated in sequence, while the complex-
ity of the model architecture impacts the efficiency of each
generation step.

The Eq. (11), signifying that the computational cost of
sampling from autoregressive models scales with both the
sequence length and the intricacy of the underlying model
architecture.

(11)O(f (model_architecture) ⋅ L)

SN Computer Science (2024) 5:589 	 Page 21 of 33  589

SN Computer Science

Algorithm 6   Sampling from an Autoregressive Model

The algorithm 6 outlines the process of sampling from an
autoregressive model, a fundamental approach in sequen-
tial data generation and prediction tasks. Beginning with an
initial context, it sequentially generates a new element for
each position in the desired sequence length. This generation
process relies on the autoregressive model’s learned param-
eters and architecture, which conditions each prediction on
the preceding elements in the sequence. The resulting sam-
pled sequence encapsulates the model’s understanding of
sequential dependencies and serves as a valuable tool for
tasks like text generation, time series forecasting, and vari-
ous sequential data applications.

Discussion

The paper [20] introduces a novel autoregressive approach to
synthesizing floorplans using 1-D vector sequences, enhanc-
ing user interaction and customization. The framework con-
sists of a two-stage process involving a draft stage and a
multi-round refining stage. The initial floorplan sequence
is generated using a graph convolutional network (GCN)
and an autoregressive transformer network. A panoptic
refinement network (PRN) refines the design in the second
stage, aided by a geometric loss to ensure proper room con-
nectivity. As shown in 5, in contrast to prior methods this
vectorized approach produces more realistic and functional
designs, achieving higher usability and visual appeal by

using panoptic refinement network (PRN). The framework’s
effectiveness is demonstrated through experiments on real-
world floorplan data, showcasing its superiority over previ-
ous state-of-the-art methods.

 Others

In contrast to the previously mentioned generative mod-
els such as GANs, diffusion models, and autoregressive
models, this approach delves into the realm of floorplan
generation using distinct techniques like Convolutional
Neural Networks (CNNs) [49], Graph convolutional Net-
works (GCNs) [107] or other techniques. By leveraging
CNNs, the model harnesses spatial hierarchies and patterns
to create floorplans that adhere to architectural constraints
and aesthetic considerations. In parallel, GCNs enable the
incorporation of spatial relationships and connectivity in
the design, ensuring coherent room layouts and functional
arrangements. This departure from traditional methodolo-
gies showcases an innovative direction in floorplan genera-
tion, emphasizing the power of CNNs and GNNs in captur-
ing spatial intricacies and offering novel avenues for creating
intelligent and user-centric architectural layouts.

Discussion

Prior to the utilization of conventional generative models [7,
9, 19] in the domain of floorplan generation, researchers
employed a variety of deep learning techniques to explore
innovative approaches. As shown in Table 5, in 2018 [21]
proposes a Unified Framework for Floorplan Reconstruc-
tion from 3D Scans. The research focuses on automating
indoor floorplan reconstruction by utilizing a smartphone’s
RGBD streams captured while walking through a house.
The proposed solution, FloorNet, introduces a unique deep
neural architecture that effectively addresses the challenge
of processing vast 3D space data. FloorNet employs three

Table 6   Cross over comparisons

Attributes GAN Diffusion Model Autoregressive
Model

Realism ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆

Diversity ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆

Sampling-effi-
ciency

⋆ ⋆ ⋆⋆ ⋆ ⋆ ⋆ ⋆⋆

	 SN Computer Science (2024) 5:589 589   Page 22 of 33

SN Computer Science

neural network branches: PointNet for 3D point processing,
CNN with 2D point density images for enhanced local spa-
tial reasoning, and CNN with RGB images to utilize full
image information. These branches exchange intermedi-
ate features to harness the strengths of all architectures. A
benchmark was established using RGBD video streams from
155 residential spaces, demonstrating FloorNet’s efficacy in
improving reconstruction quality through both qualitative
and quantitative evaluations.

Another groundbreaking study [22] introduces an auto-
mated approach to floorplan generation that fuses deep
neural networks with user-guided design.Their framework,
Graph2Plan, employs a layout graph and user-defined con-
straints to produce floorplans that adhere to layout and
boundary requirements. By allowing users to input room
counts and constraints, the system retrieves floorplans from a
database and uses Graph2Plan to convert layout graphs into
refined room representations. The neural network, trained
on a sizable annotated dataset, employs graph neural net-
works and conventional image convolution to process layout
graphs, building boundaries, and raster floorplan images.
The method’s versatility and quality are demonstrated
through its ability to accommodate diverse user inputs.

Addressing the intricate challenge of generating 3D house
models based on linguistic descriptions, [23] introduces
a House Plan Generative Model (HPGM) that uniquely
divides the process into two sub-tasks: constructing layouts
and synthesizing textures. To effectively tackle these tasks,
two specialized modules, the Graph Conditioned Layout Pre-
diction Network (GC-LPN) and the Language Conditioned
Texture GAN (LCT-GAN), are proposed. These modules
focus on generating floor plans and corresponding interior
textures guided by provided descriptions. The generation
of building layouts that fulfill the specified requirements is
facilitated by the Graph Conditioned Layout Prediction Net-
work (GC-LPN), which integrates adjacent information into

the extracted features using a Graph Convolutional Network
(GCN) [107], thereby enhancing the performance of layout
generation.

The predominant focus of existing research revolves
around addressing issues of compatibility and visual realism
in the context of floorplan generation. However, both [21]
and [23] encounter challenges when attempting to generate
diverse floorplans within a single sampling, thereby com-
promising diversity. Furthermore, the mechanisms by which
these models efficiently conduct sampling remain largely
unaddressed. Another significant gap in the literature per-
tains to the issue of functional realism, a dimension that
most papers fail to adequately consider or explore in their
floorplan generation methodologies.

Comparative Analysis of Generative Learning Approaches
with Cross‑Over

As shown in Table 6, we provide a Comparative analysis of
Generative Learning Approaches for floorplan generation
based on sampling efficiency, realism, and diversity. The
assessment is presented in a tabular format, featuring star
rankings ranging from 1 to 5. The star rankings are catego-
rized as follows: 5 stars represent “High,” 4 stars indicate
“Moderate,” 3 stars signify “Medium,” and, 2 stars reflect
“Low,” This systematic comparison enables a comprehen-
sive understanding of the relative strengths and weaknesses
of different approaches within the realm of Generative
Learning for floorplan generation.

Realism: The underlying methodologies of generative
models such as GANs, Diffusion models, and autoregressive
models shape the realism achieved in floorplan generation.
GANs [7], through a competitive training process between a
generator and discriminator, generate highly realistic images
and can extend this capability to floor plan generation by

Table 7   Comparison of procedural methods and deep generative models

Proporties Procedural methods Deep generative models

Capturing intricate details and complexity Often struggle to capture the intricate details
and complexity found in real-world data

Excel at capturing intricate details and complexity
through learning from large datasets

Time consumption May require significant time and manual effort
to fine-tune parameters and achieve desired
results

Training phase can be time-consuming, but once
trained, generation is typically faster

Realism and variability Limited realism and variability compared to
real-world data

Offer greater realism and variability by learning
from large datasets

Capturing nuances of natural textures May face challenges in capturing the nuances of
natural textures, resulting in outputs appearing
artificial

Can capture the nuances of natural textures,
resulting in more realistic and visually appealing
outputs

Visual appeal Lack visual appeal due to limited realism and
inability to capture fine details

Generate visually appealing outputs by capturing
intricate details

Energy consumption – Can potentially achieve energy efficiency benefits
compared to procedural methods

SN Computer Science (2024) 5:589 	 Page 23 of 33  589

SN Computer Science

learning and analyzing patterns, spatial relationships, room
adjacencies, and circulation patterns from a dataset, enabling
the generation of realistic layouts. Conversely, diffusion
models, with their iterative refinement process and focus
on data distribution modeling, tend to generate more real-
istic floorplans by progressively capturing intricate spatial
relationships and details [19]. Autoregressive models, while
capable of producing coherent and structured outputs, might
encounter challenges in capturing global context and spatial
coherence due to their sequential generation process [108].

Diversity: In the context of generating floorplans, the
diversity of designs produced by Generative Adversarial
Networks (GANs), Diffusion Models, and Autoregressive
Models varies due to their distinct mechanisms. GANs
engage in a generator-discriminator interplay, prioritizing
realistic samples that mimic training data, which can lead
to limited diversity due to mode collapse [7]. Conversely,
Diffusion Models, operating through iterative diffusion pro-
cesses, inherently explore a broader range of data variations,
yielding more diverse floorplans [52]. Autoregressive Mod-
els generate diversity based on a sequential placement of
components, but they might struggle to capture global layout
variations, leading to moderate diversity [108].

Sampling Efficiency: Generative Adversarial Networks
(GANs) are often perceived to have better sampling effi-
ciency compared to diffusion models and autoregressive
models in certain contexts. GANs employ a generator-dis-
criminator interplay during training, allowing them to learn
the data distribution more directly and potentially yield
faster convergence [109]. However, diffusion models and
autoregressive models can experience slower sampling effi-
ciency due to their inherent mechanisms. Diffusion models
require multiple iterative steps to refine a sample, which can
become computationally intensive and slow down the gen-
eration process [110]. Similarly, The sampling process of
autoregressive models is sequential in nature and typically
scales linearly with respect to the data dimension [108] This
means that the generation of each data point depends on the
previous points, which can slow down the process.

Comparison of Procedural Methods and Deep
Generative Models

The comparison between procedural methods and deep
generative models as shown in the Table 7, highlights sev-
eral important factors for floorpan generation. Procedural
methods [54] excel at generating structured and rule-based
content but often struggle to capture the intricate details and
complexity found in real-world data. This limitation arises
due to the reliance on predefined algorithms and rules,
resulting in outputs that may appear repetitive and predicta-
ble [3]. Procedural methods also face challenges in achieving

high levels of realism and variability, as they lack the ability
to learn and generalize from large datasets [54]. Addition-
ally, capturing the nuances of natural textures and achieving
visual appeal can be difficult for procedural methods, leading
to artificial-looking outputs. These limitations can hinder
their suitability in domains where realism, variability, and
fine-grained details are crucial.

In contrast, deep generative models offer significant
advantages in addressing the shortcomings of procedural
methods. By leveraging powerful machine learning tech-
niques, deep generative models can learn from extensive
datasets, allowing them to capture intricate details and com-
plexity in content generation. This ability to learn from data
results in outputs that are more realistic, visually appeal-
ing, and diverse compared to procedural methods [90].
Deep generative models excel at capturing the nuances
of natural textures, enabling them to generate outputs that
closely resemble real-world counterparts [11]. Moreover,
the training phase of deep generative models can be time-
consuming, but once trained, the generation process is typi-
cally faster [7]. The ability of deep generative models to
capture intricate details, achieve realism, and generate visu-
ally appealing outputs has led to a noticeable transition from
procedural methods to deep generative learning in floorplan
generation.

The Importance of Generating Floorplans
Using Computational Method

Generating floorplans using computational method can offer
several important advantages:

•	 Speed and Efficiency
	  Generative models revolutionize the architectural

design process by vastly enhancing speed and efficiency.
Unlike traditional methods, which often demand substan-
tial time and labor investments, generative models auto-
mate the generation of floorplans, producing multiple
designs swiftly and with minimal human intervention.
This automation not only accelerates the design phase
but also conserves valuable resources. By expediting the
creation of floorplans, architects and designers can allo-
cate more time to refining designs and exploring innova-
tive solutions, ultimately streamlining the entire design
process and enhancing productivity.

•	 Variety and Creativity
	  Generative models herald a transformative shift in

architectural design by offering architects and design-
ers an expansive canvas to explore uncharted territories
of creativity. Through their capacity to generate diverse
floorplan designs, these models empower professionals to
transcend conventional boundaries and delve into layouts

	 SN Computer Science (2024) 5:589 589   Page 24 of 33

SN Computer Science

and configurations previously unexplored. By freeing
designers from the constraints of traditional methodolo-
gies, generative models unlock a realm of possibili-
ties, fostering an environment ripe for innovation. This
flexibility not only broadens the scope of architectural
imagination but also encourages the discovery of uncon-
ventional yet highly functional design solutions. Conse-
quently, architects can push the boundaries of creativity,
resulting in more inventive and original designs that cater
to the evolving needs and aspirations of inhabitants.

•	 Customization and Personalization
	  Computational methods represent a pivotal advance-

ment in architectural design, particularly in the realm of
residential spaces, where individual preferences and spe-
cific requirements reign supreme. By training these models
on predefined design preferences or constraints, architects
can harness the power of customization to craft floorplans
tailored precisely to the needs and desires of homeowners.
Whether it’s optimizing for open spaces to accommodate
social gatherings or prioritizing privacy with secluded
areas, generative models offer the flexibility to translate
abstract ideas into tangible floorplans. This level of cus-
tomization not only enhances the functionality and comfort
of living spaces but also fosters a deeper sense of personal
connection and satisfaction for homeowners, ensuring that
their homes truly reflect their unique lifestyles and aspira-
tions.

•	 Sustainablity and energy efficiency
	  The utilization of computational methods holds

immense promise in advancing sustainable development
goals, particularly within the framework of the United
Nations’ Sustainable Development Goals (SDGs), nota-
bly SDG 11 (Sustainable Cities [111] and Communities)
and SDG 13 (Climate Action) [112]. A compelling case
study emerges from the Municipality of Athens, showcas-
ing the transformative potential of AI-driven approaches
in energy management, climate modeling, and sustainable
energy optimization. Through harnessing the capabilities
of Generative models, Athens serves as a beacon of tech-
nological innovation, illustrating how advancements in AI
can catalyze a shift towards greener, more resilient urban
environments. This convergence of cutting-edge technol-
ogy, environmental consciousness, and strategic poli-
cymaking propels Athens to the forefront of sustainable
urban development, demonstrating a holistic approach to
environmental stewardship and community well-being. In
this context, the significance of AI-based floorplan genera-
tion lies in its transformative impact on the architectural
industry’s ability to create environmentally responsible
buildings. By harnessing AI algorithms, architects can
optimize resource utilization, enhance energy efficiency,
and improve indoor environmental quality from the earli-

est stages of the design process. This technology enables
the generation of floorplans that prioritize sustainability
metrics such as natural lighting, energy consumption, and
material usage, leading to the creation of buildings that are
both environmentally conscious and economically viable.
Furthermore, AI-driven simulations and predictive ana-
lytics empower architects to evaluate the environmental
performance of designs in real-time, facilitating informed
decision-making and iterative improvements throughout
the design process. Ultimately, this computational-based
floorplan generation not only accelerates the adoption of
sustainable design practices but also contributes to the
development of healthier, more resilient, and resource-
efficient built environments for future generations.

Open Challenges and Possible Solutions

Computational Complexity

Generative models, while offering remarkable capabilities in
generating data similar to a given training set, often exhibit
significant computational complexity. This complexity arises
due to several factors inherent in their architecture and train-
ing process. Firstly, the intricate network architectures of
generative models, such as Diffusion Model [52], Generative
Adversarial Networks (GANs) [7], and Autoregressive Mod-
els [9], contribute to computational demands. These models
typically comprise numerous layers and parameters, neces-
sitating extensive computations during both training and
inference phases. Additionally, the optimization algorithms
used for training, such as stochastic gradient descent [113]
or variants like Adam [114], require iterative calculations
over large datasets, further increasing computational load.
Furthermore, the scale and complexity of the training data
also play a crucial role; larger datasets demand more com-
putational resources for processing.

In order to tackle the problem of computational complex-
ity in generative models, several strategies can be employed.
One approach involves optimizing the model architecture
itself by designing more efficient and streamlined network
structures, reducing the number of parameters [115], or
utilizing model compression techniques like knowledge
distilation [116], pruning [117, 118] or quantization [119].
This optimization allows for a reduction in computational
complexity without compromising performance. Another
method is parallelization and distributed computing, where
generative models take advantage of parallel computing
architectures such as GPUs or distributed systems to per-
form computations simultaneously [120]. By distributing
the workload, the training and inference processes can be
accelerated, leading to more efficient generative modeling.

SN Computer Science (2024) 5:589 	 Page 25 of 33  589

SN Computer Science

Additionally, approximate inference methods like Bayes-
ian inference [121], or Monte Carlo sampling [122] can be
used to approximate complex probability distributions,
providing fast and tractable approximations when exact
inference is computationally infeasible. Pre-training mod-
els on large datasets or employing transfer learning tech-
niques [123] can help overcome computational complex-
ity by leveraging learned representations and reducing the
computational burden during training or inference. Finally,
optimization algorithms and heuristics like stochastic gradi-
ent descent or early stopping can optimize the model param-
eters and improve convergence, reducing computational
overhead [124]. By employing these strategies, researchers
and practitioners can effectively address computational com-
plexity in generative models, making them more efficient,
practical, and accessible for a wide range of applications.

Handling Large‑Scale Floorplans

With the growing demand for large and complex architec-
tural projects, floorplan generation methods must adapt to
handle the scaling requirements. Handling large-scale floor-
plans presents a challenge in floorplan generation due to
increased computational complexity and the availablity of
training data [19]. As floorplans grow in size and complex-
ity, the number of elements, relationships, and details to be
considered escalates significantly, demanding more memory
and processing power. This can lead to longer training times,
higher resource requirements, and slower sampling, hinder-
ing the efficiency of generative models.

To address the challenge of handling large-scale floor-
plans, potential solutions include model optimization, which
entails designing efficient neural network architectures,
employing model distillation, or implementing pruning
techniques to reduce model complexity. Model optimization
techniques, as highlighted in [125], focus on refining neural
network architectures to better suit the requirements of han-
dling large-scale floorplans. By streamlining the architecture
and reducing unnecessary computational overhead, these
methods aim to improve efficiency without compromis-
ing performance. Model distillation, as discussed in [126],
involves training a smaller, distilled model to mimic the
behavior of a larger, more complex model. This approach
can help reduce memory and processing requirements while
retaining the generative capabilities of the original model.
Additionally, pruning techniques, as outlined in [117, 118],
involve removing redundant connections or parameters from
the neural network to reduce its size and complexity. By
eliminating unnecessary components, pruning techniques
can lead to more efficient inference and sampling processes.

Moreover, adopting a progressive generation approach,
as suggested in [110], can be beneficial for handling large-
scale floorplans. This strategy involves generating floorplans
incrementally, starting with a coarse layout and iteratively
refining details. By breaking down the generation process
into smaller, more manageable steps, progressive genera-
tion promotes faster convergence and enhances overall sam-
pling efficiency. This iterative refinement allows the model
to focus on capturing finer details as it progresses, leading
to more realistic and coherent floorplan designs. Addition-
ally, by generating floorplans in stages, this approach can
help mitigate the computational complexity associated with
processing large-scale datasets, making it well-suited for
addressing the challenges of handling complex architectural
projects.

Ensuring Diversity in Generated Floorplans

The challenge in diverse floorplan generation lies in accom-
plishing the task of producing a broad spectrum of visually
unique and original floorplans from a given distribution.
Here are some of the key technical reasons:

A. Mode collapse

Generative models like GANs [7] face challenges such as
vanishing gradients and mode collapse during training. GAN
model collapse is characterized by the generator’s failure to
produce diverse and meaningful outputs. where only a few
sample modes are generated. This is evident through a near-
zero gradient norm (‖∇�g

LG‖ ≈ 0) in the generator’s loss
(LG) with respect to its parameters (�g) , leading to slow
learning. As a consequence, parameter updates are restricted,
hindering exploration of the entire data space and leading to
single-mode approximations (pg(x) ≈ �(x −M)) , severely
limiting sample diversity. Basically, GAN mode collapse can
occur due to factors such as an imbalance between the gen-
erator and discriminator (D(G(z)) ≈ 0.5) , mode collapse
(G(z) ≈ G(z�)) , lack of exploration in the latent space (lim-
ited z variations), gradient vanishing, and training instability
(oscillating loss functions).

Architectural modifications are pivotal in mitigating the
issue of mode collapse encountered in Generative Adver-
sarial Networks (GANs). By enhancing the depth of the
generator network, as suggested in [127], GANs can pro-
duce more diverse and intricate outputs, thereby reducing
the tendency to overfit on a limited set of modes. Multi-scale
architectures, as explored in [128], prove effective in captur-
ing both global and local features, thus promoting diversity
and expanding the range of generated samples. Furthermore,

	 SN Computer Science (2024) 5:589 589   Page 26 of 33

SN Computer Science

Conditional GANs (CGANs), as discussed in [76], integrate
additional input features to guide the generator towards spe-
cific modes, thereby mitigating mode collapse by providing
more explicit control over the generated outputs. Addition-
ally, regularization techniques such as weight decay, drop-
out, and batch normalization, as outlined in [129], are instru-
mental in preventing overfitting and encouraging exploration
of different modes, thus fostering diversity in the generated
samples. Moreover, training strategies such as alternating
learning rates or updating frequencies, as suggested in vari-
ous sources, contribute to the stability and convergence of
GAN training, further alleviating the limitations posed by
mode collapse. By implementing these architectural modi-
fications and training strategies, GANs can effectively over-
come mode collapse limitations, generate a wider range of
diverse and realistic samples, and consequently address the
issue of diversity in the generated outputs.

B. Optimization techniques

Optimization techniques play a significant role in influenc-
ing the diversity of generated outputs in various generative
methods. The choice of optimization algorithms and strate-
gies can impact how a generative model explores the data
space and generates diverse samples. When optimization
is too aggressive or constrained, it may prevent the model
from adequately exploring different modes of data distri-
bution, leading to reduced diversity in generated samples.
Conversely, well-tailored optimization methods can promote
a smoother convergence, allowing the model to capture a
broader range of patterns and modes, thereby enhancing
diversity in the generated outputs. Techniques such as gra-
dient clipping [130], weight regularization and learning rate
scheduling can affect the convergence behavior of the model.

To address the challenges associated with optimization
techniques and promote diversity in generated outputs,
several solutions can be implemented. One approach is to
explore advanced optimization algorithms such as evolution-
ary algorithms [131] or Bayesian optimization [132], which
can provide a more robust exploration of the data space and
help overcome local optima. Additionally, incorporating reg-
ularization techniques [133] like dropout or batch normaliza-
tion can introduce controlled noise during training, encour-
aging the model to explore different modes and increasing
output diversity. Another strategy involves adjusting the
learning rate dynamically during training, using techniques
like learning rate annealing [134] to strike a balance between
exploration and convergence. Furthermore, promoting diver-
sity can be achieved by incorporating diversity-inducing

objectives or introducing specific constraints on the model’s
parameters to encourage exploration. By carefully selecting
and combining these solutions, generative models can pro-
duce diverse and high-quality outputs, addressing the chal-
lenges associated with optimization techniques.

Handling Non‑Regular Shapes

Generating irregular floorplans poses a challenge due to the
lack of existing data with non-regular layouts. The currently
available floorplan datasets predominantly consist of regu-
lar and common patterns, making it difficult for generative
models to learn and generate irregular designs [15]. This
limitation arises because the models tend to rely on the pat-
terns and biases present in the training data. As a result,
creating floorplans with irregular shapes requires innovative
approaches that go beyond the existing dataset limitations.

To address the challenge of generating irregular shapes in
floorplan layouts and enhance a generative model’s capacity
for diversity and creativity, several strategies can be effec-
tively combined. One key strategy is to enrich the training
dataset with a diverse range of irregular floorplan layouts,
exposing the model to a wider variety of configurations.
By including floorplans with non-standard shapes, such as
irregular polygons or curved walls, the model can learn to
generate more diverse and unconventional layouts. Another
approach is to employ data augmentation techniques [135],
such as random transformations and deformations, during
the training process. These techniques introduce artificial
variations that simulate irregularities in real-world floorplan
layouts. By applying random rotations, translations, or dis-
tortions to the input data, the model can learn to generate
irregular shapes that go beyond the limitations of regular
grid-based layouts. Conditional generative models [16] have
also been utilized for irregular floorplan generation. These
models take into account specific constraints or input fea-
tures that guide the generation process. By incorporating
constraints related to room sizes, connectivity, or specific
architectural requirements, the generative model can produce
irregular shapes that align with desired criteria. This allows
for more precise control over the generated layouts while
still promoting diversity and creativity. Moreover, hybrid
approaches that combine generative models with proce-
dural methods specialized in handling irregular shapes can
be employed. Procedural methods, such as shape grammars
or procedural modeling techniques [136], excel at gener-
ating irregular shapes and intricate details. By integrating
these methods with generative models, the strengths of both
techniques can be leveraged, resulting in more accurate and
creative floorplan layouts with irregular shapes.

SN Computer Science (2024) 5:589 	 Page 27 of 33  589

SN Computer Science

Compatibility

Architectural design encompasses subjective decisions that
are heavily influenced by individual user preferences. To cre-
ate floorplans that truly connect with people, it becomes cru-
cial to incorporate user feedback and preferences through-
out the generation process, despite the added complexity.
Among the various factors affecting this interaction, compat-
ibility emerges as a pivotal element [19]. Addressing com-
patibility issues becomes essential to strike a harmonious
balance between user preferences and architectural practical-
ity, ensuring that the resulting spaces not only reflect per-
sonal tastes but also function seamlessly within the overall
environment. By tackling compatibility challenges, floorplan
designs can achieve a cohesive integration of user prefer-
ences and architectural considerations, leading to spaces that
are both aesthetically pleasing and functionally efficient. Let:

The compatibility metric (C) can be conceptualized as a
function of several factors:

1.	 Semantic Alignment (SA): How well the semantics of
the input match the design elements in the floorplan.

2.	 Spatial Alignment (SPA): How closely the spatial
arrangement of design elements in the floorplan matches
the intended layout from the input.

3.	 Constraint Adherence (CA): The extent to which
the generated floorplan adheres to various design con-
straints, including structural, functional, and regulatory
requirements.

4.	 Expressiveness (EX): The ability of the input modality
to capture the complexity and details required for accu-
rate floorplan generation.

5.	 Information Completeness (IC): The degree to which
the input provides all necessary information to generate
a complete and accurate floorplan.

The compatibility metric (C) between the input modality (I)
and the generated floorplan (G) is given by:

Here, wSA , wSPA , wCA , wEX , and wIC are weighting coefficients
that determine the relative importance of each factor. These
weights are assigned based on the specific requirements and
priorities of the design process.

I ∶ Input modality (bubble diagram, text, image or other.)

G ∶ Generated floorplan.

C ∶ Compatibility metric between input and generated floorplan.

(12)
C(I,G) = wSA ⋅ SA(I,G) + wSPA ⋅ SPA(I,G)

+ wCA ⋅ CA(G) + wEX ⋅ EX(I) + wIC ⋅ IC(I)

To improve the compatibility between input modalities
and generated floorplans in floorplan generation, enhanc-
ing data representation is crucial. This entails refining the
way input modalities such as textual descriptions are pre-
sented, either by offering more detailed descriptions or by
incorporating multiple modalities for a more comprehensive
input [137]. By enhancing data representation, the model
gains a clearer understanding of the relationships between
different modalities, thus facilitating more accurate floorplan
generation. Additionally, employing multi-modal learning
techniques enables the model to leverage information from
various modalities simultaneously, enhancing its ability to
capture intricate relationships and generate floorplans that
better align with the input data [137].

Integrating attention mechanisms into the generation
process enables the model to focus on pertinent aspects
of the input modalities, ensuring that the resulting floor-
plans accurately represent the contained information. This
attention-based strategy enhances the model’s ability to
discern crucial details and incorporate them into the gen-
erated output [138]. Implementing a feedback loop, where
the generated floorplans are continuously evaluated against
input modalities and used to refine the model iteratively,
further improves compatibility. Through this iterative refine-
ment process, the model learns to better align the generated
floorplans with the input modalities, ultimately enhancing
the quality and fidelity of the output over time. Combin-
ing vectorized generation with bubble diagram modality, as
advocated by [19], emerges as a highly effective approach
for enhancing interactivity accessibility. This integrated
method offers a dependable solution for creating interactive
floorplans that are both accessible and engaging.

Balancing Customization and Quality in Floorplan
Generations

Customization serves as a crucial aspect in floorplan gen-
eration, enabling layouts to be finely tuned to meet specific
requirements and preferences. Despite its significance,
numerous generative models employed in this domain are
trained on and produce raster floorplans, presenting con-
siderable obstacles for direct customization due to inherent
limitations in raster data representation [16]. Raster-based
floorplans lack the structural flexibility necessary for seam-
less adaptation to individualized needs, hindering efficient
customization efforts. Consequently, while generative
models excel in generating initial layouts, the transition to
tailored designs confronts hurdles stemming from the con-
strained nature of raster data.

Addressing the limitations posed by raster-based floor-
plan generation, the field often turns to post-processing tech-
niques [16], yet these methods may introduce drawbacks
affecting the quality of generated floorplans. To overcome

	 SN Computer Science (2024) 5:589 589   Page 28 of 33

SN Computer Science

these challenges, the exploration of end-to-end vectorization
methods [20] gains prominence, as they operate with vector
data, offering enhanced flexibility and precision in customi-
zation. However, the development of such methods entails
complexities in data transformations. Balancing customiza-
tion with high-quality results remains a complex challenge
in floorplan generation.

And the integration of quality control mechanisms within
generative models, serving as safeguards to ensure that cus-
tomization aligns with user preferences and design con-
straints without compromising the overall quality, function-
ality, and coherence of the generated floorplans. Prioritizing
research in vectorization and quality control holds the key
to empowering users to customize floorplans while ensuring
optimal outcomes.

Ensuring Realism for Generated Floorplans

Ensuring realism in generated floorplans is a complex
task involving the creation of architectural layouts that
closely resemble real-world designs. Realism encompasses
various aspects such as architectural accuracy, functional
considerations, aesthetic appeal, room proportions, spa-
tial flow, and compliance with regulations. Unrealistic
floorplans may exhibit issues like improper room size and
shape, non-connected rooms, jagged boundaries, and bro-
ken lines. To address these challenges, various computa-
tional methods and techniques can be employed.

One approach to achieving realism in generated floor-
plans is through leveraging architectural modifications
using graph neural networks [16]. By representing floor-
plans as graphs and utilizing graph neural networks, it
becomes possible to capture spatial relationships and
generate layouts that adhere to architectural principles.
This method enables the model to understand the con-
nections between different rooms and elements within the
floorplan, resulting in more coherent and accurate designs.
User feedback and iterative design play a crucial role in
enhancing realism. By involving users in the generation
process and incorporating their preferences and feedback,
the floorplans can be iteratively refined to better align with
real-world design standards and meet users’ expectations.
This iterative approach ensures that the generated floor-
plans are tailored to individual needs and preferences,
resulting in more realistic and user-centric designs.

Another technique is procedural generation [136],
which offers a way to create diverse and realistic floor-
plans. Procedural generation algorithms can automatically
generate a large number of floorplans with varying room
arrangements, spatial flows, and aesthetic appeal while still
adhering to functional and regulatory constraints [78]. By
incorporating attention mechanisms [102], such as those
used in transformer models, the generation process can

focus on relevant architectural details and capture depend-
encies and long-range interactions within the floorplans,
ensuring coherence and realism. Sequential generation
models, such as diffusion models [52] or autoregressive
models [9], allow for step-by-step generation of floor-
plans while considering dependencies between different
parts of the layout. These models capture complex spa-
tial relationships and can generate realistic floorplans by
sequentially adding rooms or modifying existing ones.
Increasing the amount of data available for training is also
crucial for improving realism. By expanding the dataset
of real floorplans used during the training phase, models
can learn from a wider range of architectural designs and
patterns, resulting in more realistic and diverse generated
floorplans that align with real-world architectural stand-
ards and aesthetics. By leveraging computational methods
like architectural modifications, user feedback, procedural
generation, attention mechanisms, sequential generation
models, and increasing the training data, it becomes possi-
ble to generate floorplans that closely resemble real-world
designs while adhering to architectural principles, func-
tional considerations, and aesthetic appeal.

Future Research Directions

The rapid advancement of computational methods across
various real-time industries has notably influenced the
architectural sector as well. With technology continually
evolving, the integration of computational techniques into
architectural practices has become increasingly prevalent.
In response to this trend, numerous avenues for future
research in floorplan generation using computational-
based methods have emerged. By examining the inter-
section of computational techniques and architectural
innovation, this study seeks to identify key areas ripe
for exploration and advancement, paving the way for the
development of more efficient, sustainable, and customiz-
able floorplan generation processes.

•	 Exploring Modalities for Diverse User Engagement:
	  Future research in floorplan generation could explore

innovative modalities to cater to diverse user needs,
including non-domain experts and individuals with
disabilities. By embracing different modalities, such
as natural language processing, gesture recognition,
or multimodal interfaces, computational tools can
empower a broader range of users to participate in the
design process and customize floorplans according to
their preferences and requirements. Moreover, incor-
porating accessibility features and design guidelines
tailored to individuals with disabilities can ensure that
generated floorplans are inclusive and barrier-free.

SN Computer Science (2024) 5:589 	 Page 29 of 33  589

SN Computer Science

This research could involve developing algorithms
that dynamically adjust floorplan layouts based on
real-time input from users, resulting in more person-
alized and satisfactory designs. By adopting a multi-
faceted approach that considers various modalities and
user perspectives, future research has the potential to
democratize architectural design and create more inclu-
sive and user-centric built environments.

•	 Energy Efficiency Modeling:
	  Future research in energy-efficient floorplan genera-

tion using AI holds promise for revolutionizing sustain-
able architecture. By harnessing the capabilities of AI
algorithms, researchers can explore novel approaches
to optimize building layouts and spatial configurations
to minimize energy consumption and maximize effi-
ciency. This research could involve the development
of AI models that integrate data on building orienta-
tion, thermal performance, and occupant behavior to
inform the design process and generate floorplans that
prioritize energy efficiency. Additionally, AI-driven
simulations and predictive analytics can be employed
to evaluate the performance of generated floorplans
under different environmental conditions and usage
scenarios, allowing architects to make informed deci-
sions that lead to more sustainable building designs.
Overall, advancing the intersection of AI and energy-
efficient floorplan generation offers significant potential
for reducing carbon footprints and creating buildings
that are environmentally friendly and cost-effective in
the long term.

•	 Balancing efficiency and diversity:
	  Future research in floorplan generation could focus on

optimizing the balance between sampling time and the
diversity of generated floorplans. This entails developing
efficient algorithms that can quickly explore a wide range
of design possibilities while ensuring that the result-
ing floorplans maintain diversity and creativity. One
approach could involve leveraging techniques from evo-
lutionary algorithms or reinforcement learning to dynam-
ically adjust the exploration-exploitation trade-off during
the generation process. Additionally, researchers could
explore the use of surrogate models or parallel computing
to accelerate the sampling process without sacrificing the
quality or diversity of the generated designs. By address-
ing this challenge, future research has the potential to
streamline the floorplan generation process and enable
architects to efficiently explore a diverse range of design
options to meet various project requirements and con-
straints.

•	 Ethical and Societal Implications:
	  Future research should delve into the ethical and soci-

etal implications arising from AI-generated floorplans,

delving into critical issues such as privacy, equity, and cul-
tural sensitivity. By scrutinizing these aspects, researchers
can pave the way for the responsible implementation of
AI technologies in architectural practice. This involves
developing comprehensive guidelines to navigate com-
plex ethical considerations, ensuring that AI-generated
floorplans prioritize privacy protection, promote equity
in access to design resources, and respect diverse cul-
tural perspectives. Moreover, this research seeks to foster
a deeper understanding of the broader societal impacts of
AI in architecture, facilitating informed decision-making
and promoting the development of ethically sound prac-
tices that benefit all stakeholders.

•	 3D floorplan Generation:
	  3D floorplan generation is an exciting area of research

aimed at expanding the capabilities of floorplan genera-
tion by incorporating the third dimension. By moving
beyond traditional 2D representations, 3D floorplan gen-
eration aims to provide a more immersive and realistic
depiction of architectural spaces. This involves consid-
ering factors such as room height, furniture placement,
and spatial arrangement in the vertical dimension. By
incorporating the third dimension, AI models can gener-
ate floorplans that capture the true volume and depth of a
space, allowing architects, designers, and users to better
visualize and understand the layout. This advancement
opens up possibilities for more accurate and detailed rep-
resentations of architectural designs, enabling better deci-
sion-making, enhanced spatial planning, and improved
communication between stakeholders involved in the
design and construction process. The exploration of 3D
floorplan generation holds great potential in revolution-
izing the way architectural spaces are conceptualized,
designed, and experienced.

Conclusion

House floorplan generation is a complex endeavor that bal-
ances functionality and aesthetics in interior layouts. Auto-
mation in this process accelerates design, reduces errors,
and offers creative exploration. In this article, we address
the computational methods which aim to synthesize floor-
plans. We provide a comprehensive and novel classification
of computational-based floorplan generation into subcatego-
ries of Procedural and machine-learning methods. Represen-
tation and interactivity methods were also discussed in the
review. For the recent developments in the area, we identify
the types, key features, representations, and algorithms in
each category. Furthermore, we propose general sampling
and training time complexity for each deep learning model
and present comparative analysis with cross-over. Detailed

	 SN Computer Science (2024) 5:589 589   Page 30 of 33

SN Computer Science

information on the characteristics of state-of-the-art solu-
tions for each category, their advantages, and drawbacks are
provided.

While there are existing solutions for various dimensions
of floorplan generation, the field still faces open research
issues, challenges, and areas in need of improvement. In this
article, we not only present state-of-the-art methods for com-
putational-based floorplan generation, including their key
properties, classification, and algorithms but also delve into
open questions and research directions within this domain. In
the Challenges and Possible Directions section, we delve into
the computational aspects and highlight the significance of
incorporating diversity and realism into the generated floor-
plans. We also discuss the need for effectively managing
irregularities and taking compatibility issues into account.

This comprehensive overview provides architects with a
valuable resource to enhance their design process, improve
efficiency, and create innovative spaces using computational
floorplan generation techniques. It also empowers individu-
als to customize their own floor plans, fostering a sense of
ownership. On a societal level, adopting these techniques
leads to enhanced resource utilization, improved energy
efficiency, optimized space utilization, and better living and
working environments. The review identifies opportuni-
ties for future development, further enhancing the societal
benefits of computational floorplan generation. Ultimately,
policymakers, researchers, and professionals can utilize this
review to make informed decisions and contribute to sustain-
able and functional spaces for diverse communities.

Author Contributions  All authors have contributed equally in concep-
tual work, validation, and write-up.

Funding  Not applicable.

Data Availability  Not applicable because the paper is a survey paper.

Declarations 

Conflict of interest  There are no financial or non-financial interests
that are directly or indirectly related to this work.

Human or Animals Rights  Not applicable because no animal or human
is involved in this paper.

Informed Consent  We have not used any information that needs con-
sent from any person or organization.

References

	 1.	 Heckmann O, Schneider F. Floor plan manual: Housing. 1997.
	 2.	 Brooks RA, Lozano-Perez T. A subdivision algorithm in con-

figuration space for findpath with rotation. IEEE Trans Syst Man
Cybern. 1985;2:224–33.

	 3.	 Rinde L, Dahl A. Procedural generation of indoor environments.
Charmers University of Technology 2008.

	 4.	 Peng C-H, Yang Y-L, Wonka P. Computing layouts with deform-
able templates. ACM Trans Graph (TOG). 2014;33(4):1–11.

	 5.	 Martin J. Procedural house generation: A method for dynami-
cally generating floor plans. In: Proceedings of the Symposium
on Interactive 3D Graphics and Games, 2006;2.

	 6.	 Merrell P, Schkufza E. Koltun V. Computer-generated residen-
tial building layouts. In: ACM SIGGRAPH Asia 2010 Papers,
2010;1–12.

	 7.	 Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley
D, Ozair S, Courville A, Bengio Y. Generative adversarial nets.
Adv. Neural Inf. Process. Syst. 2014;27.

	 8.	 Chai S, Zhuang L, Yan F. Layoutdm: Transformer-based diffu-
sion model for layout generation. In: Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition,
2023;18349–18358.

	 9.	 Para W, Guerrero P, Kelly T, Guibas LJ, Wonka P. Generative
layout modeling using constraint graphs. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision,
2021;6690–6700.

	 10.	 Pavie N, Gilet G, Dischler J-M, Ghazanfarpour D. Procedural
texture synthesis by locally controlled spot noise 2016.

	 11.	 Salakhutdinov R. Learning deep generative models. Ann Rev
Stat Appl. 2015;2:361–85.

	 12.	 Wang S, Zeng W, Chen X, Ye Y, Qiao Y, Fu C-W. Actfloor-gan:
Activity-guided adversarial networks for human-centric floorplan
design. IEEE Trans Visual Comput Graph. 2021;1:1.

	 13.	 Chaillou S. Archigan: a generative stack for apartment building
design. NVIDIA Corporation; 2019.

	 14.	 Tang H, Zhang Z, Shi H, Li B, Shao L, Sebe N, Timofte R, Van
Gool L. Graph transformer gans for graph-constrained house
generation. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2023;2173–2182

	 15.	 Nauata N, Chang K-H, Cheng C-Y, Mori G, Furukawa Y.
House-gan: Relational generative adversarial networks for
graph-constrained house layout generation. In: Computer
Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part I 16, 2020;162–177.
Springer.

	 16.	 Nauata N, Hosseini S, Chang K, Chu H, Cheng C, Furukawa
Y. House-gan++: Generative adversarial layout refinement net-
work towards intelligent computational agent for professional
architects. In: CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021;13627–13636.

	 17.	 Liu Y, Luo Y, Deng Q, Zhou X. Exploration of campus layout
based on generative adversarial network: Discussing the signifi-
cance of small amount sample learning for architecture. In: Pro-
ceedings of the 2020 DigitalFUTURES: The 2nd International
Conference on Computational Design and Robotic Fabrication
(CDRF 2020), 2021;169–178. Springer.

	 18.	 Chailou S. Space layouts & gans | gan-enabled floor plan genera-
tion. Towards Data Science 2020.

	 19.	 Shabani MA, Hosseini S, Furukawa Y. Housediffusion: Vector
floorplan generation via a diffusion model with discrete and con-
tinuous denoising. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2023;5466–5475.

	 20.	 Liu J, Xue Y, Duarte J, Shekhawat K, Zhou Z, Huang X. End-
to-end graph-constrained vectorized floorplan generation with
panoptic refinement. In: European Conference on Computer
Vision, 2022;547–562. Springer.

	 21.	 Liu C, Wu J, Furukawa Y. Floornet: A unified framework
for floorplan reconstruction from 3d scans. In: Proceedings
of the European Conference on Computer Vision (ECCV),
2018;201–217.

SN Computer Science (2024) 5:589 	 Page 31 of 33  589

SN Computer Science

	 22.	 Hu R, Huang Z, Tang Y, Van Kaick O, Zhang H, Huang H.
Graph2plan: Learning floorplan generation from layout graphs.
ACM Trans Graph (TOG). 2020;39(4):118.

	 23.	 Chen Q, Wu Q, Tang R, Wang Y, Wang S, Tan M. Intelligent
home 3d: Automatic 3d-house design from linguistic descriptions
only. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2020;12625–12634.

	 24.	 Živković M, Žujović M, Milošević J. Architectural 3d-printed
structures created using artificial intelligence: A review of tech-
niques and applications. Appl Sci. 2023;13(19):10671.

	 25.	 Zhang Z, Fort JM, Mateu LG. Exploringthe potential of artificial
intelligence as a tool for architectural design: A perception study
using gaudí’sworks. Buildings. 2023;13(7):1863.

	 26.	 Caldas L. Generation of energy-efficient architecture solutions
applying gene_arch: An evolution-based generative design sys-
tem. Adv Eng Inform. 2008;22(1):59–70.

	 27.	 Wang D, Liu K, Johnson P, Sun L, Du B, Fu Y. Deep human-
guided conditional variational generative modeling for automated
urban planning. In: 2021 IEEE International Conference on Data
Mining (ICDM), 2021;679–688. IEEE.

	 28.	 Shi Y, Shang M, Qi Z. Intelligent layout generation based on
deep generative models: a comprehensive survey. Inf Fus,
2023;101940.

	 29.	 Abd El-Maksoud NM, Ahmed EB. Artificial intelligence
applications in green architecture. Fayoum Univ J Eng.
2024;7(2):317–37.

	 30.	 Rane N, Choudhary S, Rane J. Leading-edge technologies for
architectural design: a comprehensive review. Available at SSRN
4637891 2023.

	 31.	 ZHENG H, Keyao A, Jingxuan W, Yue R. Apartment floor plans
generation via generative adversarial networks. In: 25th Inter-
national Conference of the Association for Computer-Aided
Architectural Design Research in Asia (CAADRIA 2020): RE:
Anthropocene, Design in the Age of Humans, 2020;601–610.
The Association for Computer-Aided Architectural Design
Research in Asia ...

	 32.	 Tzelepi M, Nousi P, Passalis N, Tefas A. Representation learning
and retrieval. Deep Learning for Robot Perception and Cognition
2022.

	 33.	 Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation
with conditional adversarial networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
2017;1125–1134

	 34.	 Zhu J-Y, Park T, Isola P, Efros AA. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In: Pro-
ceedings of the IEEE International Conference on Computer
Vision, 2017;2223–2232

	 35.	 Ramesh A, Pavlov M, Goh G, Gray S, Voss C, Radford A, Chen
M, Sutskever I. Zero-shot text-to-image generation. In: Inter-
national Conference on Machine Learning, 2021;8821–8831.
PMLR.

	 36.	 Ding M, Zheng W, Hong W, Tang J. Cogview2: Faster and bet-
ter text-to-image generation via hierarchical transformers. Adv
Neural Inf Process Syst. 2022;35:16890–902.

	 37.	 Bowman SR, Vilnis L, Vinyals O, Dai AM, Jozefowicz R, Bengio
S. Generating sentences from a continuous space. 2015. arXiv
preprint arXiv:​1511.​06349.

	 38.	 Liu PJ, Saleh M, Pot E, Goodrich B, Sepassi R, Kaiser L, Shazeer
N. Generating wikipedia by summarizing long sequences. 2018.
arXiv preprint arXiv:​1801.​10198.

	 39.	 Schick T, Schütze H. Few-shot text generation with natural
language instructions. In: Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Processing,
2021;390–402.

	 40.	 Sharma D, Dhiman C, Kumar D. Automated image caption gen-
eration framework using adaptive attention and bi-lstm. In: 2022
IEEE Delhi Section Conference (DELCON), 2022;1–5. IEEE.

	 41.	 Para W, Guerrero P, Kelly T, Guibas LJ, Wonka P. Generative
layout modeling using constraint graphs. In: Proceedings of
the IEEE/CVF International Conference on Computer Vision,
2021;6690–6700

	 42.	 Chen A. Generation of layouts for living spaces using condi-
tional generative adversarial networks: Designing floor plans that
respect both a boundary and high-level requirements 2022.

	 43.	 Emmons P. The cosmogony of bubble diagrams. In: 86th ACSA
Annual Meeting and Technology Conference, Constructing Iden-
tity, 1998;420–425.

	 44.	 Lim H. Automatic generation of ai-powered architectural floor
plans using grid data. Int J Appl Eng Res. 2023;18(2):97–102.

	 45.	 Sonbol R, Rebdawi G, Ghneim N. The use of nlp-based text rep-
resentation techniques to support requirement engineering tasks:
A systematic mapping review. IEEE Access. 2022;10:62811–30.

	 46.	 Liu H, Cui L, Liu J, Zhang Y. Natural language inference in
context-investigating contextual reasoning over long texts. In:
Proceedings of the AAAI Conference on Artificial Intelligence,
2021;35:13388–13396.

	 47.	 Tutenel T, Bidarra R, Smelik RM, De Kraker KJ. Rule-based
layout solving and its application to procedural interior genera-
tion. In: CASA Workshop on 3D Advanced Media in Gaming
and Simulation 2009.

	 48.	 Froumentin M, Labrosse F, Willis P. A vector-based repre-
sentation for image warping. In: Computer Graphics Forum,
2000;19:419–425. Wiley Online Library.

	 49.	 Athiwaratkun B, Kang K. Feature representation in convolutional
neural networks. 2015. arXiv preprint arXiv:​1507.​02313.

	 50.	 Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini
G. The graph neural network model. IEEE Trans Neural Netw.
2008;20(1):61–80.

	 51.	 Schiller E. Creating novel architectural layouts with generative
adversarial networks. PhD thesis, Harvard University 2018.

	 52.	 Ho J, Jain A, Abbeel P. Denoising diffusion probabilistic mod-
els. Adv Neural Inf Process Syst. 2020;33:6840–51.

	 53.	 Borgelt C. An implementation of the fp-growth algorithm.
In: Proceedings of the 1st International Workshop on Open
Source Data Mining: Frequent Pattern Mining Implementa-
tions, 2005;1–5.

	 54.	 Smelik RM, Tutenel T, Bidarra R, Benes B. A survey on pro-
cedural modelling for virtual worlds. Comput Graph Forum.
2014;33:31–50.

	 55.	 Braben D, Bell I (1984) Elite. Frontier Developments. http://​
front​ier.​co.​uk/​games/​elite

	 56.	 Bulbul A. Procedural generation of semantically plausible
small-scale towns. Graph Models. 2023;126:101–70.

	 57.	 Parish YI, Müller P. Procedural modeling of cities. In: Proceed-
ings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques, 2001;301–308.

	 58.	 Bavoil L, Myers K. Order independent transparency with dual
depth peeling. NVIDIA OpenGL SDK. 2008;1:12.

	 59.	 Borland D, Clarke JP, Fielding JR, Taylor RM II. Volumetric
depth peeling for medical image display. Visual Data Anal.
2006;6060:35–45.

	 60.	 Liu F, Huang M-C, Liu X-H, Wu E-H. Efficient depth peeling
via bucket sort. In: Proceedings of the Conference on High
Performance Graphics 2009, 2009;51–57.

	 61.	 Serdar T, Sechen C. Automatic datapath tile placement and rout-
ing. In: Proceedings Design, Automation and Test in Europe.
Conference and Exhibition 2001, 2001;552–559. IEEE.

	 62.	 Kaplan C. Introductory Tiling Theory for Computer Graphics.
Morgan & Claypool Publishers; 2009.

http://arxiv.org/abs/1511.06349
http://arxiv.org/abs/1801.10198
http://arxiv.org/abs/1507.02313
http://frontier.co.uk/games/elite
http://frontier.co.uk/games/elite

	 SN Computer Science (2024) 5:589 589   Page 32 of 33

SN Computer Science

	 63.	 Aldino AA, Pratiwi ED, Sintaro S, Putra AD, et al. Comparison
of market basket analysis to determine consumer purchasing
patterns using fp-growth and apriori algorithm. In: 2021 Inter-
national Conference on Computer Science, Information Tech-
nology, and Electrical Engineering (ICOMITEE), 2021;29–34.
IEEE.

	 64.	 Xu F, Lu H. The application of fp-growth algorithm based on
distributed intelligence in wisdom medical treatment. Int J Pat-
tern Recognit Artif Intell. 2017;31(04):1759005.

	 65.	 Hahn E, Bose P, Whitehead A. Persistent realtime building inte-
rior generation. In: Proceedings of the 2006 ACM SIGGRAPH
Symposium on Videogames, 2006;179–186

	 66.	 Marson F, Musse SR. Automatic real-time generation of floor
plans based on squarified treemaps algorithm. Int J Comput
Games Technol. 2010;2010:1–10.

	 67.	 Tutenel T, Bidarra R, Smelik RM, De Kraker KJ. Rule-based
layout solving and its application to procedural interior genera-
tion. In: CASA Workshop on 3D Advanced Media in Gaming
and Simulation 2009.

	 68.	 Lopes R, Tutenel T, Smelik RM, De Kraker KJ, Bidarra R. A
constrained growth method for procedural floor plan generation.
In: Proc 11th Int Conf Intell Games Simul, 2010;13–20. Citeseer.

	 69.	 Zhao R, Ji Q. An adversarial hierarchical hidden markov model
for human pose modeling and generation. In: Proceedings of the
AAAI Conference on Artificial Intelligence, 2018;32.

	 70.	 Cao Y, Sun L, Han C, Guo J. Improved side information genera-
tion algorithm based on naive bayesian theory for distributed
video coding. IET Image Proc. 2018;12(3):354–60.

	 71.	 Fernando B, Fromont E, Muselet D, Sebban M. Supervised learn-
ing of gaussian mixture models for visual vocabulary generation.
Pattern Recogn. 2012;45(2):897–907.

	 72.	 Sutton C, McCallum A, et al. An introduction to conditional
random fields. Found Trends® Mach Learn. 2012;4(4):267–373.

	 73.	 LaVal ley MP. Logis t ic reg ress ion . Ci rcu la t ion .
2008;117(18):2395–9.

	 74.	 Park N, Mohammadi M, Gorde K, Jajodia S, Park H, Kim Y. Data
synthesis based on generative adversarial networks. 2018. arXiv
preprint arXiv:​1806.​03384.

	 75.	 Ziegler JD, Subramaniam S, Azzarito M, Doyle O, Krusche P,
Coroller T. Multi-modal conditional gan: Data synthesis in the
medical domain. In: NeurIPS 2022 Workshop on Synthetic Data
for Empowering ML Research 2022.

	 76.	 Mirza M, Osindero S. Conditional generative adversarial nets.
2014. arXiv preprint arXiv:​1411.​1784.

	 77.	 Radford A, Metz L, Chintala S. Unsupervised representation
learning with deep convolutional generative adversarial net-
works. 2015. arXiv preprint arXiv:​1511.​06434.

	 78.	 Karras T, Aila T, Laine S, Lehtinen J. Progressive growing of
gans for improved quality, stability, and variation. 2017. arXiv
preprint arXiv:​1710.​10196.

	 79.	 Arjovsky M, Chintala S, Bottou L. Wasserstein generative adver-
sarial networks. In: International Conference on Machine Learn-
ing, 2017;214–223. PMLR.

	 80.	 Chen X, Duan Y, Houthooft R, Schulman J, Sutskever I, Abbeel
P. Infogan: Interpretable representation learning by information
maximizing generative adversarial nets. Adv Neural Inf Process
Syst. 2016;29.

	 81.	 Karras T, Laine S, Aila T. A style-based generator architecture
for generative adversarial networks. In: Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition,
2019;4401–4410.

	 82.	 Li C, Wang Z, Qi H. Fast-converging conditional genera-
tive adversarial networks for image synthesis. In: 2018 25th
IEEE International Conference on Image Processing (ICIP),
2018;2132–2136. IEEE.

	 83.	 Zhang H, Xu T, Li H, Zhang S, Wang X, Huang X, Metaxas
DN. Stackgan++: Realistic image synthesis with stacked genera-
tive adversarial networks. IEEE Trans Pattern Anal Mach Intell.
2018;41(8):1947–62.

	 84.	 Li X, Luo J, Younes R. Activitygan: Generative adversarial
networks for data augmentation in sensor-based human activity
recognition. In: Adjunct Proceedings of the 2020 ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous Computing
and Proceedings of the 2020 ACM International Symposium on
Wearable Computers, 2020;249–254

	 85.	 Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta
A, Aitken A, Tejani A, Totz J, Wang Z, et al. Photo-realistic
single image super-resolution using a generative adversarial
network. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017;4681–4690.

	 86.	 Chen Z, Chen X. Tachiegan: Generative adversarial networks for
tachie style transfer. In: 2022 IEEE International Conference on
Multimedia and Expo Workshops (ICMEW), 2022;1–6. IEEE.

	 87.	 Pektas M, Gecer B, Ugur A. Efficient hair style transfer with
generative adversarial networks. 2022. Xiv preprint arXiv:​2210.​
12524.

	 88.	 Zhang Y, Yin Y, Zimmermann R, Wang G, Varadarajan J, Ng
S-K. An enhanced gan model for automatic satellite-to-map
image conversion. IEEE Access. 2020;8:176704–16.

	 89.	 Shum KC, Pang H-W, Hua B-S, Nguyen DT, Yeung S-K. Con-
ditional 360-degree image synthesis for immersive indoor scene
decoration. 2023. Xiv preprint arXiv:​2307.​09621.

	 90.	 Wu W, Fu X-M, Tang R, Wang Y, Qi Y-H, Liu L. Data-driven
interior plan generation for residential buildings. ACM Trans
Graph (TOG). 2019;38(6):1–12.

	 91.	 Hsu Y-C, Fontaine M, Earle S, Edwards M, Togelius J, Nikolaidis
S. Generating diverse indoor furniture arrangements. In: ACM
SIGGRAPH 2022 Posters, 2022;1-2

	 92.	 Zhang Y, Yin Y, Zimmermann R, Wang G, Varadarajan J, Ng
S-K. An enhanced gan model for automatic satellite-to-map
image conversion. IEEE Access. 2020;8:176704–16.

	 93.	 Chang K-H, Cheng C-Y, Luo J, Murata S, Nourbakhsh M, Tsuji
Y. Building-gan: Graph-conditioned architectural volumetric
design generation. In: Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 2021;1956–11965.

	 94.	 LaValle S. Rapidly-exploring random trees: A new tool for path
planning. Research Report 9811 1998.

	 95.	 Zhang F, Nauata N, Furukawa Y. Conv-mpn: Convolutional mes-
sage passing neural network for structured outdoor architecture
reconstruction. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2020;2798–2807.

	 96.	 Singh J, Gould S, Zheng L. High-fidelity guided image synthesis
with latent diffusion models. In: 2023 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2023;5997–
6006. IEEE.

	 97.	 Zhang Y, Huang N, Tang F, Huang H, Ma C, Dong W, Xu C.
Inversion-based style transfer with diffusion models. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, 2023;10146–10156.

	 98.	 Li Y, Wang H, Jin Q, Hu J, Chemerys P, Fu Y, Wang Y, Tulyakov
S, Ren J. Snapfusion: Text-to-image diffusion model on mobile
devices within two seconds. 2023. arXiv preprint arXiv:​2306.​
00980.

	 99.	 Alexanderson S, Nagy R, Beskow J, Henter GE. Listen, denoise,
action! audio-driven motion synthesis with diffusion models.
ACM Trans Graph (TOG). 2023;42(4):1–20.

	100.	 Nichol AQ, Dhariwal P. Improved denoising diffusion probabil-
istic models. In: International Conference on Machine Learning,
2021;8162–8171. PMLR.

http://arxiv.org/abs/1806.03384
http://arxiv.org/abs/1411.1784
http://arxiv.org/abs/1511.06434
http://arxiv.org/abs/1710.10196
http://arxiv.org/abs/2210.12524
http://arxiv.org/abs/2210.12524
http://arxiv.org/abs/2307.09621
http://arxiv.org/abs/2306.00980
http://arxiv.org/abs/2306.00980

SN Computer Science (2024) 5:589 	 Page 33 of 33  589

SN Computer Science

	101.	 He L, Lu Y, Corring J, Florencio D, Zhang C. Diffusion-based
document layout generation. 2023. arXiv preprint arXiv:​2303.​
10787.

	102.	 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez
AN, Kaiser Ł, Polosukhin I. Attention is all you need. Adv Neu-
ral Inf Process Syst. 2017;30.

	103.	 Yu J, Xu Y, Koh JY, Luong T, Baid G, Wang Z, Vasudevan V,
Ku A, Yang Y, Ayan BK, et al. Scaling autoregressive models
for content-rich text-to-image generation. 2022;2(3):5. arXiv
preprint arXiv:​2206.​10789.

	104.	 Yu J, Xu Y, Koh JY, Luong T, Baid G, Wang Z, Vasudevan V,
Ku A, Yang Y, Ayan BK, et al. Scaling autoregressive models
for content-rich text-to-image generation. 2022;2(3):5. arXiv
preprint arXiv:​2206.​10789.

	105.	 Oord A, Kalchbrenner N, Espeholt L, Vinyals O, Graves A, et al.
Conditional image generation with pixelcnn decoders. Adv Neu-
ral Inf Process Syst. 2016;29.

	106.	 Kolesnikov A, Lampert CH. Pixelcnn models with auxiliary vari-
ables for natural image modeling. In: International Conference
on Machine Learning, 2017;1905–1914. PMLR.

	107.	 Kipf TN, Welling M. Semi-supervised classification with graph
convolutional networks. 2016. arXiv preprint arXiv:​1609.​02907.

	108.	 Xu Y, Song Y, Garg S, Gong L, Shu R, Grover A, Ermon S.
Anytime sampling for autoregressive models via ordered autoen-
coding. 2021. arXiv preprint arXiv:​2102.​11495.

	109.	 Dan Y, Zhao Y, Li X, Li S, Hu M, Hu J. Generative adversarial
networks (gan) based efficient sampling of chemical composi-
tion space for inverse design of inorganic materials. Npj Comput
Mater. 2020;6(1):84.

	110.	 Salimans T, Ho J. Progressive distillation for fast sampling of
diffusion models. 2022. arXiv preprint arXiv:​2202.​00512.

	111.	 Kellison T. An overview of sustainable development goal 11.
The Routledge handbook of sport and sustainable development,
2022;261–275.

	112.	 Louman B, Keenan RJ, Kleinschmit D, Atmadja S, Sitoe AA,
Nhantumbo I, Camino Velozo R, Morales JP. Sdg 13: Climate
action-impacts on forests and people. Sustainable development
goals: their impacts on forests and people, 2019;419–444.

	113.	 Zinkevich M, Weimer M, Li L, Smola A. Parallelized stochas-
tic gradient descent. Advances in neural information processing
systems. 2010;23.

	114.	 Zhang Z. Improved adam optimizer for deep neural networks. In:
2018 IEEE/ACM 26th International Symposium on Quality of
Service (IWQoS), 2018;1–2. Ieee.

	115.	 He S, Li Z, Tang Y, Liao Z, Li F, Lim S-J. Parameters compress-
ing in deep learning. Comput Mater Contin. 2020;62(1):321–36.

	116.	 Huang T, Zhang Y, Zheng M, You S, Wang F, Qian C, Xu C.
Knowledge diffusion for distillation. Adv Neural Inf Process
Syst. 2024;36.

	117.	 Li M, Lin J, Meng C, Ermon S, Han S, Zhu J-Y. Efficient spatially
sparse inference for conditional gans and diffusion models. Adv
Neural Inf Process Syst. 2022;35:28858–73.

	118.	 Park J, No A. Prune your model before distill it. In: European
Conference on Computer Vision, 2022;120–136.

	119.	 Zhan F, Yu Y, Wu R, Zhang J, Cui K, Zhang C, Lu S. Auto-
regressive image synthesis with integrated quantization. In:
European Conference on Computer Vision, 2022;110–127.
Springer.

	120.	 Botelho S, Joshi A, Khara B, Rao V, Sarkar S, Hegde C, Adavani
S, Ganapathysubramanian B. Deep generative models that solve
pdes: Distributed computing for training large data-free models.
In: 2020 IEEE/ACM Workshop on Machine Learning in High
Performance Computing Environments (MLHPC) and Workshop
on Artificial Intelligence and Machine Learning for Scientific
Applications (AI4S), 2020;50–63. IEEE.

	121.	 Grimmer J. An introduction to bayesian inference via variational
approximations. Polit Anal. 2011;19(1):32–47.

	122.	 Singh S, Wick M, McCallum A. Monte carlo mcmc: Efficient
inference by approximate sampling. In: Proceedings of the 2012
Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning,
2012;1104–1113.

	123.	 PeerJ: Offloading the computational complexity of transfer learn-
ing. PeerJ 2024.

	124.	 DLReview: Optimization algorithms and heuristics in deep learn-
ing. Deep Learn Rev 2023.

	125.	 Akay B, Karaboga D, Akay R. A comprehensive survey on opti-
mizing deep learning models by metaheuristics. Artif Intell Rev,
2022;1–66

	126.	 Chen H, Wang Y, Shu H, Wen C, Xu C, Shi B, Xu C, Xu C.
Distilling portable generative adversarial networks for image
translation. In: Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 2020;34:3585–3592.

	127.	 Yamazaki HV. On Depth and Complexity of Generative Adver-
sarial Networks 2017.

	128.	 Karnewar A, Wang O. Msg-gan: Multi-scale gradients for
generative adversarial networks. In: Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition,
2020;7799–7808.

	129.	 Martinez E, Jacome R, Hernandez-Rojas A, Arguello H. Ld-
gan: Low-dimensional generative adversarial network for spectral
image generation with variance regularization. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2023;265–275.

	130.	 Kenfack PJ, Sabbagh K, Rivera AR, Khan A. Repfair-gan: Miti-
gating representation bias in gans using gradient clipping. 2022.
arXiv:​abs/​2207.​10653.

	131.	 Bartz-Beielstein T, Branke J, Mehnen J, Mersmann O. Evolu-
tionary algorithms. Wiley Interdiscip Rev Data Min Knowl Dis.
2014;4(3):178–95.

	132.	 Frazier PI. Bayesian optimization. In: Recent Advances in Opti-
mization and Modeling of Contemporary Problems, 2018;255–
278. Informs.

	133.	 Nusrat I, Jang S-B. A comparison of regularization techniques
in deep neural networks. Symmetry. 2018;10(11):648.

	134.	 Nakamura K, Derbel B, Won K-J, Hong B-W. Learning-rate
annealing methods for deep neural networks. Electronics.
2021;10(16):2029.

	135.	 Hussain Z, Gimenez F, Yi D, Rubin D. Differential data aug-
mentation techniques for medical imaging classification tasks.
In: AMIA Annual Symposium Proceedings, 2017;2017:979.

	136.	 Stiny G. Introduction to shape and shape grammars. Environ
Plan. 1980;7(3):343–51.

	137.	 Suzuki M. Improving bi-directional generation between different
modalities with variational autoencoders. 2018. arXiv preprint
arXiv:​1801.​08702.

	138.	 Soydaner DJNC, Zhu H, Xie C, Fei Y, Tao HJE. Visual atten-
tion mechanism in deep learning. Neural Comput Appl.
2022;34:13371–85. https://​doi.​org/​10.​1007/​s00521-​022-​05567-8.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://arxiv.org/abs/2303.10787
http://arxiv.org/abs/2303.10787
http://arxiv.org/abs/2206.10789
http://arxiv.org/abs/2206.10789
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/2102.11495
http://arxiv.org/abs/2202.00512
http://arxiv.org/2207.10653
http://arxiv.org/abs/1801.08702
https://doi.org/10.1007/s00521-022-05567-8

	From Algorithms to Architecture: Computational Methods for House Floorplan Generation
	Abstract
	Introduction
	User Interaction and Engagement
	Types of Interactivity
	Image-to-Floorplan
	Text-to-Floorplan
	Buble Diagram-to-Floorplan
	Sketch-to-Floorplan

	Discussion

	Representation Methods
	Types
	Pixel-Based Representation
	Vector-Based Representation
	Feature-Based Representation
	Graph-Based Representation

	Discussion

	Computational Methods
	Types of Computational Methods
	Procedural Methods
	A. Depth Peeling Algorithm
	B. Tile Placement Algorithm
	C. Subdivision Algorithm
	D. Growth-Based Algorithm
	Discussion
	Deep Generative Learning Method
	 Generative Adversarial Network (GAN)
	Mathematical Representation
	Training of GAN
	Sampling of GAN
	Discussion
	 Generative Diffusion Model
	Mathematical Representation
	Training of Diffusion Model
	Sampling of Diffusion Model
	Discussion
	 Autoregressive Model
	Mathematical Representation
	Training of Autoregressive Model
	Sampling of Autoregressive Model
	Discussion
	 Others
	Discussion
	Comparative Analysis of Generative Learning Approaches with Cross-Over

	Comparison of Procedural Methods and Deep Generative Models

	The Importance of Generating Floorplans Using Computational Method
	Open Challenges and Possible Solutions
	Computational Complexity
	Handling Large-Scale Floorplans
	Ensuring Diversity in Generated Floorplans
	A. Mode collapse
	B. Optimization techniques

	Handling Non-Regular Shapes
	Compatibility
	Balancing Customization and Quality in Floorplan Generations
	Ensuring Realism for Generated Floorplans

	Future Research Directions
	Conclusion
	References

