
Vol.:(0123456789)

SN Computer Science (2024) 5:494
https://doi.org/10.1007/s42979-024-02851-z

SN Computer Science

ORIGINAL RESEARCH

A Precision‑Aware Neuron Engine for DNN Accelerators

Sudheer Vishwakarma1 · Gopal Raut2 · Sonu Jaiswal2 · Santosh Kumar Vishvakarma2 · Dhruva Ghai1 

Received: 13 January 2024 / Accepted: 31 March 2024
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024

Abstract
Deep Neural Networks (DNNs) form the backbone of contemporary deep learning, powering various artificial intelligence
(AI) applications. However, their computational demands, primarily stemming from the resource-intensive Neuron Engine
(NE), present a critical challenge. This NE comprises of Multiply-and-Accumulate (MAC) and Activation Function (AF)
operations, contributing significantly to the overall computational overhead. To address these challenges, we propose a
groundbreaking Precision-aware Neuron Engine (PNE) architecture, introducing a novel approach to low-bit and high-bit
precision computations with minimal resource utilization. The PNE’s MAC unit stands out for its innovative pre-loading of
the accumulator register with a bias value, eliminating the need for additional components like an extra adder, multiplexer, and
bias register. This design achieves significant resource savings, with an 8-bit signed fixed-point implementation demonstrating
notable reductions in resource utilization, critical delay, and power-delay product compared to conventional architectures.
An 8-bit sfixed < N, q > implementation of the MAC in the PNE shows 29.23% savings in resource utilization and 32.91%
savings in critical delay compared with IEEE architecture, and 24.91% savings in PDP (power-delay product) compared with
booth architecture. Our comprehensive evaluation showcases the PNE’s efficacy in maintaining inferential accuracy across
quantized and unquantized models. The proposed design not only achieves precision-awareness with a minimal increase
( ≈ 10%) in resource overhead, but also achieves a remarkable 34.61% increase in throughput and reduction in critical delay
(34.37% faster than conventional design), highlighting its efficiency gains and superior performance in PNE computations.
Software emulator shows minimal accuracy losses ranging from 0.6% to 1.6%, the PNE proves its versatility across different
precisions and datasets, including MNIST (on LeNet) and ImageNet (on CaffeNet). The flexibility and configurability of the
PNE make it a promising solution for precision-aware neuron processing, particularly in edge AI applications with stringent
hardware constraints. This research contributes a pivotal advancement towards enhancing the efficiency of DNN computa-
tions through precision-aware architecture, paving the way for more resource-efficient and high-performance AI systems.

Keywords  Deep neural networks · Neuron engine · Edge-AI · Multiply-accumulate unit · Activation function · Precision-
aware architecture · Approximate computing

Introduction and Motivation

The demand for efficient deep learning (DL) hardware is
escalating with the increasing need for advanced AI applica-
tions. Within the realm of DL, deep neural networks (DNNs)

Sudheer Vishwakarma and Gopal Raut have contributed equally to
this work.

 *	 Dhruva Ghai
	 dhruvaghai@orientaluniversity.in

	 Sudheer Vishwakarma
	 vsudheer062@orientaluniversity.in

	 Gopal Raut
	 gopalraut05@gmail.com

	 Sonu Jaiswal
	 phd2101191002@iiti.ac.in

	 Santosh Kumar Vishvakarma
	 skvishvakarma@iiti.ac.in

1	 Department of Electronics and Communication Engineering,
Oriental University, Indore, India

2	 Department of Electrical Engineering, Indian Institute
of Technology Indore, Indore, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-02851-z&domain=pdf
http://orcid.org/0000-0002-8204-6330

	 SN Computer Science (2024) 5:494 494   Page 2 of 14

SN Computer Science

have gained prominence for diverse applications, including
object detection, pattern and character recognition, audio
and video processing, language translation, trading, gam-
ing, and cyber-security, as indicated by Sim et al. [1]. It’s
capability to map complex relationships within non-linear
data bestows considerable advantages, setting it apart from
other prediction techniques, as highlighted by Khalil et al.
[2]. The DNN’s Neuron engine plays a pivotal role in com-
putation and accuracy, yet its hardware implementation is
known for its demand for power and resources, as pointed
out by Shawl et al. [3]. Optimizing the physical performance
of the Neuron engine (NE) becomes crucial in addressing
the heightened computational requirements of DNN. This
engine adeptly handles operations like Multiply-Accumulate
(MAC) and the execution of the non-linear transformation
function, known as the activation function (AF). Further-
more, the MAC and AF operation are responsible for 90%
of the computation in the neural network. Therefore, opti-
mizing the computational unit architecture is essential to
enhance DNN performance.

A typical DNN consists of two parts: feature extrac-
tion, as illustrated in Fig. 1a, and output classification,
as depicted in Fig. 1b. In the course of this operation,
input features undergo convolution with filters, requir-
ing hundreds and thousands of parallel neuron processing
engines to carry out these computations [4]. Consequently,
there is a compelling need to optimize the Neuron engine
responsible for executing the fundamental computations
within DNN inference. Furthermore, the design of the NE,
encompassing MAC and AF, involves the consideration
of various design parameters. These parameters include
arithmetic precision, data types, approximation in com-
putation, data quantization, computation algorithms, and
hardware implementation platforms, among others [5].
The hardware implementation platforms utilized for imple-
mentation encompass CPU, GPU, FPGAs, and ASICs,
each with its respective advantages and drawbacks [6].
However, for edge-AI solutions, FPGA and ASIC-based
implementations are preferred. Additionally, for power-
efficient solutions, ASIC-based implementation is favored,
although it lacks reconfigurability compared to FPGAs. To
enhance computational efficiency and reduce architecture

complexity, numerous investigations explore approxima-
tion in computation and data quantization [7]. However,
these techniques often result in reduced accuracy. Hence,
careful consideration of these advancements in the neu-
ron engine becomes imperative. Scholars are presently
exploring the potential of employing quantization in NE
to enhance computational capacity while preserving model
precision. Additionally, the use of application dependent
different AFs within the same network is recommended
[8]. Traditionally, this necessitates separate hardware
for individual AFs and their configuration, leading to
increased hardware resources and critical circuit delays.

In pursuit of reduced complexity in DNN hardware accel-
erators, a preference for lower arithmetic precision and inte-
ger or fixed-point data representation arises in both MAC
and AF computations. During convolution, where a k × k
kernel convolves with an input feature map (Fig. 1a), parallel
multiplication and accumulation occur, leading to an output
precision increase to 2N + M. Here, N represents input pre-
cision, and M signifies the overhead bits, dependent on the
number of accumulations performed by the corresponding
MAC unit. The MAC output is then provided to the AF,
dictating the precision of the AF. Conventional AF imple-
mentations, such as those based on Look-Up Tables (LUTs)
or Read-Only Memory (ROM), become hardware-costly for
higher precision due to the increase in memory elements to
2 P , where P is the input bit precision of the AF (traditionally
2N + M). We can quantize the MAC output to N bits before
applying it to the AF [8, 9]. However, this approach may
result in accuracy loss, particularly when prioritizing higher
accuracy for complex input features. Therefore, an efficient
neuron must provide the option to select between quantized
and unquantized MAC outputs. Moreover, if opting for
unquantized data feed to the AF, conventional AF imple-
mentation becomes undesirable, as it is power and resource-
intensive, especially for higher precision. Consequently, it
becomes imperative to address a solution that accommodates
both quantized and unquantized MAC outputs. To tackle this
challenge, we introduce the Precision-aware Neuron Engine
(PNE). The distinctive features of PNE and the primary con-
tributions of this work are outlined below:

Fig. 1   The convolution layer in DNN performs 2D matrix multiplication between the input feature map and kernel weights for feature extraction
using MAC. FC layer in DNN performs 1D element-wise data computation. The ultimate classifying output layer is an FC layer

SN Computer Science (2024) 5:494 	 Page 3 of 14  494

SN Computer Science

•	 A resource and power-efficient MAC architecture in PNE
with a state machine design is presented, eliminating the
multiplexer and utilizing pre-loaded bias for precision-
aware computations, offering both quantized and unquan-
tized outputs.

•	 We present an adaptable AF using ROM and Cordic,
capable of producing tanh and sigmoid functions across
varying bit-precisions, exhibiting minimal accuracy deg-
radation and reduced LUT usage compared to tensor-
based models.

•	 The PNE is designed using the proposed MAC and AF,
achieving high accuracy at low-bit precision through the
quantized MAC output and ROM AF output, as well as
at high-bit precision using unquantized MAC output and
Cordic AF output.

•	 The PNE’s inference accuracy is assessed using Python
emulation of LeNet and CaffeNet DNN models on FPGA
hardware, comparing performance parameters, including
resource, power utilization and delay, with state-of-the-
art architectures.

This paper is an extension of our previous work presented
at the IFIP-IoT conference [10] where an adaptable AF is
presented. In this paper, we present a precision-aware neuron
architecture using a precision-aware MAC and the adapt-
able AF.

Organization

This article is structured as follows: related research is pre-
sented in section “Related Research”. The proposed PNE
architecture, it’s state machine design, and it’s components
i.e. the MAC and AF are discussed in section “Proposed
PNE Architecture”, followed by performance analysis and
results discussions in section “Inference Accuracy and Hard-
ware Performance: Evaluation and Analysis”. Finally, the
concluding remarks are given in section “Conclusions and
Future Research”.

Related Research

Various hardware accelerator architectures for neural net-
works have been introduced in the recent years [11]. Shal-
low neural networks are no longer useful, as the quantity
of hardware neurons and connections in modern networks
makes them outdated and unsuitable for the deep learning
era. CNNs (a type of DNN) are frequently used in both
video and image recognition systems, and usually employ a
number of filters or convolution matrices [12]. As convolu-
tion matrices have fewer parameters than FC network layer
weights, parallelism can be introduced. In order to reduce
the network complexity, quantization in data representation

is preferred for quantizing MAC output during inference,
also rounding of weights and biases since they are fixed
after training is finished [13]. In [14] and [15], a flexible,
multi-precision per-layer data compression procedure is
presented and implemented. Pruning aims to eliminate the
subset of network units (i.e. weights or filters) which are
least important for the network’s intended task [16]. All of
the above strategies necessitate the need for a programmable
and precision-aware PNE which involves MAC computation
followed by AF [13].

The MAC operation comprises of an adder, multiplier,
and accumulator register. The multiplication result is trans-
ferred to an accumulator, added, and the output is stored in
a register. The type of adders, multipliers, and registers lead
to variations in area and delay [17]. Various articles have
addressed MAC optimization by modifying the multiplica-
tion and addition techniques. Existing literature proposes
different multiplication methods, such as vedic [18], array,
wallace tree, booth [19], shift and add [20, 21], and modified
booth [22, 23]. Researchers have also focused on optimiz-
ing the addition and quantized accumulation process using
techniques such as approximation, quantization/ data resize,
bits-serial, and reduced precision, as discussed in a study by
Garland et al. [9]. Limited hardware resources make it chal-
lenging to implement MAC with parallel multipliers [24].
The conventional architecture of MAC (showing a single
multiplier followed by accumulator along with input–output
precision) is illustrated in Fig. 3.

The typical RTL view of the MAC architecture is
depicted in Fig. 2, which includes a multiplier, two adders,
a multiplexer, and an accumulator register [25]. The state-
of-the-art revised architecture presented in Fig. 3 uses only
one adder, one multiplexer, and register files, resulting in
a saving of one adder compared to the typical architecture
[26]. However, this design still uses a bias register file and
a multiplexer, which result in more hardware resources and
additional delay due to bias register loading time and delay
due to the multiplexer. Therefore, the design can be further
optimized to make it more efficient for DNN accelerator
applications, in order to increase throughput. The conven-
tional MAC design produces an output of 2N + M bits,
where N is the input bit, and M is the overhead bits that
come across the accumulation. The overflow bit depends
on the number of accumulations and can be defined as 2 j ,
where j is the number of accumulations required in the
MAC, which depends on the number of inputs.

The designs shown in Figs. 2, and 3, including our pro-
posed design, utilize an arithmetic fixed-point ⟨N, q⟩ repre-
sentation, which employs a binary point implication repre-
sentation for the integer, signed, and fractional bits, as shown
in Fig. 4. The representation comprises of N bits, compris-
ing one sign bit, N-q integer bits, and q fractional bits. As
overflow bits are necessary in the accumulation stage, the

	 SN Computer Science (2024) 5:494 494   Page 4 of 14

SN Computer Science

accumulator’s bit size must be increased, and the overflow
bit size is determined by the input size (i.e., the number
of accumulations) in the corresponding neuron. In Fig. 3,
the fixed-point N-bit numbers are depicted, as explained in
Fig. 4, along with the logic elements and a 2:1 MUX for the
N-bit data line. The MUX with a select line is employed to
choose between pre-trained bias or accumulation process.
The excessive hardware, i.e., MUX and bias register, shown
in the dotted red box [1] Fig. 3, occupies additional hard-
ware resources and increases delay. To address this issue,
we optimized the design by efficiently pre-loading the bias

value in the accumulator register, enabling resizing of the
MAC output and handshaking with activation.

AF is the key to improving the network’s learning capa-
bilities in addition to correctly re-initializing the weights
parameter. Sigmoid function is widely used for backpropaga-
tion training algorithms. It is crucial to select the right AF
for machine learning training and inferencing. Type of AF
can affect the convergence and accuracy of network training
as well as increase the computational cost of training and
inference phases [27]. Here arises the need for an adaptable
AF. [28] presents a polynomial model for implementation of
the fractional exponent part of tanh AF. These approaches
achieve accurate approximations with minimal resource
usage, but do not address configurability in AF. An energy-
efficient DNN accelerator, with variable precision support,
improved performance, and reduced energy consumption,
is evaluated at the MAC level in [29], but the investigation
of the AF is warranted for further enhancement. The Cordic
method, originally introduced by Volder and later modi-
fied by Walther, performs circular, linear, and hyperbolic
operations [30]. To address the issues related to additional
resources and higher critical delays associated with Cordic,
a resources reused Cordic-based architecture in [8] realizes
sigmoid and tanh AFs using the same logic resources. This

Fig. 2   Conventional RTL design for typical MAC with fixed-point representation. Here, N-bit precision is considered at the input with an output
of 2N + M bits which includes overflow bits

Fig. 3   Conventional MAC architecture with a single multiplier, an accumulator register with additional overhead bits, and a MUX for selecting
the bias value

Fig. 4   The fixed-point arithmetic representation for an N-bit number,
wherein q represents the fraction bit, (N - q) represents the integer bit,
and MSB represents the sign bit

SN Computer Science (2024) 5:494 	 Page 5 of 14  494

SN Computer Science

approach has two main drawbacks: low accuracy and high
LUT utilization for bit-precision ≤ 8. The adaptable AF
presented in this paper combines the Cordic algorithm for
high bit-precision AF and ROM for low bit-precision AF ( ≤
8). For hardware implementation with the fixed-point nota-
tion, ROM-based AFs are not suitable for high-bit precision
applications due to their significant resource utilization (i.e.,
LUT in FPGA and memory elements in ASIC). The LUT-
based approach splits non-linear input ranges into regions
and stores their data in LUTs as straight-line segments.
FPGA-based customizable hardware designs for AFs have
been proposed in [31], which are configurable, but consume
more on-chip area compared to ASICs. FPGAs use BRAM
to reduce computation overhead, but increased BRAM uti-
lization trades memory usage for bit precision [26]. In [32],
authors present a library of VLSI implementations for vari-
ous AFs for hardware-efficient NN accelerators.

Proposed PNE Architecture

In this section, we examine the hardware architecture and
state machine of the precision-aware neuron engine (PNE)
proposed in this research. The design incorporates opti-
mized MAC unit to address precision sensitivity. The PNE
also includes an adaptable AF with ROM and Cordic-based

implementation to improve memory efficiency in PNE pro-
cessing while preserving versatile precision capabilities.

PNE and State Machine

In this section, we present the PNE architecture and its cor-
responding state machine. Comprising the MAC unit and the
AF unit, the PNE, depicted in Fig. 5, illustrates the sequence
of the MAC unit followed by the AF unit. In Fig. 6, the
MAC unit within the PNE is designed to yield 2 outputs:
quantized and unquantized. The MAC output serves as the
input to a 2:1 MUX, which, contingent on the control signal
(precision_ctrl), determines whether the quantized
or unquantized output is to be provided as input to the AF.
The (precision_ctrl) signal also determines the AF
type based on the output produced by the MAC unit (i.e.,
quantized or unquantized).

The PNE has three inputs: input, weight, and bias. While
the design is versatile enough to handle different bit-pre-
cision, we opt for a signed 8-bit arithmetic computation
for performance evaluation and result extraction. The final
output, identified as AFout , is configured as an 8-bit value
within the PNE. In the AF, the hardware incorporates a
select pin (precision_ctrl) for AF processing. For
lower precision, specifically quantized output, we have
employed a ROM-based AF designed to support 8-bit and
lower precision. However, when dealing with unquantized

Fig. 5   PNE integrates MAC and
AF. The MAC unit multiplies
input features with trained
weights, accumulates the result,
and adds bias. The MAC output
(‘z’) is denoted as MAC

out
 .

The AF is applied to MAC
out

 ,
resulting in the AF output
(AF

out
)

Fig. 6   PNE showcasing quantized and unquantized MAC outputs fed through 2:1 MUX to give MAC
out

 , followed by AF output: AF
out

 . PNE
out

 is
the same as AF

out

	 SN Computer Science (2024) 5:494 494   Page 6 of 14

SN Computer Science

output featuring a higher bitwidth, a ROM-based approach
might not be the most efficient choice for AF. Consequently,
we introduce a novel AF function using iterative Cordic,
ensuring support for higher precision computation with
minimal hardware overhead compared to ROM-based
implementations.

Figure 7 shows the state machine of the PNE. The state
machine comprises of several states: idle, idle, pre_MAC,
MAC, post_MAC, and AF. In the idle state, the
machine sets various input and output signals to their initial
values and waits for the Computeinit signal to begin
processing. Upon receiving a ComputeInit signal, the
machine transitions to the initial state, where input data
is registered, and the initial sum value, including any bias
values, is calculated. Specifically, mult_reg is set to 0, and
sum_reg is initialized to the bias value (shown in Fig. 6).
This state persists for a single clock cycle, after which it
transitions to pre_MAC, initiating the first multiplication.
In this state, the initial bias is loaded into the accumulator
register, and the machine multiplies the input data with the
appropriate weight value, adding the result to the sum (pre-
loaded bias). The index flag is also set to the number of
inputs for later use. The machine then progresses to the MAC
state, where the multiplication and accumulation operations
continue until the index flag reaches zero. The index,
initialized during the initial state, is decremented at
every clock cycle during the MAC state. In this state, both
the multiplier and accumulator are enabled. Upon index

reaching zero, the state transitions to post_MAC, where the
final accumulation occurs, and the multiplier is disabled.
The machine then moves to the post_MAC state. Here, final
calculations are completed, producing two outputs: quan-
tized and unquantized. One of these outputs is selected and
passed through the MUX. Additionally, in this state, prepa-
rations are made for the AF to be applied, along with control
signal precision_ctrl. The state then changes to AF,
during which the output of the MAC unit (i.e., the output
of the 2:1 MUX with sum_reg), quantized or unquantized
depending on precision_ctrl as shown in Fig. 6, is
applied to AF. Finally, the machine transitions to the AF
state and operates based on the control signal AF_ctrl.
In the AF state, the machine applies the activation function
to the final sum value and sets a “done” flag to indicate that
processing is complete. Here, the output of the proposed
adaptable AF becomes the output of the PNE. The machine
then returns to the idle state and waits for the next process-
ing request. The detailed architecture for MAC and AF are
discussed in subsections “Precision-Aware MAC Unit with
Pre-Loaded Bias” and “Adaptable AF Using ROM/ Cordic”.
Table 1 shows the various modes of operation and outputs
of the PNE.

Precision‑Aware MAC Unit with Pre‑Loaded Bias

The proposed design employs two inputs for the multipli-
cation operation: the j-input feature and the pre-trained
j-weight, both stored in the weight register file (shown in
Fig. 6). The multiplication of these inputs yields a 2N-bit
output(mult_reg), serving as input to the accumulator
(sum_reg), where trained biases are pre-loaded. The adder
takes the multiplier output and the feedback (accumulation)
from the output register as inputs, storing the results in the
output register. Iteratively accumulating the adder output,
the output register produces a final unquantized output of
2N + M bits, where M (M = log2 j ) represents the over-
flow bit width resulting from iterative operations. The out-
put generated at the accumulate stage is quantized into an
N-bit value. Both the quantized and unquantized results are
then passed to the non-linear transformation (AF) through
a multiplexer based on the precision_ctrl signal, as
depicted in Fig. 6 and shown in Table 1. Notably, the MUX
and bias_reg present in the conventional design (Fig. 3)

Fig. 7   State machine of the PNE showing reset signal and idle
mode. The MAC computation happens during the two states:
pre_MAC and post_MAC 

Table 1   PNE
out

 selection
using AF_ctrl and
precision_ctrl signals as
depicted in Fig. 6

AF_ctrl Precision_ctrl MAC
out

AF
out

PNE
out

0 0 Unquantized Cordic[R
in

 ] = sigmoid(R
in

) sigmoid(R
in

)
1 0 Unquantized Cordic[R

in
 ] = tanh(R

in
) tanh(R

in
)

X 1 Quantized ROM[R
in

] sigmoid(R
in

 )
or
tanh(R

in
)

SN Computer Science (2024) 5:494 	 Page 7 of 14  494

SN Computer Science

have been eliminated in the proposed design. The pre-trained
bias output is now loaded directly into the accumulator reg-
ister (sum_reg). This optimization reduces resource utiliza-
tion and critical delay in the MAC operation. Also, the pro-
posed design can accommodate any bit precision, enabling
the specification of integer and fractional bits in the fixed
⟨ N, q ⟩ format representation before synthesis. However,
for the purpose of design analysis and implementation, an
8-bit precision architecture has been employed. Although
we have validated this proposed architecture on an FPGA
using Hardware Description Language (HDL), the advan-
tages demonstrated by this design are expected to extend to
Application-Specific Integrated Circuits (ASICs) as well. In
Fig. 6, the MAC architecture utilized in the PNE is empha-
sized with a dashed box.

In the first clock cycle, two signed fixed-point values,
each with an N-bit width, are multiplied using a multi-
plier (mult_reg), and the bias value is pre-loaded into
the sum_reg. This saves an extra clock cycle that is con-
ventionally required for bias accumulation. The multiplica-
tion result is a 2 × N-bit value with 4 integer bits and 12
fractional bits stored in mult_reg. At each clock cycle,
the value in mult_reg is accumulated in sum_reg.
sum_reg is initialized with the bias value at the begin-
ning of every layer computation, and extra bits are used to
prevent overflow. Once all MAC operations are complete,
the values in sum_reg are resized to a fixed ‘ ⟨ 8, 6 ⟩ ’ for-
mat using the inbuilt IEEE library resize function. We have
used the ‘resize’ function provided by Xilinx at the output
of the MAC, which comes with rounding and inherent accu-
racy loss. Bit rounding can be defined as the procedure of
changing a number with roughly the exact value but fewer
digits with another number. This resized value is then fed
into the sigmoid ROM for AF operation. In the fixed ⟨8, 6⟩ ’
format, 2 integer bits and 6 fractional bits, along with 1 sign
bit (MSB), represent the signed fixed-point representation
(Fig. 4). The output of the AF is the output of the PNE for
the current layer.

Adaptable AF Using ROM/ Cordic

The output generated by the MAC unit, determined by the
precision_ctrl pin, is fed into the novel AF designed
to accommodate both higher and lower precision arithmetic.
In this study, we have utilized a ROM-based implementation
for processing the quantized output of MAC (N-bits), and a
Cordic-based implementation for processing the unquantized
output (2N+M-bits). The AF design offers adaptability for
selection of precision (via precision_ctrl) and the selec-
tion of AF (via AF_ctrl). The architecture supports both
tanh and sigmoid AF computations. A detailed description of
this performance-efficient adaptable AF’s design architecture
and computation techniques has been provided in [10]. We

have integrated the aforementioned activation function (AF)
into our proposed PNE, as depicted in red in Fig. 6. Within
the PNE, the core of the adaptable AF is represented in Fig. 8.
This core consists of a ROM or CORDIC Configure block
and a processing block that facilitates adaptability for AF type
selection. Two control signals, namely precision_ctrl
and AF_ctrl, are employed for this purpose.

The ROM/ Cordic Configuration Block, shown in Fig. 8,
integrates adders/ subtractors, shifters, and memory elements
[10]. In the Cordic-based approach, the most significant bit
(MSB) of R in[N-1] (sign bit) generates the directional signal d i
[33], determining whether addition or subtraction is performed
to converge R out to 0. Here, d i ∈ {0, 1}, representing the sign
bit R in[N-1] ∈ {0, 1}. In the ROM-based approach (Fig. 8), the
value at the R in address is accessed as ROM[Rin ]. Depending
on the ROM implementation and configuration of control pins,
the AF’s output for sigmoid or tanh is obtained. Thus, R out =
ROM[Rin ] for the ROM-based approach, while R out converges
to 0 for the Cordic-based approach, as highlighted in the ROM/
Cordic Configuration Block in Fig. 8. The output of the Cordic
block produces values cosh(Rin ) and sinh(Rin ) at P out and Q out ,
respectively. These outputs are used for exponential calcula-
tion, as described in Eq. 1.

The adaptable AF (Fig. 8) incorporates select signals
precision_ctrl and AF_ctrl, which are summa-
rized in Table 2 to determine outputs using either ROM or
Cordic. The input data R in serves as AFin (or MACout ) to
the AF block and produces the output ROM[Rin ] in the sub-
sequent clock cycle or converges to 0 after the N th Cordic
iteration. One can observe that ROM/ Cordic Configuration
Block provides three outputs: sinh(Rin ), cosh(Rin ), and 0/
ROM[Rin ], as depicted in Fig. 8, with AF_ctrl controlling

(1)eRin = cosh(Rin) + sinh(Rin)

Fig. 8   The design of the adaptable AF for variable precision, consist-
ing of the ROM/ Cordic Configuration Block and additional logic ele-
ments

	 SN Computer Science (2024) 5:494 494   Page 8 of 14

SN Computer Science

MUX1 and MUX2 for Cordic-based sigmoid or tanh AF
selection. sinh(Rin ) and cosh(Rin ) are sent to ADDER1. The
output of ADDER1 is e Rin = sinh(Rin ) + cosh(Rin ), which
serves as input to ADDER2. The output of ADDER2 is 1 +
e Rin . MUX1 has inputs e Rin , sinh(Rin ), and MUX2 has inputs
cosh(Rin ), 1 + e Rin with the select line as AF_ctrl. The
outputs of MUX1 and MUX2 are processed in the divider
to calculate Cordic[Rin ] for sigmoid/ tanh evaluation. Sub-
sequently, MUX3 is used to select ROM[Rin ] or Cordic[Rin ]
based on the precision_ctrl signal. The state of
control signals for generating tanh and sigmoid AFs using
ROM/ Cordic approaches is presented in Table 2. Although
ReLU is not implemented in this paper, Fig. 9 and Table 3
present how integration of ReLU AF is also possible in the
proposed AF, showing it’s adaptability. Comparing with
Fig. 8, it can be observed that additional hardware require-
ments include 1 control signal (AF_ctrl2) and 2 MUXes
(MUX4 and MUX5). MUX4 is used to implement the ReLU
AF and MUX5 provides the selection (via the control signal
AF_ctrl2) between ROM[Rin ] and ReLU[Rin ] output. The
output of MUX5 is one of the inputs to MUX3, the other
input being Cordic[Rin].

Inference Accuracy and Hardware
Performance: Evaluation and Analysis

We have evaluated the inference accuracy of the proposed
PNE for image classification tasks. Additionally, an analy-
sis of resource utilization and delay of the PNE has been
carried out with Cordic-based and ROM-based AF, target-
ing both quantized and unquantized results with precision
requirements. The results demonstrate the effectiveness of
our PNE, which has signed fixed-point pre-loaded bias MAC
unit and an adaptable AF, enabling precision-aware DNN
computations.

Experimental Validation of PNE: Quantized
and Unquantized model

The experimental results presented in Table 4 provide a
detailed analysis of the inferential accuracy of the PNE for
both quantized and unquantized models. In this work, the
precision comparison includes settings for 4-bit, 8-bit, and
16-bit across different datasets (MNIST, CIFAR-10, CIFAR-
100) [34] and DNN architectures (LeNet [35], VGG-16
[36]). Further, it is to be noted that for target applications of
the proposed PNE i.e. feature extraction and output classifi-
cation, bit-precision upto 16-bits is optimal [37, 38]. Higher
bit resolutions would lead to higher power consumption,
higher critical delay and higher resource utilization, which
are not desirable. The proposed PNE (P) is benchmarked
against the Tensor-based MAC and AF model in the neuron
engine (T) [39]. For the unquantized output, i.e., PNE with
Cordic-based AF, the proposed PNE maintains competitive
accuracy compared to the Tensor-based model, with a less
than 2% accuracy loss compared to the TensorFlow model.
The results underscore the robustness of the proposed PNE
in preserving accuracy while operating under higher-preci-
sion settings. Notably, the proposed PNE showcases robust
accuracy, with minimal differences ranging from 0.6% to
1.6%.

Furthermore, in the case of PNE with ROM-based AF
(Quantized), the proposed PNE consistently demonstrates an
insignificant accuracy loss of 1.6% compared to the Tensor-
based model across different precisions and datasets. Even
under lower bit-precision settings (4-bit, 8-bit, 16-bit), the
proposed PNE exhibits strong performance, with accuracy
difference ranging from 0.7% to 1.6%. This showcases the
effectiveness of the PNE even in quantized scenarios with
lower bit-precision. Overall, the proposed PNE exhibits
robust performance across various precisions and DNN
architectures, showcasing its effectiveness in maintaining
accuracy under lower bit-precision settings. Notably, the
comparison provides valuable insights into the performance
of the proposed PNE across different bit precisions, high-
lighting its versatility and efficacy in diverse DNN architec-
tures and datasets. It is crucial to emphasize that in evalu-
ating accuracy, we employed a ROM-based approach for

Fig. 9   ReLU AF integrated with our proposed adaptable AF
design. The additional hardware requirements (MUX4, MUX5 and
AF_ctrl2) are required to enable ReLU AF with our proposed
adaptable AF

Table 2   AF selection using AF_ctrl and precision_ctrl sig-
nals for ROM/ Cordic AF as depicted in Fig. 8

AF_ctrl preci-
sion_ctrl

R
out

AF
out

0 0 0 Cordic[R
in

 ] = sigmoid(R
in

 ) = e
R
in

1+eRin

1 0 0 Cordic[R
in

 ] = tanh(R
in

 ) = sinh(Rin
)

cosh(R
in
)

X 1 ROM[R
in

] ROM[R
in

 ] = sigmoid(R
in

 ) OR
tanh(R

in
)

SN Computer Science (2024) 5:494 	 Page 9 of 14  494

SN Computer Science

both 8-bit and 16-bit precision. Additionally, for the Cordic-
based algorithm, we conducted accuracy assessments using
both 8 and 16-bit precision computations. However, for the
hardware implementation, where resource constraints are a
consideration, we adopted an 8-bit computation using ROM-
based architecture. On the other hand, for the 16-bit compu-
tation, we utilized a Cordic-based architecture.

Hardware Implementation and Result Comparison
of the Proposed PNE

This section delineates the experimental setup and meth-
odology employed to evaluate the PNE proposed in this
research. The assessment involves two distinct blocks,
namely the Multiply-Accumulate (MAC) unit and the
Activation Function (AF), implemented through the Zybo-
Xilinx evaluation kit. Hardware performance parameters are
extracted at an operating frequency of 50 MHz and an oper-
ating temperature of 25◦C . The modular RTL design archi-
tecture is tailored for ASIC implementation. Simulation and
performance parameters extraction consider 1 sign bit and
8 magnitude bits (2 integers and 6 fractional). Comparisons
are drawn with conventional architecture, covering LUT and
register utilization, critical delay, and total on-chip power.
All architectures are implemented on the same FPGA plat-
form for a fair comparison, detailed in [40]. Our proposed
design, implemented on the Zybo-Xilinx FPGA SoC kit, has
demonstrated noteworthy results.

Various state-of-the-art processing engines supporting
definite precision were investigated, utilizing rounding or
truncation between the MAC unit and AF, resulting in accu-
racy loss. In contrast, our proposed design provides devel-
opers the flexibility to choose quantization on the MAC
result. Here, we have compared the proposed architecture
with a conventional design. The proposed design sup-
ports both quantized and unquantized data. It is observed
that if the same feature is incorporated into the conven-
tional architecture, it would require 328 LUTs (102 + 226),
whereas the proposed design utilizes only 248 LUTs. The
specific advantages of ROM-based AF in lower precision
and Cordic-based AF are discussed in section “Resource
Utilization of the ROM/ Cordic-Based Adaptable AF”. Our
focus here is on architectural optimization and implementa-
tion. However, it can be extended for different types of MAC
units and AFs, along with a state-of-the-art comparison. If
higher accuracy is desired, the MAC output is processed
directly through the AF. Conversely, if accuracy speed is not
a significant concern, the MAC result is quantized using the
precision_ctrl pin. It is crucial to note that quantized
data configures the ROM-based AF, while unquantized data
passes through Cordic-based AF. The detailed architectural
design and computational arithmetic for the MAC unit and
AF are elaborated in section “Precision-Aware MAC Unit
with Pre-Loaded Bias” and “Adaptable AF Using ROM/
Cordic”, respectively. The hardware implementation results
reported for the Zybo FPGA board are presented below.

Table 3   Table showing ReLU
integration with proposed AF.
1 additional control signal
(AF_ctrl2) and 2 MUXes are
required as depicted in Fig. 9

AF_ctrl1 precision_ctrl AF_ctrl2 R
out

AF
out

0 0 X 0 Cordic[R
in

 ] = sigmoid(R
in

 ) = e
R
in

1+eRin

1 0 X 0 Cordic[R
in

 ] = tanh(R
in

 ) = sinh(Rin
)

cosh(R
in
)

X 1 0 ROM[R
in

] ROM[R
in

 ] = sigmoid(R
in

 ) OR tanh(R
in

)
X 1 1 ReLU[R

in
]

ReLU[R
in

 ] =

{
R
in

if R
in
> 0

0 otherwise

Table 4   Comparative analysis
of accuracy: PNE vs. Tensor-
based neuron model having
MAC and AF (T) [39] for
LeNET and VGG-16 DNN
models

DNN Arch. LeNET VGG-16

 Datasets MNIST CIFAR-10 CIFAR-10 CIFAR-100

 Precision T P T P T P T P

Infer. Accuracy (%) for Quantized PNE output(Quantized MAC + ROM-based AF)
4-bit 96.1 95.6 54.8 54.2 64.6 62.8 23.8 22.7
8-bit 97.9 97.2 63.5 62.1 81.7 80.3 49.6 47.9
16-bit 98.6 97.9 64.3 62.8 82.8 81.1 51.3 49.8
Infer. Accuracy (%) for Unquantized PNE output (Unquantized MAC + Cordic-based AF)
4-bit 96.8 88.3 55.4 48.6 65.1 52.7 24.1 22.8
8-bit 98.5 96.8 64.1 62.3 82.7 80.9 50.1 48.4
16-bit 99.1 97.9 65.2 64.3 86.1 84.8 55.3 54.1

	 SN Computer Science (2024) 5:494 494   Page 10 of 14

SN Computer Science

The comprehensive analysis of proposed PNE in compar-
ison to conventional counterparts on a Zybo board at 50MHz
is presented in the Table 5. This table outlines the standalone
architecture supporting both unquantized and quantized
MAC operations in the conventional design. Additionally,
it presents the proposed precision-aware design, offering
the flexibility for both operations. Notably, the proposed
design can be configured through an external signal, ena-
bling PNE and supporting adaptable AF. Precision-aware
configurations, specifically the proposed precision aware
pre-loaded bias MAC and adaptable Cordic AF, exhibit
minor resource overhead, enabling the precision-aware
design to evolve from 226 LUTs to 248 LUTs, constituting
nearly a 9.7% overhead. In the conventional MAC design
with only Cordic-based AF, the critical delay increases by
34.37% compared to the proposed PNE. This is due to the
additional hardware resources, namely bias registers and
MUX selection, utilized for bias loading. The incorporation
of these elements introduces an extra clock delay, conse-
quently reducing the throughput of the system. However,
the proposed designs showcase higher throughput, with the
Precision-aware pre-loaded bias MAC and adaptable Cordic
AF achieving 34.61% more GOp/s than the conventional
MAC with only Cordic AF. The performance metric under-
scores the superiority of precision-aware designs, indicat-
ing a more substantial performance improvement over the
conventional MAC with only Cordic and also enables the
design with quantization-enabled computation. These find-
ings highlight the efficiency gains achievable through the
proposed pre-loaded bias MAC architecture and an adapt-
able AF integrated into the PNE.

Optimized MAC Unit with Quantization‑Enabled
Output Selection and Pre‑Loaded Bias

In this section, we conduct a comparative analysis of the
MAC unit, which generates two distinct outputs. The first
output is the quantize-enabled output, wherein the MAC
unit’s output is quantized from 2N + M bits to N bits through
LSB bit truncation. This advancement enables the utilization

of an N-bit Activation Function (AF) for subsequent com-
putations. Additionally, the MAC unit produces a second
output, namely the unquantized output, with a precision of
2N + M bits, where ‘M’ represents the extra overhead bits
addressed earlier. The selection between these outputs is
determined using a Multiplexer (MUX) based on the desired
level of accuracy required for the computation. We conduct
a comprehensive comparison of state-of-the-art Multiply-
Accumulate (MAC) architectures, all tailored for accurate
computations at 8-bit precision. We present a detailed analy-
sis of resource utilization, power consumption, and delay for
the proposed design and other existing architectures on the
Zybo SoC Xilinx FPGA board as summarized in Table 6.
Our proposed design demonstrates resource utilization
comparable to the IEEE standard, even with the integra-
tion of the output selection advancement. Notably, our opti-
mized architecture eliminates the need for bias registers
and MUX used for bias selection systematically, resulting
in no additional hardware resource overhead. This enhance-
ment significantly improves critical computation delay and
reduces a clock delay by pre-loading the bias value into the
accumulator register. This also leads to reduction in power
consumption. Although the introduction of an extra Multi-
plexer (MUX) at the MAC output incurs minimal hardware
overhead, this is effectively compensated by the aforemen-
tioned advancements. Table 6 provides a comparison with
architectures like Booth Multiplication, Wallace Tree Vedic,
shift-and-add, Cordic, and IEEE. While each design exhib-
its its own merits and drawbacks, the choice depends on
the specific application requirements, whether prioritizing
hardware efficiency, accuracy, or performance. Our proposed
design offers support for both features, aligning with diverse
application needs.

The proposed MAC unit has been compared with estab-
lished state-of-the-art designs, including Vedic, Wal-
lace, Booth, Shift-Add, Cordic, and IEEE architectures,
as detailed in Table 6. The reported parameters include
slice LUTs and slice registers. The analysis reveals that the
resources utilized by the proposed MAC design have utilized
comparable hardware to state-of-the-art architectures. While

Table 5   Comparison of
proposed PNE (Quantized/
Unquantized MAC + adaptable
AF) for different bit-widths
with conventional processing
engine (conventional MAC +
AF) evaluated on Zybo-board at
50MHz operating frequency

Processing Engine Quantized MAC +
AF in ROM mode

Unquantized MAC +
AF in Cordic mode

Conv. MAC
[41]+ ROM AF

Conv. MAC
[41] + Cordic
AF

Preferred AF Precision 8 bit 16 bit 8 bit 16 bit
Slice LUT 248 248 102 226
Slice Reg. (FF) 88 128 114 153
Critical Delay (ns) 3.81 4.19 4.82 5.20
Dynamic Power (mW) 3.95 4.83 4.99 6.49
Throughput (GOp/s) 0.2629 0.2073 0.2004 0.1540
Performance (MOPS/W) 66.7 42.9 40.2 23.7

SN Computer Science (2024) 5:494 	 Page 11 of 14  494

SN Computer Science

slightly exceeding the resource utilization of shift-and-add
and Booth algorithm-based MAC units, our design has
demonstrated superior performance in critical delay. This
improvement has occurred because of the pre-loaded bias,
which reduces MUX delay in the critical path and eliminates
the need for an additional clock delay traditionally required
to accumulate the bias value in the multiplication of input
and weights, as discussed in section “Precision-Aware MAC
Unit with Pre-Loaded Bias”, and shown in Figs. 6, 7. To
highlight the advancements of the proposed design, a com-
parison has been made with Vedic and IEEE DSP package
MAC architectures. Specifically, the Vedic-based architec-
ture [18] has shown to have 159 Slice LUTs, whereas our
proposed design has had only 92 slice LUTs, indicating a
42.13% reduction compared to the Vedic architecture. Simi-
larly, our design has consumed 29.23% fewer slice LUTs
compared to the IEEE architecture. When compared with
Wallace’s architecture, our proposed design has shown a
12.38% reduction. Additionally, the proposed architecture
has utilized 61 slice registers, marking a 45.53% reduction
compared to Wallace’s architecture, which has had 112 slice
registers. In summary, the analysis suggests that the pro-
posed design is suitable for adoption in applications where
accuracy demands are application-specific, and there is
requirement for reduced resource usage and critical delay.

The critical delay represents the maximum delay within
a circuit, attributed to the longest combinational path. As a
crucial performance metric, it dictates the circuit’s maxi-
mum operating frequency. The critical delay (in nanosec-
onds) is presented for both the proposed and state-of-the-art
architectures with 8-bit precision in Table 6. Notably, the
Cordic architecture exhibits a maximum critical delay of
9.06 ns due to its iterative computation (n-iteration, i.e., n
times the critical delay of each iteration), despite its superior
resource utilization. In comparison, the critical delay for the
IEEE standard DSP architecture [41] is lower at 3.98 ns.
Conversely, our proposed design boasts of a critical delay
of 2.67 ns, signifying a 32.91% improvement over the IEEE
standard. Our proposed design’s critical delay (calculated
using Vivado) stands at 2.67 ns, the lowest among all of the
architectures in literature, attributed to pre-bias loading and

the elimination of multiplexing used for bias selection in
conventional MAC designs.

Additionally, the Power-delay Product (PDP) is computed
for 8-bit precision across all methods and detailed in Table 6.
Notably, the booth-multiplier-based approach closely mir-
rors our proposed design’s PDP at 2.77pJ compared to
2.08pJ. Our proposed design demonstrates a 24.91% higher
efficiency than the booth technique [19] in terms of PDP.
A comprehensive comparison in Table 6 reveals that our
proposed design outperforms all techniques in the literature
in terms of PDP efficiency.

Time Slack

It’s important to note that the PNE simulations have been
carried out at 50MHz, while the evaluation of the standalone
MAC Unit slack calculation has been done at 100MHz. This
difference in frequencies helps us assess the effectiveness of
the design under optimum operating conditions. The slack
calculation for various bit precisions has been reported in
Table 7. The table includes three types of slack values:
Worst Negative Slack (WNS), Worst Hold Slack (WHS),
and Worst Pulse Width Slack (WPWS) for three different
bit precision values: 8-Bit, 12-Bit, and 16-Bit. The equations
have been presented in Eq. 2, where (Tr) and (Ta) denote the
earliest start time and actual start time of a task, respectively.
Tsetup and Tslack refer to the time available before the earliest
start time and the time available after the actual start time,
respectively. The slack information provides insights into
whether the design is functioning at the desired frequency,
as explained in [42].

Table 6   Performance
evaluation: comparison of the
precision-aware MAC with
state-of-the-art models

Design techniques Slise LUTs Slice Reg Critical
Delay (ns)

On-chip static
Power(�W)

Dynamic
Power (mW)

Power-Delay
Product (pJ)

Vedic [18] 159 245 4.48 484.8 4.93 5.86
Shift-Add [21] 75 58 5.44 119.5 2.86 3.97
Iterative Cordic [8] 23 22 9.06 139.2 4.72 –
IEEE DSP [41] 130 49 3.98 495.5 3.81 5.01
Wallace [22] 105 112 2.59 498.0 3.88 3.13
Booth [19] 83 61 3.08 146.7 6.56 2.77
Proposed 92 61 2.67 92.0 2.15 2.08

Table 7   Slack calculation at 100MHz frequency for different bit pre-
cision for optimum operating frequency

Slack Type 8-Bit 12-Bit 16-Bit

WNS (ns) 2.356 4.898 5.136
WHS (ns) 0.068 0.104 0.236
WPWS (ns) 49.500 49.500 49.500

	 SN Computer Science (2024) 5:494 494   Page 12 of 14

SN Computer Science

As the bit precision increases, WNS and WHS also

increase, indicating a decrease in the timing margin. This
outcome is expected because higher bit precision means
more complex circuits, which results in longer propaga-
tion delays and lower timing margins. However, the WPWS
values remain constant across all three bit precisions. This
is because WPWS is a measure of the minimum required
pulse width for the circuit to function correctly and is deter-
mined by the slowest path in the circuit. Since the slowest
path does not change with bit precision, the WPWS value
remains constant. Overall, the table suggests that a higher
bit precision is associated with a lower timing margin, which
could potentially lead to timing violations and reduced per-
formance. However, the constant WPWS values indicate that
the minimum pulse width requirement does not change with
bit precision.

Resource Utilization of the ROM/ Cordic‑Based
Adaptable AF

In the hardware-based evaluation, resource utilization is
assessed by implementing the adaptable AF using Ver-
ilog-HDL, and the corresponding parameters are extracted
using the Vivado-Xilinx tool. The proposed design is
implemented on the Zybo Evaluation Kit, with a specific
focus on the sigmoid AF, which effectively utilizes all the
hardware resources within the configurable architecture.
The AF exhibits nonlinear behavior in artificial neurons,
and its hardware implementation is particularly costly in
conventional approaches. Increasing arithmetic precision
leads to a rise in design complexity, as achieving higher
precision necessitates exponential growth in computa-
tional complexity or memory elements. For instance, an
n-bit precision requirement in ROM demands 2 n memory
elements. To illustrate, 8-bit precision requires 256 ele-
ments, while 16-bit precision would need 65,536 elements,
making it impractical given the dedicated AF for each neu-
ron. Contemporary architectures aim for efficient design

(2a)Tsetup = Tr − Ta

(2b)Tslack = Ta − Tr

(2c)Ta = Ttotal + Trc + Tcq

(2d)Ta ≥ Thold

(2e)Tslack,setup = Tcycle − Ta − Tsetup

(2f)Tslack,hold = Ta − Thold

and implementation. However, each design favors either
lower or higher bit precision and adaptability in AF types
of selection. Addressing these challenges, our proposed
solution involves adaptable logic for selecting types of AF
and precision settings for computations.

Table 8 compares resource utilisation for ROM, Cordic,
and BRAM-based techniques for various bit-precisions.
The ROM-based design uses 6 LUTs for 4-bit accuracy,
whereas the Cordic-based design uses 45 LUTs and 37
flip-flops (FFs), resulting in an 86.66% LUT savings for the
ROM-based method. For 8-bit precision, the ROM-based
solution uses 16 LUTs, compared to Cordic’s 84 LUTs and
72 FFs, resulting in an 80.95% LUT savings. The ROM-
based system depends just on LUTs, with no FFs required.
However, as precision increases to 16-bit, the ROM-based
design requires a substantial 2111 LUTs, as opposed to
Cordic’s 140 LUTs and 126 FFs. Thus, implementing a
32-bit ROM-based design on smaller FPGAs would be
inefficient due to the exponential increase in resource
requirements. We also report results for a BRAM-based
approach, which shows significant rise in BRAM utili-
zation as precision increases. Specifically, for 4, 8, and
16-bit precisions, BRAM requirements are 0.5, 0.5, and 17
BRAMs, respectively. Overall, the Cordic-based technique
demonstrates better LUT utilization for higher precision
computations. The ROM-based implementation of AFs
exhibits superior performance at lower precision. These
findings provide valuable insights for selecting appropriate
AF implementations based on precision requirements and
resource constraints in the PNE.

Conclusions and Future Research

In summary, our research introduces a precision-aware Neuron
Processing Engine (PNE) for efficient deep neural network
(DNN) computations. The PNE features a signed fixed-point
pre-loaded bias Multiply-Accumulate (MAC) unit and an
adaptable Activation Function (AF) supporting both ROM and
Cordic implementations. Evaluating inference accuracy across
quantized and unquantized models, various bit precisions, and
datasets, our experimental results highlight the PNE’s effec-
tiveness. Under unquantized scenarios, the Cordic-based AF

Table 8   Resource Utilization of adaptable AF for different bit-widths
evaluated on Zybo-board

AF Type ROM Cordic BRAM

 Precision LUTs FFs LUTs FFs –

4-bit 6 0 45 37 0.5
8-bit 16 0 84 72 0.5
16-bit 2111 0 140 126 17

SN Computer Science (2024) 5:494 	 Page 13 of 14  494

SN Computer Science

exhibits robust accuracy with less than a 2% loss compared
to TensorFlow models. Even in quantized scenarios (4-bit,
8-bit, 16-bit), the PNE performs strongly with accuracy dif-
ferences ranging from 0.7% to 1.6%, showcasing its versatility.
Hardware implementation on the Zybo-Xilinx FPGA platform
demonstrates notable results, with resource utilization compa-
rable to state-of-the-art models and superior critical delay and
throughput. The precision-aware MAC unit allows develop-
ers to choose between quantized and unquantized operations,
offering flexibility in balancing accuracy and speed. The com-
prehensive analysis of resource utilization, power consump-
tion, and critical delay underscores the efficiency gains achiev-
able through our proposed architecture. The adaptable AF,
implemented using ROM and Cordic, caters to diverse preci-
sion requirements. Currently, the AF supports sigmoid and
tanh implementations. However, it can be adapted to imple-
ment ReLU and Gaussian AF as well with additional hardware
requirements, as part of future research. In conclusion, our
precision-aware Neuron Processing Engine provides a holistic
solution for efficient DNN computations, contributing valuable
insights to hardware-efficient neural network accelerators and
advancing precision-aware computing architectures.

Acknowledgements  This article is an extended version of our previous
conference paper presented at [10].

Data Availability  Data sharing is not applicable to this article as no data
sets were generated or analyzed during the current study, and detailed
circuit simulation results are given in the manuscript.

Declarations 

Conflict of interest  The authors declare that they have no Conflict of
interest and there was no human or animal testing or participation in-
volved in this research. All data were obtained from public domain
sources.

References

	 1.	 Sim H, Lee J. Cost-Effective Stochastic MAC circuits for Deep
Neural Networks. Neural Netw. 2019;117:152–62.

	 2.	 Khalil K, Eldash O, Kumar A, Bayoumi M. An efficient
approach for neural network architecture. In: 2018 25th IEEE
International Conference on Electronics, Circuits and Systems
(ICECS), 2018;745–748. IEEE

	 3.	 Shawl MS, Singh A, Gaur N, Bathla S, Mehra A. Implementa-
tion of Area and Power Efficient Components of a MAC unit
for DSP Processors. In: 2018 Second International Conference
on Inventive Communication and Computational Technologies
(ICICCT), 2018;1155–1159. IEEE.

	 4.	 Machupalli R, Hossain M, Mandal M. Review of ASIC Accel-
erators for Deep Neural Network. Microprocess Microsyst.
2022;89:104441.

	 5.	 Merenda M, Porcaro C, Iero D. Edge machine learning for ai-
enabled iot devices: A review. Sensors. 2020;20(9):2533.

	 6.	 Shantharama P, Thyagaturu AS, Reisslein M. Hardware-accel-
erated platforms and infrastructures for network functions: A

survey of enabling technologies and research studies. IEEE
Access. 2020;8:132021–85.

	 7.	 Hashemi S, Anthony N, Tann H, Bahar RI, Reda S. Understand-
ing the impact of precision quantization on the accuracy and
energy of neural networks. In: Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2017, 2017;1474–
1479. IEEE.

	 8.	 Raut G, Rai S, Vishvakarma SK, Kumar A. RECON: Resource-
Efficient CORDIC-based Neuron Architecture. IEEE Open Jour-
nal of Circuits and Systems. 2021;2:170–81.

	 9.	 Garland J, Gregg D. Low Complexity Multiply-Accumulate Units
for Convolutional Neural Networks with Weight-Sharing. ACM
Transactions on Architecture and Code Optimization (TACO).
2018;15(3):1–24.

	10.	 Vishwakarma S, Raut G, Dhakad NS, Vishvakarma SK, Ghai D.
A Configurable Activation Function for Variable Bit-Precision
DNN Hardware Accelerators. In: IFIP International Internet of
Things Conference, 2023;433–441. Springer.

	11.	 Posewsky T, Ziener D. Efficient deep neural network acceleration
through fpga-based batch processing. In: 2016 International Con-
ference on ReConFigurable Computing and FPGAs (ReConFig),
2016;1–8. IEEE.

	12.	 Schmidhuber J. Deep Learning in Neural Networks: An overview.
Neural Netw. 2015;61:85–117.

	13.	 Jelčicová Z, Mardari A, Andersson O, Kasapaki E, Sparsø J. A
neural network engine for resource constrained embedded sys-
tems. In: 2020 54th Asilomar Conference on Signals, Systems,
and Computers, 2020;125–131. IEEE

	14.	 Qiu J, Wang J, Yao S, Guo K, Li B, Zhou E, Yu J, Tang T, Xu
N, Song S, et al. Going deeper with embedded fpga platform for
convolutional neural network. In: Proceedings of the 2016 ACM/
SIGDA International Symposium on Field-programmable Gate
Arrays, 2016;26–35.

	15.	 Zhang Y, Suda N, Lai L, Chandra V. Hello edge: Keyword spot-
ting on microcontrollers. arXiv preprint arXiv:​1711.​07128 2017.

	16.	 Cheng Y, Wang D, Zhou P, Zhang T. Model Compression and
Acceleration for Deep Neural Networks: The Principles, Progress,
and Challenges. IEEE Signal Process Mag. 2018;35(1):126–36.

	17.	 Masadeh M, Hasan O, Tahar S. Input-Conscious Approximate
Multiply-Accumulate (MAC) Unit for Energy-Efficiency. IEEE
Access. 2019;7:147129–42.

	18.	 Krishna AV, Deepthi S, Nirmala Devi M. Design of 32-Bit MAC
unit using Vedic Multiplier and XOR Logic. In: Proceedings of
International Conference on Recent Trends in Machine Learning,
IoT, Smart Cities and Applications, 2021;715–723. Springer.

	19.	 Farrukh FUD, Zhang C, Jiang Y, Zhang Z, Wang Z, Wang Z,
Jiang H. Power Efficient Tiny Yolo CNN using Reduced Hardware
Resources based on Booth Multiplier and Wallace Tree Adders.
IEEE Open Journal of Circuits and Systems. 2020;1:76–87.

	20.	 Johansson K. Low power and Low Complexity Shift-and-Add
based Computations. PhD thesis, Linköping University Electronic
Press 2008.

	21.	 Gudovskiy DA, Rigazio L. Shiftcnn: Generalized Low-Precision
Architecture for inference of Convolutional Neural Networks.
arXiv preprint arXiv:​1706.​02393 2017.

	22.	 Janveja M, Niranjan V. High performance Wallace tree mul-
tiplier using improved adder. ICTACT j microelectron.
2017;3(01):370–4.

	23.	 Yuvaraj M, Kailath BJ, Bhaskhar N. Design of optimized MAC
unit using integrated vedic multiplier. In: 2017 International Con-
ference on Microelectronic Devices, Circuits and Systems (ICM-
DCS), 2017;1–6. IEEE.

	24.	 Sze V, Chen Y-H, Yang T-J, Emer JS. Efficient processing
of deep neural networks: A tutorial and survey. Proc IEEE.
2017;105(12):2295–329.

http://arxiv.org/abs/1711.07128
http://arxiv.org/abs/1706.02393

	 SN Computer Science (2024) 5:494 494   Page 14 of 14

SN Computer Science

	25.	 Sharma VP, Vishwakarma SK. Analysis and Implementation of
MAC Unit for different Precisions. signal ( � W) 70(120):240

	26.	 Raut G, Biasizzo A, Dhakad N, Gupta N, Papa G, Vishvakarma
SK. Data Multiplexed and Hardware Reused Architecture for Deep
Neural Network Accelerator. Neurocomputing. 2022;486:147–59.

	27.	 Wuraola A, Patel N, Nguang SK. Efficient activation functions for
embedded inference engines. Neurocomputing. 2021;442:73–88.

	28.	 Aggarwal S, Meher PK, Khare K. Concept, design, and implemen-
tation of reconfigurable CORDIC. IEEE Trans Very Large Scale
Integr VLSI Syst. 2015;24(4):1588–92.

	29.	 Lee J, et al. Unpu: An energy-efficient deep neural network accel-
erator with fully variable weight bit precision. IEEE J Solid-State
Circuits. 2018;54(1):173–85.

	30.	 Lin C-H, Wu A-Y. Mixed-scaling-rotation CORDIC (MSR-
CORDIC) algorithm and architecture for high-performance vec-
tor rotational DSP applications. IEEE Trans Circuits Syst I Regul
Pap. 2005;52(11):2385–96.

	31.	 Mohamed SM, et al. FPGA implementation of reconfigurable
CORDIC algorithm and a memristive chaotic system with tran-
scendental nonlinearities. IEEE Trans Circuits Syst I Regul Pap.
2022;69(7):2885–92.

	32.	 Prashanth H, Rao M. SOMALib: Library of Exact and Approxi-
mate Activation Functions for Hardware-efficient Neural Network
Accelerators. In: 2022 IEEE 40th International Conference on
Computer Design (ICCD), 2022;746–753. IEEE.

	33.	 Mehra S, Raut G, Das R, Vishvakarma SK, Biasizzo A. An Empir-
ical Evaluation of Enhanced Performance Softmax Function in
Deep Learning. IEEE Access 2023.

	34.	 Alex K. Learning multiple layers of features from tiny images.
https://​www.​cs.​toron​to.​edu/​kriz/​learn​ing-​featu​res-​2009-​TR.​pdf
2009.

	35.	 LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based
learning applied to document recognition. Proc IEEE.
1998;86(11):2278–324.

	36.	 Simonyan K, Zisserman A. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:​1409.​1556
2014.

	37.	 Park J-S, Park C, Kwon S, Kim H-S, Jeon T, Kang Y, Lee H, Lee
D, Kim J, Lee Y, Park S, Jang J-W, Ha S, Kim M, Bang J, Lim SH,
Kang I. A Multi-Mode 8K-MAC HW-Utilization-Aware Neural
Processing Unit with a Unified Multi-Precision Datapath in 4nm
Flagship Mobile SoC. In: 2022 IEEE International Solid-State
Circuits Conference (ISSCC), 2022;65:246–248.

	38.	 Chang J-K, Lee H, Choi C-S. A Power-Aware Variable-Pre-
cision Multiply-Acumulate Unit. In: 2009 9th International
Symposium on Communications and Information Technology,
2009;1336–1339.

	39.	 Abadi M, et al. TensorFlow: Large-scale machine learning on het-
erogeneous systems. Software available from tensorflow.org 2015.

	40.	 Raut G, Mukala J, Sharma V, Vishvakarma SK. Designing a
Performance-Centric MAC Unit with Pipelined Architecture for
DNN Accelerators. Circuits, Systems, and Signal Processing,
2023;1–27.

	41.	 Multiplier v12.0 LogiCORE IP Product Guide. https://​www.​
xilinx.​com/​suppo​rt/​docum​entat​ion/​ipdoc​ument​ation/​multg​en/​
v120/​pg108-​mult-​gen.​pdf

	42.	 Venkataramani G, Goldstein SC. Slack Analysis in the System
Design Loop. In: Proceedings of the 6th IEEE/ACM/IFIP Inter-
national Conference on Hardware/Software Codesign and System
Synthesis, 2008;231–236.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://www.cs.toronto.edu/kriz/learning-features-2009-TR.pdf
http://arxiv.org/abs/1409.1556
https://www.xilinx.com/support/documentation/ipdocumentation/multgen/v120/pg108-mult-gen.pdf
https://www.xilinx.com/support/documentation/ipdocumentation/multgen/v120/pg108-mult-gen.pdf
https://www.xilinx.com/support/documentation/ipdocumentation/multgen/v120/pg108-mult-gen.pdf

	A Precision-Aware Neuron Engine for DNN Accelerators
	Abstract
	Introduction and Motivation
	Organization

	Related Research
	Proposed PNE Architecture
	PNE and State Machine
	Precision-Aware MAC Unit with Pre-Loaded Bias
	Adaptable AF Using ROM Cordic

	Inference Accuracy and Hardware Performance: Evaluation and Analysis
	Experimental Validation of PNE: Quantized and Unquantized model
	Hardware Implementation and Result Comparison of the Proposed PNE
	Optimized MAC Unit with Quantization-Enabled Output Selection and Pre-Loaded Bias
	Time Slack

	Resource Utilization of the ROM Cordic-Based Adaptable AF

	Conclusions and Future Research
	Acknowledgements
	References

