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Abstract
Deep Neural Networks (DNNs) form the backbone of contemporary deep learning, powering various artificial intelligence 
(AI) applications. However, their computational demands, primarily stemming from the resource-intensive Neuron Engine 
(NE), present a critical challenge. This NE comprises of Multiply-and-Accumulate (MAC) and Activation Function (AF) 
operations, contributing significantly to the overall computational overhead. To address these challenges, we propose a 
groundbreaking Precision-aware Neuron Engine (PNE) architecture, introducing a novel approach to low-bit and high-bit 
precision computations with minimal resource utilization. The PNE’s MAC unit stands out for its innovative pre-loading of 
the accumulator register with a bias value, eliminating the need for additional components like an extra adder, multiplexer, and 
bias register. This design achieves significant resource savings, with an 8-bit signed fixed-point implementation demonstrating 
notable reductions in resource utilization, critical delay, and power-delay product compared to conventional architectures. 
An 8-bit sfixed < N, q > implementation of the MAC in the PNE shows 29.23% savings in resource utilization and 32.91% 
savings in critical delay compared with IEEE architecture, and 24.91% savings in PDP (power-delay product) compared with 
booth architecture. Our comprehensive evaluation showcases the PNE’s efficacy in maintaining inferential accuracy across 
quantized and unquantized models. The proposed design not only achieves precision-awareness with a minimal increase 
( ≈ 10%) in resource overhead, but also achieves a remarkable 34.61% increase in throughput and reduction in critical delay 
(34.37% faster than conventional design), highlighting its efficiency gains and superior performance in PNE computations. 
Software emulator shows minimal accuracy losses ranging from 0.6% to 1.6%, the PNE proves its versatility across different 
precisions and datasets, including MNIST (on LeNet) and ImageNet (on CaffeNet). The flexibility and configurability of the 
PNE make it a promising solution for precision-aware neuron processing, particularly in edge AI applications with stringent 
hardware constraints. This research contributes a pivotal advancement towards enhancing the efficiency of DNN computa-
tions through precision-aware architecture, paving the way for more resource-efficient and high-performance AI systems.

Keywords  Deep neural networks · Neuron engine · Edge-AI · Multiply-accumulate unit · Activation function · Precision-
aware architecture · Approximate computing

Introduction and Motivation

The demand for efficient deep learning (DL) hardware is 
escalating with the increasing need for advanced AI applica-
tions. Within the realm of DL, deep neural networks (DNNs) 
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have gained prominence for diverse applications, including 
object detection, pattern and character recognition, audio 
and video processing, language translation, trading, gam-
ing, and cyber-security, as indicated by Sim et al. [1]. It’s 
capability to map complex relationships within non-linear 
data bestows considerable advantages, setting it apart from 
other prediction techniques, as highlighted by Khalil et al. 
[2]. The DNN’s Neuron engine plays a pivotal role in com-
putation and accuracy, yet its hardware implementation is 
known for its demand for power and resources, as pointed 
out by Shawl et al. [3]. Optimizing the physical performance 
of the Neuron engine (NE) becomes crucial in addressing 
the heightened computational requirements of DNN. This 
engine adeptly handles operations like Multiply-Accumulate 
(MAC) and the execution of the non-linear transformation 
function, known as the activation function (AF). Further-
more, the MAC and AF operation are responsible for 90% 
of the computation in the neural network. Therefore, opti-
mizing the computational unit architecture is essential to 
enhance DNN performance.

A typical DNN consists of two parts: feature extrac-
tion, as illustrated in Fig. 1a, and output classification, 
as depicted in Fig. 1b. In the course of this operation, 
input features undergo convolution with filters, requir-
ing hundreds and thousands of parallel neuron processing 
engines to carry out these computations [4]. Consequently, 
there is a compelling need to optimize the Neuron engine 
responsible for executing the fundamental computations 
within DNN inference. Furthermore, the design of the NE, 
encompassing MAC and AF, involves the consideration 
of various design parameters. These parameters include 
arithmetic precision, data types, approximation in com-
putation, data quantization, computation algorithms, and 
hardware implementation platforms, among others [5]. 
The hardware implementation platforms utilized for imple-
mentation encompass CPU, GPU, FPGAs, and ASICs, 
each with its respective advantages and drawbacks [6]. 
However, for edge-AI solutions, FPGA and ASIC-based 
implementations are preferred. Additionally, for power-
efficient solutions, ASIC-based implementation is favored, 
although it lacks reconfigurability compared to FPGAs. To 
enhance computational efficiency and reduce architecture 

complexity, numerous investigations explore approxima-
tion in computation and data quantization [7]. However, 
these techniques often result in reduced accuracy. Hence, 
careful consideration of these advancements in the neu-
ron engine becomes imperative. Scholars are presently 
exploring the potential of employing quantization in NE 
to enhance computational capacity while preserving model 
precision. Additionally, the use of application dependent 
different AFs within the same network is recommended 
[8]. Traditionally, this necessitates separate hardware 
for individual AFs and their configuration, leading to 
increased hardware resources and critical circuit delays.

In pursuit of reduced complexity in DNN hardware accel-
erators, a preference for lower arithmetic precision and inte-
ger or fixed-point data representation arises in both MAC 
and AF computations. During convolution, where a k × k 
kernel convolves with an input feature map (Fig. 1a), parallel 
multiplication and accumulation occur, leading to an output 
precision increase to 2N + M. Here, N represents input pre-
cision, and M signifies the overhead bits, dependent on the 
number of accumulations performed by the corresponding 
MAC unit. The MAC output is then provided to the AF, 
dictating the precision of the AF. Conventional AF imple-
mentations, such as those based on Look-Up Tables (LUTs) 
or Read-Only Memory (ROM), become hardware-costly for 
higher precision due to the increase in memory elements to 
2 P , where P is the input bit precision of the AF (traditionally 
2N + M). We can quantize the MAC output to N bits before 
applying it to the AF [8, 9]. However, this approach may 
result in accuracy loss, particularly when prioritizing higher 
accuracy for complex input features. Therefore, an efficient 
neuron must provide the option to select between quantized 
and unquantized MAC outputs. Moreover, if opting for 
unquantized data feed to the AF, conventional AF imple-
mentation becomes undesirable, as it is power and resource-
intensive, especially for higher precision. Consequently, it 
becomes imperative to address a solution that accommodates 
both quantized and unquantized MAC outputs. To tackle this 
challenge, we introduce the Precision-aware Neuron Engine 
(PNE). The distinctive features of PNE and the primary con-
tributions of this work are outlined below:

Fig. 1   The convolution layer in DNN performs 2D matrix multiplication between the input feature map and kernel weights for feature extraction 
using MAC. FC layer in DNN performs 1D element-wise data computation. The ultimate classifying output layer is an FC layer
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•	 A resource and power-efficient MAC architecture in PNE 
with a state machine design is presented, eliminating the 
multiplexer and utilizing pre-loaded bias for precision-
aware computations, offering both quantized and unquan-
tized outputs.

•	 We present an adaptable AF using ROM and Cordic, 
capable of producing tanh and sigmoid functions across 
varying bit-precisions, exhibiting minimal accuracy deg-
radation and reduced LUT usage compared to tensor-
based models.

•	 The PNE is designed using the proposed MAC and AF, 
achieving high accuracy at low-bit precision through the 
quantized MAC output and ROM AF output, as well as 
at high-bit precision using unquantized MAC output and 
Cordic AF output.

•	 The PNE’s inference accuracy is assessed using Python 
emulation of LeNet and CaffeNet DNN models on FPGA 
hardware, comparing performance parameters, including 
resource, power utilization and delay, with state-of-the-
art architectures.

This paper is an extension of our previous work presented 
at the IFIP-IoT conference [10] where an adaptable AF is 
presented. In this paper, we present a precision-aware neuron 
architecture using a precision-aware MAC and the adapt-
able AF.

Organization

This article is structured as follows: related research is pre-
sented in section “Related Research”. The proposed PNE 
architecture, it’s state machine design, and it’s components 
i.e. the MAC and AF are discussed in section “Proposed 
PNE Architecture”, followed by performance analysis and 
results discussions in section “Inference Accuracy and Hard-
ware Performance: Evaluation and Analysis”. Finally, the 
concluding remarks are given in section “Conclusions and 
Future Research”.

Related Research

Various hardware accelerator architectures for neural net-
works have been introduced in the recent years [11]. Shal-
low neural networks are no longer useful, as the quantity 
of hardware neurons and connections in modern networks 
makes them outdated and unsuitable for the deep learning 
era. CNNs (a type of DNN) are frequently used in both 
video and image recognition systems, and usually employ a 
number of filters or convolution matrices [12]. As convolu-
tion matrices have fewer parameters than FC network layer 
weights, parallelism can be introduced. In order to reduce 
the network complexity, quantization in data representation 

is preferred for quantizing MAC output during inference, 
also rounding of weights and biases since they are fixed 
after training is finished [13]. In [14] and [15], a flexible, 
multi-precision per-layer data compression procedure is 
presented and implemented. Pruning aims to eliminate the 
subset of network units (i.e. weights or filters) which are 
least important for the network’s intended task [16]. All of 
the above strategies necessitate the need for a programmable 
and precision-aware PNE which involves MAC computation 
followed by AF [13].

The MAC operation comprises of an adder, multiplier, 
and accumulator register. The multiplication result is trans-
ferred to an accumulator, added, and the output is stored in 
a register. The type of adders, multipliers, and registers lead 
to variations in area and delay [17]. Various articles have 
addressed MAC optimization by modifying the multiplica-
tion and addition techniques. Existing literature proposes 
different multiplication methods, such as vedic [18], array, 
wallace tree, booth [19], shift and add [20, 21], and modified 
booth [22, 23]. Researchers have also focused on optimiz-
ing the addition and quantized accumulation process using 
techniques such as approximation, quantization/ data resize, 
bits-serial, and reduced precision, as discussed in a study by 
Garland et al. [9]. Limited hardware resources make it chal-
lenging to implement MAC with parallel multipliers [24]. 
The conventional architecture of MAC (showing a single 
multiplier followed by accumulator along with input–output 
precision) is illustrated in  Fig. 3.

The typical RTL view of the MAC architecture is 
depicted in Fig. 2, which includes a multiplier, two adders, 
a multiplexer, and an accumulator register [25]. The state-
of-the-art revised architecture presented in Fig. 3 uses only 
one adder, one multiplexer, and register files, resulting in 
a saving of one adder compared to the typical architecture 
[26]. However, this design still uses a bias register file and 
a multiplexer, which result in more hardware resources and 
additional delay due to bias register loading time and delay 
due to the multiplexer. Therefore, the design can be further 
optimized to make it more efficient for DNN accelerator 
applications, in order to increase throughput. The conven-
tional MAC design produces an output of 2N + M bits, 
where N is the input bit, and M is the overhead bits that 
come across the accumulation. The overflow bit depends 
on the number of accumulations and can be defined as 2 j , 
where j is the number of accumulations required in the 
MAC, which depends on the number of inputs.

The designs shown in Figs. 2, and 3, including our pro-
posed design, utilize an arithmetic fixed-point ⟨N, q⟩ repre-
sentation, which employs a binary point implication repre-
sentation for the integer, signed, and fractional bits, as shown 
in Fig. 4. The representation comprises of N bits, compris-
ing one sign bit, N-q integer bits, and q fractional bits. As 
overflow bits are necessary in the accumulation stage, the 
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accumulator’s bit size must be increased, and the overflow 
bit size is determined by the input size (i.e., the number 
of accumulations) in the corresponding neuron. In Fig. 3, 
the fixed-point N-bit numbers are depicted, as explained in 
Fig. 4, along with the logic elements and a 2:1 MUX for the 
N-bit data line. The MUX with a select line is employed to 
choose between pre-trained bias or accumulation process. 
The excessive hardware, i.e., MUX and bias register, shown 
in the dotted red box [1] Fig. 3, occupies additional hard-
ware resources and increases delay. To address this issue, 
we optimized the design by efficiently pre-loading the bias 

value in the accumulator register, enabling resizing of the 
MAC output and handshaking with activation.

AF is the key to improving the network’s learning capa-
bilities in addition to correctly re-initializing the weights 
parameter. Sigmoid function is widely used for backpropaga-
tion training algorithms. It is crucial to select the right AF 
for machine learning training and inferencing. Type of AF 
can affect the convergence and accuracy of network training 
as well as increase the computational cost of training and 
inference phases [27]. Here arises the need for an adaptable 
AF. [28] presents a polynomial model for implementation of 
the fractional exponent part of tanh AF. These approaches 
achieve accurate approximations with minimal resource 
usage, but do not address configurability in AF. An energy-
efficient DNN accelerator, with variable precision support, 
improved performance, and reduced energy consumption, 
is evaluated at the MAC level in [29], but the investigation 
of the AF is warranted for further enhancement. The Cordic 
method, originally introduced by Volder and later modi-
fied by Walther, performs circular, linear, and hyperbolic 
operations [30]. To address the issues related to additional 
resources and higher critical delays associated with Cordic, 
a resources reused Cordic-based architecture in [8] realizes 
sigmoid and tanh AFs using the same logic resources. This 

Fig. 2   Conventional RTL design for typical MAC with fixed-point representation. Here, N-bit precision is considered at the input with an output 
of 2N + M bits which includes overflow bits

Fig. 3   Conventional MAC architecture with a single multiplier, an accumulator register with additional overhead bits, and a MUX for selecting 
the bias value

Fig. 4   The fixed-point arithmetic representation for an N-bit number, 
wherein q represents the fraction bit, (N - q) represents the integer bit, 
and MSB represents the sign bit



SN Computer Science           (2024) 5:494 	 Page 5 of 14    494 

SN Computer Science

approach has two main drawbacks: low accuracy and high 
LUT utilization for bit-precision ≤ 8. The adaptable AF 
presented in this paper combines the Cordic algorithm for 
high bit-precision AF and ROM for low bit-precision AF ( ≤ 
8). For hardware implementation with the fixed-point nota-
tion, ROM-based AFs are not suitable for high-bit precision 
applications due to their significant resource utilization (i.e., 
LUT in FPGA and memory elements in ASIC). The LUT-
based approach splits non-linear input ranges into regions 
and stores their data in LUTs as straight-line segments. 
FPGA-based customizable hardware designs for AFs have 
been proposed in [31], which are configurable, but consume 
more on-chip area compared to ASICs. FPGAs use BRAM 
to reduce computation overhead, but increased BRAM uti-
lization trades memory usage for bit precision [26]. In [32], 
authors present a library of VLSI implementations for vari-
ous AFs for hardware-efficient NN accelerators.

Proposed PNE Architecture

In this section, we examine the hardware architecture and 
state machine of the precision-aware neuron engine (PNE) 
proposed in this research. The design incorporates opti-
mized MAC unit to address precision sensitivity. The PNE 
also includes an adaptable AF with ROM and Cordic-based 

implementation to improve memory efficiency in PNE pro-
cessing while preserving versatile precision capabilities.

PNE and State Machine

In this section, we present the PNE architecture and its cor-
responding state machine. Comprising the MAC unit and the 
AF unit, the PNE, depicted in Fig. 5, illustrates the sequence 
of the MAC unit followed by the AF unit. In Fig. 6, the 
MAC unit within the PNE is designed to yield 2 outputs: 
quantized and unquantized. The MAC output serves as the 
input to a 2:1 MUX, which, contingent on the control signal 
(precision_ctrl), determines whether the quantized 
or unquantized output is to be provided as input to the AF. 
The (precision_ctrl) signal also determines the AF 
type based on the output produced by the MAC unit (i.e., 
quantized or unquantized).

The PNE has three inputs: input, weight, and bias. While 
the design is versatile enough to handle different bit-pre-
cision, we opt for a signed 8-bit arithmetic computation 
for performance evaluation and result extraction. The final 
output, identified as AFout , is configured as an 8-bit value 
within the PNE. In the AF, the hardware incorporates a 
select pin (precision_ctrl) for AF processing. For 
lower precision, specifically quantized output, we have 
employed a ROM-based AF designed to support 8-bit and 
lower precision. However, when dealing with unquantized 

Fig. 5   PNE integrates MAC and 
AF. The MAC unit multiplies 
input features with trained 
weights, accumulates the result, 
and adds bias. The MAC output 
(‘z’) is denoted as MAC

out
 . 

The AF is applied to MAC
out

 , 
resulting in the AF output 
(AF

out
)

Fig. 6   PNE showcasing quantized and unquantized MAC outputs fed through 2:1 MUX to give MAC
out

 , followed by AF output: AF
out

 . PNE
out

 is 
the same as AF

out
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output featuring a higher bitwidth, a ROM-based approach 
might not be the most efficient choice for AF. Consequently, 
we introduce a novel AF function using iterative Cordic, 
ensuring support for higher precision computation with 
minimal hardware overhead compared to ROM-based 
implementations.

Figure 7 shows the state machine of the PNE. The state 
machine comprises of several states: idle, idle, pre_MAC, 
MAC, post_MAC, and AF. In the idle state, the 
machine sets various input and output signals to their initial 
values and waits for the Computeinit signal to begin 
processing. Upon receiving a ComputeInit signal, the 
machine transitions to the initial state, where input data 
is registered, and the initial sum value, including any bias 
values, is calculated. Specifically, mult_reg is set to 0, and 
sum_reg is initialized to the bias value (shown in Fig. 6). 
This state persists for a single clock cycle, after which it 
transitions to pre_MAC, initiating the first multiplication. 
In this state, the initial bias is loaded into the accumulator 
register, and the machine multiplies the input data with the 
appropriate weight value, adding the result to the sum (pre-
loaded bias). The index flag is also set to the number of 
inputs for later use. The machine then progresses to the MAC 
state, where the multiplication and accumulation operations 
continue until the index flag reaches zero. The index, 
initialized during the initial state, is decremented at 
every clock cycle during the MAC state. In this state, both 
the multiplier and accumulator are enabled. Upon index 

reaching zero, the state transitions to post_MAC, where the 
final accumulation occurs, and the multiplier is disabled. 
The machine then moves to the post_MAC state. Here, final 
calculations are completed, producing two outputs: quan-
tized and unquantized. One of these outputs is selected and 
passed through the MUX. Additionally, in this state, prepa-
rations are made for the AF to be applied, along with control 
signal precision_ctrl. The state then changes to AF, 
during which the output of the MAC unit (i.e., the output 
of the 2:1 MUX with sum_reg), quantized or unquantized 
depending on precision_ctrl as shown in Fig. 6, is 
applied to AF. Finally, the machine transitions to the AF 
state and operates based on the control signal AF_ctrl. 
In the AF state, the machine applies the activation function 
to the final sum value and sets a “done” flag to indicate that 
processing is complete. Here, the output of the proposed 
adaptable AF becomes the output of the PNE. The machine 
then returns to the idle state and waits for the next process-
ing request. The detailed architecture for MAC and AF are 
discussed in subsections “Precision-Aware MAC Unit with 
Pre-Loaded Bias” and “Adaptable AF Using ROM/ Cordic”. 
Table 1 shows the various modes of operation and outputs 
of the PNE.

Precision‑Aware MAC Unit with Pre‑Loaded Bias

The proposed design employs two inputs for the multipli-
cation operation: the j-input feature and the pre-trained 
j-weight, both stored in the weight register file (shown in 
Fig. 6). The multiplication of these inputs yields a 2N-bit 
output(mult_reg), serving as input to the accumulator 
(sum_reg), where trained biases are pre-loaded. The adder 
takes the multiplier output and the feedback (accumulation) 
from the output register as inputs, storing the results in the 
output register. Iteratively accumulating the adder output, 
the output register produces a final unquantized output of 
2N + M bits, where M (M = log2 j ) represents the over-
flow bit width resulting from iterative operations. The out-
put generated at the accumulate stage is quantized into an 
N-bit value. Both the quantized and unquantized results are 
then passed to the non-linear transformation (AF) through 
a multiplexer based on the precision_ctrl signal, as 
depicted in Fig. 6 and shown in Table 1. Notably, the MUX 
and bias_reg present in the conventional design (Fig. 3) 

Fig. 7   State machine of the PNE showing reset signal and idle 
mode. The MAC computation happens during the two states: 
pre_MAC and post_MAC 

Table 1   PNE
out

 selection 
using AF_ctrl and 
precision_ctrl signals as 
depicted in Fig. 6

AF_ctrl Precision_ctrl MAC
out

AF
out

PNE
out

0 0 Unquantized Cordic[R
in

 ] = sigmoid(R
in

) sigmoid(R
in

)
1 0 Unquantized Cordic[R

in
 ] = tanh(R

in
) tanh(R

in
)

X 1 Quantized ROM[R
in

] sigmoid(R
in

 ) 
or 
tanh(R

in
)
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have been eliminated in the proposed design. The pre-trained 
bias output is now loaded directly into the accumulator reg-
ister (sum_reg). This optimization reduces resource utiliza-
tion and critical delay in the MAC operation. Also, the pro-
posed design can accommodate any bit precision, enabling 
the specification of integer and fractional bits in the fixed 
⟨ N, q ⟩ format representation before synthesis. However, 
for the purpose of design analysis and implementation, an 
8-bit precision architecture has been employed. Although 
we have validated this proposed architecture on an FPGA 
using Hardware Description Language (HDL), the advan-
tages demonstrated by this design are expected to extend to 
Application-Specific Integrated Circuits (ASICs) as well. In 
Fig. 6, the MAC architecture utilized in the PNE is empha-
sized with a dashed box.

In the first clock cycle, two signed fixed-point values, 
each with an N-bit width, are multiplied using a multi-
plier (mult_reg), and the bias value is pre-loaded into 
the sum_reg. This saves an extra clock cycle that is con-
ventionally required for bias accumulation. The multiplica-
tion result is a 2 × N-bit value with 4 integer bits and 12 
fractional bits stored in mult_reg. At each clock cycle, 
the value in mult_reg is accumulated in sum_reg. 
sum_reg is initialized with the bias value at the begin-
ning of every layer computation, and extra bits are used to 
prevent overflow. Once all MAC operations are complete, 
the values in sum_reg are resized to a fixed ‘ ⟨ 8, 6 ⟩ ’ for-
mat using the inbuilt IEEE library resize function. We have 
used the ‘resize’ function provided by Xilinx at the output 
of the MAC, which comes with rounding and inherent accu-
racy loss. Bit rounding can be defined as the procedure of 
changing a number with roughly the exact value but fewer 
digits with another number. This resized value is then fed 
into the sigmoid ROM for AF operation. In the fixed ⟨8, 6⟩ ’ 
format, 2 integer bits and 6 fractional bits, along with 1 sign 
bit (MSB), represent the signed fixed-point representation 
(Fig. 4). The output of the AF is the output of the PNE for 
the current layer.

Adaptable AF Using ROM/ Cordic

The output generated by the MAC unit, determined by the 
precision_ctrl pin, is fed into the novel AF designed 
to accommodate both higher and lower precision arithmetic. 
In this study, we have utilized a ROM-based implementation 
for processing the quantized output of MAC (N-bits), and a 
Cordic-based implementation for processing the unquantized 
output (2N+M-bits). The AF design offers adaptability for 
selection of precision (via precision_ctrl) and the selec-
tion of AF (via AF_ctrl). The architecture supports both 
tanh and sigmoid AF computations. A detailed description of 
this performance-efficient adaptable AF’s design architecture 
and computation techniques has been provided in [10]. We 

have integrated the aforementioned activation function (AF) 
into our proposed PNE, as depicted in red in Fig. 6. Within 
the PNE, the core of the adaptable AF is represented in Fig. 8. 
This core consists of a ROM or CORDIC Configure block 
and a processing block that facilitates adaptability for AF type 
selection. Two control signals, namely precision_ctrl 
and AF_ctrl, are employed for this purpose.

The ROM/ Cordic Configuration Block, shown in Fig. 8, 
integrates adders/ subtractors, shifters, and memory elements 
[10]. In the Cordic-based approach, the most significant bit 
(MSB) of R in[N-1] (sign bit) generates the directional signal d i 
[33], determining whether addition or subtraction is performed 
to converge R out to 0. Here, d i ∈ {0, 1}, representing the sign 
bit R in[N-1] ∈ {0, 1}. In the ROM-based approach (Fig. 8), the 
value at the R in address is accessed as ROM[Rin ]. Depending 
on the ROM implementation and configuration of control pins, 
the AF’s output for sigmoid or tanh is obtained. Thus, R out = 
ROM[Rin ] for the ROM-based approach, while R out converges 
to 0 for the Cordic-based approach, as highlighted in the ROM/ 
Cordic Configuration Block in Fig. 8. The output of the Cordic 
block produces values cosh(Rin ) and sinh(Rin ) at P out and Q out , 
respectively. These outputs are used for exponential calcula-
tion, as described in Eq. 1.

The adaptable AF (Fig.  8) incorporates select signals 
precision_ctrl and AF_ctrl, which are summa-
rized in Table 2 to determine outputs using either ROM or 
Cordic. The input data R in serves as AFin (or MACout ) to 
the AF block and produces the output ROM[Rin ] in the sub-
sequent clock cycle or converges to 0 after the N th Cordic 
iteration. One can observe that ROM/ Cordic Configuration 
Block provides three outputs: sinh(Rin ), cosh(Rin ), and 0/ 
ROM[Rin ], as depicted in Fig. 8, with AF_ctrl controlling 

(1)eRin = cosh(Rin) + sinh(Rin)

Fig. 8   The design of the adaptable AF for variable precision, consist-
ing of the ROM/ Cordic Configuration Block and additional logic ele-
ments
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MUX1 and MUX2 for Cordic-based sigmoid or tanh AF 
selection. sinh(Rin ) and cosh(Rin ) are sent to ADDER1. The 
output of ADDER1 is e Rin = sinh(Rin ) + cosh(Rin ), which 
serves as input to ADDER2. The output of ADDER2 is 1 + 
e Rin . MUX1 has inputs e Rin , sinh(Rin ), and MUX2 has inputs 
cosh(Rin ), 1 + e Rin with the select line as AF_ctrl. The 
outputs of MUX1 and MUX2 are processed in the divider 
to calculate Cordic[Rin ] for sigmoid/ tanh evaluation. Sub-
sequently, MUX3 is used to select ROM[Rin ] or Cordic[Rin ] 
based on the precision_ctrl signal. The state of 
control signals for generating tanh and sigmoid AFs using 
ROM/ Cordic approaches is presented in Table 2. Although 
ReLU is not implemented in this paper, Fig. 9 and Table 3 
present how integration of ReLU AF is also possible in the 
proposed AF, showing it’s adaptability. Comparing with 
Fig. 8, it can be observed that additional hardware require-
ments include 1 control signal (AF_ctrl2) and 2 MUXes 
(MUX4 and MUX5). MUX4 is used to implement the ReLU 
AF and MUX5 provides the selection (via the control signal 
AF_ctrl2) between ROM[Rin ] and ReLU[Rin ] output. The 
output of MUX5 is one of the inputs to MUX3, the other 
input being Cordic[Rin].

Inference Accuracy and Hardware 
Performance: Evaluation and Analysis

We have evaluated the inference accuracy of the proposed 
PNE for image classification tasks. Additionally, an analy-
sis of resource utilization and delay of the PNE has been 
carried out with Cordic-based and ROM-based AF, target-
ing both quantized and unquantized results with precision 
requirements. The results demonstrate the effectiveness of 
our PNE, which has signed fixed-point pre-loaded bias MAC 
unit and an adaptable AF, enabling precision-aware DNN 
computations.

Experimental Validation of PNE: Quantized 
and Unquantized model

The experimental results presented in Table 4 provide a 
detailed analysis of the inferential accuracy of the PNE for 
both quantized and unquantized models. In this work, the 
precision comparison includes settings for 4-bit, 8-bit, and 
16-bit across different datasets (MNIST, CIFAR-10, CIFAR-
100) [34] and DNN architectures (LeNet [35], VGG-16 
[36]). Further, it is to be noted that for target applications of 
the proposed PNE i.e. feature extraction and output classifi-
cation, bit-precision upto 16-bits is optimal [37, 38]. Higher 
bit resolutions would lead to higher power consumption, 
higher critical delay and higher resource utilization, which 
are not desirable. The proposed PNE (P) is benchmarked 
against the Tensor-based MAC and AF model in the neuron 
engine (T) [39]. For the unquantized output, i.e., PNE with 
Cordic-based AF, the proposed PNE maintains competitive 
accuracy compared to the Tensor-based model, with a less 
than 2% accuracy loss compared to the TensorFlow model. 
The results underscore the robustness of the proposed PNE 
in preserving accuracy while operating under higher-preci-
sion settings. Notably, the proposed PNE showcases robust 
accuracy, with minimal differences ranging from 0.6% to 
1.6%.

Furthermore, in the case of PNE with ROM-based AF 
(Quantized), the proposed PNE consistently demonstrates an 
insignificant accuracy loss of 1.6% compared to the Tensor-
based model across different precisions and datasets. Even 
under lower bit-precision settings (4-bit, 8-bit, 16-bit), the 
proposed PNE exhibits strong performance, with accuracy 
difference ranging from 0.7% to 1.6%. This showcases the 
effectiveness of the PNE even in quantized scenarios with 
lower bit-precision. Overall, the proposed PNE exhibits 
robust performance across various precisions and DNN 
architectures, showcasing its effectiveness in maintaining 
accuracy under lower bit-precision settings. Notably, the 
comparison provides valuable insights into the performance 
of the proposed PNE across different bit precisions, high-
lighting its versatility and efficacy in diverse DNN architec-
tures and datasets. It is crucial to emphasize that in evalu-
ating accuracy, we employed a ROM-based approach for 

Fig. 9   ReLU AF integrated with our proposed adaptable AF 
design. The additional hardware requirements ( MUX4, MUX5 and 
AF_ctrl2) are required to enable ReLU AF with our proposed 
adaptable AF

Table 2   AF selection using AF_ctrl and precision_ctrl sig-
nals for ROM/ Cordic AF as depicted in Fig. 8

AF_ctrl preci-
sion_ctrl

R
out

AF
out

0 0 0 Cordic[R
in

 ] = sigmoid(R
in

 ) = e
R
in

1+eRin

1 0 0 Cordic[R
in

 ] = tanh(R
in

 ) = sinh(Rin
)

cosh(R
in
)

X 1 ROM[R
in

] ROM[R
in

 ] = sigmoid(R
in

 ) OR 
tanh(R

in
)
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both 8-bit and 16-bit precision. Additionally, for the Cordic-
based algorithm, we conducted accuracy assessments using 
both 8 and 16-bit precision computations. However, for the 
hardware implementation, where resource constraints are a 
consideration, we adopted an 8-bit computation using ROM-
based architecture. On the other hand, for the 16-bit compu-
tation, we utilized a Cordic-based architecture.

Hardware Implementation and Result Comparison 
of the Proposed PNE

This section delineates the experimental setup and meth-
odology employed to evaluate the PNE proposed in this 
research. The assessment involves two distinct blocks, 
namely the Multiply-Accumulate (MAC) unit and the 
Activation Function (AF), implemented through the Zybo-
Xilinx evaluation kit. Hardware performance parameters are 
extracted at an operating frequency of 50 MHz and an oper-
ating temperature of 25◦C . The modular RTL design archi-
tecture is tailored for ASIC implementation. Simulation and 
performance parameters extraction consider 1 sign bit and 
8 magnitude bits (2 integers and 6 fractional). Comparisons 
are drawn with conventional architecture, covering LUT and 
register utilization, critical delay, and total on-chip power. 
All architectures are implemented on the same FPGA plat-
form for a fair comparison, detailed in [40]. Our proposed 
design, implemented on the Zybo-Xilinx FPGA SoC kit, has 
demonstrated noteworthy results.

Various state-of-the-art processing engines supporting 
definite precision were investigated, utilizing rounding or 
truncation between the MAC unit and AF, resulting in accu-
racy loss. In contrast, our proposed design provides devel-
opers the flexibility to choose quantization on the MAC 
result. Here, we have compared the proposed architecture 
with a conventional design. The proposed design sup-
ports both quantized and unquantized data. It is observed 
that if the same feature is incorporated into the conven-
tional architecture, it would require 328 LUTs (102 + 226), 
whereas the proposed design utilizes only 248 LUTs. The 
specific advantages of ROM-based AF in lower precision 
and Cordic-based AF are discussed in section “Resource 
Utilization of the ROM/ Cordic-Based Adaptable AF”. Our 
focus here is on architectural optimization and implementa-
tion. However, it can be extended for different types of MAC 
units and AFs, along with a state-of-the-art comparison. If 
higher accuracy is desired, the MAC output is processed 
directly through the AF. Conversely, if accuracy speed is not 
a significant concern, the MAC result is quantized using the 
precision_ctrl pin. It is crucial to note that quantized 
data configures the ROM-based AF, while unquantized data 
passes through Cordic-based AF. The detailed architectural 
design and computational arithmetic for the MAC unit and 
AF are elaborated in section “Precision-Aware MAC Unit 
with Pre-Loaded Bias” and “Adaptable AF Using ROM/ 
Cordic”, respectively. The hardware implementation results 
reported for the Zybo FPGA board are presented below.

Table 3   Table showing ReLU 
integration with proposed AF. 
1 additional control signal 
(AF_ctrl2) and 2 MUXes are 
required as depicted in Fig. 9

AF_ctrl1 precision_ctrl AF_ctrl2 R
out

AF
out

0 0 X 0 Cordic[R
in

 ] = sigmoid(R
in

 ) = e
R
in

1+eRin

1 0 X 0 Cordic[R
in

 ] = tanh(R
in

 ) = sinh(Rin
)

cosh(R
in
)

X 1 0 ROM[R
in

] ROM[R
in

 ] = sigmoid(R
in

 ) OR tanh(R
in

)
X 1 1 ReLU[R

in
]

ReLU[R
in

 ] = 

{
R
in

if R
in
> 0

0 otherwise

Table 4   Comparative analysis 
of accuracy: PNE vs. Tensor-
based neuron model having 
MAC and AF (T) [39] for 
LeNET and VGG-16 DNN 
models

DNN Arch. LeNET VGG-16

 Datasets MNIST CIFAR-10 CIFAR-10 CIFAR-100

 Precision T P T P T P T P

Infer. Accuracy (%) for Quantized PNE output(Quantized MAC + ROM-based AF)
4-bit 96.1 95.6 54.8 54.2 64.6 62.8 23.8 22.7
8-bit 97.9 97.2 63.5 62.1 81.7 80.3 49.6 47.9
16-bit 98.6 97.9 64.3 62.8 82.8 81.1 51.3 49.8
Infer. Accuracy (%) for Unquantized PNE output (Unquantized MAC + Cordic-based AF)
4-bit 96.8 88.3 55.4 48.6 65.1 52.7 24.1 22.8
8-bit 98.5 96.8 64.1 62.3 82.7 80.9 50.1 48.4
16-bit 99.1 97.9 65.2 64.3 86.1 84.8 55.3 54.1



	 SN Computer Science           (2024) 5:494   494   Page 10 of 14

SN Computer Science

The comprehensive analysis of proposed PNE in compar-
ison to conventional counterparts on a Zybo board at 50MHz 
is presented in the Table 5. This table outlines the standalone 
architecture supporting both unquantized and quantized 
MAC operations in the conventional design. Additionally, 
it presents the proposed precision-aware design, offering 
the flexibility for both operations. Notably, the proposed 
design can be configured through an external signal, ena-
bling PNE and supporting adaptable AF. Precision-aware 
configurations, specifically the proposed precision aware 
pre-loaded bias MAC and adaptable Cordic AF, exhibit 
minor resource overhead, enabling the precision-aware 
design to evolve from 226 LUTs to 248 LUTs, constituting 
nearly a 9.7% overhead. In the conventional MAC design 
with only Cordic-based AF, the critical delay increases by 
34.37% compared to the proposed PNE. This is due to the 
additional hardware resources, namely bias registers and 
MUX selection, utilized for bias loading. The incorporation 
of these elements introduces an extra clock delay, conse-
quently reducing the throughput of the system. However, 
the proposed designs showcase higher throughput, with the 
Precision-aware pre-loaded bias MAC and adaptable Cordic 
AF achieving 34.61% more GOp/s than the conventional 
MAC with only Cordic AF. The performance metric under-
scores the superiority of precision-aware designs, indicat-
ing a more substantial performance improvement over the 
conventional MAC with only Cordic and also enables the 
design with quantization-enabled computation. These find-
ings highlight the efficiency gains achievable through the 
proposed pre-loaded bias MAC architecture and an adapt-
able AF integrated into the PNE.

Optimized MAC Unit with Quantization‑Enabled 
Output Selection and Pre‑Loaded Bias

In this section, we conduct a comparative analysis of the 
MAC unit, which generates two distinct outputs. The first 
output is the quantize-enabled output, wherein the MAC 
unit’s output is quantized from 2N + M bits to N bits through 
LSB bit truncation. This advancement enables the utilization 

of an N-bit Activation Function (AF) for subsequent com-
putations. Additionally, the MAC unit produces a second 
output, namely the unquantized output, with a precision of 
2N + M bits, where ‘M’ represents the extra overhead bits 
addressed earlier. The selection between these outputs is 
determined using a Multiplexer (MUX) based on the desired 
level of accuracy required for the computation. We conduct 
a comprehensive comparison of state-of-the-art Multiply-
Accumulate (MAC) architectures, all tailored for accurate 
computations at 8-bit precision. We present a detailed analy-
sis of resource utilization, power consumption, and delay for 
the proposed design and other existing architectures on the 
Zybo SoC Xilinx FPGA board as summarized in Table 6. 
Our proposed design demonstrates resource utilization 
comparable to the IEEE standard, even with the integra-
tion of the output selection advancement. Notably, our opti-
mized architecture eliminates the need for bias registers 
and MUX used for bias selection systematically, resulting 
in no additional hardware resource overhead. This enhance-
ment significantly improves critical computation delay and 
reduces a clock delay by pre-loading the bias value into the 
accumulator register. This also leads to reduction in power 
consumption. Although the introduction of an extra Multi-
plexer (MUX) at the MAC output incurs minimal hardware 
overhead, this is effectively compensated by the aforemen-
tioned advancements. Table 6 provides a comparison with 
architectures like Booth Multiplication, Wallace Tree Vedic, 
shift-and-add, Cordic, and IEEE. While each design exhib-
its its own merits and drawbacks, the choice depends on 
the specific application requirements, whether prioritizing 
hardware efficiency, accuracy, or performance. Our proposed 
design offers support for both features, aligning with diverse 
application needs.

The proposed MAC unit has been compared with estab-
lished state-of-the-art designs, including Vedic, Wal-
lace, Booth, Shift-Add, Cordic, and IEEE architectures, 
as detailed in Table 6. The reported parameters include 
slice LUTs and slice registers. The analysis reveals that the 
resources utilized by the proposed MAC design have utilized 
comparable hardware to state-of-the-art architectures. While 

Table 5   Comparison of 
proposed PNE (Quantized/ 
Unquantized MAC + adaptable 
AF) for different bit-widths 
with conventional processing 
engine (conventional MAC + 
AF) evaluated on Zybo-board at 
50MHz operating frequency

Processing Engine Quantized MAC + 
AF in ROM mode

Unquantized MAC + 
AF in Cordic mode

Conv. MAC 
[41]+ ROM AF

Conv. MAC 
[41] + Cordic 
AF

Preferred AF Precision 8 bit 16 bit 8 bit 16 bit
Slice LUT 248 248 102 226
Slice Reg. (FF) 88 128 114 153
Critical Delay (ns) 3.81 4.19 4.82 5.20
Dynamic Power (mW) 3.95 4.83 4.99 6.49
Throughput (GOp/s) 0.2629 0.2073 0.2004 0.1540
Performance (MOPS/W) 66.7 42.9 40.2 23.7



SN Computer Science           (2024) 5:494 	 Page 11 of 14    494 

SN Computer Science

slightly exceeding the resource utilization of shift-and-add 
and Booth algorithm-based MAC units, our design has 
demonstrated superior performance in critical delay. This 
improvement has occurred because of the pre-loaded bias, 
which reduces MUX delay in the critical path and eliminates 
the need for an additional clock delay traditionally required 
to accumulate the bias value in the multiplication of input 
and weights, as discussed in section “Precision-Aware MAC 
Unit with Pre-Loaded Bias”, and shown in Figs. 6, 7. To 
highlight the advancements of the proposed design, a com-
parison has been made with Vedic and IEEE DSP package 
MAC architectures. Specifically, the Vedic-based architec-
ture [18] has shown to have 159 Slice LUTs, whereas our 
proposed design has had only 92 slice LUTs, indicating a 
42.13% reduction compared to the Vedic architecture. Simi-
larly, our design has consumed 29.23% fewer slice LUTs 
compared to the IEEE architecture. When compared with 
Wallace’s architecture, our proposed design has shown a 
12.38% reduction. Additionally, the proposed architecture 
has utilized 61 slice registers, marking a 45.53% reduction 
compared to Wallace’s architecture, which has had 112 slice 
registers. In summary, the analysis suggests that the pro-
posed design is suitable for adoption in applications where 
accuracy demands are application-specific, and there is 
requirement for reduced resource usage and critical delay.

The critical delay represents the maximum delay within 
a circuit, attributed to the longest combinational path. As a 
crucial performance metric, it dictates the circuit’s maxi-
mum operating frequency. The critical delay (in nanosec-
onds) is presented for both the proposed and state-of-the-art 
architectures with 8-bit precision in Table 6. Notably, the 
Cordic architecture exhibits a maximum critical delay of 
9.06 ns due to its iterative computation (n-iteration, i.e., n 
times the critical delay of each iteration), despite its superior 
resource utilization. In comparison, the critical delay for the 
IEEE standard DSP architecture [41] is lower at 3.98 ns. 
Conversely, our proposed design boasts of a critical delay 
of 2.67 ns, signifying a 32.91% improvement over the IEEE 
standard. Our proposed design’s critical delay (calculated 
using Vivado) stands at 2.67 ns, the lowest among all of the 
architectures in literature, attributed to pre-bias loading and 

the elimination of multiplexing used for bias selection in 
conventional MAC designs.

Additionally, the Power-delay Product (PDP) is computed 
for 8-bit precision across all methods and detailed in Table 6. 
Notably, the booth-multiplier-based approach closely mir-
rors our proposed design’s PDP at 2.77pJ compared to 
2.08pJ. Our proposed design demonstrates a 24.91% higher 
efficiency than the booth technique [19] in terms of PDP. 
A comprehensive comparison in Table 6 reveals that our 
proposed design outperforms all techniques in the literature 
in terms of PDP efficiency.

Time Slack

It’s important to note that the PNE simulations have been 
carried out at 50MHz, while the evaluation of the standalone 
MAC Unit slack calculation has been done at 100MHz. This 
difference in frequencies helps us assess the effectiveness of 
the design under optimum operating conditions. The slack 
calculation for various bit precisions has been reported in 
Table 7. The table includes three types of slack values: 
Worst Negative Slack (WNS), Worst Hold Slack (WHS), 
and Worst Pulse Width Slack (WPWS) for three different 
bit precision values: 8-Bit, 12-Bit, and 16-Bit. The equations 
have been presented in Eq.  2, where (Tr) and (Ta) denote the 
earliest start time and actual start time of a task, respectively. 
Tsetup and Tslack refer to the time available before the earliest 
start time and the time available after the actual start time, 
respectively. The slack information provides insights into 
whether the design is functioning at the desired frequency, 
as explained in [42]. 

Table 6   Performance 
evaluation: comparison of the 
precision-aware MAC with 
state-of-the-art models

Design techniques Slise LUTs Slice Reg Critical 
Delay (ns)

On-chip static 
Power(�W)

Dynamic 
Power (mW)

Power-Delay 
Product (pJ)

Vedic [18] 159 245 4.48 484.8 4.93 5.86
Shift-Add [21] 75 58 5.44 119.5 2.86 3.97
Iterative Cordic [8] 23 22 9.06 139.2 4.72 –
IEEE DSP [41] 130 49 3.98 495.5 3.81 5.01
Wallace [22] 105 112 2.59 498.0 3.88 3.13
Booth [19] 83 61 3.08 146.7 6.56 2.77
Proposed 92 61 2.67  92.0  2.15  2.08

Table 7   Slack calculation at 100MHz frequency for different bit pre-
cision for optimum operating frequency

Slack Type  8-Bit 12-Bit 16-Bit

WNS (ns) 2.356 4.898 5.136
WHS (ns) 0.068 0.104 0.236
WPWS (ns) 49.500 49.500 49.500
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As the bit precision increases, WNS and WHS also 

increase, indicating a decrease in the timing margin. This 
outcome is expected because higher bit precision means 
more complex circuits, which results in longer propaga-
tion delays and lower timing margins. However, the WPWS 
values remain constant across all three bit precisions. This 
is because WPWS is a measure of the minimum required 
pulse width for the circuit to function correctly and is deter-
mined by the slowest path in the circuit. Since the slowest 
path does not change with bit precision, the WPWS value 
remains constant. Overall, the table suggests that a higher 
bit precision is associated with a lower timing margin, which 
could potentially lead to timing violations and reduced per-
formance. However, the constant WPWS values indicate that 
the minimum pulse width requirement does not change with 
bit precision.

Resource Utilization of the ROM/ Cordic‑Based 
Adaptable AF

In the hardware-based evaluation, resource utilization is 
assessed by implementing the adaptable AF using Ver-
ilog-HDL, and the corresponding parameters are extracted 
using the Vivado-Xilinx tool. The proposed design is 
implemented on the Zybo Evaluation Kit, with a specific 
focus on the sigmoid AF, which effectively utilizes all the 
hardware resources within the configurable architecture. 
The AF exhibits nonlinear behavior in artificial neurons, 
and its hardware implementation is particularly costly in 
conventional approaches. Increasing arithmetic precision 
leads to a rise in design complexity, as achieving higher 
precision necessitates exponential growth in computa-
tional complexity or memory elements. For instance, an 
n-bit precision requirement in ROM demands 2 n memory 
elements. To illustrate, 8-bit precision requires 256 ele-
ments, while 16-bit precision would need 65,536 elements, 
making it impractical given the dedicated AF for each neu-
ron. Contemporary architectures aim for efficient design 

(2a)Tsetup = Tr − Ta

(2b)Tslack = Ta − Tr

(2c)Ta = Ttotal + Trc + Tcq

(2d)Ta ≥ Thold

(2e)Tslack,setup = Tcycle − Ta − Tsetup

(2f)Tslack,hold = Ta − Thold

and implementation. However, each design favors either 
lower or higher bit precision and adaptability in AF types 
of selection. Addressing these challenges, our proposed 
solution involves adaptable logic for selecting types of AF 
and precision settings for computations.

Table 8 compares resource utilisation for ROM, Cordic, 
and BRAM-based techniques for various bit-precisions. 
The ROM-based design uses 6 LUTs for 4-bit accuracy, 
whereas the Cordic-based design uses 45 LUTs and 37 
flip-flops (FFs), resulting in an 86.66% LUT savings for the 
ROM-based method. For 8-bit precision, the ROM-based 
solution uses 16 LUTs, compared to Cordic’s 84 LUTs and 
72 FFs, resulting in an 80.95% LUT savings. The ROM-
based system depends just on LUTs, with no FFs required. 
However, as precision increases to 16-bit, the ROM-based 
design requires a substantial 2111 LUTs, as opposed to 
Cordic’s 140 LUTs and 126 FFs. Thus, implementing a 
32-bit ROM-based design on smaller FPGAs would be 
inefficient due to the exponential increase in resource 
requirements. We also report results for a BRAM-based 
approach, which shows significant rise in BRAM utili-
zation as precision increases. Specifically, for 4, 8, and 
16-bit precisions, BRAM requirements are 0.5, 0.5, and 17 
BRAMs, respectively. Overall, the Cordic-based technique 
demonstrates better LUT utilization for higher precision 
computations. The ROM-based implementation of AFs 
exhibits superior performance at lower precision. These 
findings provide valuable insights for selecting appropriate 
AF implementations based on precision requirements and 
resource constraints in the PNE.

Conclusions and Future Research

In summary, our research introduces a precision-aware Neuron 
Processing Engine (PNE) for efficient deep neural network 
(DNN) computations. The PNE features a signed fixed-point 
pre-loaded bias Multiply-Accumulate (MAC) unit and an 
adaptable Activation Function (AF) supporting both ROM and 
Cordic implementations. Evaluating inference accuracy across 
quantized and unquantized models, various bit precisions, and 
datasets, our experimental results highlight the PNE’s effec-
tiveness. Under unquantized scenarios, the Cordic-based AF 

Table 8   Resource Utilization of adaptable AF for different bit-widths 
evaluated on Zybo-board

AF Type ROM Cordic BRAM

 Precision LUTs FFs LUTs FFs –

4-bit 6 0 45 37 0.5
8-bit 16 0 84 72 0.5
16-bit 2111 0 140 126 17
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exhibits robust accuracy with less than a 2% loss compared 
to TensorFlow models. Even in quantized scenarios (4-bit, 
8-bit, 16-bit), the PNE performs strongly with accuracy dif-
ferences ranging from 0.7% to 1.6%, showcasing its versatility. 
Hardware implementation on the Zybo-Xilinx FPGA platform 
demonstrates notable results, with resource utilization compa-
rable to state-of-the-art models and superior critical delay and 
throughput. The precision-aware MAC unit allows develop-
ers to choose between quantized and unquantized operations, 
offering flexibility in balancing accuracy and speed. The com-
prehensive analysis of resource utilization, power consump-
tion, and critical delay underscores the efficiency gains achiev-
able through our proposed architecture. The adaptable AF, 
implemented using ROM and Cordic, caters to diverse preci-
sion requirements. Currently, the AF supports sigmoid and 
tanh implementations. However, it can be adapted to imple-
ment ReLU and Gaussian AF as well with additional hardware 
requirements, as part of future research. In conclusion, our 
precision-aware Neuron Processing Engine provides a holistic 
solution for efficient DNN computations, contributing valuable 
insights to hardware-efficient neural network accelerators and 
advancing precision-aware computing architectures.
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