
Vol.:(0123456789)

SN Computer Science (2024) 5:466
https://doi.org/10.1007/s42979-024-02832-2

SN Computer Science

ORIGINAL RESEARCH

Efficient Virtual Machine Placement Strategy Based on Enhanced
Genetic Approach

Varun Barthwal1  · M. M. S. Rauthan1 · Rohan Varma2 · Sachin Gaur3

Received: 10 September 2023 / Accepted: 26 March 2024
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2024

Abstract
The background of the study is rooted in the critical importance of efficient virtual machine (VM) placement in cloud
computing environments. VM placement efficiency is critical in cloud computing, especially when utilizing an improved
genetic technique. This paper incorporates genetic meta-heuristic to integrate VMs into the minimal number of physical
machines (PMs). In order to describe the fitness function in the proposed algorithm (GaMat and GaLin), we have also
incorporated predicted usage of PMs CPU usages. The aim of the article is to demonstrate the effectiveness of genetic meta-
heuristic in improving VMs placement efficiency in cloud computing environments. The study focuses on minimizing energy
consumption (EC) VM migration and violations of the Service Level Agreement (SLA) by integrating VMs into the minimal
number of PMs using the proposed algorithms. The algorithms’ performance is evaluated by comparing them with the best-fit
power-aware decreasing (Pa) VM placement strategy, based on metrics like EC, VM migration, and SLA violations. Tests
were conducted in CloudSim through detailed simulations using actual workload data. The average values of the performance
metrics for 10 days of the workload are collected for the proposed VM placement approach. The proposed work reduces
EC by 25%, VM migration more than 50% and SLA by 58% when compared to the power aware best fit decreasing. The
results of the simulations are interpreted and analysed, which shows the effectiveness of the proposed algorithms in contrast
to the best-fit Pa strategy. In conclusion, the study demonstrates the effectiveness of genetic meta-heuristic based proposed
algorithms (GaMat and GaLin) in optimizing VM placement in cloud computing environments. By integrating VMs into
the minimal number of PMs while considering predicted resource usage, GaMat and GaLin significantly reduce EC, VM
migration, and SLA violations compared to the best-fit power-aware decreasing (Pa) strategy.

Keywords  VM placement · Energy consumption · Genetic algorithm · VM consolidation · Service level agreement

Introduction

Due to the convergence of IoT and cloud computing to create
smart applications [1], the proliferation of consumer needs
for computing services has contributed to the growth of
cloud technology on a large scale. It is also contributing to
massive growth in the infrastructure of storage or cloud data-
centers. Cloud datacenters primarily consume energy as user
requests are computed and produce unnecessary heat that
affects the efficiency of relevant equipment. Therefore, to
preserve the temperature in the cloud datacenter, cooling is
necessary. Thus, computing components and cooling devices
are the primary consumers of energy consumption in the
datacenter. Research has found that cooling infrastructures
account for 40 percent of the cloud datacenter’s total energy
requirement [2]. In addition, the datacenter releases traces
of carbon, also one more reason for environmental issues.

This article is part of the topical collection “Advanced Computing:
Innovations and Applications” guest edited by Sanjay Madria,
Parteek Bhatia, Priyanka Sharma and Deepak Garg.

 *	 Varun Barthwal
	 varuncsed1@gmail.com

	 M. M. S. Rauthan
	 mms_rauthan@rediffmail.com

	 Rohan Varma
	 rohan_12varma@yahoo.com

	 Sachin Gaur
	 ersgaur1234@gmail.com

1	 Hemvati Nandan Bahuguna Garhwal University, Garhwal,
Uttarakhand, India

2	 Graphic Era University, Dehradun, India
3	 BT Kumaon Institute of Technology, Almora, Dwarahat,

India

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-02832-2&domain=pdf
http://orcid.org/0000-0002-5289-9471

	 SN Computer Science (2024) 5:466 466   Page 2 of 19

SN Computer Science

Therefore, for the development of an eco-friendly cloud data
center, a green computing environment must be encouraged.
In a study it was found that global EC in 2015 was more than
600 TWh [3]. A study shows that the datacenter EC will
gain a rise from 200 TWh in 2016 to 2967 TWh in 2030
[4]. The Fiona et al. study estimates the EC of hyper scale
datacenters will nearly quadruple between 2015 and 2023
[5]. The work done [6] was mainly focused energy consump-
tion issue where, an integrated model for IoT-fog-cloud was
developed to use available resources in a efficient manner
and gain proper load balancing. Apart from EC, security is
also a key concern in cloud datacenter, a high level virtual
machine (HLVM) was developed to provide a secure trading
system environment [7]. Virtualization is the key feature of
cloud computing, in this proposed work, virtual machines
are mapped to physical machines, where CPU and memory
have been virtualized in a single PM to process applications
in multiple VMs in isolation. Virtualization of network may
be useful to manage EC in cloud environment. Ajagbe et al.
[8] developed a model for network virtualization, where vir-
tual switches were created using emulator.

Therefore, the minimization of EC in the cloud datacenter
is a significant activity that may effectively reduce the
expense of cloud infrastructure. It was observed that
PM’s CPU usage has a linear relationship with its EC
[9], so CPU use presence is considered to test the EC in
the cloud datacenter in most of the studies. Cooling of
the datacenter to manage the thermal atmosphere of the
datacenter also consumes energy greatly. It is therefore
important to minimize the heat’s after-effects when the user
requests are computed. Computing and cooling must also
be accomplished with minimal EC and maximum service
delivery. The latest researches have been undertaken on
resource utilization and has been analyzed using criteria
pertaining to energy management and the quality of service
[10]. The proposed work aims at improving the efficiency
of the operation, the allocation of services, and a substantial
decrease in the EC standard.

The main task for reducing EC is the dynamic consoli-
dation of VMs (DCVM) in a cloud datacenter. Because of
its similarities to the bin packing problem, heuristic, meta-
heuristic and soft-computing methods have been used previ-
ously to solve the VM placement problem. The placement of
VMs was carried out in our study using the Genetic Algo-
rithm (GA), which is a meta-heuristic suggested by Holland
[11, 12] as shown in Table 1. It is predominantly used to
create high-quality solutions using nature-inspired opera-
tors such as selection, crossover, and mutation to optimize
search issues. The fitness function has been defined using
predicted utilization of PMs. In many research fitness func-
tion is calculated using various factors e.g. minimization
of EC, SLA, rank based etc. In several of the experiments,
DCVM was conducted in the cloud datacenter to increase
service efficiency, resource usage, and EC minimization.
It requires the identification of overloaded and under-used
PMs, prediction of resource usage, collection of VMs, and
location of migrating VMs to the destination PM [13]. In this
method, to minimize overloaded and underutilized PMs, the
computational loads on PMs are spread among the minimum
active PMs. The overloading and underuse of PMs decrease
the system’s efficiency. Therefore, VM migration is required
to transfer VMs from one PM to another without interrupt-
ing the system’s performance. However, migration incurs
significant degradation in the efficiency of the system [14].

In this article to consolidate VMs dynamically, two
VM placement approaches (GaMat and GaLin) are imple-
mented, where GaLin is inspired by the work done in previ-
ous research. The identification of overloaded PMs and the
estimation of usage (Pu) were performed using the Local
Regression (Lr) approach in this work. In addition, sufficient
VM selection is made to eliminate overloading in PMs using
the Minimum Migration Time (MMT) approach [15]. Lr-
Mmt prepares a VM list from the overloaded PMs, this VM
list is one of the input for the solution coding process in the
proposed work and predicted utilization has been used to
define the fitness function. Finally, the positioning of VMs
is done by proposed methods. The findings showed proposed

Table 1   Genetic algorithm’s parameters and their role

S. no. Genetic
algorithm’s
parameter

Role in genetic algorithm

1 Population The population is a collection of potential solutions. Although a bigger population offers a more diverse search space, it
also needs more computing power

2 Fitness function The algorithm is directed toward better solutions through this fitness function. Higher values of fitness of individuals
are more likely to be selected for reproduction

3 Selection Individual from among present solutions will be chosen to reproduce and give rise to the future generation is
determined through selection process

4 Crossover In a process of crossover, genetic information from two parents solution is combined to produce one or more solution
5 Mutation An individual’s genetic information undergoes minor, random changes due to mutation. As a result, diversity is

increased in solutions

SN Computer Science (2024) 5:466 	 Page 3 of 19  466

SN Computer Science

methods efficacy and outperformed most current heuristic
methods. Therefore, meta-heuristic techniques may play a
significant role in the autonomous management of virtual
machines (VMs) in a cloud datacenter, effectively balanc-
ing energy consumption (EC) and ensuring the delivery of
optimal service quality.

The subsequent portion of this document is organized
into distinct sections. Section “Literature Survey” covers the
relevant literature, investigating the utilization of the genetic
algorithm for VM placement on PMs. Section Problem
Formulation presents the proposed algorithm along with
its detailed description. The simulation environment and
findings that shows the efficacy of the Genetic Algorithm-
based VM placement with the heuristic method are discussed
in Sects. The Proposed Approach for VM Placement and
Simulation Environment, and finally, the conclusion along
with future work are given.

Literature Survey

In this segment, we have discussed the work done for
resource management using a genetic algorithm-based
approach only. Many methods were developed for the VM
placement using genetic algorithm based meta-heuristics;
some of them are discussed in the current article:

Hu et al. proposed a VM load balancing scheduling
approach using a genetic algorithm that manages the load
and minimizes the expense of migration. To construct the
mapping solution, they used a tree structure. There was a
tree representing each chromosome, where the root man-
ages the nodes. For PMs, the second-level nodes were
used, and third-level nodes were used to present the VMs.
Compared to conventional scheduling algorithms, their
approach effectively increased the load balancing and
relocation cost [16]. A hybrid genetic algorithm (HGA)
proposed by Tang et al. for the VM placement issue to
handle the EC in cloud computing. It involves the infeasi-
ble solution repair and local enhancement to increase the
exploitation potential and convergence of conventional GA
[17]. A novel strategy for VM allocation using the family
gene approach (FGA) to minimize EC and VM migration
was suggested by Joseph et al. Compared with the stand-
ard genetic algorithm, FGA performed better in terms of
computing time [18]. Algorithms have been developed by
Li Deng et al. to boost VM placement stability patterns
with lower migration overhead and decreased energy usage.
Centered on the group encoding scheme, where multiple
VMs live on a single PM, they coded the solution. Their
simulation results demonstrated a major increase in VM
redistribution stability [19]. In terms of IT facilities and
datacenter ventilation, Arianyan et al. discussed energy
efficiency. In order to measure the fitness value, they used

the least rise in power after placement, the most available
PM resources, and the least number of hosted VMs in PM.
A scattered crossover was used in their work to generate
new descendants. To conduct a mutation on the solution,
the Gaussian distribution was used. To test the algorithm in
CloudSim, detailed simulations have been carried out, and
the results indicate that there has been a notable change in
terms of EC, SLAV, and VM migration [20]. A memetic
algorithm to address the multi-objective issues (EC, QoS,
network traffic etc.) of VM placement was suggested by
Fabio et al. They proposed a structure that formulates
multi objectives VM placement issue. With separate prob-
lem cases, the authors checked their work, and experi-
ment results showed that the proposed model can solve the
multi-objective issues with significant PMs and VMs [21].
Oshin et al. proposed a decision-making VM placement
method based on genetic meta-heuristics. They analysed it
with three predefined methods of VM positioning, and the
results revealed that EC and SLA violations were success-
fully overcome by the genetic algorithm [22]. Mosa et al.
tackled the issue of VM positioning by understanding the
CPU and memory criteria for VMs. To reduce underuti-
lized/over-used PMs and boost the SLA, they developed
a genetic algorithm-based system. Tournament selection
was made for each generation, and then uniform crossover
was applied to generate new offsprings [23]. Amin et al.
proposed a cost and energy-effective VM placement solu-
tion to address the minimization of cost and energy usage
of datacenter. VM placement was formulated and solved
by using genetic meta-heuristic as a mixed-integer nonlin-
ear programming problem [24]. A micro-genetic algorithm
for achieving a trade-off in the cloud datacenter between
EC and SLA was suggested by Maryam et al. In order to
address the issue of dynamic consolidation of VMs, they
used k-means and micro genetic algorithms (KMGA). The
studies showed that KMGA achieved a smooth equilibrium
between EC and SLA, minimizing the migration of VMs
[25]. A multi-objective approach to forecasting resource
usage and optimizing datacenter energy use was introduced
by Tseng et al. For the optimization of resource utilization,
the algorithm considered computing and memory resources
usage of VMs and PMs. Based on resource usage historical
statistics, it forecasts the necessary resources in the next
time slots. Using the outcomes expected using GA, VM
placement was achieved. Their proposed work increased
the total CPU and memory consumption and substantially
decreased EC [26]. Kaaouache et al. presented an energy-
efficient placement of VMs using the hybrid genetic algo-
rithm to reduce EC in PMs and communication networks.
The collection of chromosomes for the crossover from the
original population was performed using the roulette wheel
process. Using the single-point crossover, new offspring
with higher fitness values were produced. Two PMs from

	 SN Computer Science (2024) 5:466 466   Page 4 of 19

SN Computer Science

a chromosome were randomly chosen, so, in the mutation
phase, VMs from the selected PMs were switched. Experi-
mental studies have shown that it outperforms the other
strategies significantly [27]. A permutation-based genetic
algorithm has been developed by Abohamama et al. that
improves the rate of EC and minimizes the active numbers
of PMs. They accomplished the load balancing of active
PMs’ processing, memory, and network resources. They
developed a model by integrating the enhanced permu-
tation-based GA (IGA-POP) and the resource-aware best
fit strategy for energy-efficient VM placement [28]. The
non-dominated sorting genetic algorithm (NSGA-III) was
used by Parvizi et al. to solve the problem of VM place-
ment for multi-objective optimization. Their main goal is
to mitigate the waste of resources, EC, and active PMs.
In the context of a nonlinear convex optimization strat-
egy, they formulated VM positioning and used NSGA-III
meta-heuristics to reduce the complexity of time. In a study
proposed model was tested in simulator, and the findings
show that NSGA-III increased the efficiency of the method
relative to the other algorithms of MO-VMP [29].

Similar to the work done in as mentioned in Table 2, our
work mainly focused on implementation of genetic based
algorithm for VM placement. However, in comparison to
the study described above we have used predicted utiliza-
tion for the calculation of fitness value. In relation to the

methods listed above, our major contributions are as fol-
lows in this article:

1.	 Using a genetic algorithm, a method has been proposed
to address the problem of VM placement.

2.	 In this problem, minimizing energy consumption
(EC), maximizing SLA, VM migrations reduction, and
avoiding PM overload are established as goals in the VM
placement process.

3.	 An algorithm, GaMat, in which chromosome
architecture is based on matrix form, representing the
mapping between VM and PM, has been suggested and
implemented.

4.	 An algorithm, GaLin, was introduced in which
chromosomes are designed in a linear fashion (linear
representation of chromosome is used in most of the
research, as shown in Table 2).

5.	 A fitness function that measures the fitness of the
solutions using the predicted use of the PM’s CPU
utilization is proposed.

6.	 In CloudSim, the performance of GaMat and GaLin is
measured using PlanetLab workload and SPEC bench-
marks. Additionally, with a power-aware best fit decreas-
ing (Pa) heuristic-based VM placement process, we con-
ducted a comparative study of these algorithms.

Table 2   Comparison of existing GA based VM placement strategies

Paper Population coding Selection Crossover Mutation Fitness function

Hu et al. [16] Spanning Tree Probability of
individual

Rotating selection Self-adaptive
probability

Penalty Function

Tang et al. [17] Array Roulette wheel
selection

Biased Uniform Inverting a gene
randomly

Depends upon the EC of
a solution

Joseph et al. [18] Family genetic
algorithm

Fitness based Random Self-adjusting
probability

Resource utilization

Deng et al. [19] Group encoding Random selection Multi-point Random Resource utilization
Arianyan et al. [20] Array Random selection Scattered function Gaussian distribution PM power and resource

utilization
Fabio et al. [21] Matrix Binary Tournament Single point Self-adaptive

probability
Rank-based

Oshin et al. [22] Tree structure Random selection Random Random PM power and resource
utilization

Mosa et al. [23] Array Tournament selection Uniform Random EC and cost
Amin et al. [24] Array Roulette wheel

selection
Single point Random EC and cost

Maryam et al. [25] Array Tournament selection Two-point Random EC based
Tseng et al. [26] Array Random selection Two-point Random Placement result and

resource status
Kaaouache et al. [27] Array Roulette wheel

selection
Single point Random Depends upon EC of a

solution
Abohamama et al. [28] Permutation Roulette wheel

selection
Ordered Random EC minimization

SN Computer Science (2024) 5:466 	 Page 5 of 19  466

SN Computer Science

Problem Formulation

The VM placement approach involves mapping VMs to
PMs, where the quest space encompasses a cumulative
total of mn possible directions for mapping m VMs to n
PMs. The problem of VM positioning is somewhat similar
to the problem of bin packaging, in which products with
varying costs are stored in bins of different sizes. VMs
are represented by objects in this problem, and PMs are
represented by bins. The problem is expressed as follows:

1.	 The datacenter consists of ‘n’ number of PMs {p1, p2,
p3, …, pn} to hosts the ‘m’ number of VMs {v1, v2,
v3, …, vm}.

2.	 An objective function is used to position all VMs in such
a way that the amount of PMs consumed is reduced with
the fulfilment of the energy usage and quality of services
constraints described below.

The objective is to accommodate maximum VMs in
minimum PMs to satisfy the constraints mentioned below:

Constraint 1  In order to reach minimal EC in the datacenter,
the overall number of PMs should be reduced to the mini-
mum for the VMs placement.

Constraint 2  To meet the full SLA of the datacenter, the VM
requests should not exceed the PM capacity.

where Cap
(
PMj

)
 is the cumulative capacity of the services

of the PM, Avail
(
PMj

)
 is the PM capacity available, and

Req
(
VMi

)
 is the VM resource request. Vmmig is the list of

migrated VMs from overloaded PMs, and Pmcand includes
PMs not in the overloaded PMs and having non-zero pre-
dicted usage. Best fit heuristic is an approach for solving the
bin packing problem; Beloglazov et al. [15] have used this
approach to solve the VM placement problem. They have
extended this approach in terms of energy consumption to
perform energy aware PM-VM mapping. In order to plan
an energy efficient PM-VM mapping, their algorithm first
sort the migrating VM list in decreasing order of their CPU
utilization then find a PM which exhibit minimum power
increase when a VM has been allocated to it. The Pa algo-
rithm is depicted below:

(1)∫ (s) = Minimize|Active PMs|

(2)
Cap

(
PMj

)
> Avail

(
PMj

)
+

k∑

i=0

Req
(
VMi

)
∀VMi ∈ Vmmig and ∀PMj ∈ Pmcand

Algorithm 3.1: VM placement using power aware best fit
decreasing (Pa) [13]

The Proposed Approach for VM Placement

The first step to effectively handling VM placement dif-
ficulties is mapping VMs onto PMs. We have developed
VM placement solutions based on the GA meta-heuristic
and compared it to alternative heuristic methods. The goal
of our proposed strategy is to reduce EC and active PMs.
When distributing m VMs to n PMs in a cloud environ-
ment, a method that strikes an ideal balance between EC
reduction and Service Level Agreement (SLA) maximi-

zation must be developed. Many solutions exist for the
problem mentioned above, and there are many ways to
build them. In this work, GaMat and GaLin are devel-
oped to explore the possible solutions for VM placement
in the datacenter. Initially, random solutions are populated
despite their non-feasibility. Further crossover and muta-
tion operations are performed to improve their quality. The
solutions are also known as population, and each solution
is termed as a chromosome. GaMat works on a matrix-
based chromosome, and GaLin is for the linear chromo-
some. (Fig. 1).

Populating Solution

In GaMat, each chromosome is represented by matrix
form. In this representation, rows and columns correspond

	 SN Computer Science (2024) 5:466 466   Page 6 of 19

SN Computer Science

to virtual machines (VMs) and physical machines (PMs),
respectively. In our work, population coding has been
done on a random basis because it provides a large search
space domain to find a solution. In Eq. (3), xij represents
the chromosome’s gene whose value is 1, when a VMi is
successfully allocated to PMj and 0 otherwise. VMs are
randomly assigned to PMs; therefore, the solution may
be feasible or infeasible depending upon successful VM
placement.

The chromosome representation is explained using
an example (Fig. 2), where the VM allocation has been

(3)
xij =

{
1, if Vmi is placed on Pmj

0, otherwise
∀Vm ∈ Vmlist and ∀Pm ∈ Pmlist

shown as pm0 {vm3}, pm1 {vm4, vm5}, pm2 {vm1, vm6},
pm3 {vm2, vm0}, pm4 and, pm5 {vm7}. The matrix in
Fig. 2, shows the allocation map where 8 VMs are mapped
to 6 PMs as mentioned in the above example. According
to Eq. 3, the elements ( x0,3,x1,4 , x1,5 , x2,1, x2,6, x3,2, x3,0, x5,7 )
of the matrix are assigned 1 and the rest are made 0.

For the same example, the linear chromosome is
designed for GaLin as depicted in Fig. 3. The variable xi ,
represents the PMj if it hosts the VMi as shown in Eq. 4.

Fitness Function

The fitness function serves as a tool to assess solution’s
quality; a higher fitness value indicates more quality of
the solution. In this work, Predicted usage (Pu) of PM
is considered to derive the fitness value of each solution
for GaMat and GaLin. Each PM’s remaining capacity is
calculated according to Eq. 5, and it is further used to
find out the fitness value of the corresponding solution.

(4)xi = PMj, if VMi is assigned to PMjFig. 1   Genetic algorithm based VM placement

Fig. 2   Chromosome representa-
tion in matrix form

Fig. 3   Chromosome representation in linear form

SN Computer Science (2024) 5:466 	 Page 7 of 19  466

SN Computer Science

In Eq. 5, RemPM is the available capacity of PM in a
solution, CapPM is the overall capacity of PM, and ReqVMi

is the request of all VMs in PM. PM’s Pu is calculated
using the Local Regression method as shown in Eq. 6
[12]. Populated solution sets may contain some infeasible
solutions, so some PMs’ remaining capacity will be
negative because the required resources are more than the
total capacity. In this case, − 1 is assigned to the fitness
value for that solution. The fitness value is the inverse
of the predicted utilization ( Pu ) of PMs selected for VM
placement in a solution in case of positive remaining
capacity (Eqs. 7 and 8).

In this scenario, a fitness value of − 1 is assigned to the
solution. The fitness value is determined as the inverse of
the predicted utilization (Pu ) of the selected PMs for VM
placement, specifically in instances of positive remaining
capacity, as described in Eqs. 7 and 8.

The same fitness function is also used for GaLin methods.
In the case of GaLin, the linear chromosome is converted
into a matrix form. Then fitness value is evaluated for the
solution similar to GaMat.

Selection

In this process, the selection of parent solutions is made
for the generation of the new solution. In our work, we
select two consecutive chromosomes from the population.
According to Eq. 9, if the fitness value is negative, then
solutions are sent for the crossover to derive the new feasible
offspring. In the case of the positive value of the solution’s
fitness function, mutation and crossover are performed
according to Eqs. 10 and 11. The selection process is
presented by equations below, where, si is a solution from
the population, and f

(
si
)
 is the fitness function.

(5)RemPM = CapPM −

m∑

i

ReqVMi
∀VM ∈ Vmlist

(6)Pu = Local Regression(PM Utilization History)

(7)Total Pu =

m∑

i

Pu
(
PMi

)
∀PMj ∈ Pmcand

(8)𝜂 =

{
−1, RemPMi

< 0
1

Total Pu ,
RemPMi

> 0
∀PMj ∈ Pmcand

(9)offspringi =

length∑

i=0

crossover (si, si - 1), f
(
si
)
= −1

In the case of GaLin, the selection process is similar
to GaMat in which feasible solutions are taken for the
mutation to derive the new solution, while a solution having
a negative fitness value is selected for crossover to derive
the new offspring.

Crossover

The genetic algorithm combines two individual solutions to
form the next generation in the crossover process. In the case
of GaMat, a new offspring is generated that inherits useful
information from its parents. Two consecutive chromosomes
( siand si−1 ) are selected from the population as shown in
Eq. 9, where xi,j , and yi,j are chromosome si and chromosome
si−1 genes. According to Eq. 12, swapping between these
genes is done for the even index, and chromosome si
is updated with new values. Finally, chromosome si is
considered as a new offspring. We applied the multi-point
crossover in the matrix representation of chromosomes.

In the case of GaLin, the random crossover is performed
where a variable r is selected randomly (Eq. 13). Further,
it is used to derive the crossover point according to Eq. 14.

According to Eq. 15, the crossover process is applied
on both feasible and non-feasible solutions to diversify the
search; however, a crossover between two feasible solutions
does not guaranty the feasibility of offspring generated after
crossover. Thus, in our work, we have used the crossover to
enhance the solutions’ diversity by exploring more solutions
in the solution space.

Mutation

The mutation is a process of modifying some genes ran-
domly in a chromosome. A small change in the chromosome

(10)offspringi =

length∑

i=0

mutation
(
si
)
, f
(
si
)
> 0

(11)offspringi =

length∑

i=0

crossover (si, si - 1), f
(
si
)
> 0

(12)xi,j =

{
swap

(
xi,j, yi,j

)
, i is even

do nothing, i is odd
0 ≤ i ≤ m, 0 ≤ j ≤ n

(13)r = radom selection between 1 to m

(14)cspoint = m∕r

(15)xi = swap
(
xi, yi + cspoint

)
0 ≤ i ≤ m

	 SN Computer Science (2024) 5:466 466   Page 8 of 19

SN Computer Science

is done to implant the mutation in children. It allows the
genetic operator to remove or edit one or more genes in a
chromosome. GaMat takes gene xi,j from a chromosome
(feasible solution) and replaces it with zero. If xi,j is one
(Eq. 16), then it sets the value of the next gene at xi,j+1 to one
(Eq. 17). In the mutation process, VM’s location is changed
from one PM to another to reduce the active numbers of
PMs (Eq. 18).

In the case of GaLin, random mutation is performed
in which the location of VM is changed from one PM to
another which results in minimizing the active PMs in a
solution, as shown in Eq. 19.

The mutation has been applied to explore best solution
which consists of minimum active PMs. It is similar to the
exploitation process in meta-heuristic techniques.

Algorithm Description

GaMat

In this work, k numbers of solutions are developed where
each solution is a chromosome. Each solution is represented
as a two-dimensional array in which 1 represents a PM-VM
mapping, and 0 represents no mapping. In the first phase,

(16)xi,j = 0, ifxi,j = 1

(17)xi,j + 1 = 1

(18)f (PM) = min ||PMactive
||

(19)xi + 1 = xi0 ≤ i ≤ m

solutions are developed randomly without considering their
quality and efficiency. So, initially populated solutions may
be correct or not (Algorithm 4.1). Table 3 depicts the differ-
ences between GaMat and GaLin in terms of their genetic
parameters.
Algorithm 4.1: Populating solution

Algorithm 4.2 is developed to estimate the fitness value,
which represents quality of the solution. High fitness
means the high quality of the solution. If a solution is
not feasible, − 1 is assigned to the fitness value for that
solution (line 16). In GaMat and GaLin, The assessment
of the fitness value depends on the predicted utilization
of the PMs (line 18). In the case of the positive value of
available capacity, the fitness value is the inverse of PMs’
predicted utilization (line 20).

Table 3   Comparison between
GaMat and GaLin

Algorithm Population coding Selection Crossover Mutation Fitness value

GaMat Array based Fitness based Multi-point Genes’ shifting PMs’ predicted utilization
GaLin Matrix based Fitness based Single point Genes’ shifting PMs’ predicted utilization

SN Computer Science (2024) 5:466 	 Page 9 of 19  466

SN Computer Science

Algorithm 4.2: Computing the fitness function

In the selection phase (Algorithm 4.3), chromosomes
whose fitness values are not equal to − 1 are selected for
mutation. The variable solution length expresses the total
solutions to be developed in the selection step. The solution
list consists of solutions that were randomly generated in the
first phase. Initially, there is a low probability of selecting a
feasible solution because most solutions may have a negative
fitness value. In the selection process, a solution having posi-
tive fitness value is further chosen for the process of mutation,
and then the mutated child is appended to fitted solution list
(line 8). Further, it is sent for the crossover to replace it with
new offspring (line 10). The solution having a negative fitness
value (the infeasible solution) was selected for the crossover
in anticipation that a feasible solution may be generated, and
further, it is added to the population (line 12). If the algorithm
cannot find a feasible solution, repairing is executed to handle
such an issue. In this process, the existing population is modi-
fied to create a new population. Hence, this process returns all

feasible solutions. The solution that achieves the maximum
fitness is ultimately opted for the placement of VMs. (line15).

Algorithm 4. 3: Selection

The third phase of GaMat is the crossover
(Algorithm 4.4); variable p1 and p2 represent the parent
solutions from the population, and offspring is the output
variable resulting from the crossover between p1 and p2.
We have used a multi-point crossover in this work where
two consecutive solutions from the initial population list
(generated in phase one) are selected for the crossover.
Offspring is generated by the swapping rows of the even
index of both arrays (line 6). These offspring replace the
solution (p1) from the population in anticipation that the
offspring is a feasible solution (line 9).

Algorithm 4.4: Crossover function (GaMat)

In Mutation phase (Algorithm 4.5), a chromosome is
modified by changing its genes (lines 7, 8). The change

	 SN Computer Science (2024) 5:466 466   Page 10 of 19

SN Computer Science

is done if a gene is found 1 (mapping), then its value is
converted to 0 (no mapping), and the value of the gene at
the next column having the same row is made 1 (mapping).
This act is only for reallocating VM from one PM to another
to minimize PMs’ active numbers in a chromosome. Further,
the solution quality is tested, and if it is found feasible, then
the solution is considered a mutated solution (line 11);
otherwise, the chromosome is modified again.

Algorithm 4.5: Mutation (GaMat)

GaLin

Like GaMat, k numbers of solutions are developed where
each solution is a chromosome of the population. In the first
phase, solutions are developed randomly without considering
their quality and efficiency. So, initially populated solutions
may be correct or not (Algorithm 4.6). The third phase of
GaLin is the crossover (Algorithm 4.7); variable p1 and
p2 represent the parent solutions from the population, and
offspring is the output variable resulting from the crossover
between p1 and p2. In GaLin, single point crossover has
been applied in which a variable is selected randomly
between 0 and the total number of migrating VMs. Further,
this variable is used to determine the crossover point (line
4). Two consecutive solutions from the initial population

list (generated in phase one) are selected for the crossover.
Offspring is generated by the swapping of elements between
parent solutions according to line 6, and the resulted array is
stored as offspring (line 9).
Algorithm 4.6: Populating solution

Algorithm 4.7: Crossover function (GaLin)

The last process of GaLin is the mutation (Algorithm 4.8),
in which active numbers of PMs are minimized in the
solution. In this process, the feasible solutions are modified
to maximize their fitness value. In this phase, the genes from
one index are shifted to the next index, which results in the
shifting of VM from one PM to another according to lines

SN Computer Science (2024) 5:466 	 Page 11 of 19  466

SN Computer Science

5 and 6. Moreover, this may result in the generation of the
infeasible solution; therefore, the fitness value is evaluated
in each iteration (line 11). Like GaMat, this act is only for
reallocating VMs from one PM to another to minimize PMs’
active numbers in a chromosome.

Algorithm 4.8: Mutation (GaLin)

In Fig. 4, the whole process flow is depicted according to
the above algorithms.

Simulation Environment

In most of the study, tests are conducted in the simulation
because datacentre is unavailable. CloudSim [30] presents
a virtual cloud system where tests for this work have
been conducted. The two types of PMs for the dynamic
consolidation of VMs are planned and simulated in the cloud
environment (Table 4). Due to its practical functionality,
PlanetLab [31] dataset is used (Table 5), which contains
CPU use of VMs in five-minute intervals and stored in
separate files.

The main components that affect PMs EC in datacenters
are the CPU, memory, disk storage, power supply, and
cooling systems. Study done by Fan et al., that EC by PMs
can be described by a linear relationship between EC and
CPU usage.

SPEC1 power benchmark is employed to assess the
energy consumption (EC) in our algorithm. In Table 6, for
the various CPU usage levels percentages associated EC is
given in watts.

Figure 5 below depicted that the proposed solu-
tion has been incorporated in CloudSim, the function

optimizeAllocation calls the getNewVmPlacement function.
Which supply the VM list and Overloaded PM list, from
these overloaded PMs, Migrating VM list has been prepared.
Then the function PrepareSolution takes the migrating VM
list and candidate PM list as input, this function initiates the
population coding process, then the proposed method returns
the suitable PM-VM mapping.

Simulation Results and Discussion

GaMat uses Local regression and Minimum migration
time (LrMmt) techniques to find out overloaded PM and
migrating VM from the overloaded PM. Further, GaMat and
GaLin techniques are applied for the VM placement from
overloaded PMs.

GaMat, GaLin, and Pa [13] VM positioning strategies are
measured against each other in terms of below mentioned
performance parameters.

Energy Consumption (EC)

Fan et al. defined in their work that there is a linear pattern
between PM’s EC and its CPU consumptions [9]. The CPU
consumption of PM is then used in this paper to approximate
the EC. Using the following equation, the relationship
between EC and CPU usage of PM was expressed:

where Ptotal is the total EC, Pidle is the EC by PM; Pmax is
the EC when the host is totally used when it is idle, and U
is the CPU usage [15]. GaMat and GaLin remove all PMs
with zero expected usage, since in the future, such PMs will
be underused. As a consequence, resource underutilization
is minimized, which prevents excessive energy use. Table 7
depicts the average number of active PMs in each VM
placement method.

To assess the energy consumption of single PM, a PM
(PM Id: 119) was randomly selected from the pool of PMs,
and further we have found its energy consumption and CPU
usage in each time interval depending on the number of run-
ning VMs as depicted in Fig. 6a, b. The total number of VMs
running in each time interval for the same PM has been
depicted in Fig. 6c.

As it is cleared that with more active PMs, more energy
will be consumed in the cloud datacenter. We have also
calculated the average numbers of active PMs as shown
in Table 7. It shows that GaMat and GaLin use the same
numbers of active PMs in their optimal solution, and is the
reason for the similar EC. Figure 7a illustrates that Ga-based
VM positioning has more effect in comparison to the heuris-
tic algorithm in EC terms. In the proposed VM placement

(20)Ptotal = Pidle +
(
Pmax − Pidle

)
× U

1  http://​www.​spec.​org/​power_​ssj20​08/.

http://www.spec.org/power_ssj2008/

	 SN Computer Science (2024) 5:466 466   Page 12 of 19

SN Computer Science

Fig. 4   The overall process flow
using proposed approach

Table 4   Simulation environment

Specification Physical machine type (HP Proliant) Virtual machine type

ML110 G5 ML110 G4 Type I Type II Type III Type IV

CPU 1860 MIPS (2 cores) 2660 MIPS (2 cores) 500 MIPS 1000 MIPS 2500 MIPS 2500 MIPS
RAM 4096 MB 4096 MB 613 MB 1.7 GB 1.7 GB 0.85 GB

SN Computer Science (2024) 5:466 	 Page 13 of 19  466

SN Computer Science

Ta
bl

e 
5  

W
or

kl
oa

d
da

ta

D
ay

03
/0

3/
11

06
/0

3/
11

09
/0

3/
11

22
/0

3/
11

25
/0

3/
11

03
/0

4/
11

09
/0

4/
11

11
/0

4/
11

12
/0

4/
11

20
/0

4/
11

To
ta

l V
M

s
10

52
89

8
10

61
15

16
10

78
14

63
13

58
12

33
10

54
10

33

Ta
bl

e 
6  

A
ve

ra
ge

 E
C

 (w
at

t)
at

 d
iff

er
en

t c
om

pu
tin

g
lo

ad

C
om

pu
tin

g
Lo

ad
A

ct
iv

e
Id

ea
l

10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

H
P

Pr
ol

ia
nt

 G
4

86
89

.4
92

.6
96

99
.5

10
2

10
6

10
8

11
2

11
4

11
7

H
P

Pr
ol

ia
nt

 G
5

93
.7

97
10

1
10

5
11

0
11

6
12

1
12

5
12

9
13

3
13

5

	 SN Computer Science (2024) 5:466 466   Page 14 of 19

SN Computer Science

method, the utilization of resources is improved and posi-
tively impacts EC. Both of the methods, GaMat and GaLin,
reduce the EC compared with the Pa placement method.
Here, it can be seen that the GA system-based placement
technique can play the lead role to minimize the EC.

VM Migration

The key challenge for achieving DCVM is virtual machine
migration; the migration strategy helps the device to move
VMs without interference from one PM to another [15]. The
relocation of VMs also affects the system’s efficiency [14].
10 percent of CPU usage in our work is considered an aver-
age reduction in the output of the system, leading to further
SLA breaches. In the migration process, SLA breaches are

faced by all PMs before the migration process is finished.
Therefore, with minimal VM migration, a successful DCVM
consolidates VMs. Equations 21 and 22 were used to test the
VM migration duration and the deterioration of efficiency due
to migration. When VM migration occur more, system’s effi-
ciency degrades [14, 15]. Therefore, the total VM migrations
are regarded as an output parameter in the suggested solution.
However, migration is also expected for the DCVM, but it is
important to prevent needless VM migration. The foregoing
DCVM mechanism was implemented for the actual workload
and the VM migration numbers were analyzed. Experiment
findings revealed that in terms of migration counts, GaLin
outperformed the DCVM techniques based on GaMat and Pa,
as seen in Fig. 7b.

Fig. 5   Integration of the model into CloudSim

Table 7   Average number of active PMs in case of each VM placement method

Day 03/03/11 06/03/11 09/03/11 22/03/11 25/03/11 03/04/11 09/04/11 11/04/11 12/04/11 20/04/11

PABFD 61 47 54 67 59 81 68 67 58 51
GaMat 45 35 39 47 41 60 48 47 41 35
GaLin 45 35 39 46 41 59 48 47 41 35

SN Computer Science (2024) 5:466 	 Page 15 of 19  466

SN Computer Science

where Tmj shows total migration duration, Mj shows
memory utilized by VMj, and Bj shows available network

(21)Tmj =
Mj

Bj

(22)Udj = 0.1 ×

t0+Tmj

∫
t0

uj(t)dt

bandwidth. Udj shows total degradation in the performance
of the system, t0 shows migration initiation time and uj(t)
shows CPU utilization by VMj as explained in [15] the 10%
performance degrade due to VM migration.

SLA Violations

As seen in Eq. 23, SLA violation is also evaluated
the efficiency of the operation, which is the result of
performance loss caused by VM migration (PDM) and
SLA time per active host (SLATAH). In a study done by
Beloglozov et al. [15] that in PM overloading scenario, the
source PMs experience SLA violation while a VM is in the
migration process, thus reducing system output during the
migration process. The following are described by the PDM
and SLATAH:

where due to migrations, Cdj is the expected performance
loss of the VMj, and Crj is the total requested VMj CPU
power. N shows number of PMs, Tsi shows duration in which
100 percent of PMi has been used leading to a SLAV, Tai
shows active PMs counts, M represents VMs [15]. It can be
seen in the graph (Fig. 7c, d) that the proposed approaches
greatly decrease the violation of the SLA and works better
in terms of service efficiency.

Overload Counts

Investigation of PM overloading counts has been done
in the proposed work to assess the system performance.
Overloading counts for all PlanetLab workloads were tested
in the simulation for the entire period. It impacts both the
EC and SLA, as soon as overloading increases. It is then
discussed in the work presented as well in Fig. 7e, it was
found that, GA needs further development to minimize the
overloading of PMs.

Comparative Analysis Between GaMat, GaLin and Pa

Table 8 summarizes a comparative examination of the
proposed work.

SLATAH needs further reduction, as seen in Table 8,
since it reflects the larger amount of overloading PMs,
resulting in SLA violations (Fig. 7).

(23)SLAV = SLATAH x PDM

(24)PDM =
1

N

M∑

i = 1

Cdj

Crj

(25)SLATAH =
1

N

N∑

i = 1

TSi

Tai

Fig. 6   Single PM (ID #119) analysis in each time interval in terms of
a energy consumption b CPU usage c no. of VM hosted

	 SN Computer Science (2024) 5:466 466   Page 16 of 19

SN Computer Science

Table 8   Average results of VM
placement policies for 10 days
workload

Algorithm EC Kwh SLA % VM Migration PDM SLATAH Overload count

PaBFD 161.87 0.00497 28,174 0.08 6.213 2948
GaLin 120.58 0.00227 13,582 0.04 5.158 2688
GaMat 121.32 0.00209 16,252 0.04 5.144 2845

Fig. 7   Results of GaMat, GaLin and PaBFD techniques a EC, b VM Migration, c, d SLAV and e overload counts

SN Computer Science (2024) 5:466 	 Page 17 of 19  466

SN Computer Science

LrMmt algorithm [15] has been applied in the proposed
work for the identification overloaded PMs and selection of
VMs for migration. The average values of the performance
metrics for 10 days of the workload are collected for GaMat
based VM placement, where it improved the EC by 25.5%
against Pa and GaLin outperformed GaMat by 0.6%. When
GaLin is compared with Pa, an improvement of 25.04% in
EC is observed. GaMat reduces SLA violation by 57.92%

and 7.71% against Pa and GaLin VM placement policies.
GaLin improved the SLA by 40.9% against Pa. It has been
observed in the simulation that 42.31 percent of VM migra-
tion counts are lowered using the GaMat process, while
GaLin lowers migration counts to Pa by 51.8 percent. In
terms of overload counts, GaMat-based VM placement was
found to be less productive since it decreases these counts
by 3.4 percent. When GaLin was applied as a VM position-
ing strategy, the overload count to Pa resulted in a reduction
of 8.81 percent. However, the proposed work needs further
enhancement in terms of migration and overload counts
(Table 9).

In this article, GaMat is based on 2-D chromosome
design, while GaLin is applied by considering the chromo-
some in a linear manner, as shown in Table 2; it was used
in most of the VM placement GA-based solutions. As seen
in Fig. 8, in case of lowering VM migration and PM over-
loading, GaMat is higher than GaLin, although in the case
of EC, GaMat varies significantly from GaLin. In the case
of GaMat, though, it’s a little more, as seen in Fig. 8. In
terms of the output parameters described above, the Genetic
based technique is found to be better that can lead to better
outcomes. It is also inferred that GaMat (2-D chromosome)
may become an alternative approach for the positioning of
the VMs in the Datacenter.

We took the energy consumed values in each time inter-
val after applying both approaches with a similar workload
(Day 04/03/2011). Figure 9 illustrates that the EC is less
than 1.5 kWh for every time frame of 24-h period. GaMat
has smooth patterns compared to Pa, which proves the bet-
ter performance of dynamic consolidation in terms of EC.

VM migrations in each time frame are also collected for
the same workload and shown in Fig. 10. The plot shows that

Table 9   The simulation results (comparison of different algorithms of
VM placement)

Performance metrics GaMat
versus Pa (%)

GaMat versus
GaLin (%)

GaLin
versus Pa
(%)

Energy 25.5 0.6 25.04
VM migration 42.31 16.42 51.8
SLA 57.92 7.71 40.9
Overload count 3.4 5.51 8.81

Fig. 8   GaMat versus GaLin

Fig. 9   EC in each time frame:
Day 04/03/2011

	 SN Computer Science (2024) 5:466 466   Page 18 of 19

SN Computer Science

the VM migrations in GaLin are lower than GaMat and Pa
in each time interval.

Conclusion

Dynamic consolidation of VMs was done using genetic
meta-heuristics in the proposed work. It finds an optimal
solution using genetic operators (mutation and crossover)
from random solutions. The primary purpose of the proposed
work is to investigate use of the GA approach for controlling
the EC and service efficiency of cloud datacenter. In
addition, GaLin, influenced by research performed in most
of the previous works, was also implemented in this work.
EC, PM overloading, SLA and VM migration constraints
to increase efficiency are mainly addressed by GaMat and
GaLin. The fitness criterion is based on predicted utilization
which results with significant improvement. However the
efficiency may be enhanced by employing other factors,
e.g. memory, disk usage, and network resources. Simulation
findings indicate that the GA-based solutions have been
found better for EC and SLA’s autonomous management.
These methods can be implemented as future work to
address the other resource allocation issues in the cloud
datacenter.

Declaration 

Conflict of interest.  All authors declare that they have no conflicts of
interest.

References

	 1.	 AazamM, Khan I, Alsaffar AA, Huh E-N. Cloud of things: inte-
grating internet of things and cloud computing and the issues
involved. In: Proceedings of IEEE international Bhurban confer-
ence on applied sciences & technology (IBCAST), vol. 11; 2014.
p. 414–9.

	 2.	 Khalaj AH, Scherer T, Halgamuge SK. Energy, the environmen-
tal and economical saving potential of data centres with various
economizers across Australia. Appl Energy. 2016;183:1528–49.

	 3.	 Belady C. Projecting annual new datacenter construction market
size. Technical Report. Microsoft Corp., US; 2011.

	 4.	 Fiona B, Ballarat C. International review of energy efficiency in
data centres acknowledgements; 2021.

	 5.	 Koot M, Wijnhoven F. Usage impact on data center electric-
ity needs: a system dynamic forecasting model. Appl Energy.
2021;291:116798.

	 6.	 Vijarania M, Gupta S, Agrawal A, Adigun MO, Ajagbe SA,
Awotunde JB. Energy efficient load-balancing mechanism in inte-
grated IoT-fog-cloud environment. Electronics. 2023;12(11):2543.
https://​doi.​org/​10.​3390/​elect​ronic​s1211​2543.

	 7.	 Padmapriya N, Tamilarasi K, Kanimozhi P, Kumar AT, Rajmohan
R, Ajagbe SA. A secure trading system using high-level virtual
machine (HLVM) algorithm. In: 2022 international conference
on smart technologies and systems for next generation comput-
ing (ICSTSN). IEEE; 2022. p. 1–4. https://​doi.​org/​10.​1109/​ICSTS​
N53084.​2022.​97613​26.

	 8.	 Adeniji OD, Ayomide MO, Ajagbe SA. A model for network vir-
tualization with open flow protocol in software define network.
In: 4th international conference on intelligent communication
technologies and virtual mobile networks: proceedings of ICICV
2022, 10–11 Feb 2022. Springer Lecture Notes on Data Engineer-
ing and Communications Technologies, pp 723–33.

	 9.	 Fan X, Weber WD, Barroso LA. Power provisioning for a ware-
house-sized computer. In: Proceedings of the 34th annual inter-
national symposium on computer architecture. New York, USA:
ACM; 2007. p. 13–23.

	10.	 Madni SHH, Latiff MSA, Coulibaly Y, Abdulhamid SM. Resource
scheduling for infrastructure as a service (IaaS) in cloud com-
puting: challenges and opportunities. J Netw Comput Appl.
2016;68:173–200.

Fig. 10   VM migration in each
time frame: Day 04/03/2011

https://doi.org/10.3390/electronics12112543
https://doi.org/10.1109/ICSTSN53084.2022.9761326
https://doi.org/10.1109/ICSTSN53084.2022.9761326

SN Computer Science (2024) 5:466 	 Page 19 of 19  466

SN Computer Science

	11.	 Falkenauer E, Delchambre A. A genetic algorithm for bin pack-
ing and line balancing. In: Proceedings of the IEEE international
conference on robotics and automation, Nice, France; 1992. p.
1186–92.

	12.	 Holland J. Adaptation in natural and artificial systems. Ann Arbor/
Cambridge: University of Michigan Press/MIT press; 1992.

	13.	 Beloglazov A, Abawajy J, Buyya R. Energy-aware resource allo-
cation heuristics for efficient management of data centers for cloud
computing. Future Gener Comput Syst. 2012;28(5):755–68.

	14.	 Voorsluys W, Broberg J, Venugopal S, Buyya R. Cost of virtual
machine live migration in clouds: a performanceevaluation. In:
Proceedings of the I international conference on cloud computing
(CloudCom), vol. 2009. Beijing: Springer; 2009.

	15.	 Beloglazov A, Buyya R. Optimal online deterministic algorithms
and adaptive heuristics for energy and performance efficient
dynamic consolidation of virtual machines in cloud data centers.
Concurr Comput. 2012;24(13):1397–420.

	16.	 Hu J, Gu J, Sun G, Zhao T. A scheduling strategy on load balanc-
ing of virtual machine resources in cloud computing environment.
In: 2010 3rd international symposium on parallel architectures,
algorithms and programming, Dalian; 2010. p. 89–96.

	17.	 Tang M, Pan S. A hybrid genetic algorithm for the energy-efficient
virtual machine placement problem in data centers. Neural Pro-
cess Lett. 2015;41:211–21.

	18.	 Joseph CT, Chandrasekaran K, Cyriac R. A novel family genetic
approach for virtual machine allocation. Proced Comput Sci.
2015;46:558–65. ISSN:1877-0509.

	19.	 DengL, Li Y, Yao L, Jin Y, Gu J. Power-aware resource recon-
figuration using genetic algorithm in cloud computing. Mobile Inf
Syst. 2016;2016:Article ID 4859862, 9 p.

	20.	 Arianyan E, Taheri H, Sharifian S. Multi target dynamic VM con-
solidation in cloud data centers using genetic algorithm. J Inf Sci
Eng. 2016;32:1575–93.

	21.	 Lopez-Pires F, Baran B. Many-objective virtual machine
placement. J Grid Comput. 2017. https://​doi.​org/​10.​1007/​
s10723-​017-​9399-x.

	22.	 Sharma O, Saini H. Performance evaluation of VM placement
using classical bin packing and genetic algorithm for cloud envi-
ronment. Int J Bus Data Commun Netw. 2017;13:45–57. https://​
doi.​org/​10.​4018/​IJBDCN.​20170​10104.

	23.	 Mosa A, Sakellariou R. Virtual machine consolidation for cloud
data centers using parameter-based adaptive allocation. In: ECBS
2017, 5th European conference on the engineering of computer
based systems, Larnaca, Cyprus, 31 August–1 September 2017.

	24.	 Yousefipour A, Rahmani AM, Jahanshahi M. Energy and cost-
aware virtual machine consolidation in cloud computing. Softw
Pract Exp. 2018. https://​doi.​org/​10.​1002/​spe.​2585.

	25.	 Askarizade M, Maeen M, Haghparast M. An energy-efficient
dynamic resource management approach based on cluster-
ing and meta-heuristic algorithms in cloud computing IaaS
platforms: energy efficient dynamic cloud resource manage-
ment. Wirel Personal Commun. 2018. https://​doi.​org/​10.​1007/​
s11277-​018-​6089-3.

	26.	 Tseng F, Wang X, Chou L, Chao H, Leung VCM. Dynamic
resource prediction and allocation for cloud data center
using the multi-objective genetic algorithm. IEEE Syst J.
2018;12(2):1688–99.

	27.	 Kaaouache MA, Bouamama S. An energy-efficient VM placement
method for cloud data centers using a hybrid genetic algorithm. J
Syst Inf Technol. 2018;20(4):430–45.

	28.	 Abohamama A, Hamouda E. A hybrid energy-aware virtual
machine placement algorithm for cloud environments. Expert
Syst Appl. 2020;150:113306. https://​doi.​org/​10.​1016/j.​eswa.​2020.​
113306.

	29.	 Parvizi E, Rezvani M. Utilization-aware energy-efficient virtual
machine placement in cloud networks using NSGA-III meta-
heuristic approach. Clust Comput. 2020. https://​doi.​org/​10.​1007/​
s10586-​020-​03060-y.

	30.	 Calheiros RN, Ranjan R, Beloglazov A, Rose CAFD, Buyya R.
CloudSim: a toolkit for modeling and simulation of cloud comput-
ing environments and evaluation of resource provisioning algo-
rithms. J Softw Pract Exp. 2011;41:23–50.

	31.	 Park KS, Pai VS. CoMon: a mostly-scalable monitoring system
for PlanetLab. In: ACM SIGOPS operating systems review; 2006.
p. 65–47.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1007/s10723-017-9399-x
https://doi.org/10.1007/s10723-017-9399-x
https://doi.org/10.4018/IJBDCN.2017010104
https://doi.org/10.4018/IJBDCN.2017010104
https://doi.org/10.1002/spe.2585
https://doi.org/10.1007/s11277-018-6089-3
https://doi.org/10.1007/s11277-018-6089-3
https://doi.org/10.1016/j.eswa.2020.113306
https://doi.org/10.1016/j.eswa.2020.113306
https://doi.org/10.1007/s10586-020-03060-y
https://doi.org/10.1007/s10586-020-03060-y

	Efficient Virtual Machine Placement Strategy Based on Enhanced Genetic Approach
	Abstract
	Introduction
	Literature Survey
	Problem Formulation
	The Proposed Approach for VM Placement
	Populating Solution
	Fitness Function
	Selection
	Crossover
	Mutation
	Algorithm Description
	GaMat
	GaLin

	Simulation Environment
	Simulation Results and Discussion
	Energy Consumption (EC)
	VM Migration
	SLA Violations
	Overload Counts
	Comparative Analysis Between GaMat, GaLin and Pa

	Conclusion
	References

