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Abstract
The background of the study is rooted in the critical importance of efficient virtual machine (VM) placement in cloud 
computing environments. VM placement efficiency is critical in cloud computing, especially when utilizing an improved 
genetic technique. This paper incorporates genetic meta-heuristic to integrate VMs into the minimal number of physical 
machines (PMs). In order to describe the fitness function in the proposed algorithm (GaMat and GaLin), we have also 
incorporated predicted usage of PMs CPU usages. The aim of the article is to demonstrate the effectiveness of genetic meta-
heuristic in improving VMs placement efficiency in cloud computing environments. The study focuses on minimizing energy 
consumption (EC) VM migration and violations of the Service Level Agreement (SLA) by integrating VMs into the minimal 
number of PMs using the proposed algorithms. The algorithms’ performance is evaluated by comparing them with the best-fit 
power-aware decreasing (Pa) VM placement strategy, based on metrics like EC, VM migration, and SLA violations. Tests 
were conducted in CloudSim through detailed simulations using actual workload data. The average values of the performance 
metrics for 10 days of the workload are collected for the proposed VM placement approach. The proposed work reduces 
EC by 25%, VM migration more than 50% and SLA by 58% when compared to the power aware best fit decreasing. The 
results of the simulations are interpreted and analysed, which shows the effectiveness of the proposed algorithms in contrast 
to the best-fit Pa strategy. In conclusion, the study demonstrates the effectiveness of genetic meta-heuristic based proposed 
algorithms (GaMat and GaLin) in optimizing VM placement in cloud computing environments. By integrating VMs into 
the minimal number of PMs while considering predicted resource usage, GaMat and GaLin significantly reduce EC, VM 
migration, and SLA violations compared to the best-fit power-aware decreasing (Pa) strategy.
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Introduction

Due to the convergence of IoT and cloud computing to create 
smart applications [1], the proliferation of consumer needs 
for computing services has contributed to the growth of 
cloud technology on a large scale. It is also contributing to 
massive growth in the infrastructure of storage or cloud data-
centers. Cloud datacenters primarily consume energy as user 
requests are computed and produce unnecessary heat that 
affects the efficiency of relevant equipment. Therefore, to 
preserve the temperature in the cloud datacenter, cooling is 
necessary. Thus, computing components and cooling devices 
are the primary consumers of energy consumption in the 
datacenter. Research has found that cooling infrastructures 
account for 40 percent of the cloud datacenter’s total energy 
requirement [2]. In addition, the datacenter releases traces 
of carbon, also one more reason for environmental issues. 
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Therefore, for the development of an eco-friendly cloud data 
center, a green computing environment must be encouraged. 
In a study it was found that global EC in 2015 was more than 
600 TWh [3]. A study shows that the datacenter EC will 
gain a rise from 200 TWh in 2016 to 2967 TWh in 2030 
[4]. The Fiona et al. study estimates the EC of hyper scale 
datacenters will nearly quadruple between 2015 and 2023 
[5]. The work done [6] was mainly focused energy consump-
tion issue where, an integrated model for IoT-fog-cloud was 
developed to use available resources in a efficient manner 
and gain proper load balancing. Apart from EC, security is 
also a key concern in cloud datacenter, a high level virtual 
machine (HLVM) was developed to provide a secure trading 
system environment [7]. Virtualization is the key feature of 
cloud computing, in this proposed work, virtual machines 
are mapped to physical machines, where CPU and memory 
have been virtualized in a single PM to process applications 
in multiple VMs in isolation. Virtualization of network may 
be useful to manage EC in cloud environment. Ajagbe et al. 
[8] developed a model for network virtualization, where vir-
tual switches were created using emulator.

Therefore, the minimization of EC in the cloud datacenter 
is a significant activity that may effectively reduce the 
expense of cloud infrastructure. It was observed that 
PM’s CPU usage has a linear relationship with its EC 
[9], so CPU use presence is considered to test the EC in 
the cloud datacenter in most of the studies. Cooling of 
the datacenter to manage the thermal atmosphere of the 
datacenter also consumes energy greatly. It is therefore 
important to minimize the heat’s after-effects when the user 
requests are computed. Computing and cooling must also 
be accomplished with minimal EC and maximum service 
delivery. The latest researches have been undertaken on 
resource utilization and has been analyzed using criteria 
pertaining to energy management and the quality of service 
[10]. The proposed work aims at improving the efficiency 
of the operation, the allocation of services, and a substantial 
decrease in the EC standard.

The main task for reducing EC is the dynamic consoli-
dation of VMs (DCVM) in a cloud datacenter. Because of 
its similarities to the bin packing problem, heuristic, meta-
heuristic and soft-computing methods have been used previ-
ously to solve the VM placement problem. The placement of 
VMs was carried out in our study using the Genetic Algo-
rithm (GA), which is a meta-heuristic suggested by Holland 
[11, 12] as shown in Table 1. It is predominantly used to 
create high-quality solutions using nature-inspired opera-
tors such as selection, crossover, and mutation to optimize 
search issues. The fitness function has been defined using 
predicted utilization of PMs. In many research fitness func-
tion is calculated using various factors e.g. minimization 
of EC, SLA, rank based etc. In several of the experiments, 
DCVM was conducted in the cloud datacenter to increase 
service efficiency, resource usage, and EC minimization. 
It requires the identification of overloaded and under-used 
PMs, prediction of resource usage, collection of VMs, and 
location of migrating VMs to the destination PM [13]. In this 
method, to minimize overloaded and underutilized PMs, the 
computational loads on PMs are spread among the minimum 
active PMs. The overloading and underuse of PMs decrease 
the system’s efficiency. Therefore, VM migration is required 
to transfer VMs from one PM to another without interrupt-
ing the system’s performance. However, migration incurs 
significant degradation in the efficiency of the system [14].

In this article to consolidate VMs dynamically, two 
VM placement approaches (GaMat and GaLin) are imple-
mented, where GaLin is inspired by the work done in previ-
ous research. The identification of overloaded PMs and the 
estimation of usage (Pu) were performed using the Local 
Regression (Lr) approach in this work. In addition, sufficient 
VM selection is made to eliminate overloading in PMs using 
the Minimum Migration Time (MMT) approach [15]. Lr-
Mmt prepares a VM list from the overloaded PMs, this VM 
list is one of the input for the solution coding process in the 
proposed work and predicted utilization has been used to 
define the fitness function. Finally, the positioning of VMs 
is done by proposed methods. The findings showed proposed 

Table 1   Genetic algorithm’s parameters and their role

S. no. Genetic 
algorithm’s 
parameter

Role in genetic algorithm

1 Population The population is a collection of potential solutions. Although a bigger population offers a more diverse search space, it 
also needs more computing power

2 Fitness function The algorithm is directed toward better solutions through this fitness function. Higher values of fitness of individuals 
are more likely to be selected for reproduction

3 Selection Individual from among present solutions will be chosen to reproduce and give rise to the future generation is 
determined through selection process

4 Crossover In a process of crossover, genetic information from two parents solution is combined to produce one or more solution
5 Mutation An individual’s genetic information undergoes minor, random changes due to mutation. As a result, diversity is 

increased in solutions
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methods efficacy and outperformed most current heuristic 
methods. Therefore, meta-heuristic techniques may play a 
significant role in the autonomous management of virtual 
machines (VMs) in a cloud datacenter, effectively balanc-
ing energy consumption (EC) and ensuring the delivery of 
optimal service quality.

The subsequent portion of this document is organized 
into distinct sections. Section “Literature Survey” covers the 
relevant literature, investigating the utilization of the genetic 
algorithm for VM placement on PMs. Section Problem 
Formulation presents the proposed algorithm along with 
its detailed description. The simulation environment and 
findings that shows the efficacy of the Genetic Algorithm-
based VM placement with the heuristic method are discussed 
in Sects. The Proposed Approach for VM Placement and 
Simulation Environment, and finally, the conclusion along 
with future work are given.

Literature Survey

In this segment, we have discussed the work done for 
resource management using a genetic algorithm-based 
approach only. Many methods were developed for the VM 
placement using genetic algorithm based meta-heuristics; 
some of them are discussed in the current article:

Hu et al. proposed a VM load balancing scheduling 
approach using a genetic algorithm that manages the load 
and minimizes the expense of migration. To construct the 
mapping solution, they used a tree structure. There was a 
tree representing each chromosome, where the root man-
ages the nodes. For PMs, the second-level nodes were 
used, and third-level nodes were used to present the VMs. 
Compared to conventional scheduling algorithms, their 
approach effectively increased the load balancing and 
relocation cost [16]. A hybrid genetic algorithm (HGA) 
proposed by Tang et al. for the VM placement issue to 
handle the EC in cloud computing. It involves the infeasi-
ble solution repair and local enhancement to increase the 
exploitation potential and convergence of conventional GA 
[17]. A novel strategy for VM allocation using the family 
gene approach (FGA) to minimize EC and VM migration 
was suggested by Joseph et al. Compared with the stand-
ard genetic algorithm, FGA performed better in terms of 
computing time [18]. Algorithms have been developed by 
Li Deng et al. to boost VM placement stability patterns 
with lower migration overhead and decreased energy usage. 
Centered on the group encoding scheme, where multiple 
VMs live on a single PM, they coded the solution. Their 
simulation results demonstrated a major increase in VM 
redistribution stability [19]. In terms of IT facilities and 
datacenter ventilation, Arianyan et al. discussed energy 
efficiency. In order to measure the fitness value, they used 

the least rise in power after placement, the most available 
PM resources, and the least number of hosted VMs in PM. 
A scattered crossover was used in their work to generate 
new descendants. To conduct a mutation on the solution, 
the Gaussian distribution was used. To test the algorithm in 
CloudSim, detailed simulations have been carried out, and 
the results indicate that there has been a notable change in 
terms of EC, SLAV, and VM migration [20]. A memetic 
algorithm to address the multi-objective issues (EC, QoS, 
network traffic etc.) of VM placement was suggested by 
Fabio et  al. They proposed a structure that formulates 
multi objectives VM placement issue. With separate prob-
lem cases, the authors checked their work, and experi-
ment results showed that the proposed model can solve the 
multi-objective issues with significant PMs and VMs [21]. 
Oshin et al. proposed a decision-making VM placement 
method based on genetic meta-heuristics. They analysed it 
with three predefined methods of VM positioning, and the 
results revealed that EC and SLA violations were success-
fully overcome by the genetic algorithm [22]. Mosa et al. 
tackled the issue of VM positioning by understanding the 
CPU and memory criteria for VMs. To reduce underuti-
lized/over-used PMs and boost the SLA, they developed 
a genetic algorithm-based system. Tournament selection 
was made for each generation, and then uniform crossover 
was applied to generate new offsprings [23]. Amin et al. 
proposed a cost and energy-effective VM placement solu-
tion to address the minimization of cost and energy usage 
of datacenter. VM placement was formulated and solved 
by using genetic meta-heuristic as a mixed-integer nonlin-
ear programming problem [24]. A micro-genetic algorithm 
for achieving a trade-off in the cloud datacenter between 
EC and SLA was suggested by Maryam et al. In order to 
address the issue of dynamic consolidation of VMs, they 
used k-means and micro genetic algorithms (KMGA). The 
studies showed that KMGA achieved a smooth equilibrium 
between EC and SLA, minimizing the migration of VMs 
[25]. A multi-objective approach to forecasting resource 
usage and optimizing datacenter energy use was introduced 
by Tseng et al. For the optimization of resource utilization, 
the algorithm considered computing and memory resources 
usage of VMs and PMs. Based on resource usage historical 
statistics, it forecasts the necessary resources in the next 
time slots. Using the outcomes expected using GA, VM 
placement was achieved. Their proposed work increased 
the total CPU and memory consumption and substantially 
decreased EC [26]. Kaaouache et al. presented an energy-
efficient placement of VMs using the hybrid genetic algo-
rithm to reduce EC in PMs and communication networks. 
The collection of chromosomes for the crossover from the 
original population was performed using the roulette wheel 
process. Using the single-point crossover, new offspring 
with higher fitness values were produced. Two PMs from 
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a chromosome were randomly chosen, so, in the mutation 
phase, VMs from the selected PMs were switched. Experi-
mental studies have shown that it outperforms the other 
strategies significantly [27]. A permutation-based genetic 
algorithm has been developed by Abohamama et al. that 
improves the rate of EC and minimizes the active numbers 
of PMs. They accomplished the load balancing of active 
PMs’ processing, memory, and network resources. They 
developed a model by integrating the enhanced permu-
tation-based GA (IGA-POP) and the resource-aware best 
fit strategy for energy-efficient VM placement [28]. The 
non-dominated sorting genetic algorithm (NSGA-III) was 
used by Parvizi et al. to solve the problem of VM place-
ment for multi-objective optimization. Their main goal is 
to mitigate the waste of resources, EC, and active PMs. 
In the context of a nonlinear convex optimization strat-
egy, they formulated VM positioning and used NSGA-III 
meta-heuristics to reduce the complexity of time. In a study 
proposed model was tested in simulator, and the findings 
show that NSGA-III increased the efficiency of the method 
relative to the other algorithms of MO-VMP [29].

Similar to the work done in as mentioned in Table 2, our 
work mainly focused on implementation of genetic based 
algorithm for VM placement. However, in comparison to 
the study described above we have used predicted utiliza-
tion for the calculation of fitness value. In relation to the 

methods listed above, our major contributions are as fol-
lows in this article:

1.	 Using a genetic algorithm, a method has been proposed 
to address the problem of VM placement.

2.	 In this problem, minimizing energy consumption 
(EC), maximizing SLA, VM migrations reduction, and 
avoiding PM overload are established as goals in the VM 
placement process.

3.	 An algorithm, GaMat, in which chromosome 
architecture is based on matrix form, representing the 
mapping between VM and PM, has been suggested and 
implemented.

4.	 An algorithm, GaLin, was introduced in which 
chromosomes are designed in a linear fashion (linear 
representation of chromosome is used in most of the 
research, as shown in Table 2).

5.	 A fitness function that measures the fitness of the 
solutions using the predicted use of the PM’s CPU 
utilization is proposed.

6.	 In CloudSim, the performance of GaMat and GaLin is 
measured using PlanetLab workload and SPEC bench-
marks. Additionally, with a power-aware best fit decreas-
ing (Pa) heuristic-based VM placement process, we con-
ducted a comparative study of these algorithms.

Table 2   Comparison of existing GA based VM placement strategies

Paper Population coding Selection Crossover Mutation Fitness function

Hu et al. [16] Spanning Tree Probability of 
individual

Rotating selection Self-adaptive 
probability

Penalty Function

Tang et al. [17] Array Roulette wheel 
selection

Biased Uniform Inverting a gene 
randomly

Depends upon the EC of 
a solution

Joseph et al. [18] Family genetic 
algorithm

Fitness based Random Self-adjusting 
probability

Resource utilization

Deng et al. [19] Group encoding Random selection Multi-point Random Resource utilization
Arianyan et al. [20] Array Random selection Scattered function Gaussian distribution PM power and resource 

utilization
Fabio et al. [21] Matrix Binary Tournament Single point Self-adaptive 

probability
Rank-based

Oshin et al. [22] Tree structure Random selection Random Random PM power and resource 
utilization

Mosa et al. [23] Array Tournament selection Uniform Random EC and cost
Amin et al. [24] Array Roulette wheel 

selection
Single point Random EC and cost

Maryam et al. [25] Array Tournament selection Two-point Random EC based
Tseng et al. [26] Array Random selection Two-point Random Placement result and 

resource status
Kaaouache et al. [27] Array Roulette wheel 

selection
Single point Random Depends upon EC of a 

solution
Abohamama et al. [28] Permutation Roulette wheel 

selection
Ordered Random EC minimization
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Problem Formulation

The VM placement approach involves mapping VMs to 
PMs, where the quest space encompasses a cumulative 
total of mn possible directions for mapping m VMs to n 
PMs. The problem of VM positioning is somewhat similar 
to the problem of bin packaging, in which products with 
varying costs are stored in bins of different sizes. VMs 
are represented by objects in this problem, and PMs are 
represented by bins. The problem is expressed as follows:

1.	 The datacenter consists of ‘n’ number of PMs {p1, p2, 
p3, …, pn} to hosts the ‘m’ number of VMs {v1, v2, 
v3, …, vm}.

2.	 An objective function is used to position all VMs in such 
a way that the amount of PMs consumed is reduced with 
the fulfilment of the energy usage and quality of services 
constraints described below.

The objective is to accommodate maximum VMs in 
minimum PMs to satisfy the constraints mentioned below:

Constraint 1  In order to reach minimal EC in the datacenter, 
the overall number of PMs should be reduced to the mini-
mum for the VMs placement.

Constraint 2  To meet the full SLA of the datacenter, the VM 
requests should not exceed the PM capacity.

where Cap
(
PMj

)
 is the cumulative capacity of the services 

of the PM, Avail
(
PMj

)
 is the PM capacity available, and 

Req
(
VMi

)
 is the VM resource request. Vmmig is the list of 

migrated VMs from overloaded PMs, and Pmcand includes 
PMs not in the overloaded PMs and having non-zero pre-
dicted usage. Best fit heuristic is an approach for solving the 
bin packing problem; Beloglazov et al. [15] have used this 
approach to solve the VM placement problem. They have 
extended this approach in terms of energy consumption to 
perform energy aware PM-VM mapping. In order to plan 
an energy efficient PM-VM mapping, their algorithm first 
sort the migrating VM list in decreasing order of their CPU 
utilization then find a PM which exhibit minimum power 
increase when a VM has been allocated to it. The Pa algo-
rithm is depicted below:

(1)∫ (s) = Minimize|Active PMs|

(2)
Cap

(
PMj

)
> Avail

(
PMj

)
+

k∑

i=0

Req
(
VMi

)
∀VMi ∈ Vmmig and ∀PMj ∈ Pmcand

Algorithm 3.1: VM placement using power aware best fit 
decreasing (Pa) [13]

The Proposed Approach for VM Placement

The first step to effectively handling VM placement dif-
ficulties is mapping VMs onto PMs. We have developed 
VM placement solutions based on the GA meta-heuristic 
and compared it to alternative heuristic methods. The goal 
of our proposed strategy is to reduce EC and active PMs. 
When distributing m VMs to n PMs in a cloud environ-
ment, a method that strikes an ideal balance between EC 
reduction and Service Level Agreement (SLA) maximi-

zation must be developed. Many solutions exist for the 
problem mentioned above, and there are many ways to 
build them. In this work, GaMat and GaLin are devel-
oped to explore the possible solutions for VM placement 
in the datacenter. Initially, random solutions are populated 
despite their non-feasibility. Further crossover and muta-
tion operations are performed to improve their quality. The 
solutions are also known as population, and each solution 
is termed as a chromosome. GaMat works on a matrix-
based chromosome, and GaLin is for the linear chromo-
some. (Fig. 1).

Populating Solution

In GaMat, each chromosome is represented by matrix 
form. In this representation, rows and columns correspond 
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to virtual machines (VMs) and physical machines (PMs), 
respectively. In our work, population coding has been 
done on a random basis because it provides a large search 
space domain to find a solution. In Eq. (3), xij represents 
the chromosome’s gene whose value is 1, when a VMi is 
successfully allocated to PMj and 0 otherwise. VMs are 
randomly assigned to PMs; therefore, the solution may 
be feasible or infeasible depending upon successful VM 
placement.

The chromosome representation is explained using 
an example (Fig. 2), where the VM allocation has been 

(3)
xij =

{
1, if Vmi is placed on Pmj

0, otherwise
∀Vm ∈ Vmlist and ∀Pm ∈ Pmlist

shown as pm0 {vm3}, pm1 {vm4, vm5}, pm2 {vm1, vm6}, 
pm3 {vm2, vm0}, pm4 and, pm5 {vm7}. The matrix in 
Fig. 2, shows the allocation map where 8 VMs are mapped 
to 6 PMs as mentioned in the above example. According 
to Eq. 3, the elements ( x0,3,x1,4 , x1,5 , x2,1, x2,6, x3,2, x3,0, x5,7 ) 
of the matrix are assigned 1 and the rest are made 0.

For the same example, the linear chromosome is 
designed for GaLin as depicted in Fig. 3. The variable xi , 
represents the PMj if it hosts the VMi as shown in Eq. 4.

Fitness Function

The fitness function serves as a tool to assess solution’s 
quality; a higher fitness value indicates more quality of 
the solution. In this work, Predicted usage (Pu) of PM 
is considered to derive the fitness value of each solution 
for GaMat and GaLin. Each PM’s remaining capacity is 
calculated according to Eq. 5, and it is further used to 
find out the fitness value of the corresponding solution. 

(4)xi = PMj, if VMi is assigned to PMjFig. 1   Genetic algorithm based VM placement

Fig. 2   Chromosome representa-
tion in matrix form

Fig. 3   Chromosome representation in linear form
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In Eq.  5, RemPM is the available capacity of PM in a 
solution, CapPM is the overall capacity of PM, and ReqVMi

 
is the request of all VMs in PM. PM’s Pu is calculated 
using the Local Regression method as shown in Eq. 6 
[12]. Populated solution sets may contain some infeasible 
solutions, so some PMs’ remaining capacity will be 
negative because the required resources are more than the 
total capacity. In this case, − 1 is assigned to the fitness 
value for that solution. The fitness value is the inverse 
of the predicted utilization ( Pu ) of PMs selected for VM 
placement in a solution in case of positive remaining 
capacity (Eqs. 7 and 8).

In this scenario, a fitness value of − 1 is assigned to the 
solution. The fitness value is determined as the inverse of 
the predicted utilization (Pu ) of the selected PMs for VM 
placement, specifically in instances of positive remaining 
capacity, as described in Eqs. 7 and 8.

The same fitness function is also used for GaLin methods. 
In the case of GaLin, the linear chromosome is converted 
into a matrix form. Then fitness value is evaluated for the 
solution similar to GaMat.

Selection

In this process, the selection of parent solutions is made 
for the generation of the new solution. In our work, we 
select two consecutive chromosomes from the population. 
According to Eq. 9, if the fitness value is negative, then 
solutions are sent for the crossover to derive the new feasible 
offspring. In the case of the positive value of the solution’s 
fitness function, mutation and crossover are performed 
according to Eqs.  10 and 11. The selection process is 
presented by equations below, where, si is a solution from 
the population, and f

(
si
)
 is the fitness function.

(5)RemPM = CapPM −

m∑

i

ReqVMi
∀VM ∈ Vmlist

(6)Pu = Local Regression(PM Utilization History)

(7)Total Pu =

m∑

i

Pu
(
PMi

)
∀PMj ∈ Pmcand

(8)𝜂 =

{
−1, RemPMi

< 0
1

Total Pu ,
RemPMi

> 0
∀PMj ∈ Pmcand

(9)offspringi =

length∑

i=0

crossover (si, si - 1), f
(
si
)
= −1

In the case of GaLin, the selection process is similar 
to GaMat in which feasible solutions are taken for the 
mutation to derive the new solution, while a solution having 
a negative fitness value is selected for crossover to derive 
the new offspring.

Crossover

The genetic algorithm combines two individual solutions to 
form the next generation in the crossover process. In the case 
of GaMat, a new offspring is generated that inherits useful 
information from its parents. Two consecutive chromosomes 
( siand si−1 ) are selected from the population as shown in 
Eq. 9, where xi,j , and yi,j are chromosome si and chromosome 
si−1 genes. According to Eq. 12, swapping between these 
genes is done for the even index, and chromosome si 
is updated with new values. Finally, chromosome si is 
considered as a new offspring. We applied the multi-point 
crossover in the matrix representation of chromosomes.

In the case of GaLin, the random crossover is performed 
where a variable r is selected randomly (Eq. 13). Further, 
it is used to derive the crossover point according to Eq. 14.

According to Eq. 15, the crossover process is applied 
on both feasible and non-feasible solutions to diversify the 
search; however, a crossover between two feasible solutions 
does not guaranty the feasibility of offspring generated after 
crossover. Thus, in our work, we have used the crossover to 
enhance the solutions’ diversity by exploring more solutions 
in the solution space.

Mutation

The mutation is a process of modifying some genes ran-
domly in a chromosome. A small change in the chromosome 

(10)offspringi =

length∑

i=0

mutation
(
si
)
, f
(
si
)
> 0

(11)offspringi =

length∑

i=0

crossover (si, si - 1), f
(
si
)
> 0

(12)xi,j =

{
swap

(
xi,j, yi,j

)
, i is even

do nothing, i is odd
0 ≤ i ≤ m, 0 ≤ j ≤ n

(13)r = radom selection between 1 to m

(14)cspoint = m∕r

(15)xi = swap
(
xi, yi + cspoint

)
0 ≤ i ≤ m
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is done to implant the mutation in children. It allows the 
genetic operator to remove or edit one or more genes in a 
chromosome. GaMat takes gene xi,j from a chromosome 
(feasible solution) and replaces it with zero. If xi,j is one 
(Eq. 16), then it sets the value of the next gene at xi,j+1 to one 
(Eq. 17). In the mutation process, VM’s location is changed 
from one PM to another to reduce the active numbers of 
PMs (Eq. 18).

In the case of GaLin, random mutation is performed 
in which the location of VM is changed from one PM to 
another which results in minimizing the active PMs in a 
solution, as shown in Eq. 19.

The mutation has been applied to explore best solution 
which consists of minimum active PMs. It is similar to the 
exploitation process in meta-heuristic techniques.

Algorithm Description

GaMat

In this work, k numbers of solutions are developed where 
each solution is a chromosome. Each solution is represented 
as a two-dimensional array in which 1 represents a PM-VM 
mapping, and 0 represents no mapping. In the first phase, 

(16)xi,j = 0, ifxi,j = 1

(17)xi,j + 1 = 1

(18)f (PM) = min ||PMactive
||

(19)xi + 1 = xi0 ≤ i ≤ m

solutions are developed randomly without considering their 
quality and efficiency. So, initially populated solutions may 
be correct or not (Algorithm 4.1). Table 3 depicts the differ-
ences between GaMat and GaLin in terms of their genetic 
parameters.
Algorithm 4.1: Populating solution

Algorithm 4.2 is developed to estimate the fitness value, 
which represents quality of the solution. High fitness 
means the high quality of the solution. If a solution is 
not feasible, − 1 is assigned to the fitness value for that 
solution (line 16). In GaMat and GaLin, The assessment 
of the fitness value depends on the predicted utilization 
of the PMs (line 18). In the case of the positive value of 
available capacity, the fitness value is the inverse of PMs’ 
predicted utilization (line 20).

Table 3   Comparison between 
GaMat and GaLin

Algorithm Population coding Selection Crossover Mutation Fitness value

GaMat Array based Fitness based Multi-point Genes’ shifting PMs’ predicted utilization
GaLin Matrix based Fitness based Single point Genes’ shifting PMs’ predicted utilization
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Algorithm 4.2: Computing the fitness function

In the selection phase (Algorithm 4.3), chromosomes 
whose fitness values are not equal to − 1 are selected for 
mutation. The variable solution length expresses the total 
solutions to be developed in the selection step. The solution 
list consists of solutions that were randomly generated in the 
first phase. Initially, there is a low probability of selecting a 
feasible solution because most solutions may have a negative 
fitness value. In the selection process, a solution having posi-
tive fitness value is further chosen for the process of mutation, 
and then the mutated child is appended to fitted solution list 
(line 8). Further, it is sent for the crossover to replace it with 
new offspring (line 10). The solution having a negative fitness 
value (the infeasible solution) was selected for the crossover 
in anticipation that a feasible solution may be generated, and 
further, it is added to the population (line 12). If the algorithm 
cannot find a feasible solution, repairing is executed to handle 
such an issue. In this process, the existing population is modi-
fied to create a new population. Hence, this process returns all 

feasible solutions. The solution that achieves the maximum 
fitness is ultimately opted for the placement of VMs. (line15).

Algorithm 4. 3: Selection

The third phase of GaMat is the crossover 
(Algorithm 4.4); variable p1 and p2 represent the parent 
solutions from the population, and offspring is the output 
variable resulting from the crossover between p1 and p2. 
We have used a multi-point crossover in this work where 
two consecutive solutions from the initial population list 
(generated in phase one) are selected for the crossover. 
Offspring is generated by the swapping rows of the even 
index of both arrays (line 6). These offspring replace the 
solution (p1) from the population in anticipation that the 
offspring is a feasible solution (line 9).

Algorithm 4.4: Crossover function (GaMat)

In Mutation phase (Algorithm 4.5), a chromosome is 
modified by changing its genes (lines 7, 8). The change 
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is done if a gene is found 1 (mapping), then its value is 
converted to 0 (no mapping), and the value of the gene at 
the next column having the same row is made 1 (mapping). 
This act is only for reallocating VM from one PM to another 
to minimize PMs’ active numbers in a chromosome. Further, 
the solution quality is tested, and if it is found feasible, then 
the solution is considered a mutated solution (line 11); 
otherwise, the chromosome is modified again.

Algorithm 4.5: Mutation (GaMat)

GaLin

Like GaMat, k numbers of solutions are developed where 
each solution is a chromosome of the population. In the first 
phase, solutions are developed randomly without considering 
their quality and efficiency. So, initially populated solutions 
may be correct or not (Algorithm 4.6). The third phase of 
GaLin is the crossover (Algorithm 4.7); variable p1 and 
p2 represent the parent solutions from the population, and 
offspring is the output variable resulting from the crossover 
between p1 and p2. In GaLin, single point crossover has 
been applied in which a variable is selected randomly 
between 0 and the total number of migrating VMs. Further, 
this variable is used to determine the crossover point (line 
4). Two consecutive solutions from the initial population 

list (generated in phase one) are selected for the crossover. 
Offspring is generated by the swapping of elements between 
parent solutions according to line 6, and the resulted array is 
stored as offspring (line 9).
Algorithm 4.6: Populating solution

Algorithm 4.7: Crossover function (GaLin)

The last process of GaLin is the mutation (Algorithm 4.8), 
in which active numbers of PMs are minimized in the 
solution. In this process, the feasible solutions are modified 
to maximize their fitness value. In this phase, the genes from 
one index are shifted to the next index, which results in the 
shifting of VM from one PM to another according to lines 
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5 and 6. Moreover, this may result in the generation of the 
infeasible solution; therefore, the fitness value is evaluated 
in each iteration (line 11). Like GaMat, this act is only for 
reallocating VMs from one PM to another to minimize PMs’ 
active numbers in a chromosome.

Algorithm 4.8: Mutation (GaLin)

In Fig. 4, the whole process flow is depicted according to 
the above algorithms.

Simulation Environment

In most of the study, tests are conducted in the simulation 
because datacentre is unavailable. CloudSim [30] presents 
a virtual cloud system where tests for this work have 
been conducted. The two types of PMs for the dynamic 
consolidation of VMs are planned and simulated in the cloud 
environment (Table 4). Due to its practical functionality, 
PlanetLab [31] dataset is used (Table 5), which contains 
CPU use of VMs in five-minute intervals and stored in 
separate files.

The main components that affect PMs EC in datacenters 
are the CPU, memory, disk storage, power supply, and 
cooling systems. Study done by Fan et al., that EC by PMs 
can be described by a linear relationship between EC and 
CPU usage.

SPEC1 power benchmark is employed to assess the 
energy consumption (EC) in our algorithm. In Table 6, for 
the various CPU usage levels percentages associated EC is 
given in watts.

Figure  5 below depicted that the proposed solu-
tion has been incorporated in CloudSim, the function 

optimizeAllocation calls the getNewVmPlacement function. 
Which supply the VM list and Overloaded PM list, from 
these overloaded PMs, Migrating VM list has been prepared. 
Then the function PrepareSolution takes the migrating VM 
list and candidate PM list as input, this function initiates the 
population coding process, then the proposed method returns 
the suitable PM-VM mapping.

Simulation Results and Discussion

GaMat uses Local regression and Minimum migration 
time (LrMmt) techniques to find out overloaded PM and 
migrating VM from the overloaded PM. Further, GaMat and 
GaLin techniques are applied for the VM placement from 
overloaded PMs.

GaMat, GaLin, and Pa [13] VM positioning strategies are 
measured against each other in terms of below mentioned 
performance parameters.

Energy Consumption (EC)

Fan et al. defined in their work that there is a linear pattern 
between PM’s EC and its CPU consumptions [9]. The CPU 
consumption of PM is then used in this paper to approximate 
the EC. Using the following equation, the relationship 
between EC and CPU usage of PM was expressed:

where Ptotal is the total EC, Pidle is the EC by PM; Pmax is 
the EC when the host is totally used when it is idle, and U 
is the CPU usage [15]. GaMat and GaLin remove all PMs 
with zero expected usage, since in the future, such PMs will 
be underused. As a consequence, resource underutilization 
is minimized, which prevents excessive energy use. Table 7 
depicts the average number of active PMs in each VM 
placement method.

To assess the energy consumption of single PM, a PM 
(PM Id: 119) was randomly selected from the pool of PMs, 
and further we have found its energy consumption and CPU 
usage in each time interval depending on the number of run-
ning VMs as depicted in Fig. 6a, b. The total number of VMs 
running in each time interval for the same PM has been 
depicted in Fig. 6c.

As it is cleared that with more active PMs, more energy 
will be consumed in the cloud datacenter. We have also 
calculated the average numbers of active PMs as shown 
in Table 7. It shows that GaMat and GaLin use the same 
numbers of active PMs in their optimal solution, and is the 
reason for the similar EC. Figure 7a illustrates that Ga-based 
VM positioning has more effect in comparison to the heuris-
tic algorithm in EC terms. In the proposed VM placement 

(20)Ptotal = Pidle +
(
Pmax − Pidle

)
× U

1  http://​www.​spec.​org/​power_​ssj20​08/.

http://www.spec.org/power_ssj2008/
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Fig. 4   The overall process flow 
using proposed approach

Table 4   Simulation environment

Specification Physical machine type (HP Proliant) Virtual machine type

ML110 G5 ML110 G4 Type I Type II Type III Type IV

CPU 1860 MIPS (2 cores) 2660 MIPS (2 cores) 500 MIPS 1000 MIPS 2500 MIPS 2500 MIPS
RAM 4096 MB 4096 MB 613 MB 1.7 GB 1.7 GB 0.85 GB
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method, the utilization of resources is improved and posi-
tively impacts EC. Both of the methods, GaMat and GaLin, 
reduce the EC compared with the Pa placement method. 
Here, it can be seen that the GA system-based placement 
technique can play the lead role to minimize the EC.

VM Migration

The key challenge for achieving DCVM is virtual machine 
migration; the migration strategy helps the device to move 
VMs without interference from one PM to another [15]. The 
relocation of VMs also affects the system’s efficiency [14]. 
10 percent of CPU usage in our work is considered an aver-
age reduction in the output of the system, leading to further 
SLA breaches. In the migration process, SLA breaches are 

faced by all PMs before the migration process is finished. 
Therefore, with minimal VM migration, a successful DCVM 
consolidates VMs. Equations 21 and 22 were used to test the 
VM migration duration and the deterioration of efficiency due 
to migration. When VM migration occur more, system’s effi-
ciency degrades [14, 15]. Therefore, the total VM migrations 
are regarded as an output parameter in the suggested solution. 
However, migration is also expected for the DCVM, but it is 
important to prevent needless VM migration. The foregoing 
DCVM mechanism was implemented for the actual workload 
and the VM migration numbers were analyzed. Experiment 
findings revealed that in terms of migration counts, GaLin 
outperformed the DCVM techniques based on GaMat and Pa, 
as seen in Fig. 7b.

Fig. 5   Integration of the model into CloudSim

Table 7   Average number of active PMs in case of each VM placement method

Day 03/03/11 06/03/11 09/03/11 22/03/11 25/03/11 03/04/11 09/04/11 11/04/11 12/04/11 20/04/11

PABFD 61 47 54 67 59 81 68 67 58 51
GaMat 45 35 39 47 41 60 48 47 41 35
GaLin 45 35 39 46 41 59 48 47 41 35
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where Tmj shows total migration duration, Mj shows 
memory utilized by VMj, and Bj shows available network 

(21)Tmj =
Mj

Bj

(22)Udj = 0.1 ×

t0+Tmj

∫
t0

uj(t)dt

bandwidth. Udj shows total degradation in the performance 
of the system, t0 shows migration initiation time and uj(t) 
shows CPU utilization by VMj as explained in [15] the 10% 
performance degrade due to VM migration.

SLA Violations

As seen in Eq.  23, SLA violation is also evaluated 
the efficiency of the operation, which is the result of 
performance loss caused by VM migration (PDM) and 
SLA time per active host (SLATAH). In a study done by 
Beloglozov et al. [15] that in PM overloading scenario, the 
source PMs experience SLA violation while a VM is in the 
migration process, thus reducing system output during the 
migration process. The following are described by the PDM 
and SLATAH:

where due to migrations, Cdj is the expected performance 
loss of the VMj, and Crj is the total requested VMj CPU 
power. N shows number of PMs, Tsi shows duration in which 
100 percent of PMi has been used leading to a SLAV, Tai 
shows active PMs counts, M represents VMs [15]. It can be 
seen in the graph (Fig. 7c, d) that the proposed approaches 
greatly decrease the violation of the SLA and works better 
in terms of service efficiency.

Overload Counts

Investigation of PM overloading counts has been done 
in the proposed work to assess the system performance. 
Overloading counts for all PlanetLab workloads were tested 
in the simulation for the entire period. It impacts both the 
EC and SLA, as soon as overloading increases. It is then 
discussed in the work presented as well in Fig. 7e, it was 
found that, GA needs further development to minimize the 
overloading of PMs.

Comparative Analysis Between GaMat, GaLin and Pa

Table  8 summarizes a comparative examination of the 
proposed work.

SLATAH needs further reduction, as seen in Table 8, 
since it reflects the larger amount of overloading PMs, 
resulting in SLA violations (Fig. 7).

(23)SLAV = SLATAH x PDM

(24)PDM =
1

N

M∑

i = 1

Cdj

Crj

(25)SLATAH =
1

N

N∑

i = 1

TSi

Tai

Fig. 6   Single PM (ID #119) analysis in each time interval in terms of 
a energy consumption b CPU usage c no. of VM hosted
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Table 8   Average results of VM 
placement policies for 10 days 
workload

Algorithm EC Kwh SLA % VM Migration PDM SLATAH Overload count

PaBFD 161.87 0.00497 28,174 0.08 6.213 2948
GaLin 120.58 0.00227 13,582 0.04 5.158 2688
GaMat 121.32 0.00209 16,252 0.04 5.144 2845

Fig. 7   Results of GaMat, GaLin and PaBFD techniques a EC, b VM Migration, c, d SLAV and e overload counts
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LrMmt algorithm [15] has been applied in the proposed 
work for the identification overloaded PMs and selection of 
VMs for migration. The average values of the performance 
metrics for 10 days of the workload are collected for GaMat 
based VM placement, where it improved the EC by 25.5% 
against Pa and GaLin outperformed GaMat by 0.6%. When 
GaLin is compared with Pa, an improvement of 25.04% in 
EC is observed. GaMat reduces SLA violation by 57.92% 

and 7.71% against Pa and GaLin VM placement policies. 
GaLin improved the SLA by 40.9% against Pa. It has been 
observed in the simulation that 42.31 percent of VM migra-
tion counts are lowered using the GaMat process, while 
GaLin lowers migration counts to Pa by 51.8 percent. In 
terms of overload counts, GaMat-based VM placement was 
found to be less productive since it decreases these counts 
by 3.4 percent. When GaLin was applied as a VM position-
ing strategy, the overload count to Pa resulted in a reduction 
of 8.81 percent. However, the proposed work needs further 
enhancement in terms of migration and overload counts 
(Table 9).

In this article, GaMat is based on 2-D chromosome 
design, while GaLin is applied by considering the chromo-
some in a linear manner, as shown in Table 2; it was used 
in most of the VM placement GA-based solutions. As seen 
in Fig. 8, in case of lowering VM migration and PM over-
loading, GaMat is higher than GaLin, although in the case 
of EC, GaMat varies significantly from GaLin. In the case 
of GaMat, though, it’s a little more, as seen in Fig. 8. In 
terms of the output parameters described above, the Genetic 
based technique is found to be better that can lead to better 
outcomes. It is also inferred that GaMat (2-D chromosome) 
may become an alternative approach for the positioning of 
the VMs in the Datacenter.

We took the energy consumed values in each time inter-
val after applying both approaches with a similar workload 
(Day 04/03/2011). Figure 9 illustrates that the EC is less 
than 1.5 kWh for every time frame of 24-h period. GaMat 
has smooth patterns compared to Pa, which proves the bet-
ter performance of dynamic consolidation in terms of EC.

VM migrations in each time frame are also collected for 
the same workload and shown in Fig. 10. The plot shows that 

Table 9   The simulation results (comparison of different algorithms of 
VM placement)

Performance metrics GaMat 
versus Pa (%)

GaMat versus 
GaLin (%)

GaLin 
versus Pa 
(%)

Energy 25.5 0.6 25.04
VM migration 42.31 16.42 51.8
SLA 57.92 7.71 40.9
Overload count 3.4 5.51 8.81

Fig. 8   GaMat versus GaLin

Fig. 9   EC in each time frame: 
Day 04/03/2011
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the VM migrations in GaLin are lower than GaMat and Pa 
in each time interval.

Conclusion

Dynamic consolidation of VMs was done using genetic 
meta-heuristics in the proposed work. It finds an optimal 
solution using genetic operators (mutation and crossover) 
from random solutions. The primary purpose of the proposed 
work is to investigate use of the GA approach for controlling 
the EC and service efficiency of cloud datacenter. In 
addition, GaLin, influenced by research performed in most 
of the previous works, was also implemented in this work. 
EC, PM overloading, SLA and VM migration constraints 
to increase efficiency are mainly addressed by GaMat and 
GaLin. The fitness criterion is based on predicted utilization 
which results with significant improvement. However the 
efficiency may be enhanced by employing other factors, 
e.g. memory, disk usage, and network resources. Simulation 
findings indicate that the GA-based solutions have been 
found better for EC and SLA’s autonomous management. 
These methods can be implemented as future work to 
address the other resource allocation issues in the cloud 
datacenter.
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