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Abstract
Feature importance techniques offer valuable insights into machine learning (ML) models by conducting quantitative assess-
ments of the individual contributions of variables to the model’s predictive outcomes. This quantification differs across various 
explanation methods and multiple almost equally accurate models (Rashomon models), creating explanation and model mul-
tiplicities. This resulted in a novel framework called method agnostic model class reliance range (MAMCR) for identifying a 
unified explanation across methods for multiple models. This consensus explanation provides each feature’s importance range 
for a class of models. Using state-of-the-art feature importance methods, experiments on popular machine learning datasets are 
conducted with a �− threshold value of 0.1. The dataset-specific Rashomon set with 200 models, and the prediction accuracy 
of concerned reference models ( m∗ ) have produced encouraging results in obtaining a consensus model reliance explanation 
that is consistent across multiple methods. The experiment results ensure whether the prediction accuracy level of models has 
an impact on the importance range estimation of features. Also, the order of features suggested by MAMCR leads to better 
performance of models consistently in all the experimented datasets, than the state-of-the-art methods.

Keywords XAI · Model agnostic explanation · Feature importance · Rashomon set · Explanation disagreement · Unified 
explanation

Introduction

Explainable AI (XAI) is a concept within the machine learn-
ing domain that aims to provide human-intelligible expla-
nations behind a predictive model’s decisions. That is, to 
explain how a model produced an output from a given input. 
Many different types of explanation methods have been pro-
posed and can be found in the literature [5, 15, 32, 41, 52, 
62, 73], often ordered into a hierarchical taxonomy. The 
various levels are not stringent and methods are frequently 
applied to more than one taxonomy level.

Early attempts at explanations focused solely on using 
self-explanatory machine learning methods, known as 
intrinsically interpretable models. These models require 

no post-hoc analysis for model explanations, and examples 
include, model classes such as decision trees, regression, and 
Bayesian-based models [5, 54]. For instance, the interpreta-
tion of the coefficients of a linear regression model would 
be an example of a model-specific interpretability method. 
Although model transparency is achieved, intrinsically 
interpretable models sometimes underperform in specific 
tasks. When more complex, so-called black box methods 
are desired, interpretability was often insufficient. Black box 
methods, therefore, require post-hoc analysis for interpreta-
bility, i.e. after the model has been trained. Post-hoc analysis 
can be grouped into several subcategories depending on how 
they attempt to achieve explainability, for instance, using 
visualisation methods [1, 27, 36, 65, 74], surrogate models 
[7, 37, 43, 52, 57], or feature importance methods [8, 11, 
15–17, 32, 38, 41].

An explanation method that is tailored for a specific type 
or class of algorithm application is called model-specific. 
These methods utilise the internal structure of the model to 
provide an explanation. These methods [6, 11, 66, 76, 77] 
are tied with specific model types. For instance, the meth-
ods that are interpreting the results of e.g. neural networks 
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are model-specific [23, 58]. By definition, the inherently 
interpretable models’ interpretations are always intended 
for specific models [45]. Providing a deeper insight into the 
model’s decision process with the knowledge of the model’s 
internal workings is the advantage of these model-specific 
explanation methods. On the other hand, if these methods 
need to be employed for obtaining the explanation, then the 
choice of the prediction model to be used is only limited.

Recent developments in the XAI field have focused 
on model-agnostic methods, which are applicable to 
any machine learning model. In this study, we look at a 
particular type of model-agnostic method, known as the 
feature importance method. These methods can be used with 
any machine learning model to provide learning behaviour 
explanations. The learning behaviour essentially represents 
the important order of the features on which a model makes 
its predictions [13, 15, 32, 41, 52, 62]. These methods use 
the input and the predicted output of a model to provide 
feature importance explanations. Feature importance can be 
defined as a statistical indicator that quantifies how much a 
model’s output changes with respect to the permutation of 
one or a set of input variables [73].

A range of successful strategies have been reported in 
the literature for computing the feature importance values, 
such as; feature inclusion [32], which introduces features 
successively into the calculations; feature removal [41], 
which successively removes features from the calculations; 
iterative training [38], which retrains the model many times 
per feature inclusion, or iterative retraining can be avoided 
[53], by handling the absence of removed features or the 
inclusion of new features. To do this, several approaches such 
as, supplementary baseline [64], conditional expectations 
[63], product of marginal expectations [17], approximation 
with marginal expectations [41] or replacement with default 
values [52] can be used.

While many feature importance methods exist, the 
explanations obtained with one method may not corroborate 
with that of another method for the same model [21, 35], 
which can be referred to as explanation multiplicity. It is 
known that many different machine learning models can 
fit data equally well and produce almost similar accurate 
predictions, which is referred to as model multiplicity 
[12]. However, the features deemed most important to one 
model may not be important for another well-performing 
model [54]. In a scenario involving multiple models and 
explanations, the selection of a feature importance method 
for each specific model becomes crucial. When multiple 
methods are employed, and the resulting explanations 
present contrasting information, the question arises: 
which explanation should be trusted? Our research of the 
literature finds no clear standard framework to help choose 
an appropriate explanation or method.

Hence, the contributions of the work are as follows:

• Since the explanations based on a single machine 
learning model using a specific explanation method can 
be biased over that model/method, a novel framework 
is proposed to provide a model-agnostic explanation 
utilising various explanation methods for multiple 
almost-equally-accurate models. These near-optimal 
models [48] are called Rashomon set [27].

• Rather than selecting a single predictive model from a set 
of well-performing models and providing explanations 
for that model, the proposed method offers an explanation 
across multiple explanation methods to cover the feature 
importance of all the well-performing models in the 
chosen model class.

• When evaluating explanations from different methods 
across multiple models, the absence of uniqueness in 
these explanations underscores the importance of a 
unified explanation that extends across various methods, 
accurately capturing multiple models with similar 
performance.

• The proposed framework is designed to achieve 
method-agnostic model class reliance (MAMCR) range 
explanations, ensuring unbiased and comprehensive 
coverage across multiple methods within a specific model 
class.

This work also addresses the following research questions:
     RQ1. Does the quantification of a feature as (un)

important depend either on the method or model? While 
different methods are applied to a model to explain its 
behaviour, to what extent do the methods disagree with the 
explanations among them? If they vary, how to select the 
consensus explanation from the conflicting explanations?

    RQ2. Does a model’s prediction accuracy affect its 
reliance range on a feature for its predictions?

The remainder of this paper is structured as follows: 
Section “Related Work” discusses the existing literature and 
Section “Method” describes the methodology proposed in 
this study in detail. Section “Empirical Evaluation” briefly 
describes the experimental evaluation and Section “Results” 
reports the result findings of this study. Section “Discussion” 
summarises the discussion of the work with a note on the 
limitations of the study. Lastly, we include an Appendix A 
for the additional data generated from our results.

Related Work

Many strategies for XAI have been developed for providing 
explanations for black box models. Amongst them, feature 
importance methods have gained popularity. These methods 
[13, 15, 32, 38, 41, 62] aim to explain a single model’s 
variable importance values by permuting over the variables. 
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Explanations can be at the local level [52] for a single 
instance or at the global level [13] for an entire dataset.

Feature importance methods that provide model agnostic 
explanations (i.e., irrespective of the model’s internal 
structure) are researched extensively to help understand the 
prediction behaviour of black-box models. The methodology 
proposed in this study provides a consensus explanation 
across multiple explanation methods. In theory, any number 
of explanation methods can be chosen and processed 
together, only limited by the computational processing 
available to the user. To illustrate the methodology, five 
popular explanation methods are selected, based on their 
global agnostic explanation compatibility and the ability of 
the code to reproduce the explanations. The five methods 
are: LOCO [38], Dalex [8], Skater [13], Shap [41] and Sage 
[16]. A summary of the methods is provided below.

The LOCO (Leave One Covariate Out) method offers global 
explanations for black-box models. It quantifies the importance 
of each feature by removing it from the model’s input and meas-
ures the model performance to quantify the importance of the 
removed feature. The variation between the model’s perfor-
mance with and without a feature is the feature’s contribution 
towards the model’s predictions and therefore its importance. 
Since the removal of a feature alters the input matrix shape used 
for training the model, the model has to be retrained every time 
a feature’s importance is to be measured. Here, we employ the 
LOFO (Leave One Feature Out) method [2], which is a Python 
implementation of the LOCO explanation method.

The perturbation based feature importance methods 
help to avoid the computational complexity of multiple 
retraining of separate models. Instead of removing the fea-
ture, the actual values of the feature are perturbed. This 
eliminates the correlation between the removed feature and 
the target variable and thus, the model performance gets 
varied. That variation decides the importance of the feature 
towards the model’s predictions. The Dalex, Skater, Shap, 
and Sage methods belong to the perturbation-based feature 
importance estimation methods. But they differ in the way 
that they operationalise the computation, e.g., how many 
variables are permuted at a time and/or the scoring/loss 
function used to estimate the model performance deviation.

Dalex method chosen to provide the explanation here 
explains the model parts globally. But with this method, 
the local explanation also can be obtained. It permutes one 
variable at a time to compute the feature’s importance value. 
The importance of the feature is measured based on the loss 
function (1-AUC) if the trained model does the classification 
and Root Mean Square Error for regression.

Skater is also a single feature perturbation-based, global 
feature importance method. It estimates the importance of a 
model’s feature using the mean absolute error for regression 
models and the cross entropy/f1 score for the classification 
models.

The Sage and Shap methods estimate the feature 
importance by computing the mean average from various 
feature coalitions. For the feature importance estimation, 
they use Shapley values [56] which is a distribution concept 
of the Cooperative game theory approach. The Sage method 
provides the global explanation whereas the Shap method 
uses the average of all the local explanations to produce the 
global interpretation of the model’s predictions.

Rashomon Effects

The issue of model multiplicity, where multiple models fit 
the data equally well but yield different model forms, was 
initially raised by [12].

No clear criteria are available for choosing the “best” 
model amongst all those near-optimal models [19]. 
Moreover, the learning behaviour of the models varies 
among themselves, i.e. the feature which is important 
for one model may not be important for another model. 
Hence, to avoid a biased explanation of a single model, a 
comprehensive explanation for all the well-performing 
models is given as a range of explanations [22].

After Fisher, et al., [22], the authors of [19] expanded the 
Rashomon set concept by defining the cloud of the variable 
importance (VIC) values for the almost-equally-accurate 
models and visualising it with the variable importance 
diagram (VID). The VID informs that the importance of 
a variable is changed when another variable becomes 
important.

The non-uniqueness would be reduced by averaging over 
a group of equally competent models [11]. Based on this 
idea, the authors of [48] created a collection of 350 nearly 
optimal logistic regression models on the COMPAS dataset 
[49] and averaged the feature importance values. They argue 
that the presented explanation is less biased towards a model 
class than a single model’s explanation. The biased learning 
of a model is corrected by ensembling the Rashomon set 
models using the prior domain knowledge [30]. The ratio 
for the Rashomon set is analysed using a Rashomon elbow 
[55]. They observe that the model performance does not 
necessarily vary across different algorithms even though 
the ratio of Rashomon set models on the dataset is small. 
However, all these methods provide the solution to the model 
multiplicity but not to the method explanation multiplicity 
which is the focus of this work.

Evaluation of Post‑Hoc Explanations

The post-hoc methods are required when the trained models 
become complex black boxes and their prediction behaviours 
are difficult to interpret. The explanations of these methods 
are evaluated using various metrics such as fidelity, 
consistency, and stability [21, 28, 52, 70].
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The behaviour of cutting-edge post-hoc explanation 
approaches has been analysed by numerous researchers 
using these metrics, and the results show that the methods 
are susceptible to producing explanations that are unstable, 
fragile, and easy targets for adversarial attacks [24, 25, 34, 
60].

Based on the usability, understandability, plausibility 
and faithfulness measures, the most usable [20], most 
understandable [39, 46] and most plausible and faithful 
[4, 42] explanation among the various obtained explanations 
from different methods is selected, respectively.

The explanations from different methods are compared 
in order to assess the quality [70] of the explanation into the 
most correct/ best/ effective [50, 51, 59, 71], or the most 
informative [47] explanation and also the similarities and 
differences [31] between them.

Since the operationalisation of the feature importance 
estimation varies depending on the approach, so do the 
explanations. In other words, different method explanations 
have different preferences for the important attributes. 
However, how the various approaches interpret the behaviour 
of the model and their explanation preferences is not taken 
into account arriving at ‘one’ suitable among the many 
explanations. In the end, the published literature does not 
offer a consensus explanation across various methodologies 
which is an additional focus of this work.

Previously published work [10] shares some similarity 
with the work presented in this paper, in analysing the 
various explanations based on the stability and consistency 
metrics and combines them into an ensembled explanation 
across multiple XAI algorithms. However, this work [10] 
does not account for the problem of model multiplicity.

Method

This section illustrates the methodology that is proposed 
in [29] for obtaining the method agnostic ensembled 
explanation of various almost equally accurate machine 
learning models.

Let (X,Y) ∈ ℝ (p+1) , where p > 0 , X ∈ ℝ p is the random 
vector of p input variables and Y ∈ ℝ 1 is the output 
variable. Let, ACC be a scoring function for an ML model 
m and return the prediction accuracy of the model such as 
ACC(m) = ACC(m;X, Y) . It is the ratio between the no. of 
correct predictions and the total predictions made by the 
model m on the dataset X, compared with the ground truth 
values Y.

Model building

The process flow of MAMCR is shown in the algorithm 1. 
There are general preprocessing steps that can be applied to 

most datasets as a starting point. It includes data cleaning, 
data scaling and normalisation, data splitting, feature 
engineering and encoding, and handling imbalanced data. 
While these are general preprocessing steps, their application 
and extent may vary depending on the dataset. It’s essential 
to understand the specific characteristics of the dataset 
and problem domain to determine the most appropriate 
preprocessing steps. The key is to apply a combination of 
these techniques in a way that best suits the dataset and the 
objectives of the analysis.

Then the process proceeds with the modelling of a class 
of multiple machine learning models on the data. Since the 
No Free Lunch theorem [75] states that no single machine 
learning model is considered optimal for all problem 
domains, multiple machine learning models are fitted to the 
same dataset to analyse the performances of the models. 
Thus, the selected set of pre-specified predictive models is 
referred to as a model class (M) [22].

Algorithm 1  MAMCR

M is a model class that consists of m models. Each model 
takes the input X and converts it to response Y. For classifi-
cation problems, each model can be assessed in terms of its 
prediction accuracy. If the model class is built with a set of 
regression algorithms, then the model performance can be 
assessed in terms of its R 2 value.

(1)Model class M = mi (where i = 1, 2, 3… n)
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Finding the Rashomon Set Models

From the multiple fitted models of the model class M, the 
almost equally accurate models form the Rashomon set 
( ℜ ). A Rashomon set is constructed based on the bench-
mark model, m∗ , and 𝜀 > 0 , as follows:

Among the multiple trained models, m∗ is the one that is 
selected with the maximum possible accuracy. The � value 
is used to indicate a small extended boundary range for 
discovering the near optimum models from the predic-
tion accuracy of the reference model m∗ . The threshold is 
adjusted by ( 1 − � ) factor of m∗ accuracy and is termed as the 
�-threshold prediction accuracy . Based on the level of the 
boundary adjustment for model inclusion, the � value is set 
to a small positive integer such as 5% [48] or 1% [61]. Thus, 
to form the Rashomon set ( ℜ ) with the almost-equally-
accurate models from the model class M, the models whose 
prediction accuracy is ≥ the (1-� ) factor of m∗ accuracy are 
chosen.

Obtaining Model Reliance Values and Ranking Lists

The model reliance [22] (or feature importance) indicates 
how much a model relies on a variable for making its pre-
dictions. The model reliance on the variable k ( mrk ) is 
measured by the quantity of change in the model’s per-
formance with and without the variable k, where k = 1, 2, 
3 ...p. The greater the change in the model performance, 
the greater the contribution that variable has, to the mod-
el’s predictions. Here, different explanation methods are 
selected to apply to each of the models in the Rashomon 
set to obtain their model reliance on p variables. Any global 
explanation method that returns the explanation in the form 
of feature importance can be chosen.

The explanation EMRR[1] = MRR1 = [e
ℜ1

1
, e
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The eℜ1
n  shows the feature ranking list explanation for the 

model ℜ1 , obtained from the nth explanation method. For 
example, the order can be represented as follows,

Where f1 is the name of the input feature that has the high-
est importance value than all other variables f2, f3, f4,… , fp . 
The model reliance ranking list follows the order 
f1 > f3 > f4 > fp >,… ,> f2 , where variable f2 has the least 
importance among the p variables.

Finding the Optimal Explanation and Consistency 
of Explanations

The methods that operationalise the feature importance 
computation may not be similar in the computed model 
reliance values for a model [21]. But, in the order of the 
features, the methods may exhibit similarity for capturing 
the model’s learning behaviour. As pointed out by [26], 
if the results of different techniques point to the same 
conclusion, they very likely reflect the real aspects of the 
underlying data. Therefore, an optimal explanation reflecting 
the commonly found feature order among the different 
methods’ explanations of a model should be discovered. This 
consensus explanation captures the optimal feature order by 
aggregating all the explanations’ feature ranking preferences 
using the modified Borda Count method [40].

The Borda function returns the result as an aggregated 
model reliance ranking order i.e., O1 captures the optimal 
ranking order of the features from the n explanations of the 
1st model. Likewise, for each model, a consensus explanation 
is aggregated from the corresponding model’s explanations 
from n methods. This leads to a total of r number of optimal 
explanations for the Rashomon set models (ℜ).

To quantify the consistency of several methods in produc-
ing similar explanations to the model, the methods’ explana-
tions for the model are compared against the optimal expla-
nation. To find the consistency score, the ranking similarity 
needs to be compared. Existing statistical methods such as 
Kendall’s � [33] is considered inadequate for this problem 
because the ranking lists may not be conjoint. On the other 
hand, the Rank-Biased Overlap (RBO) [72] could handle the 
ranking lists even though the lists are incomplete. The RBO 
similarity between two feature ranking order lists R1 and R2 
is calculated using the following equation as per [72].

eℜ1

n
=

[

f1, f3, f4, fp … f2
]

(4)
Oj = BORDA(EMRR [j]) (where j = 1, 2… r, r = ∣ ℜ ∣ models)
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The similarity value ranges from 0 to 1, where 0 indicates 
no similarity between the feature ranking order lists and 1 
indicates complete similarity. The p parameter p (0 < p < 1) 
defines the weight for the top features to be considered. The 
parameter Ad defines the agreement of overlapping at the 
depth d. The intersection size of the two feature ranking lists 
at the specified depth d is the overlap of those 2 lists (For 
more details, readers are referred to the equations (1-7) in 
[72]). A similarity score is computed between the model’s 
various explanations and the corresponding optimal explana-
tion. It is referred to as optimal similarity and is calculated 
as follows,

The OPTIMAL_SIM
j

i
 defines how much the explanation ( eℜ𝔧

i
 ) 

that is obtained from method i for the model ℜj is similar in 
complying with the feature order of the optimal explanation 
Oj in terms of feature order. The OPTIMAL_SIM value is 
computed for all the method explanations of each model. 
Therefore, n x r similarity scores are obtained.

Computing the Weighted Grand Mean (�)

Among the various explanations of the Rashomon set 
models, the optimal similarity scores of the methods are 
calculated based on the method explanations’ compliance 
with the corresponding model’s optimal explanation. This 
score shows the degree of similarity that the method has, in 
explaining the model’s optimal learning behaviour. Since 
the different explanation methods produce different feature 
importance coefficients for each feature, the model has vary-
ing levels of reliance on a feature. Therefore, a grand mean 
( � ) across several methods is to be estimated. For that, a 
weighted mean [9] is implemented. To weigh the feature 
importance values that are computed by each method for the 
model, the optimal similarity score is used. For each feature, 
the weighted grand mean of the feature importance values 
based on the methods’ optimal similarity score as weight is 
calculated by,

(5)
RBO(R1,R2, p) =(1 − p)

∞
∑

d=1

pd−1.Ad

where Ad
=

∣ R11∶d ∩ R21∶d ∣

d

(6)
OPTIMAL_SIM

j

i
= RBO

(

e
ℜj

i
,Oj

)

(where i = 1, 2,… n explanation methods and

j = 1, 2,… r, r =∣ ℜ ∣ models)

(7)

�j,k =

∑n

i=1
OPTIMAL_SIM

j

i
∗ mrk

i
(ℜj)

∑n

i=1
OPTIMAL_SIM

j

i

for k = 1 to p features and j = 1 to r, r =∣ ℜ ∣ models

The grand mean ( �j,k ) for the feature k of the model j is cal-
culated by adding the product of the optimal similarity score 
of the 1 to n methods with its computed feature importance 
value for the k feature ( mrk

1
 to mrk

n
 ) and dividing the result 

with the sum of n methods’ weights (i.e., optimal similar-
ity scores of n methods). The grand mean is computed for 
all the p features for each model of the Rashomon set ( ℜ ). 
Therefore, p x r weighted mean feature importance values 
are obtained. Based on these computed values, a unified 
explanation rank order for each of the Rashomon models 
can be offered by MAMCR.

Method Agnostic Model Class Reliance (MAMCR) 
Explanation

The method agnostic model class reliance explanation of 
the Rashomon explanation set is given as a comprehensive 
reliance range for each variable based on the reliance 
of all the well-performing models under n explanation 
methods. The model class reliance of all the p variables 
can be given as a range of lower and upper bounds of 
weighted feature importance values. The lower and upper 
bounds of the model class reliance for each variable can 
be defined as,

In the range [ MAMCRk− , MAMCRk+ ] of variable k, if the 
MAMCRk+ value is low, the variable k is not important for 
any almost-equally-accurate models in the Rashomon set 
models ℜ whereas if the MAMCRk− is high, then the vari-
able k is most important for every well performing model in 
ℜ . Thus, the MAMCR provides a method agnostic variable 

(8)MAMCRk
=

[

MAMCRk−,MAMCRk+
]

(9)

MAMCRk−
=min

�

[

�j,k

]r

j=1
and MAMCRk+

= max
�

[

�j,k

]r

j=1

where k =1 to p variables and r =∣ ℜ ∣ models

Table 1  The dataset details along with the prediction accuracy of the 
chosen Reference model ( m∗)

The � value and the number of selected models for the Rashomon set 
of all the datasets are set to 0.1 and 200 respectively

Dataset 
Name

# Predictors # Data 
Points

m
∗ Accuracy �-Thresh-

old Accu-
racy

COMPAS 06 7214 0.732 0.658
ADULT 14 32561 0.82 0.739
WINE 11 1599 0.828 0.745
HEART 13 1025 0.91 0.819
SONAR 28 208 0.83 0.747
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importance explanation for all the well-performing models 
of the Rashomon set ( ℜ).

Empirical Evaluation

The proposed MAMCR framework is illustrated on multiple 
publicly available real-world datasets using five state-of-the-
art, feature importance explainable AI methods, as discussed 
in the Related Works section. A Logistic Regression model 
class was employed for this process.

Datasets

The datasets used for the empirical evaluation are briefly 
discussed herein.

The COMPAS (Correction Offender Management 
Profiling for Alternative Sanctions) dataset[49] was used 
in the United States Court systems to decide the 2-year 
recidivism status of previous criminal offenders. The data-
set contains 52 features, among them, 12 are date types to 
denote jail-in and jail-out, offence, and arrest dates. 21 are 
personal data identifiers such as their first and last names, 
age, gender, case numbers, and description. The remain-
ing features are mostly numeric values such as the number 
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of days spent in screening, in jail, at COMPAS, etc. The 
dataset is tailored to use 6 important features by [19, 48] 
for their explainability analysis and the same is considered 
in this analysis.

The Adult dataset [67], is an extraction of the 1994 
American census data. This dataset contains features per-
taining to an individual’s education, gender, occupation, etc. 
There are 14 features and 48842 instances with some miss-
ing values, therefore an element of preprocessing is required 
to clean the data. The dataset is mainly used for classifica-
tion purposes aiming to predict whether an individual earns 
a salary of greater than 50K or not.

The Wine dataset contains information regarding the 
quality of wine assessed by various chemical properties [14], 
and is frequently used for classification and regression tasks. 
From this, the red wine quality dataset [69] is considered in 
this analysis. The continuous target variable of this dataset 
is encoded as Good/1 or Bad/0 based on the quality of the 
wine as suggested in1 such as if the quality score is >= 6 , 
then, the target is encoded to 1 or else to 0.

The Heart dataset [68] contains information pertaining to 
heart disease in patients. The dataset comes with 76 features 
although many studies reported in the literature use much 
fewer. The various attributes contain information on which 
heart disease can be modelled, for example, age, gender, cho-
lesterol levels, resting blood pressure, etc. The target feature 
is an integer value ranging from 0, no heart disease presence 
to 4. When using this dataset for modelling, most studies look 
at distinguishing presence (1, 2, 3 & 4) from absence (0).

The Sonar dataset [44] is a collection of sonar data that can 
be used to predict the detection of a rock or a mine. It consists 
of 60 features all of which are of the numerical type. Many 
of these features are highly correlated but the dataset can be 
reduced to 28 features by removing the features whose corre-
lation coefficients are above 0.8. The target feature is a binary 
variable that denotes an “R” for rock and an “M” for mine.

For each dataset, multiple models are trained on various 
subsets, resulting in varying accuracy levels. The total 
number of models depends on the level of variation observed 
in prediction accuracy. This number typically ranges 
approximately from 240 to 3900 for the given datasets. For 
example, 3,864 models were trained on the Adult dataset, 
and 242 models were trained on the Heart dataset.

A dataset-specific reference model with possible maxi-
mum prediction accuracy is chosen and the boundary for the 
near-optimal models’ selection is set with the � value. The 
trained models whose prediction accuracy values are above 
the �-threshold are considered for the Rashomon Set. The 
count of the near-optimal models taken for the model expla-
nation is kept at 200, but not limited to, for each dataset. 

A summary of how the models are selected is shown in 
Table 1. The total models trained for each dataset and the 
distribution of the Rashomon set models’ prediction accu-
racy is shown in Fig. 1. For the COMPAS and Adult data-
sets, the experiment is elaborated with various �-thresholds 
and is discussed later in this section.

Results

The variation in the different methods’ explanations based 
on feature importance is illustrated using stacked bar charts. 
Here we present the results for the COMPAS and Adult 
datasets in Figs. 2 and 4. Stacked bar charts for the other 
datasets used in this study can be found in Appendix A (See 
Figs. 9, 10, 11).

The stacked bar chart of the COMPAS dataset (Fig. 2) 
demonstrates the variations in the ranking explanation 
clearly in all 6 features. It is evident that the ranking 
explanations of the 5 different methods tested vary. There 
is some agreement amongst the most and least important 
features, but significant variation for the other features (See 
Fig. 3).

For instance, the Sage and Dalex methods’ explanations 
rank the Age variable as one of the top 50% important fea-
tures (rank ≤ 3 ). But the Skater and Shap methods claim it 
as least important by ranking it the last (6th). Similarly, the 
Juvenile crime feature is identified by the Sage method as 
most important by assigning 1st or 2nd rank, but as least 
important by the Shap method. As per the Shap method, 
more than 25% of the models depend on the Current charge 
variable the most at the rank of 2, whereas all other methods 
assign majorly the 5th or 6th rank to the variable.

The method explanations for the Adult income dataset 
(Fig. 4) vary between several of the variables. The agreed 
explanation is found with the most and least important 
features, i.e., Marital status and Race, respectively.

For the Heart dataset also, the ranking variations are 
found with Sex, Age, CA, Thalach, and Exang variables 
(Fig. 10). In the Wine dataset explanations, the difference 
in the ranking explanation occurs with Free sulphur dioxide, 
PH, Fixed acidity, and Residual sugar variables (Fig. 9). The 
commonality in the explanations is found with the most and 
least important features Alcohol and Density, respectively. 
Similarly in Sonar dataset, where the features are simply 
labelled as a number, the explanation variations are found in 
features 28, 31, 41, 44, 9, 51, 55, 56, 57, 59, and 60 (Fig. 11).

This shows that the quantification of feature importance 
depends on the method that identifies it as the most, moderate, 
or least important. Based on a method, it can be the most 
important or least important. For example, the ’Race’ feature 
is identified as the least important feature by the Sage method 
explanations but as the most important for 50% of the models 

1 https:// www. kaggle. com/ datas ets/ uciml/ red- wine- quali ty- cortez- et- 
al- 2009.

https://www.kaggle.com/datasets/uciml/red-wine-quality-cortez-et-al-2009
https://www.kaggle.com/datasets/uciml/red-wine-quality-cortez-et-al-2009
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by the Shap method explanations and moderately important 
for 40% of the models by the Skater and LOFO method 
explanations. In such a situation, concluding the importance of 
a feature based on a single method and model is biased towards 
the chosen method/model. Hence, the MAMCR framework 
helps to provide a unified explanation for a model class as a 
method-agnostic explanation range across multiple methods.

To address these conflicting explanations from the mul-
tiple tested methods, the MAMCR framework identifies the 
common ranking order of features using a reference opti-
mal explanation ( O ) for each Rashomon model using Eq. 4. 
For each dataset, an optimal explanation is identified from 
the five explanations for each model of the 200 Rashomon 
models. Figure 5 shows the ranking distribution of optimal 
explanations of COMPAS and Adult datasets. For other 
datasets, it can be found in Appendix A. Since the individual 
method explanations do not agree among them, the frame-
work discovers the similarity of each explanation of a model 
by measuring how much it could reflect the ranking order of 
the corresponding optimal explanation. Based on the com-
monality with the optimal explanation, it is assigned a simi-
larity score using Eq. 6. The similarity score decides how 

much each method could contribute its feature importance 
explanation preferences to the unified explanation. That is, 
for a method whose explanation similarity is 0.98 and the 

Fig. 2  Ranking explanations 
obtained for 200 Rashomon 
models of COMPAS dataset 
from 5 state-of-the-art methods. 
The X-axis shows the name 
of the method from which 
the ranking explanation was 
obtained. The Y-axis shows the 
number of models
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model reliance value on feature j is 0.5, the method can pro-
vide 98% of its feature importance value of j to the unified 
explanation, i.e., 0.49. Its explanation preference of feature 
j is considered for 98%. Suppose, the method has a lower 
similarity such as 0.45 due to its contradicting explanation, 
the method is allowed to provide only 45% of its explana-
tion preference to the unified explanation, i.e.,0.225. Thus, 
the similarity score restricts the overestimation of methods 
and ensures the consistency of the feature importance range 
bounds. With the optimal similarity scores as the weight for 
each feature’s importance value, the grand mean is computed 
using Eq. 7. These 200 weighted mean explanations provide 
the unified explanation order for the Rashomon models and 
from these values, the minimum and maximum boundary for 
each feature are determined using Eqs. 8 and  9, respectively. 
This forms the method agnostic model class reliance range 
explanation of multiple models across multiple methods.

The ranking explanation orders of five state-of-the-art 
methods and the unified MAMCR ranking explanation 
order  for a model are shown in Fig. 6. The features are 
included as per the method’s rank explanation order and the 
model performance is determined. The Adult dataset model’s 

performance is reduced when the 2nd feature is included as 
per the Skater’s explanation and also when the 4th feature is 
added as per the Sage method’s order. However, the MAM-
CR’s unified rank order performs better than the Skater and 
Sage methods. Though it is found less than the LOFO meth-
od’s performance, it does not perform poorly like the other 
methods.

For the COMPAS dataset model, the MAMCR finds 
the best-unified explanation over the other state-of-the-
art methods whereas the other methods’ performance is 
reduced when the features are included in their estimated 
rank order. For the other three datasets (Wine, Heart, and 
Sonar), the results can be found in Appendix A. In each 
dataset, an individual method is identified as showing better 
performance. However, the same method is not identified as 
the best in all the datasets. Although the MAMCR method, 
does not strictly outperform every method for the various 
datasets used, it does higher on all the datasets consistently. 
For instance, the LOFO method results in the highest model 
performance for the Adult dataset but is identified with the 
lowest performance of all other methods for the Heart data-
set when the number of features is equal to 2, 7, and 9, where 

Fig. 4  Ranking explanations 
obtained for 200 Rashomon 
models of the Adult dataset 
from 5 state-of-the-art methods. 
The X-axis shows the name 
of the method from which 
the ranking explanation was 
obtained. The Y-axis shows the 
number of models
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the MAMCR shows the best model performance followed 
by the LOFO. Similarly, in Sonar and COMPAS datasets, 
the Shap method has the least model performance whereas 
the MAMCR performance proves the best performance even 

though a minimal number of features are included such as 
1,2, or 3. Likewise, the Sage method seems to give a higher 
performance in the Wine dataset, but it has the lowest per-
formance in the Adult dataset whereas the MAMCR has 
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the highest performance in the Adult and closely the best 
performance with 4 features in the Wine dataset. Thus, the 
MAMCR demonstrates consistent performance in identify-
ing the efficient unified explanation in all the datasets across 
model and method explanation multiplicity issues.

To verify the coverage of the MAMCR range for any 
model of the pre-specified model class that belongs to the 
corresponding Rashomon set criterion, multiple models are 
trained on the data and their feature importance is compared 
against the MAMCR range. For each dataset, 50 logistic 
regression models are trained with randomly sampled data, 
and their model reliance values are obtained from the five 
explanation methods and the unified explanation of each 
model is compared against the corresponding dataset’s 
MAMCR range. The comparison results are displayed in 
Fig. 7 for COMPAS and Adult datasets. For other datasets, 
it could be found in Appendix A. Each model’s feature-wise 
importance value is represented by a filled circle. They are 
contained within the max and min bounds of the correspond-
ing MAMCR range. If they exceed the bounds, their over or 
underestimation can be detected.

The Adult and COMPAS datasets are analysed further for 
the different levels of � values to understand how the variation 
in the prediction accuracy of the models affects their reliance 
on the features to make their prediction. For that, the vari-
ous � values have been experimented with from 3% to 10% 
which includes 1421 Adult dataset models and 3413 COM-
PAS dataset models. The MAMCR framework is applied to 
those models and the method agnostic model class reliance 

ranges are obtained for the above-said �-thresholds. The reli-
ance range length of the Rashomon models on each feature 
is computed from the difference between the maximum and 
minimum MCR bound values of each feature. This value indi-
cates the dispersion length of the feature importance value 
that the models have on each feature for the various �-thresh-
old prediction accuracy levels and is shown in Fig. 8. The 
length of the importance value increases when the feature is 
considered the primary predictor by the models in varying 
prediction accuracy levels to make their predictions otherwise 
the feature’s importance length stays at the same level without 
much difference. Through this, the importance of the features 
can be concluded when conflicting feature importance is allo-
cated by different methods.

Discussion

The experiments done on the various datasets warn us that 
the explanation provided by one approach emphasising a fea-
ture as most important may not be projected in the same way 
by another method. This is illustrated through Figs. 2, 4, 9, 
11 and 10. Ning et al.,[48] trained 350 near-optimal logistic 
regression models on the COMPAS dataset and obtained the 
feature importance explanations by applying the Sage method. 
They found the grand mean of the feature importance values 
and claimed that the ’Race’ feature is not an important fea-
ture for those Rashomon models. As per their single reference 
model, ’Race’ is identified as an important feature. However, 
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the aggregated explanation of 350 models does not highlight 
the ’Race’ feature as important.

In our analysis also, the results of the Sage method agree 
with the conclusions of Ning et al [48]. Because, for more 
than 90% of the models, ’Race’ is not an important feature 
and is not marked as one of the top 50% ranks (refer to Figs. 2 
and  3). But in the case of Shap method’s explanations, for 
more than 40% of the models, the ’Race’ feature is the 
most important feature which disagrees with the analysis 
of the authors [48]. Other methods like Skater and LOFO 
also conflict with the claim that the ’Race’ feature is not 
important. From this, it can be observed that for the same 
set of models, the different explanation methods return 
disagreeing explanations. Therefore, when a single method 
is used to explain a model, the resulting explanation tends to 
be biased towards that particular method. Similarly, when an 
explanation is generated based on a single model, it tends to 
exhibit bias towards that specific model. This highlights the 
importance of considering multiple methods and models to 
ensure a more comprehensive and unbiased understanding of 
AI systems.

This answers the first research question (RQ1) that the 
quantification of a variable as (un)important depends on 
both the model and the method that derives the explanation. 
Hence, through the unified method agnostic explanation, 
which is an unbiased explanation, the model and method 
multiplicity problem can be solved.

A detailed analysis with the varying �-threshold values 
(refer to Fig. 8) is conducted on the COMPAS and Adult 
datasets to discover whether the prediction accuracy has 
an effect on the model’s reliance value range. When the �
-threshold value is increased, the prediction accuracy bound-
ary for the Rashomon set consideration is also increased. 
For the higher prediction accuracy models, the range of the 
model reliance is dense. For example, the most important 
features of COMPAS and Adult are ’Juvenile crime’ and 

’Marital status’, respectively and their length of the model 
reliance is 0.1 and 0.07, respectively. When the �-threshold 
value increases, the accuracy level is gradually reduced, and 
the length of model reliance on those variables is increased 
to 0.36 and 0.14. When accurate predictions start decreasing, 
the reliance on important variables gets sparse and thus, the 
length increases. In the case of the least important features, 
the sparse length of the model reliance between the varying 
prediction accuracies is comparatively lower than other vari-
ables. For example, the reliance length of the ’Race’ feature 
of Adult and the ’Age’ feature of COMPAS datasets do not 
vary much for any level of �-threshold models.

The moderately important features that are provided with 
conflicting explanations by different methods show increasing 
patterns in their reliance length for the varying �-threshold 
values. For example, the Occupation, Age, Work-class, and 
Hours-per-work features of the Adult dataset and the Race, 
Gender, and Current charge variables of the COMPAS dataset 
show such varying length patterns. Through this, we could 
observe the effect of models’ prediction accuracy on the 
model reliance value range. This answers the second research 
question (RQ2) such as if the variable is not at all important to 
any model irrespective of its performance level, the variable’s 
importance value range stays constant. Otherwise, its length 
varies according to the model’s performance.

The ’Race’ feature of the COMPAS dataset gets con-
flicting explanations from multiple methods. From the 
MAMCR dispersion length explanation (refer to Fig. 7b), 
it is observed that the ’Race’ feature may not seem like an 
important feature at 3%-threshold but its reliance length 
is increased when the �-threshold value increases. There-
fore, this feature cannot be concluded as unimportant as 
the Sage method suggests. Instead, the MAMCR identi-
fies the true importance of the ’Race’ feature and con-
firms that there are some good (equally accurate) models 
that rely on the ’Race’ feature from moderate to a high 

Fig. 8  The MCR Dispersion length of Rashomon models on each feature of the datasets depending on various �-Thresholds. The increasing � 
value indicates the extension of the prediction accuracy boundary for the Rashomon models
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level for their predictions when the models’ prediction 
accuracy boundary is extended.

Limitations and Future Work

The criteria for considering the Rashomon set is defined by 
the authors [19, 22] using the model loss and the boundary 
of ℜ models is extended up to ( 1 + � ) of L(m∗

) , whereas 
we have used model accuracy and extended the boundary 
of ℜ models up to ( 1 − � ) of ACC(m∗

) . However, depend-
ing on the ML model and the application domain, other 
evaluation metrics such as precision, recall, F1 score, etc., 
can also be used to select the nearby optimal models.

The Borda Count algorithm stands out as a versatile and 
widely applicable method across various domains and use 
cases, ranging from voting systems to sports rankings and 
preference aggregation in recommendation systems. Its sim-
plicity and adaptability render it a popular choice in numer-
ous scenarios. So, it is utilised to aggregate the ranking lists. 
Other distance-based rank aggregation algorithms such as 
[3, 18] can also be investigated for future work. However, 
these algorithms may cater more to specialised applications 
where factors like similarity, preference relations, or other 
nuanced considerations hold more importance. Further-
more, it’s crucial to consider computational complexity in 

the aggregation process. While [3] may seem appealing for 
its ability to capture similarities through cosine distances, 
its computational demands can escalate rapidly, particularly 
when handling extensive sets of input lists.

Regarding the scope of explanation, this work unifies 
the global explanations. It can also be applied to local 
explanations as well. However, the variations in the expla-
nations may be less in local explanations because the 
explanation is provided to the model prediction of a single 
data point. The computed feature importance value can 
vary but the commonality in identifying the top important 
feature ranking might be more.

The proposed method can be scaled to large datasets and 
complex models. Since the considered explanation methods 
are method-agnostic, they can be plugged into any complex 
model that deals with tabular datasets. However, the com-
putational complexity depends on the applied methods for 
obtaining the explanations. Compared to LOFO, Dalex, and 
Skater methods, the Shap and Sage methods consume more 
time to produce global explanations.

Appendix A

See Figs. 9, 10, 11, 12, 13, 14, 15 and 16.       

Fig. 9  Ranking explanations 
obtained for 200 Rashomon 
models of Wine dataset from 5 
state-of-the-art methods. The 
X-axis shows the name of the 
method from which the ranking 
explanation was obtained. The 
Y-axis shows the number of 
models
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Fig. 10  Ranking explanations 
obtained for 200 Rashomon 
models of Heart dataset from 
5 state-of-the-art methods. The 
X-axis shows the name of the 
method from which the ranking 
explanation was obtained. The 
Y-axis shows the number of 
models
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Fig. 11  Ranking explanations 
obtained for 200 Rashomon 
models of Sonar dataset from 
5 state-of-the-art methods. The 
X-axis shows the name of the 
method from which the ranking 
explanation was obtained. The 
Y-axis shows the number of 
models

56 57 58 53

59 50 52 54 55 60

4 6 1 3 2 51

33 41 43 8 5 7

12 28 31 44 9 14

DA
LE

X
LO

FO
SA

GE
SH

AP
SK

AT
ER

DA
LE

X
LO

FO
SA

GE
SH

AP
SK

AT
ER

DA
LE

X
LO

FO
SA

GE
SH

AP
SK

AT
ER

DA
LE

X
LO

FO
SA

GE
SH

AP
SK

AT
ER

DA
LE

X
LO

FO
SA

GE
SH

AP
SK

AT
ER

DA
LE

X
LO

FO
SA

GE
SH

AP
SK

AT
ER

0
50
100
150
200

0
50
100
150
200

0
50
100
150
200

0
50
100
150
200

0
50
100
150
200

Co
un
t

Rank
1
2
3
4
5
6
7
8
9
10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28

Sonar dataset



 SN Computer Science           (2024) 5:503   503  Page 16 of 20

SN Computer Science

0

2

4

6

8

10

fix
ed

 ac
idi

ty

vo
lat

ile
 ac

idi
ty

cit
ric

 ac
id

re
sid

ua
l s

ug
ar

ch
lor

ide
s

fre
e s

ulf
ur

 di
ox

ide

tot
al 

su
lfu

r d
iox

ide

de
ns

ity pH

su
lph

ate
s

alc
oh

ol

Ra
nk

Fig. 12  The feature importance ranking distribution of 200 optimal 
explanations of Rashomon set of Wine dataset. Each box plot repre-
sents the ranking dispersion of each feature
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Fig. 13  The feature importance ranking distribution of 200 optimal 
explanations of Rashomon set of Heart dataset. Each box plot repre-
sents the ranking dispersion of each feature
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Fig. 14  The feature importance ranking distribution of 200 optimal 
explanations of Rashomon set of Sonar dataset. Each box plot repre-
sents the ranking dispersion of each feature
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