(2024) 5:508)
Check for
updates

SN

SN Computer Science
https://doi.org/10.1007/s42979-024-02808-2

ORIGINAL RESEARCH

Generalized Formal Model-Verifier: A Formal Approach for Verifying
Static Models

Norbert Somogyi'® - Gergely Mezei'

Received: 13 June 2023 / Accepted: 18 March 2024
© The Author(s) 2024

Abstract

The field of software modeling has gained significant popularity in the last decades. By capturing the static aspects of the
software requirements, model-driven engineering eases the development and maintenance of software. However, additional
constraints, such as invariants on model elements, that the solution must conform to may be too complex to include in the
structure of the model itself. External solutions are often used to describe static constraints on models, the most prevalent
approach being the Object Constraint Language (OCL) and its formal variants. This paper proposes the Generalized Formal
Model-Verifier (GFMYV), which is a general approach for verifying static constraints on software models. GFMV employs
different formal verification methods based on Kripke Structures. Kripke Structures are used to capture the static structure of
the model, then the constraints are formalized using a first-order branching-time logic, the Computational Tree Logic (CTL).
Finally, the NuSMV model checker is reused to verify whether the constraints formalized in CTL hold on the formal Kripke
Structure. When compared to existing solutions, GFMV offers increased generality and formal proof that the constraints hold
on the model. The expressive power and runtime-scalability of the approach are evaluated on a real-world example model
and OCL invariants cited from literature.

Keywords Formal verification - UML - CTL - Kripke structure - NuSMV - OCL

Introduction

The Object Constraint Language (OCL) is a declarative,
external solution for defining constraints on models. OCL is
the most popular approach for this purpose, and was designed
specifically with models in mind that are compatible with the
Essential Meta Object Facility (EMOF) specification. The
most widespread approach to modeling the static structure
of a system is the UML class diagram [1] of the Object Man-
agement Group (OMG), but different approaches also exist

This article is part of the topical collection “Recent Trends on
Model-Based Software and Systems Engineering” guest edited by
Steven Furnell and Paolo Mori.

<1 Norbert Somogyi
somogyi.norbert@aut.bme.hu

Gergely Mezei
gmezei @aut.bme.hu

Department of Automation and Applied Informatics, Faculty
of Electrical Engineering and Informatics, Budapest
University of Technology and Economics, Midegyetem rkp. 3,
1111 Budapest, Hungary

Published online: 02 May 2024

[2-5]. Modeling approaches tend to offer high-level means
to capture the most important concepts of the real-world.
However, further restrictions on the model are often neces-
sary. These restrictions cannot (or should not) be expressed
in the structure of the model itself. The reason for this is that
graphical modeling languages like UML are typically not
expressive and precise enough to capture all the exact infor-
mation of the system design. The main reason why graphical
languages are preferred over textual modeling lies in their
simplicity of usage. Naturally, the consequence of keeping
the graphical modeling notions manageable and simple to
use is the reduction of expressive power.

For instance, in the case of UML class diagrams, restric-
tions could be invariant rules or adding extra constraints to
restrict what constitutes a valid class diagram. The latter
is often referred to as checking the well-formedness of the
model. For instance, consider the following constraints:

e The age of a person must be between 0 and 120.

e For every children of a person who are below 6 years old,
the person is eligible for a specific sum of tax relief.

e Interfaces should not contain attributes.

SN Computer Science
A SPRINGER NATURE journal

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-02808-2&domain=pdf
http://orcid.org/0000-0001-6908-7907

508 Page2of14

SN Computer Science (2024) 5:508

e A class may implicitly inherit from any number of
classes.

The first two constraints are invariants, defining more com-
plex restrictions on the structure of the model. The second
two are rules that all well-formed class diagrams must adhere
to, which means that conformance to the language seman-
tics are validated. In our work, we refer to such restrictions
as static constraints in contrast to dynamic constraints, that
apply restrictions on the execution of dynamic behaviour,
such as methods in object-oriented models.

Over the years, formal variants of OCL had also emerged
with the goal of extending OCL with formal semantics or
to provide a different approach with the same purpose, but
based on formal methods. The most widespread and success-
ful of these methods is Alloy [6], which provides a simple
language for modeling a system and expressing its properties.
In the background, Alloy converts the model and its proper-
ties to a boolean representation and uses SAT solvers [7, 8]
to check whether the defined model conforms to the defined
properties.

In this paper, we propose the Generalized Formal Model-
Verifier (GFMV) as an alternative, general approach for
defining static constraints on software models. GFMV uses
different formal verification methods, specifically model
checking, to verify whether the static constraints hold on the
software model. In the first step, the structure of the model
is transformed to a Kripke Structure. The static constraints
are formalized using the Computational Tree Logic (CTL).
Lastly, the CTL formulae are verified by a model checker,
NuSMV [9, 10].

GFMV becomes fully automatic after defining the trans-
formation from the original model to the Kripke Structure.
By using formal methods, any and all violations are guaran-
teed to be found. Thus, formal, mathematically-sound proof
is provided that the static constraints hold on the model, as
long as the mapping between the original and the formal
models had been defined as intended by the model designer.

The paper is structured as follows. In “Related Work”, we
present related work and compare them with our approach.
“Background”, describes the relevant theoretical background
of model checking, including Kripke Structures and CTL.
In “General Formal Model-Verifier”, the steps of the pro-
posed verification process are defined. “Evaluation” evalu-
ates GFMV by formalizing a case study and analyzing the
runtime of the verification process. Finally “Conclusion”
concludes the paper, highlighting the main strengths and
weaknesses of the approach and discussing future work.

SN Computer Science
A SPRINGERNATURE journal

Related Work

One of the most widespread solutions for enforcing static
constraints on models is the Object Constraint Language
(OCL) [11]. OCL provides support for expressing many
features, such as invariants, initialization expressions, or
derived elements. It also provides its own typesystem. Nev-
ertheless, OCL is not without weaknesses. In their work,
Cabotetal. [12] performed a SWOT (Strengths-Weaknesses-
Opportunities-Threats) analysis on OCL. The authors argue
that the main weaknesses of OCL are the complexity of the
language, and the lack of a tool ecosystem and reusable OCL
libraries. As a consequence, if a custom modeling language
(for which an OCL implementation does not already exist)
intends to use OCL, implementing an OCL interpreter is a
troublesome, relatively difficult process [13]. For this reason,
one of our most important goals with GFMYV is to keep it as
general and simple as possible. It should be relatively easy
to integrate GFMV with any custom modeling language.

Formal verification approaches offer a well-developed
ecosystem of tools and methods available and have a well-
defined focus for verifying constraints. They are optimized
at checking constraints and provide formal, mathematically-
sound proof of the correctness of the model. Thus, we believe
formal verification methods to be beneficial for verifying
static constraints on software models. Over the years, a
number of approaches emerged that were based on formal
methods. HOL-OCL [14] intends to define formal semantics
for OCL by "shallow embedding of OCL into the Higher-
order Logic (HOL) instance of the interactive theorem prover
Isabelle." [15] presents OMaxUSE, which is a tool designed
to formally verify OCL constraints on UML class diagrams
with the goal of superior performance over existing solu-
tions. [16] addresses the formalization of typically ignored
UML/OCL features, such as multiple inheritance or late
binding. This is achieved by transforming the UML specifi-
cations and OCL constraints to FoCaLiZe specifications. In
their work, Nobakht et al. [17] extend static UML + OCL
models with dynamic verification. By transforming static
and dynamic aspects (class diagrams and statecharts), the
entire UML specification is adapted into the UPPAAL model
checker [18]. Although these approaches are formal, they are
designed specifically with UML in mind, and do not (explic-
itly) support other types of modeling languages. In contrast,
GFMYV is not specific to UML models, it is usable with any
modeling language.

Bill et al. [19] proposed an approach for extending OCL
with the temporal operators of CTL and developed the

SN Computer Science (2024) 5:508

Page3of 14 508

MocOCL model checker to verify COCL (CTL OCL) prop-
erties. The purpose of their research was to express OCL
properties over the full lifetime of an instance model, contrary
to OCL’s capability to express invariants only in the context
of a single instance model. The authors argue that a sequence
of instance models capture the execution of the system, thus,
defining and validating constraints on such sequences is ben-
eficial. Consequently, in COCL, CTL is used to extend OCL
constraints over sequences, whereas in GFMV, invariants can
be expressed in CTL itself.

Other approaches focus on checking pre-defined prop-
erties on UML class diagrams. The goal in these cases is
not to replace OCL for defining and checking constraints
on instances of models, but to verify static properties on
the existing UML + OCL model, including consistency,
executability, reachability, liveness and satisfiability. UML-
toCSP [20] applies constraint programming to check the
satisfiability of OCL constraints on a UML class diagram.
Similarly, [21] focuses on improving the performance of
OCL satisfiability checking. In their work, Przigoda et al.
[22] propose a formal approach for verifying the structure
and behavior in UML/OCL models. The possible states of
the system, along with the OCL invariants are translated into
a symbolic representation and SAT solvers are used to exe-
cute verification.

In OCL, the context specifies what must be verified against
an invariant. In a UML class diagram, this typically, but not
necessarily, means a class. However, for every invariant, only
a single context can be defined. In contrast, GFMV is more
flexible in this regard. It does not explicitly use contexts, the
scope of a constraint can be defined by logical expressions.
This offers 2 significant advantages. Firstly, any number of
"contexts" can be defined for a formula. This makes it easier
to reuse and manage constraints. Secondly, in GFMYV, objects
and classes are not explicitly separated, but are stored in
the same Kripke Structure. Consequently, objects can also
become contexts. This concept makes it simple to apply
GFMYV on multi-level modeling languages as well.

To sum up, when compared to non-formal OCL variants,
GFMV has several advantages:

e GFMYV uses formal verification methodologies and tools
that are well developed and widespread, providing auto-
matic, formal proof of the correctness of the model.

e GFMV is fully independent of the modeling language
that is being checked, making it easier to integrate with
custom modeling languages.

e GFMYV focuses specifically on checking static constraints
only. On one hand, it becomes easier to be used for this
purpose. On the other hand, its expressive power is less
than that of OCL. GFMYV cannot express other features
of OCL, such as querying models.

Existing formal solutions focus mainly on extending specif-
ically UML + OCL with formal semantics or checking the
satisfiability or consistency of the models. Compared to these
approaches, the generality of GFMV is the main benefit.

Alloy [6] is one of the most successful of formal
verification-based approaches. Alloy was inspired by the
weaknesses of OCL. It provides a textual language for defin-
ing models and uses SAT solvers to formalize and check
properties on the model. Similarly to OCL, it provides its
own typesystem, which is more compact and easier to use.
UML2AIlloy [23] defines a transformation from UML class
diagrams extended with OCL expressions to Alloy models.
The goal of this approach is to reuse the formal aspects of
Alloy to analyze UML specifications. The authors also note
that defining the transformation from UML class diagrams
to Alloy was “challenging”.

When compared to Alloy, GFMV works on similar
grounds but with different formal methods. Additionally, it is
more general, in the sense that it does not depend tightly on
the NuSMV tool. This means that instead of using NuSMV
and the various formal methods it employs (SAT solvers,
bounded model checking etc.), itis possible to use an entirely
different model checker. In this sense, our approach is easy
to extend with different model checking techniques. It would
also be possible to support different tools and let the model
designer choose between them. This is not the case for Alloy,
as it is built specifically with SAT solvers in mind. The only
requirement in our case is that the Joint Relational Model
(“Joint Relational Model””) should be expressed in the mod-
eling language of the model checker and a query language
similar to CTL has to be available to formulate the con-
straints. For example, a viable alternative to NuSMV would
be Uppaal [18], with its modeling language of extended
timed automata and a query language similar to CTL.

Background

Formal verification is a group of methodologies aimed at
formally proving the correct behaviour of a specified system.
In our work, we propose to use model checking to enforce
constraints on models. One of the most typically used formal
models is the Kripke Structure (KS) [24] and one of the most
common and practical ways of formalizing requirements is
the Computational Tree Logic (CTL) [24].

A Kripke Structure is a 4-tuple (S, I, R, L) over a set of
atomic propositions AP, where:

AP ={Py1, P>, ..., P,} set of atomic propositions

S ={S1, S, ..., S} finite set of states

I C S set of initial states

R C S x S transition relation between states

L : S +— 24P labeling of states with atomic propositions

SN Computer Science
A SPRINGERNATURE journal

508 Page4of14

SN Computer Science (2024) 5:508

{P, Q} {Q, R}

SLNIPN

Fig.1 Graphical representation of a Kripke Structure with 3 states and
4 transitions

Table 1 CTL expressions and their semantics

CTL expression Semantic

a AP o A B (logical and)

aVp a Vv B (logical or)

- Not « (logical not)

a = p o implies beta (logical implication)

EX ¢ 3 next state, where ¢ holds

EF ¢ 3 path from the state, where ¢ holds
eventually

EG ¢ 3 path from the state, where ¢ holds on all
states

AX ¢ V next states, ¢ holds

AF ¢ V paths from the state, ¢ holds eventually

AG ¢ V paths from the state, ¢ holds on all states

Ela UB] 3 path from the state, where « holds on all
states until 8 holds

Ala U g] V paths from the state, o holds on all

states until B holds

a, B and ¢ are arbitrary CTL expressions, 3 means the existential quan-
tifier, V means the universal quantifier

Figure 1 illustrates a KS in a graphical representation. The
model consists of 3 states: Sy, S» and S3. The initial state is
S1, denoted by a double circle. S is labeled with the atomic
propositions P and Q, S is labeled with P, and S3 is labeled
with O and R. Finally, there exists a transition relation from
S1 to S and S3, from S, to S3 and from S3 to S;. A path
in a KS is a possible series of states along transitions. For
example, in this case S| — S» — S3 — §1 — S3isa
possible path.

In CTL, requirements can be formalized using logical
formulae, all of which are presented in Table 1. A CTL
expression is always evaluated on a specific state, beginning
with the initial state.

Consider now the Kripke Structure depicted in Fig. 1 and
the CTL formula in Eq. 1.

AG(Q A P)) = (EX—Q)V (EF(P AR))) ey

The formula prescribes that on all states of all paths in
the Kripke Structure, if a state is labeled with both Q and P,
then there must exist a next state that is not labeled with Q or
there must exist a path on which eventually a state is labeled

SN Computer Science
A SPRINGERNATURE journal

Software Maodel Constraints

Transform Transform. \‘ _,,,

Joint Relational
Model (JRM) CTL Formulas

Input Input
NuSMV Model |

C T «——
oMt “Holds. Checker IHolds

Fig. 2 The steps of the proposed approach for verifying static con-
straints on software models

ounter

with both P and R. When evaluated over the example, this
formula holds, because S is the only state for which the left
side of the implication holds, and the right side holds as well
because 5> is a potential next state and it is not labeled with

Q.

General Formal Model-Verifier

Figure 2 shows the steps of the proposed approach. We pro-
pose the definition of the Joint Relational Model (JRM) as
a Kripke Structure that models the structure of the original
model to be checked, in the form of relations between basic
model elements. In the first step of the verification approach,
a JRM is created based on the software model to be veri-
fied. Secondly, the constraints that the model must conform
to have to be formalized using CTL. The JRM and the CTL
formulae are then forwarded as input to the NuSMV model
checker tool, which verifies whether the formalized require-
ments hold on the JRM, and consequently, on the original
model itself. For each violated CTL formula, a counter-
example is generated.

Further along this section, we present our notions of model
elements and relations, Relational Models, the JRM and the
formalization of constraints as CTL formulae.

Running Example—UML Class Diagram

Throughout the rest of this section, a simple example UML
class diagram will be used to demonstrate the main ideas of
the verification process in GFMV. The goal of this example
is not to define an exhaustive formalization of UML class
diagrams, but to provide a compact example to make the ver-
ification concepts easier to understand. To keep the example
concise and easier to understand, the model is deliberately
minimalistic and contains only a few elements.

The running example is described in Fig. 3. The diagram
consists of five classes. The Factory class is abstract, with two

SN Computer Science (2024) 5:508 Page50f14 508
<<abstract>> Device “Factory”, then in the Kripke Structure a state is created to
Factory +imei: string represent this class, labeled with "Factory". At this point,

+ location: string 1-devices |+ capacity: double

*

+ createDevice(+ checkForFault()
capacity : double): Device : boolean

1 i

Factory A | |Factory B SpecialDevice
+ modifier: int

Fig.3 A UML class diagram example, to be used as a running example
further in this section

concrete subtypes: FactoryA and FactoryB. A factory has an
attribute of type string, and a method which takes a double
parameter and returns an object of type Device. Factory also
has an association towards Device, intended for storing the
devices created in that factory. Furthermore, devices have
two attributes with primitive types, as well as a method that
returns a boolean value. Device has a subtype: SpecialDevice.

Relational Formal Model

When defining the formal model (in the form of a Kripke
Structure), our goal is to express the structure of the origi-
nal model. This means that all the elements of the original
model are mapped to elements in the Kripke Structure. This
way, when the various model checker algorithms employed
by NuSMYV traverse the state-space of the model and find
violations of the constraints, the results can be mapped back
to show which element of the original model violates which
constraints. To achieve this, we define the notions of model
element and relation.

We define a model element as the basic building block
of the software model. In object-oriented models, such as
a UML class diagram, model elements typically refer to
classes, interfaces, attributes and methods. A relation is a
structural relationship between model elements that connect
them in the model. In a UML class diagram, this would
include all the relationships that classes or interfaces can
have with one-another, for example, association, compo-
sition, aggregation, dependency, inheritance and interface-
realization, as well as holding of attributes and methods. An
exhaustive mapping of UML class diagrams to formal mod-
elsis given in “From UML Class Diagram To JRM”. To avoid
confusion of terminologies between the Relational Models
and the original model that must conform to the static con-
straints, we will refer to the latter as the source model.

The main idea behind Relational Models is to represent
every model element of the source model as a state in the
Kripke Structure. Every such state is then labeled with an
identifier that corresponds to the model element that it rep-
resents. For example, if a class in the source model is called

we assume that every model element has a unique identifier.
If this is not the case, one needs only to define an ordering
on the model elements and identify them by their assigned
position in the ordering.

Relations are captured in the form of transitions in the
Kripke Structure. If a relation exists between model elements
m; and m j, then a transition is defined in the formal model
between their corresponding states S; and S;. Consequently,
a Relational Model captures the static structure of the source
model in a formal graph-like representation. Since Kripke
Structures have limited ways to express information (only
through labeled states and unlabeled transitions), a Relational
Model is only capable of expressing a single relation. Thus,
for each possible relation, a corresponding Relational Model
would have to be created. At this point, let us generalize the
concept of a Relational Model.

We define a Relational Model over a set of model ele-
ments M = {m, my, ..., my}and Relation : M? — {0, 1}
as a Kripke Structure, where:

e AP={L|31 <i <k:m;[ID] =L}
o S=1{IS,S1,85,...,5]}

o [={IS}

°

R={(s.0)eS|s=ISA3 <i<k:Pl<j<k:
t = 8; A Relation(mj,m;))v 31 <i,j <k,i#j:
Si =5 ASj =t ARelation(m;,mj)}

e LseS)={LFl <i<k:S =sAmi[ID]=L}

The set of possible atomic propositions contains all the
identifiers of the model elements. The set of states includes a
corresponding state for each model element and an additional
initial state. The transitions from the initial state point to all
other states that are otherwise unreachable in the model. This
way, it becomes possible to actually traverse the full model.
A transition is defined between the corresponding states of
two model elements m; and m ; if the relation between them
holds from m; to m ;. This is denoted by the defined Relation
function, which maps two model elements to 0, if the relation
does not hold from the first argument to the second, and to
1 if it holds. Finally, every state is labeled with the identifier
of its corresponding model element.

Considering the example depicted in Fig. 3, for each rela-
tion defined on UML class diagrams, a Relational Model
may be generated. For instance, Fig. 4 shows the inheritance
model and Fig.5 shows the attribute model of the example.

For every model element that is either the source or the tar-
get of the given relation in the class diagram, a state is defined
labeled with the name of the model element. Henceforth, for
the sake of simplicity, state names in the examples will be
omitted, as they are of no semantic importance in the formal
model. In these models, a transition refers to an inheritance

SN Computer Science
A SPRINGERNATURE journal

508 Page6of 14

SN Computer Science (2024) 5:508

{SpecialDevice}

{Device}

{FactoryA}

{Factory}

{FactoryB}

Fig. 4 The inheritance model of the UML class example. The transi-
tions denote an inheritance relation

{Factory.location}

{Factory} {Device.imei}

{Device} {Device.capacity}

{SpecialDevice}

{SpecialDevice.modifier}

Fig.5 The attribute model of the UML class example. The transitions
denote an attribute relation

or to the holding of an attribute between the participants,
respectively. It should be emphasized that, in practice, it is
sufficient to create states only for those model elements that
are actually connected to any other model element through
the given relation. This way, the state-space of the model can
be kept much more concise.

Joint Relational Model

In practice, the previously defined Relational Models are not
sufficient, as models can only capture one relation at a time.
The problem is that real-world constraints typically refer to
multiple relations at once, requiring more than one relation to
be present in the same model in order to be evaluated success-
fully. Moreover, multiple relations may also be used to infer

SN Computer Science
A SPRINGERNATURE journal

additional information based on the relations. For instance,
in the examples depicted in Figs. 3 and 4, the attribute model
is only capable of enumerating direct attributes. If both the
inheritance and the attribute relations were present in a single
formal model, derived attributes would be handled as well.
Thus, a solution is needed that is capable of capturing any
(finite) number of relations in a single Kripke Structure. The
main reason why a Relational Model could not express more
than one relation is that transitions in a Kripke Structure can-
not be labeled.

Therefore, the idea is to simulate the labeling of transitions
with additional states. For every relation that a model element
has towards another model element, an extra relational state
is defined, labeled with the name of the relation it represents.
A transition is then added from the source of the relation to
the relational state, and from the relational state to the target
of the relation. For example, if in a UML class diagram the
class “FactoryA” inherits from the class “Factory”, then: (i)
A relational state is added, labeled with “Inheritance”. (ii) A
transition is defined from the state labeled with “FactoryA”
to the new relational state labeled with “Inheritance”. (iii) A
transition is defined from the relational state of “FactoryA”
labeled with “Inheritance” to the state labeled with “Factory”.
This way, relational states serve as pointers to the target(s)
of the relation.

The atomic propositions of a JRM consist of the union of
all the propositions of the Relational Models, extended with
the set of relations for labeling the relational states. Similarly,
the states of the Relational Models are combined, along with
adding the relational states. The initial state and its outgoing
transitions remain the same, the latter denoted by R;s. The
goal here is to guarantee that the entire state-space can be
traversed. Consequently, the transitions from the initial state
should point to all model elements that are not accessible
from any relation at all (leaves in the hierarchy). The rest of
the transitions are then defined as mentioned before: from
a state to its relational states, and from the relational states
to the target(s) of the relation. Finally, the labeling of states
remains the same as before, with the addition of labeling the
relational states with the name of the relation they represent.

Let us now generalize this notion. Let Relations =
{Rel, Rels,,...Rel.} be the set of all possible relations
between model elements and RelationalModels =
{KS1, KS>,..., KS,} be the set of the corresponding Rela-
tional Models. K S;[] denotes a certain part of KS; (AP—
atomic propositions, S—state set, etc.), Rel; [S] denotes all
of the relational states combined for the relation Rel;. We
define a Joint Relational Model over a set of model elements
M, a set of relations Relations, and a set of Relational Models
RelationalModels as a Kripke Structure, where:

e AP ={KS|[AP]U..-UKS,[AP]U Relations}

SN Computer Science (2024) 5:508

Page70f14 508

S=KS[S]U---UKS,[S]URel{[STU---U Rel,[S]
o [={IS}

e R = RjsU{(s,n)]IA1 < i < r : A(sKS,tKS) €
K S;[R],sRel € Rel;[S]: (s =sKSAt =sRel)V(s =
sRel Nt =tKS)}

Lis e S ={LI31l <i <r :(s € Rel;y[SINL =
Rel;) v (s € KS;[S]A L = KS;[L](s))}

Figure 6 demonstrates how the previously discussed Rela-
tional Models can be combined into a Joint Relational Model.
Every model element is represented by a state, denoted with
acircle. The attribute and inheritance relations are then mod-
eled by states labeled with these relations. For example, the
attributes of the class Device are reachable in the model by
taking the transition from the state labeled with “Device” to
the next state labeled with “Attributes”, from which a transi-
tion points to each and every attribute that Device holds (imei
and capacity).

Formalizing Constraints in CTL

The static constraints to be verified are formalized using CTL.
However, two significant difficulties arise in a JRM, regard-
less of the modeling language of the source model. Firstly,
most constraints should only be evaluated on states repre-
senting actual model elements, not on the relational states.
Secondly, since multiple relations are now present in the
formal model, navigating between them is necessary. This
means that it should be possible to prescribe that when eval-
uating the constraint, only paths through certain relations
should be considered. For example, consider a constraint on
a UML class diagram that states that a certain class must be
(indirectly) the base class of all classes in the model. When
creating the CTL formula, it must be specified that the base
class must be reachable from any non-relational state, but
only through inheritance relations.

Since these problems stem from the nature of our
approach, a general solution is required. With Relations =
{Rel|, Rely, ..., Rel.}, let R = {Rel;,...,Rely} C
Relations be a subset of relations. To solve both problems,
we define the Exclude formula in the following way:

Exclude(R) = —Rel; A —=Reljy1 A -+ AN —Rely 2)

By taking the logical negation of all the given relations
and joining them with logical and operators, this formula
excludes all the relations in some context. For example, the
problem of only evaluating constraints on states representing
actual model elements, and not on relational states, can be
solved in the following way:

AG(Exclude(R) = ¢), 3)

where ¢ is the formula to be verified. By using a logical
implication and the Exclude formula, the given relations can
be excluded from the paths. Considering the running UML
class example (Fig.3), suppose we would like to formalize
the following constraint: “An attribute (with a primitive type)
cannot hold further attributes.”

Equation 4 prescribes that if a state is encountered that
is labeled with “Attributes”, then there must not exist a
next state, from which exists a second next state which
is also labeled with “Attributes”. Since we begin from an
“Attributes” state, this means that any next state will corre-
spond to an attribute that is held by some model element.
The second next state, labeled with “Attributes”, would then
imply that an attribute holds another attribute, which is pre-
cisely what was prohibited in the first constraint.

AG (Attributes —> —(EXEXAttributes)) “4)
From UML Class Diagram To JRM

The first step of GFMV is to define the mapping from the
source model to the Joint Relational Model. This means that
the model elements and relations of the formal model must
be defined. In terms of this transformation, GFMV works
similarly to Alloy. For example, considering UML class dia-
grams, a mapping must be defined from UML class diagrams
to the formal model. This means that the source model must
be traversed, and for each element in the model, appropri-
ate model elements and/or relations must be created in the
Joint Relational Model. Currently, this procedure is manual,
but will be extended to support declarative, semi-automatic
transformations.

The basic model elements of a class diagram consist of
the following:

. Classes.

. Attributes.

Methods.

. Interfaces.

Enumerations.

. Enumeration literals.

. Associations, Compositions and Aggregations.

. Typenames, such as Integer or Boolean.

. Any primitive literals necessary for the constraints,
including numbers, strings and booleans.

The relations of UML class diagrams are defined to be the
following:

1. Inheritance. The source of the relation inherits from the
target.

2. InterfaceRealization. The source of the relation realizes
the target interface.

SN Computer Science
A SPRINGERNATURE journal

508

Page 8 of 14

SN Computer Science (2024) 5:508

Fig.6 The Joint Relational
Model of the UML class
example, joining the attribute
and inheritance relations

10.

11.

12.

13.

14.

{FactoryA} {Inheritance}

{Factory} {Attributes} ~ {Factory.location}

N

{IS}

{SpecialDevice}

Dependency. The source of the relation depends on the
target.

Attributes. The source of the relation holds the targets as
its attributes.

. Methods. The source of the relation holds the targets as

its methods.

MethodParameters. The source of the relation holds the
targets as its parameters.

ReturnType. The target of the relation is the return type
of the source.

Value. The value of the source of the relation is the target.
EnumerationLiterals. The source of the relation holds the
targets as its enumeration literals.

Associations, Compositions and Aggregations. The source
of the relation holds the targets as its associations, com-
positions or aggregations, respectively. For example,
suppose class A has 2 associations towards class B, with
rolenames a; and a». In this case, the Associations rela-
tion of A would point to a; and a as its targets. This
is also the reason why adding associations, compositions
and aggregations identified by their rolenames as model
elements is necessary.

CardinalityMin. The lower bound cardinality of the source
of the relation is the target. This relation is used to capture
the cardinality of the previous relations.

CardinalityMax. The upper bound cardinality of the
source of the relation is the target.

Type. The type of the source of the relation is the target.
This relation is used to capture the type of model elements,
for example in the case of attributes or method parameters.
Visibility. The visibility of the source of the relation is the
target.

. Modifiers. The targets of the relation are the modifiers of

the source, such as abstract or static.

SN Computer Science

A SPRINGERNATURE journal

_/

{FactoryB} {Inheritance}

{Inheritance}

{Attributes}

O—0)

{Device.imei}

{Attributes}

{Device}

{SpecialDevice.modifier}

Let us now consider the case of objects. So far, only classes
and their elements were considered. However, static con-
straints are defined and verified on all the objects and their
corresponding elements as well. Consequently, similarly to
OCL-based systems, the objects also have to be defined. The
difference is that in GFMYV, the objects and the classes them-
selves are defined in the same formal model, the JRM. To
connect the objects with their respective class-elements, the
Instantiation relation is defined, that points from the instance
to the class-element. This applies for attributes and relations
between the classes as well. For instance, if a class defines
an association towards another, then all its objects will also
own such an association that instantiates the association of
the class.

Evaluation

In this section, we evaluate the feasibility of GFMV. We
define the mapping from UML class diagrams into a JRM
and present our approach on a real-world class diagram
taken from existing literature depicted in Fig.7. The model
describes a simplified excerpt of Luxembourg’s personal
income tax management system. The JRM is constructed
as described in the previous sections. The elements of the
class diagram are transformed into model elements, which
are connected by relational states. The JRM of the exam-
ple consists of 93 transitions, 63 states representing model
elements, and 78 states representing relations. A basic proof-
of-concept implementation of GFMYV is publicly available on
GitHub.! The implementation generates the NuSMV script

! https://github.com/NorbertSomogyi/GFMV.

https://github.com/NorbertSomogyi/GFMV

SN Computer Science (2024) 5:508

Page9of14 508

that contains the definition of the JRM and the CTL formulae
for the case study presented in this section.

Formalizing Constraints: OCL

In this section, we present the suite of constraints to be
formalized. Regarding the example UML class diagram
depicted in Fig.7, Soltana et al. define the following OCL
expressions. [25].

— C2: context PhysicalPerson inv:

if (self.disabilityType = None) then
self.disabilityRate = 0

— C3: context TaxPayer inv:

not self.addresses—forAll(a:Addressla.country < LU)
implies self.isResident

— C4: context TaxPayer inv:

self.incomes—>exists (inc:Incomelinc.isLocal) and
not self.addresses—>exists(a:Addressla.country = LU)
implies not self.isResident

— C5: context Income inv:

if (self.ocllsTypeOf(Other)) then

self.taxCard. ocllsUndefined ()

else not self.taxCard.ocllsUndefined() endif

C2 prescribes that for every instance of PhysicalPerson, if
the value of disabilityType is DisabilityType.None, then the
value of disabilityRate must be 0. C3 states that for every
instance of TaxPayer, all its addresses being registered in
Luxembourg does not necessarily imply that the taxpayer is
resident. C4 specifies that for every instance of TaxPayer, if
there exists one of its incomes that is local and there does not
exist one of its addresses that is registered in Luxembourg,
then the taxpayer must not be local. C5 defines that for every
instance of Income, if it is the instance of the subclass Other,
then the nullable association taxcard must be undefined, oth-
erwise it must be defined.

Formalizing Constraints: CTL

Figure 8 illustrates the objects that we defined for our exper-
iments.

When evaluating the OCL invariants over these objects,
the following results are obtained:

e (2 does not hold. The value of disabilityType is Disabili-
tyType.None, but the disabilityRate is 1.0, which violates
the requirement.

e C3 does not hold. A logical implication evaluates to false
if and only if the premise holds, but the conclusion does
not. In our example, this invariant does not hold if and
only if all of the addresses are in Luxembourg, but the
taxpayer is not resident. This is exactly the case for Tax-
Payer_I. Consequently, C3 does not hold.

e C4 and C5 hold.

Letus now formalize the requirements in CTL. The formu-
lae are written using the input language of NuSMV, where
& denotes logical and, ! denotes logical negation, and ->
denotes logical implication. First, let us define some aux-
iliary subformulae, that are used often in the constraints.
This way, the formulae expressing the constraints will be
more concise and readable. Let T € APjgy, Relations =
{Rely, Rely,..., Rel,}, Exclude(Rel C Relations) the for-
mula seen in Eq.2, R € Relations any relation.

inst(T) := EX (Instantiation & EX T)

Inst(T) defines a direct instantiation relation towards the
model element 7.

inherit(T) := E[Exclude(Relations \ {Inheritance}) U T]

Inherit (T) expresses that T is reachable in the model by
traversing only through the Inheritance relation, all other
relations are forbidden by the Exclude formula.

conform(T) := !T & inst(T) | EX (Instantiation & inherit(T))

Conform(T) combines the previous 2 formulae: it pre-
scribes indirect instantiation towards 7. A model element M
indirectly instantiates another element 7, if and only if 7 #
M, M 1is a direct instance of T or M is the direct instance
of an element that inherits (implicitly) from 7. For exam-
ple, considering the objects presented in Fig. 8, TaxPayer_1I
is a direct instance of TaxPayer and an indirect instance of
PhysicalPerson.

relA(R, forbid, condition) := if (forbid = false)
EX (R & AX condition) else EX (R & !AX condition)

RelA(R, forbid, condition) defines that R must be an avail-
able relation in the current state and all targets of R must
satisfy a given subformula, denoted by condition, if the sec-
ond parameter is set to false. If it is set to true, then instead
of prescribing the existence of such targets, their existence is
forbidden.

relE(R, condition, forbid = false) := if (forbid = false)
EX (R & EX condition) else EX (R & !'EX condition)

SN Computer Science
A SPRINGER NATURE journal

508 Page 10 of 14

SN Computer Science

(2024) 5:508

Fig.7 The UML class diagram
to be used as case study, taken
from the literature [25]

PhysicalPerson

- birthYear: Integer [1]

Query for getAge

if (Constants::YEAR >= self.birthYear

- disabilityRate: Real [1]
- disability Type: Disability [1]

and Constants::YEAR >= 0) then
Constants::YEAR - self.birthYear
else -1 endif

Address

getAge(): Integer -

- country: Country [1]

T

* person

resides at P> 1..* addresses

| |
| Child | TaxPayer earns P Income (abstract)
| - 1sResident: Boolean [1]] 7 iaxpaver 1. *incomes |- isLocal: Boolean [1]
I A\ 1 income
* children <4 'supports 1 responsible
| |
«enum.» «enum.» - - -)
Country Disability Pension Employment Other ¥ receives
-LU - None 0.1 taxCard
) FBIE :XISIOH Constants (abstract) TaxCard
) DE -{read only, static} YEAR: Integer [1] = 2018
- OTHER

Fig.8 The objects that are
validated against the invariants,

Pension_1 : Pension

TaxCard_1 : TaxCard

represented in an object diagram isLocal = true

taxcard isLocal = true

income

TaxPayer_1 : TaxPayer

Child_1 : Child

birthYear = 1984
isResident = false
disabilityRate = 1.0

disability Type = DisabilityType None

birthYear = 2010
disabilityRate = 0.0
disability Type = DisabilityType None

child

address

Address_1 : Address

country = Country.LU

address

RelE defines the same, but instead of all targets, at least
one target is considered.

Utiziling these auxiliary formulae, the constraints C2-C5
can be formalized in CTL in the following way. Using a sub-
formula at any point is denoted by a $ sign at the beginning
of a formula. In OCL the invariants are defined on a single
context, including, but not limited to a class in a UML class
diagram. At the beginning of each formula, the context must
be defined, where the rest of the formula must hold. This is

SN Computer Science
A SPRINGERNATURE journal

equivalent to the context in an OCL expression, but is much
more flexible. In our approach, any context may be defined.
This can mean multiple classes, objects, or any other logical
conditions. By using a logical implication with the condition
as the premise and the constraint that must hold as the conclu-
sion, the context is clearly defined. Note that by default, the
InitialState is excluded from all formulae by automatically
adding /InitialState to the beginning of the formula.

SN Computer Science (2024) 5:508

Page110f14 508

C2: AG ($conform(PhysicalPerson)—>$relE(Attributes, false,
$inst(PhysicalPerson.disabilityType)
& $relE(Value, false, Disability.None)) —
EX ($inst(PhysicalPerson.disabilityRate)
& $relE(Value, false, Literal_0.0)))

Formula C2 defines that for all (in)direct instances of
PhysicalPerson, if there exists an attribute that instanti-
ates PhysicalPerson.disabilityType and its value is set to
Disability.None, then there must also exist the attribute Phys-
icalPerson.disabilityRate and its value must be set to 0. The
reason why the label representing O is named Literal_0.0 is
because the input language of NuSMV does not allow iden-
tifiers starting with a number.

C3: AG ($conform(TaxPayer)—>!((($relA(Associations, false,
$inst(PhysicalPerson.addresses) —>
($relA(AssociationTargets, false, $relE (Value, true,
Country.LU)))) — $relE(Attributes, false,
inst(TaxPayer.isResident)

& $relE(Value, false, Literal_true))))))

C3 specifies that for all (in)direct instances of TaxPayer,
considering the following conditions (1) and (2) holds, if con-
dition (1) holds, then condition (2) must also hold. (1) For
all associations, if the association instantiates PhysicalPer-
son.addresses then none of its association targets contain
the value Country.LU. (2) There must exist an attribute that
instantiates TaxPayer.isResident and its value is set to true.

C4: AG ($conform("TaxPayer") — (($relE(Associations,
false, $inst(TaxPayer.incomes) & EX
$relE(Attributes, false, $inst(Income.isLocal) &
$relE(Value, false, Literal_true)))) &
($relE(Associations, false,
$inst(PhysicalPerson.addresses) & EX
$relE(Attributes, false, $inst(Address.country) &
$relE(Value, false, Country.IU))))) —>
$relE(Attributes, false, $inst(TaxPayer.isResident) &
$relE(Value, false, Literal_false)))

C4 prescribes that for all (in)direct instances of TaxPayer,
if the following conditions (1) and (2) hold, then (3) must
also hold. (1) There exists an association that instantiates
TaxPayer.incomes and there exists a target for this associa-
tion that has an attribute that instantiates Income.isLocal, the
value of which must be set to true. (2) There does not exist
an association that instantiates Physicalperson.addresses and
has an attribute that instantiates Address.country, the value
of which is set to Country.LU. (3) There exists an attribute
that instantiates TaxPayer.isResident and its value is set to
false.

C5: AG (($conform(Other) —> !S$relE(Associations, false,
$inst(Income.taxCard))) &
(($conform(Income) & !$conform(Other))) —>
$relE(Associations, false, $inst(Income.taxCard)))

Considering the following conditions (1) and (2), C5 states
that both condition (1) and condition (2) must hold. (1)
For all (in)direct instances of Other, there must not exist
an association that instantiates Income.taxCard. (2) For all
in(direct) instances of Income that are not (in)direct instances
of Other, there must exist an association that instantiates
Income.taxCard.

The example presented in [25] also contains another
invariant, C1, and some additional parts of C2, that were
not covered here. These are the following.

Query for getAge

if (Constants::YEAR >= self.birthYear
and Constants::YEAR >= 0) then
Constants::YEAR — self.birthYear
else —1 endif

— C1: context PhysicalPerson inv:
let max:Integer = 100 in self.getAge() <= max and
self.getAge() >=0

A query is defined for the method gerAge(), stating that it
should return with Constants::YEAR - self.birthYear if the
value of Constants::YEAR is valid, and —1 otherwise. C1
then defines that getAge() must return a value between O
and 100. This is not possible to express in our approach, as
it is outside of our scope of focusing on static constraints.
Defining derived operations, executing them and expressing
requirements on the results are not and will not be supported.

— C2: context PhysicalPerson inv:

if (self.disabilityType = None) then

self.disabilityRate = 0 else

self.disabilityRate > 0 and self.disabilityRate <= 1 endif

In the original solution, C2 also had another line of
criteria that is not currently possible to express in our
approach. Checking if a value falls in a given range (0 <
disabilityRate <= 1) is not advisable to check in the for-
mal model. Currently, the only way it could be included in
the formal model is to compute the result in an interpreter,
and adding it as a relation into the model. For instance, the
GreaterThan and LesserThanOrEquals relations could be
defined, the results computed outside of NuSMYV, generated
into the model and then checked using CTL. However, this

SN Computer Science
A SPRINGERNATURE journal

508 Page12of14

SN Computer Science (2024) 5:508

Table2 The number of transitions, model elements and relational states
for fragments ranging from 1 to 200

Fragments Transitions Model elements Relational states
1 99 69 84
10 480 252 402
20 910 462 762
30 1340 672 1122
40 1770 882 1482
50 2200 1092 1842
60 2630 1302 2202
70 3060 1512 2562
80 3490 1722 2922
90 3920 1932 3282
100 4350 2142 3642
200 8650 4242 7242

would not be a natural solution in GFMV. Instead, in the
future, comparing numerical values against a given range
will be done outside of NuSMYV, in a high level interpreter.
However, defining the operands that must be compared will
still be done by navigating the JRM, only the comparison
itself will be computed separately.

Performance Analysis

In this section, we evaluate the runtime of GFMV. The same
model and constraints that were presented in the previous
sections are used in the analysis. However, the model is not
large enough to determine how the runtime scales with the
size of the model. Consequently, during our analysis, we
gradually increased the size by adding more instance-level
elements to the model. We refer to every object and their ele-
ments (Fig. 8) as a fragment of the model. Table 2 shows the
number of transitions, states representing model elements,
and states representing relations. The total number of states
in the model is the sum of the previous two. The number
of fragments starts at 1 (the original model) and increases
gradually with increments of 10 up to 100. An additional
measurement was taken at 200 fragments to demonstrate that
the tendency of the runtime is not linear with the size of the
model. It should be noted that the number of fragments were
chosen deliberately high, to simulate models that are large
enough to yield representative results.

The measurements were taken using an Intel 17-7700HQ
@ 2.80GHz processor. Figure 9 describes the results. At frag-
ments 1, 10 and 20, the verification finished instantly. From
30 to 100, the runtime rises from 0.9 up to 11.3s, in an
approximately linear tendency. At 200 fragments, verifica-
tion finished in 57.1s. This is significantly more than the
difference between 1 and 100 fragments. The reason for this

SN Computer Science
A SPRINGERNATURE journal

Execution time of the verification process
60

50
40
30

20

Runtime (sec)

10

0 50 100 150 200

Number of fragments

Fig.9 The runtime of the verification process with regard to the number
of fragments in the model

is that the runtime of model checking CTL formulae increases
exponentially with the size of the model. However, we believe
100-200 fragments already yield a large enough model that
practical industrial applications would rarely surpass. Thus,
for practical applications, the analysis shows that GFMV fin-
ishes verification in reasonable time to be feasible in practice.

It should be noted that creating the JRM was done fully
manually. This means that the elements of the JRM were
created explicitly from code, and not mapped from an actual
class diagram. For this reason, the presented results do not
contain the transformation time. As mentioned before, the
transformation would include traversing the source model
and mapping every element to model elements and relations
in the JRM. Since creating the elements is negligible in terms
of performance, the complexity of this process corresponds
to the complexity of traversal, which is proportional to the
size of the source model. Fortunately, efficient algorithms
exist for traversing and processing models. Thus, we believe
the complexity of the transformation will also be scalable in
practice. Naturally, in the future, more experiments will be
necessary to confirm this.

Conclusions

In this paper, we have presented the General Formal Model-
Verifier, GFMYV, that is an approach for formally verifying
static constraints on models. A formal Kripke Structure is
created that captures the static aspects of the original soft-
ware model. The constraints to be verified are formalized
using CTL and a model checker tool, NuSMV is used to
verify whether the formalized CTL expressions hold on the
formal model. The approach was evaluated on a real-world
example UML class diagram. The model was mapped to a
formal JRM, then the given OCL constraints were formal-
ized using CTL. The runtime of the verification process was
evaluated by artificially increasing the size of the example
model gradually.

SN Computer Science (2024) 5:508

Page130f 14 508

The main strength of GFMV lies in its formal aspect. Since
a widespread model checker tool (NuSMV) is used, the ver-
ification of models is fully automatic, and formal proof is
given that the model satisfies the constraints. It is guaranteed
to find any violations of the formalized constraints. If no vio-
lations are found, the constraint is guaranteed to hold. The
approach is general and independent of the modeling lan-
guage of the source model. While this is somewhat true for
OCL and its variants as well, defining a mapping between the
source model and the JRM is easier and takes less effort than
implementing an OCL interpreter for the given modeling lan-
guage. A consequence of the generality is that the approach
becomes independent of the concrete model checker behind
it. It currently uses NuSMYV, but could easily be extended to
use a different model checker or support multiple options.

The main weakness of the approach is the expressive
power of CTL. Severely complex constraints may be too
difficult to express, and even if they can be expressed, it
is undeniably more difficult to do so than in OCL. On the
other hand, defining a context for constraints to be evalu-
ated on is more flexible in GFMV. Multiple contexts can
be defined in an arbitrary logical formula, even on objects.
The second weakness is that GFMV focuses only on verify-
ing static constraints, it does not support many other features
that OCL does. Moreover, defining CTL expressions requires
proficiency in formal verification methods. Naturally, this
cannot be expected of the model designer. For this reason,
in the future, we plan to create a Domain Specific Language
(DSL) [26] to hide the complexity of writing CTL expres-
sions from the model designer. Finally, NuSMV and other
model checker tools typically detect violations of constraints
in such a way that a single counter-example is generated that
highlights a sequence of states on which a constraint does
not hold. The reason for this is that in general, infinitely
many violations may occur and exploring them all is neither
possible, nor expedient. Consequently, to find all violations,
running a model checker only once is not sufficient.

This weakness is vital, thus, it must be alleviated in the
future. The most straight-forward solution is to modify the
implementation of NuSMV in such a way that execution
should not terminate with a single counter-example, but every
state that violates a constraint should be collected. How-
ever, not every model checker is open-source, thus, this
option is not suitable in general. The solution that could
be explored is to apply counter-example guided abstrac-
tion refinement (CEGAR) [27] over the CTL constraints.
By gradually filtering counter-examples that have already
been found, eventually all violations can be found. Handling
potential loops in the state-space is crucial, otherwise it would
not be guaranteed that the abstraction refinement would ever
terminate.

Developing a language over CTL is also of high priority.
A syntax similar to OCL is what we strive to create, hiding

the complexity of defining CTL formulae from the designer.
Moreover, defining the transformations between the source
models and the JRM must also be possible in a declarative,
semi-automatic way.

Algorithmic performance optimizations will also be
explored. Defining declarative transformations on Kripke
Structures, similar to model-to-model transformations, can
also help increase the expressive power of GFMV. By tem-
porarily transforming parts of a model, constraints that are
difficult to express through CTL may become easier to define.

A more thorough evaluation would also be beneficial.
Although the results presented in this paper are representative
and show the applicability of the approach in practice, more
complex examples should also be taken into consideration.
Performance evaluations should also be done iteratively, as
the future work presented here may influence the algorithmic
complexity of the approach.

Acknowledgements Supported by the the European Union project
RRF-2.3.1-21-2022-00004 within the framework of the Artificial Intel-
ligence National Laboratory

Funding Open access funding provided by Budapest University of
Technology and Economics.

Data availability The authors confirm that the data supporting the find-
ings of this study are available within the article.

Declarations

Conflict of interest On behalf of all authors, the corresponding author
states that there is no Conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. OMG: Unified Modeling Language (2017). https://www.omg.org/
spec/UML/2.5.1/PDF/. Accessed 6 June 2023.

2. OMG: MetaObject Facility (2005). http://www.omg.org/mof/.
Accessed 6 June 2023.

3. Mezei G, Theisz Z, Urban D, Bacsi S, Hebig R, Berger T
(eds) (2018) The bicycle challenge in dmla, where validation
means correct modeling. In: Hebig R, Berger T (eds) Proceed-
ings of MODELS 2018 workshops: 21st international conference
on model driven engineering languages and systems (MODELS

SN Computer Science
A SPRINGERNATURE journal

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.omg.org/spec/UML/2.5.1/PDF/
https://www.omg.org/spec/UML/2.5.1/PDF/
http://www.omg.org/mof/

508

Page 14 of 14

SN Computer Science (2024) 5:508

10.

11.

12.

13.

14.

15.

16.

18.

20.

SN

2018), Copenhagen, Denmark, October, 14, 2018, Vol. 2245
of CEUR Workshop Proceedings, pp. 643-652 (CEUR-WS.org,
New York, NY, United States, 2018). http://ceur-ws.org/ Vol-2245/
multi_paper_2.pdf.

Macias F, Rutle A, Stolz V, Rodriguez-Echeverria R, Wolter U. An
approach to flexible multilevel modelling. Enterp Model Inf Syst
Architect. 2018;13:10-1-10-35.

Atkinson C, Gerbig R. Flexible deep modeling with melanee, vol.
255. Bonn: Koéllen. 2016. pp. 117-121. http://ub-madoc.bib.uni-
mannheim.de/40981/.

Jackson D. Software abstractions: logic, language, and analysis.
Cambridge: The MIT Press; 2012.

Sorensson N, Een N. Minisat v1.13-a sat solver with conflict-clause
minimization. In:International conference on theory and applica-
tions of satisfiability testing. 2005.

Mahajan Y S, Fu Z, Malik S. Zchaff2004: an efficient sat solver.
In: Hoos HH, Mitchell DG, editors. Proceedings of the 7th interna-
tional conference on theory and applications of satisfiability testing,
SAT’04, 360-375. Berlin: Springer. 2004. https://doi.org/10.1007/
11527695_27.

Cimatti A, et al. Nusmv 2: an opensource tool for symbolic model
checking. In: Brinksma E, Larsen KG, editors. Proceedings of the
14th international conference on computer aided verification, CAV
’02. Berlin: Springer. 2002. pp. 359-364.

Cimatti A, et al. Integrating bdd-based and sat-based symbolic
model checking. In: Armando A, Editors. Proceedings of the 4th
international workshop on frontiers of combining systems, FroCoS
’02. Berlin: Springer. 2002. pp. 49-56.

Cabot J, Gogolla M. Object constraint language (ocl): a defini-
tive guide. In: Bernardo M, Cortellessa V, Pierantonio A, editors.
Proceedings of the 12th international conference on formal meth-
ods for the design of computer, communication, and software
systems: formal methods for model-driven engineering, SFM’12.
Berlin: Springer. 2012. pp. 58-90.https://doi.org/10.1007/978-3-
642-30982-3_3.

Cabot J, et al. A swot analysis of the object constraint language.
2021.

Vaziri M, Jackson D. Some shortcomings of ocl, the object con-
straint language of uml, TOOLS °00, 555. USA: IEEE Computer
Society; 2000.

Brucker A D, Wolff B. Hol-ocl: a formal proof environment
for uml/ocl. In: Fiadeiro J L, Inverardi P, Editors. Fundamental
approaches to software engineering. Berlin: Springer. 2008, pp.
97-100.

Wu H. Qmaxuse: a new tool for verifying uml class diagrams and
ocl invariants. Sci Comput Progr. 2023;228: 102955.

Abbas M, Ben-Yelles C-B, Rioboo R. Formalizing uml/ocl struc-
tural features with focalize. Soft Comput. 2020;24:4149-64.
https://doi.org/10.1007/s00500-019-04181-2.

Nobakht M, Truscan D. Tool support for transforming uml-based
specifications to uppaal timed automata (2013). TUCS Technical
Report No 1087, June 2013.

Behrmann G, David A, Larsen K. A tutorial on uppaal. In: Bernardo
M, Corradini F, editors. International school on formal methods
for the design of computer, communication and software systems,
vol. 3185. Berlin: Springer; 2004. pp. 200-236. https://doi.org/10.
1007/978-3-540-30080-9_7.

Bill R, Gabmeyer S, Kaufmann P, Seidl M. Model checking of
ctl-extended ocl specifications. Berlin: Springer; 2014. p. 221-40.
Cabot J, Clarisé R, Riera D. Umltocsp: a tool for the formal verifi-
cation of uml/ocl models using constraint programming. In: ASE
’07. New York: Association for Computing Machinery; 2007. pp.
547-548. https://doi.org/10.1145/1321631.1321737.

Computer Science
A SPRINGERNATURE journal

21.

22.

23.

24.

25.

26.

217.

Shaikh A, Clarisé R, Wiil U K, Memon N. Verification-driven
slicing of uml/ocl models. In: Pecheur C, Andrews J, Di Nitto
E, editors. Proceedings of the 25th IEEE/ACM international con-
ference on automated software engineering, ASE *10. New York:
Association for Computing Machinery; 2010. pp. 185-194. https:/
doi.org/10.1145/1858996.1859038.

Przigoda N, Soeken M, Wille R, Drechsler R. Verifying the struc-
ture and behavior in uml/ocl models using satisfiability solvers.
IET Cyber-Phys Syst Theory Appl. 2016;1:49-59.

Anastasakis K, Bordbar B, Georg G, Ray I. Uml2alloy: a challeng-
ing model transformation. In: Engels G, Opdyke B, Schmidt D C,
Weil F, editors. Proceedings of the 10th international conference
on model driven engineering languages and systems, MODELS’07.
Berlin: Springer; 2007. pp. 436-450.

Muller-olm M, Schmidt D, Steffen B. Model-checking: a tutorial
introduction, Vol. 1694 of SAS *99. Berlin: Springer; 1999. pp.
330-354.

Soltana G, Sabetzadeh M, Briand LC. Practical constraint solving
for generating system test data. ACM Trans Softw Eng Methodol.
2020. https://doi.org/10.1145/3381032.

Fowler M. Domain specific languages. 1st ed. Upper Saddle River:
Addison-Wesley Professional; 2010.

Clarke E, Grumberg O, Jha S, Lu Y, Veith H. Counterexample-
guided abstraction refinement. In: Emerson EA, Sistla AP, editors.
Computer aided verification. Berlin: Springer; 2000. p. 154-69.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

http://ceur-ws.org/Vol-2245/multi_paper_2.pdf
http://ceur-ws.org/Vol-2245/multi_paper_2.pdf
http://ub-madoc.bib.uni-mannheim.de/40981/
http://ub-madoc.bib.uni-mannheim.de/40981/
https://doi.org/10.1007/11527695_27
https://doi.org/10.1007/11527695_27
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1007/978-3-642-30982-3_3
https://doi.org/10.1007/s00500-019-04181-2
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1145/1321631.1321737
https://doi.org/10.1145/1858996.1859038
https://doi.org/10.1145/1858996.1859038
https://doi.org/10.1145/3381032

	Generalized Formal Model-Verifier: A Formal Approach for Verifying Static Models
	Abstract
	Introduction
	Related Work
	Background
	General Formal Model-Verifier
	Running Example—UML Class Diagram
	Relational Formal Model
	Joint Relational Model
	Formalizing Constraints in CTL
	From UML Class Diagram To JRM

	Evaluation
	Formalizing Constraints: OCL
	Formalizing Constraints: CTL
	Performance Analysis

	Conclusions
	Acknowledgements
	References

