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Abstract
Reducing the need for users to manually manage the details of work and data distribution is an important goal of high-level 
many-task runtime systems. For distributed memory platforms this means that the runtime system has to keep track of both 
fine-grained task dependencies and data residency meta-information. The amount of such meta-information is proportional 
to the granularity of parallelism which needs to be managed, introducing a trade-off. More precise tracking of data state 
allows leveraging more opportunities for compute and transfer parallelism, while also introducing more overhead. As such, 
the fidelity of the information being tracked needs to be managed carefully, ideally without introducing additional latency, 
communication or substantial compute overhead. We present the “Horizons” approach, designed to fulfill these goals. Spe-
cifically, horizons allow for the effective and efficient management of parallelism and the coalescing of previous fine-grained 
tracking information while maintaining an easily configurable scheduling window with full information precision. As an 
additional benefit, they provide consistent cluster-wide decision points without requiring any inter-node communication, and 
effectively cap the size of state tracking data structures even in the presence of problematic access patterns. Experimental 
evaluation on microbenchmarks and dry runs demonstrates that horizons are effective in keeping the scheduling complexity 
constant, while their own overhead is negligible—below 10 μs per horizon when building a command graph for 512 GPUs. 
We additionally demonstrate the performance impact of horizons—as well as their low overhead—on a real-world application.
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Introduction and Related Work

Modern high performance computing (HPC) hardware 
platforms feature many layers of parallelism, memory and 
communication. While they employ state-of-the-art methods 
to keep latencies as low as possible, the increase in com-
putational throughput and bandwidth outpaces reductions 
in latency. Communication latency is thus an important 

limiting factor for performance, particularly at larger scales. 
As such, software for HPC systems is frequently designed to 
leverage asynchronicity as much as possible, enabling e.g. 
communication and computation overlapping.

Developing software which implements these techniques 
is a challenging endeavor, particularly while relying on the 
established de-facto standard approach to developing dis-
tributed GPU applications: “MPI + X”, where the Message 
Passing Interface (MPI) [1] is combined with a data parallel 
programming model such as OpenMP, CUDA or OpenCL. 
Together with other factors such as lacking funding, this 
complexity leads to the development of new software 
for HPC typically being left to a select few HPC experts, 
and research is frequently performed using a small set of 
domain-specific software packages.

Parallel Runtime Systems

One promising avenue for improving programmability or 
enabling more flexible development of and experimentation 
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with high performance code for distributed memory GPU 
clusters are higher-level runtime systems. These typically 
introduce an API and custom terminology, as well as ena-
bling ecosystems of tooling and derived software projects.

A notable example is StarPU [2], an extensible runtime 
system for programming heterogeneous systems. It offers 
a wide array of scheduling approaches, from simple FCFS 
policies, over work-stealing and heuristics, to dedicated 
schedulers for dense linear algebra on heterogeneous archi-
tectures [3, 4]. Nevertheless, StarPU’s C API is rather low 
level and requires the explicit handling of data distribution 
when executing in cluster environments.

Legion [5] is a runtime system designed to make effi-
cient use of heterogeneous hardware through highly con-
figurable and efficient work splitting and mapping to the 
available resources. Its C++API is intricate and precise, with 
the explicit intent of putting performance first, before any 
programmability considerations, making it unsuitable for 
non-expert users.

HPX [6] is a C++ runtime system for parallel and dis-
tributed applications of any scale with a particular focus 
on enabling asynchronous data transfers and computation. 
Its heterogeneous compute backend supports targeting both 
CUDA and SYCL [7].

PaRSEC [8] uses a custom graph representation lan-
guage called JDF to describe the dataflow of an applica-
tion [9]. Either automatically generated or written by hand, 
this representation enables a fully decentralized scheduling 
model and automatic handling of data dependencies across 
a distributed system, although the initial distribution of data 
needs to be provided by the user.

The Celerity programming model [10] was designed to 
minimally extend the SYCL programming standard [11] 
while enabling automated distributed memory execution, 
specifically for clusters of GPU-like accelerators. It asyn-
chronously generates and executes a distributed command 
graph from an implicit task graph derived from data access 
patterns [12].

While all the projects mentioned so far are primarily 
library-based runtime systems, a related category com-
prises those approaches which extend the grammar of 
existing programming languages, for example the pragma-
based OmpSs [13]. Some related projects introduce entirely 
new languages altogether, such as Chapel [14], X10 [15] 
or Regent [16]. However, they, too, require an associated 
runtime system.

Finally, skeleton-based approaches trade some general-
ity for a more tailored and user-friendly API, and this focus 
can also allow for simpler or higher-level data management 
and dependency tracking. Early implementations include the 
Quaff library by Falcou et al. [17], as well as the Orléans 
Skeleton Library by Noman and Loulergue [18]. Shigeyuki 
et al. [19] developed an early application of algorithmic 

skeletons to GPU computing. More recently, Ernstsson 
et al. [20] developed an extension to the SkePU skeleton 
programming model which lazily records the lineage of skel-
eton invocations, and applies tiling once partial results are 
actually required by the program.

What is clear from this broad and sustained interest is 
that ways to quickly develop distributed applications and 
efficiently experiment with different work and data distri-
bution patterns are widely desired. Depending on the level 
of abstraction targeted by a system, data distribution and 
synchronization is either manual, semi-automatic or fully 
automatic.

Tracking Data State

For those systems which transparently manage distributed 
memory transfers and/or derive their task and command 
graphs from memory access patterns, tracking the state of 
data in the system at any given point in time is a significant 
challenge. On the one hand, all opportunities for asynchro-
nous compute and transfer operations should be leveraged, 
but on the other hand, in an HPC context, scheduling and 
command generation also need to be sufficiently fast to scale 
to potentially thousands of cluster nodes. This is particular 
relevant when targeting strong scaling, as the time avail-
able to schedule individual tasks while maintaining efficient 
throughput shrinks even for fully asynchronous systems.

Tracking for some data access patterns—e.g. stencil-like 
computations—is quite manageable with a relatively simple 
approach, which means that some skeleton-based systems 
can largely circumvent these issues. However, a general 
high-level runtime system may be presented with more unu-
sual patterns which can present additional difficulties. In 
particular, as we will outline in more detail in Sect. 2.3, gen-
erative patterns have the potential to overwhelm data track-
ing. However, even relatively straightforward many-task 
processing of large data sets can become problematic when 
individual tasks are sufficiently short-lived, as described in 
Sect. 2.4.

The Horizons Concept

In this work, we present Horizons, a concept which mani-
fests as a special type of node in task or command graphs 
for distributed parallel runtime systems. The basic working 
principle of Horizons is that, when specific conditions are 
met during the live generation of a task graph, a Horizon 
node is introduced. Crucially, at this point, that particular 
Horizon does not yet have any impact on subsequent par-
allelism or the granularity of dependency tracking: it only 
becomes active at a later point, when it subsumes details 
about prior computations.

Core design goals and features of horizons include:
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•	 Maintaining asynchronous command generation and 
execution.

•	 Allowing for a configurable trade-off in the level of detail 
regarding data state available for command generation.

•	 Allowing for a configurable cap on the degree of task-
level parallelism concurrently managed by the system.

•	 Never directly introducing a synchronization point.
•	 Requiring no additional inter-node communication.

Our implementation of Horizons in the Celerity runtime sys-
tem achieves all of these goals. Section 2 provides a concise 
overview of the Celerity system, and describes the types of 
access patterns and task graph structures which Horizons are 
particularly effective at managing. Section 3 explains how 
Horizons are generated, managed and applied, illustrating 
their impact on command generation. In Sect. 4 we present 
an in-depth empirical evaluation of the implementation of 
Horizons in Celerity, including both microbenchmarks and 
real-world applications. Finally, Sect. 5 concludes the paper.

Background

The Celerity Runtime System

Celerity is a modern, open C++ framework for distributed 
GPU computing [12]. Built on the SYCL industry stand-
ard [11] published by the Khronos Group, it aims to bring 
SYCL to clusters of GPUs with a minimal set of API exten-
sions. A full overview of the SYCL and Celerity APIs is 
beyond the scope of this paper,1 so in this section we will 
focus on how Celerity extends the data parallelism of SYCL 
kernels to distributed multi-GPU execution, and the data 
state tracking requirements this induces for the runtime 
system.

A typical SYCL program is centered around buffers of 
data and kernels which manipulate them. The latter are 
wrapped in so-called command groups and submitted to a 
queue, which is then processed asynchronously with respect 
to the host process. Crucially, buffers are more than sim-
ple pointers returned by a malloc-esque API: they are 
accessed through so-called accessors, which are declared 
within a command group before a kernel is launched. Upon 
creating buffer accessors, the user additionally has to declare 
how a buffer will be accessed, i.e., for reading, writing or 
both. This allows the SYCL runtime to construct a task 
graph based on the dataflow of buffers through kernels.

SYCL—in the same fashion as CUDA and OpenCL—
abstracts the concept of a (GPU) hardware thread: it allows 

users express their programs in terms of linear-looking ker-
nel code, which is invoked on an N-dimensional range of 
work items. Celerity extends this concept to distributed com-
putation. While Celerity kernels are written in the same way 
as in SYCL, they can be executed across multiple devices 
on different nodes, with all resulting data transfers handled 
completely transparently to the user.

The most fundamental extension to SYCL introduced by 
Celerity are range mappers, functions that provide addi-
tional information about how buffers are accessed from a 
kernel. By evaluating these range mappers on sub-domains 
of the execution range, the Celerity runtime system infers 
which parts of a buffer will be read, and which ones will be 
written—at arbitrary granularity.

1 distr_queue queue;
2 auto rg = range <2>(512, 512);
3 buffer <float , 2> buf_in(hst_in.data(), rg);
4 buffer <float , 2> buf_out(rg);
5

6 queue.submit ([=]( handler& cgh) {
7 access or in{buf_in , cgh ,
8 access :: one_to_one{}, read_only };
9 access or out{buf_out , cgh ,

10 access :: one_to_one{}, write_only };
11 cgh.parallel_for(rg, [=]( item <2> itm) {
12 out[itm] = in[itm] * 2.f;
13 });
14 });

Listing 1: A basic matrix operation in Celerity

Tasks

Listing 1 shows an example of a simple matrix operation 
implemented in Celerity. To transparently enable asynchro-
nous execution, all compute operations in a Celerity program 
are invoked by means of a queue object. In the first line of 
Listing 1, this queue of type celerity::distr_queue 
is created. Subsequently, two two-dimensional buffer objects 
are created, with the former initialized from some host data 
hst_in.

The central call to distr_queue::submit on line 
6 submits a command group, which creates a new task that 
will later be scheduled onto one or more GPUs across the 
given cluster. The index space of this task (the 2D range rg 
in this example) will be split into multiple chunks that can 
be executed by different workers. The provided callback (the 
kernel code) is subsequently invoked with an index object 
(itm) of corresponding dimensionality, which is used to 
uniquely identify each kernel thread.

Range Mappers

This program closely resembles a canonical SYCL pro-
gram, with one important difference: Each constructor for 
celerity::accessor is provided with a range map-
per, in this case a two-dimensional instance of the one_
to_one mapper. This particular range mapper indicates 

1  Readers may refer to [10–12, 21], as well as the Celerity documen-
tation at https://​celer​ity.​github.​io/​docs/​getti​ng-​start​ed.

https://celerity.github.io/docs/getting-started
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that every work item of the 512 × 512 global iteration space 
accesses exactly one element from buf_in and buf_out 
each—precisely at the work item index.

In general, range mappers can be arbitrary user-defined 
functions, with a small set of constraints, primarily related to 
overlapping output accessors not being valid. This allows for 
a high degree of flexibility, while the included one-to-one, 
slice, neighborhood and fixed range mappers reduce verbos-
ity and make user programs more readable in common cases.

Execution Principle

The actual execution of Celerity program involves three 
major steps, each of which proceeds asynchronously with 
the others in a pipelined fashion: (i) task graph generation, 
(ii) command graph generation, and (iii) execution.

The task graph encapsulates the behaviour of the program 
at a high level. Essentially, every submission on the queue 
is represented by a task, and dependencies are computed 
based on each task’s accessor specification. In the lower-
level command graph, task executions are split up for each 
GPU, and the required commands for transfers are also 
generated. Therefore, the number of nodes in the command 
graph is generally larger than the task graph by a factor of at 
least O(N). These commands are finally executed on a set of 
parallel execution lanes.

Summary

While Celerity can be considered a task-based runtime sys-
tem, its default mode of operation differs significantly from 
the more common approach taken, particularly in distributed 
memory settings. Instead of leaving the choice of how to 
split work or data fully or partially to the user, the Celerity 
approach is to consider each data-parallel computation as a 
single splittable task. The runtime system is provided with 
sufficient information, primarily by means of accessors and 
their associated range mappers, to split these tasks in various 
ways and distribute them across the cluster.

Data State Tracking

From a theoretical point of view (in practice, custom acceler-
ation data structures are employed2), the runtime system has 
to track the state of each individual data element, in order to 
be able to build a data dependence graph and construct the 
necessary transfer commands. These data structures—one 
for each buffer managed by the runtime system—track the 
last operation which wrote to any particular data element. As 
such, they need to be updated for each write access requested 

by a program, and are queried whenever read access to a 
buffer is required by a kernel. The performance of these 
operations is thus crucial to the overall efficiency of the 
runtime system.

For data access patterns common in many physical simu-
lations and linear algebra, the number of individual regions 
which need to be tracked generally scales with the number 
of GPUs in the system, as all elements are replaced in each 
successive time step or iteration of the algorithm. In these 
cases, distributed command graph generation [12], which 
only locally tracks the perspective on the total system state 
which is required for the operations on one node, is highly 
effective and can scale up to thousands of GPUs. However, 
it can not mitigate tracking data structure growth with some 
more complex access patterns, or when the user application 
generates a very large number of tasks operating on indi-
vidual portions of the same buffer.

Generative Data Access Patterns

In some domains, data access patterns iteratively generate 
new data over the execution of a program, and might refer 
to all the generated data in some subsequent computations. 
We call these access patterns generative, and they present a 
unique challenge for data state tracking.

Figure 1 illustrates the state of the tracking data struc-
ture of a 2D buffer with a generative data access pattern 
running on two nodes, after one, two and 5 time steps. In 
this example pattern, every time step one row of the buffer 
is generated in parallel, and every subsequent time step 
requires all previously computed data. For this example, we 
assume a static 50:50 split in computation between the two 

Fig. 1   State tracking with a generative access pattern

2  https://​github.​com/​celer​ity/​celer​ity-​runti​me/​pull/​184.

https://github.com/celerity/celerity-runtime/pull/184


SN Computer Science           (2024) 5:409 	 Page 5 of 12    409 

SN Computer Science

participating nodes. As such, after timestep t1, each node 
will push its computed data to the other in order to perform 
the computation at t2, and so forth.

With N GPUs, this means that the tracking data structure 
will contain O(N ⋅ t) separate last writer regions at time step 
t. Even with a highly efficient data structure, the time to 
query the full previously computed area (e.g. all rows up 
to t − 1 ) will thus scale linearly (at best) with the number 
of time steps.

A simple solution to this particular problem might appear 
to be to only track whether some data is available locally 
or on some other node, rather than precise information on 
which command will have generated it. While this would 
result in a functionally correct execution, it also implies a 
complete sequentialization of the command graph up to the 
most recent data transfer. This would prevent e.g. automatic 
communication and computation overlapping, the asynchro-
nous sending or receiving of many separate data chunks, or 
the parallel execution of several independent kernels access-
ing the same buffers. Horizons provide an elegant solution 
to this dilemma.

Explicit Many‑Task Processing of Large Data Sets

Generative access patterns are not the only case in which 
some sort of consolidation of the data state tracking infor-
mation is desired. While many data-parallel algorithms for 
which Celerity is used in practice lead to a relatively small 
number of user-defined task invocations—with parallelism 
provided by splitting the execution ranges of these tasks as 
required—some algorithms benefit from parallelism being 
expressed as individual, independent tasks at the user level. 
One of the simplest possible examples of this pattern that 
is also relevant to the data state tacking discussion is when 
a large number of individual parallel tasks independently 
process distinct sub-ranges of a given buffer.

Figure 2 illustrates the result of buffer tracking in such 
a scenario. In the upper pair of illustrations, only one 
task has been processed (“Compute 0” was chosen in this 
case, though, since the tasks are independent, this choice 

is arbitrary), and has computed the upper half of the first 
column of the buffer on node 0, and the lower half on 
node 1. The state of the internal tracking structure after 
all tasks have been processed is shown in the lower part 
of the figure.

For M user-defined, independent tasks, the tracking data 
structure will contain M + 1 entries in this case. Note that 
unlike the generative pattern, this complexity does not 
grow with the number of nodes or GPUs N, since there 
is no communication involved in this sample. In a real-
world use case subsequent computation steps would likely 
access larger parts of the buffer, requiring data transfers, 
but for our purposes of analyzing the impact of Horizons 
this simple scenario is already sufficient.

Horizons

Figure 3 illustrates a simplified view of the command 
graph generated for the first five iterations of a computa-
tion with a basic generative data pattern (see Sect. 2.3) 
scheduled on two nodes/GPUs. It includes compute com-
mands, as well as data push and receive commands. As 
each row of the involved data buffer is generated by subse-
quent time steps, the number of dependencies in the com-
mand graph scales with the iteration count, as indicated in 
the figure at location 1 .

Horizons solve this issue by selectively coalescing data 
structures and dependencies, asynchronously and with a 
configurable level of detail being maintained. From a high-
level point of view, “Horizons” describe synchronization 
points during the execution of a program, in both the task 
and command graph.

However, it is crucial to note that no single horizon 
implies full and immediate synchronization. Instead, at any 
point during the scheduling and command generation for 
a program (after the startup phase), two relevant Hori-
zons exist: the older of the two is the most recent Horizon 
which was applied, which means that all tracking data 
related to commands scheduled before it was subsumed 
and coalesced; the newer of the two is the most recent 
Horizon to be generated—it will eventually be applied, 
but as of now it imposes no synchronization. As such, 
the window between the applied Horizon and the current 
execution front maintains all opportunities for parallel and 
asynchronous execution and fine-grained scheduling which 
would be available without Horizons.

For clarity, we split our detailed description of the 
horizons concept into three parts: (i) the decision mak-
ing procedure, (ii) horizon generation, and (iii) horizon 
application.

Fig. 2   State tracking for a many-independent-task processing pattern
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Horizon Decision Making

The decision on whether and where to generate a new Hori-
zon is made during task graph generation. There are two fun-
damental scenarios in which Horizon generation is useful:

•	 When working on a sequence of dependent tasks, as rep-
resented by the generative data access pattern example 
(see Sect. 2.3). We call these Horizons depth-triggered, 
as they simplify deep task graphs, that is, ones where 
a significant portion of all tasks is on the critical path. 
We discuss the circumstances under which these types 
of Horizons are generated in Sect. 3.1.1.

•	 When a very large number of independent parallel tasks 
are scheduled by the user code, as represented by the 
many-task data tracking example (see Sect. 2.4). We call 
these types of Horizons breadth-triggered, since they 
simplify tracking in cases where the task graph is very 
wide, i.e. when there are many independent asynchro-
nous tasks. We discuss when precisely these Horizons 
are generated in Sect. 3.1.2.

Note that these two cases are distinct only in the conditions 
which trigger the generation of a Horizon. The actual gen-
eration and application of the Horizons, constituting the vast 

majority of their implementation, are shared between both 
cases.

Depth‑Triggered Horizons

Whenever new nodes are inserted into the task graph, they 
are associated with the current critical path length C from 
the start of the program, computed in O(P) from their P 
predecessors. Additionally, we also track the most recent 
Horizon position H, where e.g. H = 5 means that the most 
recent Horizon was generated at critical path length 5.

A dynamically configurable value S > 0 , the Horizon 
Step Size, then defines how frequently new depth-triggered 
Horizons are generated. A new Horizon task is inserted into 
the task graph every time the critical path length grows by 
S, that is, whenever

Breadth‑Triggered Horizons

The goal of breadth-triggered Horizons is to allow for con-
solidating tracking data in cases where a very large number 

C > H ∧ (C − H) mod S ≡ 0 .

Fig. 3   Command graph and buffer tracking for a generative data pattern
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of independent asynchronous tasks are generated by the user 
program, as exemplified by the simple pattern described in 
Sect. 2.4.

To directly address this use case, a trigger condition based 
on the size of the current execution front of the task graph 
is employed. The execution front contains all commands 
for which there currently are no successors, and is easily 
tracked throughout the task generation process with only 
minimal, constant overhead per task. This execution front is 
also already required for other operations on the task graph, 
so in practice there is no additional cost for implementing 
breadth-triggered Horizons other than the check itself.

When this execution front is available, the specifics of 
breadth-triggered Horizons are extremely simple: given a 
Maximum Task Execution Front Size of M

E
 , a new Horizon 

task is inserted into the task graph iff, after the generation of 
any new task, the current task front size exceeds M

E
 . Note 

that therefore the smallest meaningful value for M
E
 is 2.

Horizon Generation

When command generation encounters a new Horizon 
task, a corresponding per-node horizon command is gen-
erated. This command has a true dependency on each of 
the nodes in the entire current per-node execution front of 
the command graph. As a consequence, after each Horizon 

generation, the execution front contains only the horizon 
command.

To illustrate this principle, Fig. 4 shows the generation 
of Horizon 0 at 2  and Horizon 1 at 3  . Note that the com-
mands associated with the former only depend on the ini-
tial compute commands of each respective node, while all 
later horizons depend on both the most recent compute and 
receive commands on their respective node.

Whenever a Horizon is generated for e.g. critical path 
length C, if a previous Horizon generated for critical path 
length C − S exists, it is applied.

Horizon Application

Applying a Horizon is arguably the most crucial step of the 
process, as it is what allows for the consolidation of tracking 
data structures, and therefore a reduction in dependencies. 
Crucially, Horizons are always applied with a delay of one 
step, which maintains fine-grained tracking and therefore 
asynchronicity for the most recent group of commands.

When a given Horizon is applied, all references to pre-
vious writers in the tracking data structures which refer to 
commands preceding the Horizon are updated to instead 
refer to the Horizon being applied. In the example shown in 
Fig. 4, at 3  Horizon 0 is applied, thus replacing Compute 
0 in the tracking data structures. Note that all commands 

Fig. 4   Command graph and buffer tracking for a generative data pattern with Horizons, using the minimum step size S = 1
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are consecutively numbered internally, so there is no graph 
traversal or other complex operation required to determine 
whether a given Horizon should replace any given entry in 
the tracking data structure.

After Horizon application, during any subsequent com-
mand generation steps, dependencies which would have 
been generated referring to commands prior to the Horizon 
boundary directly will instead refer to the appropriate Hori-
zon. A comparison between 4  in Fig. 4 and 1  in Fig. 3 
illustrates how Horizons thus maintain a constant command 
dependency structure with generative data access patterns.

Summary and Features of the Horizon Approach

The Horizon approach as presented has the following 
properties: 

1.	 It is independent of the specifics of the data access pat-
tern, and its induced dependency graph.

2.	 It maintains a constant maximum on the per-node 
dependencies which need to be tracked.

3.	 A window of high-fidelity dependency information is 
maintained, and the size of this window can be adjusted 
by setting the step size S.

4.	 An easily adjustable degree of task parallelism is main-
tained, which can be modified by setting M

E
.

5.	 Horizon triggering and command generation are both 
efficient, as the required information (current critical 
path length and execution front) can be tracked with a 
small fixed overhead during the generation of each graph 
node.

6.	 Horizon application is highly efficient, as due to the 
numbering scheme of commands a simple integer check 
suffices (no graph traversal is required).

7.	 No additional communication is required for any step 
in the process, all nodes can continue to proceed com-
pletely asynchronously.

We show the practical value of this scheme and demonstrate 
the impact of varying the parameters S and M

E
 in Sect. 4.

Evaluation

In this section, we present empirical results which illustrate 
the effectiveness and efficiency of the Horizon approach as 
it is currently implemented in the Celerity runtime system. 
We first show microbenchmarks of simple generative data 
patterns to precisely track the impact of Horizon step sizes 
(S) on command generation times.

Secondly, we benchmark a representative explicit many-
task processing pattern, illustrating the relationship between 

the maximum task execution front size ( M
E
 ) and the overall 

graph generation time of the Celerity system.
Thirdly, we demonstrate that Horizons have negligible 

overhead at both small and large scales, and can even be 
beneficial for programs without generative access patterns 
or many user-defined tasks, using dry-run benchmarks. In 
dry-run mode, the Celerity runtime system performs all the 
scheduling and command generation work of a real pro-
gram, but skips the execution of its kernels. This allows us to 
quickly execute benchmarks on a large—simulated—number 
of nodes and observe the impact of various optimizations 
and data structure choices on task and command graph gen-
eration performance, without occupying a large-scale HPC 
cluster.

Finally, we show the impact of Horizons on a full run of 
a real-world application in room response simulation, which 
exhibits a generative access pattern.

Experiment Setup

The hardware and software stack for the microbenchmarks 
and dry-run benchmarks comprises a single node featuring 
an AMD Threadripper TR-2920X CPU, running Ubuntu 
Linux 22.04. As the dry-run benchmarks need no additional 
hardware and are relatively quick to complete, 30 runs of 
each configuration were performed and the median result is 
reported. The variation observed across all results of these 
runs was less than 3%, therefore we omit it from the charts 
for readability. The real-world application benchmarks were 
performed on the Marconi-100 supercomputer3 at CINECA 
in Bologna, Italy, with a lower count of 5 runs each due to 
hardware availability limitations. Marconi-100 is an IBM 
Power9 system with 4 NVIDIA V100 GPUs per node.

Celerity is available on Github, with the specific revision 
f190da34 being used for this publication. The Celerity dis-
tribution also includes the source of the microbenchmarks 
discussed in the following sections. The benchmarks were 
performed with the hipSYCL (now AdaptiveCPP) SYCL 
implementation.5

Generative Access Microbenchmarks

Figure 5 shows the per-iteration time spent on command 
generation for a cluster of 512 GPUs, in a microbenchmark 
of a 2D generative access pattern, with different Horizon 
configurations. Note that this plot is logarithmic in the Y 
axis, to better capture the differences between the settings.

3  https://​www.​top500.​org/​system/​179845/
4  https://​github.​com/​celer​ity/​celer​ity-​runti​me/​commit/​f190d​a3db7​
23ac7​8b855​90467​ccb36​c5115​0cb00
5  https://​github.​com/​Adapt​iveCpp/​Adapt​iveCpp

https://www.top500.org/system/179845/
https://github.com/celerity/celerity-runtime/commit/f190da3db723ac78b85590467ccb36c51150cb00
https://github.com/celerity/celerity-runtime/commit/f190da3db723ac78b85590467ccb36c51150cb00
https://github.com/AdaptiveCpp/AdaptiveCpp
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Without horizons (the solid black line), the command 
generation overhead grows with each iteration of the bench-
mark, as expected due to the growth of dependencies out-
lined in Sect. 3. With a Horizon step size of 16, a drop in 
overhead is seen for the first time in iteration 33, as the Hori-
zon generated after iteration 16 was applied in iteration 32. 
The same pattern is visible for the smaller step sizes 4 and 
2, but at a smaller scale. With step size 1, the per-iteration 
time is almost entirely flat.

Figure 6 provides the same view on a benchmark of a 
3D generative access pattern. We note that the behavior 
once the first horizon has been applied is almost identical 
to the 2D case, despite the difference in buffer and there-
fore tracking dimensionality. In the initial few iterations, 
a slightly higher per-iteration time can be observed. This 

is due to the slightly more complex and nested data struc-
tures involved in tracking data dependencies for 3D access 
patterns, which incur a somewhat larger initial overhead 
until they are fully built and cached.

Figure 7 illustrates the total execution time (blue dia-
mond, left axis) and total time spent on horizon generation 
and application (green triangle, right axis) of the same 
microbenchmark. Besides the remarkable decrease in 
the overall benchmark runtime due to Horizons, which 
matches the per-iteration results, the behaviour of the 
Horizon overhead is interesting: when generating a Hori-
zon every time step, the overhead is slightly higher, then 
it drops, but increases again at S = 16 . This result can be 
explained by the fact that, although Horizons are generated 
far less frequently, the accumulated complexity in the data 
tracking structure and command graph after 16 iterations 
makes Horizon generation significantly more expensive. 
However, even in this case, the Horizon generation over-
head only amounts to a total of 12 ms over 256 iterations.

We also measured this data for 1D and 3D generative 
access patterns, and the shape across different Horizon 
step sizes is almost identical to the 2D case. The total 
times for the 1D pattern are generally lower—roughly 
1/3rd of the 2D time—while the 3D times are slightly 
higher. This corresponds to the general expected tracking 
overhead, independently of Horizons, and proves that they 

Fig. 5   Per-iteration time for 
2D generative access micro-
benchmark; each line shows a 
different horizon step setting S 
(or no Horizons), as indicated in 
the legend

Fig. 6   Per-iteration time for 
3D generative access micro-
benchmark; each line shows a 
different horizon step setting S 
(or no Horizons), as indicated in 
the legend

Fig. 7   Total times for 2D generative access microbenchmark
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work equally well for generative access patterns regardless 
of the dimensionality of the buffer being tracked.

Many‑Task Parallelism Microbenchmarks

While the previous microbenchmarks demonstrate the effect 
of horizons for generative data access patterns, they do not 
cover the independent many-task parallelism case as out-
lined in Sect. 2.4. In order to analyze this pattern, we created 
a representative many-task application which generates N 
parallel, independent tasks each working on its own chunk 
of a buffer, with R repetitions. Figure 8 depicts the high-level 
task dependency graph modeled by this application.

We performed a benchmark of this application with 
N = 15000 and R = 5 , and the resulting per-task generation 
times are depicted in Fig. 9. The first result which may ini-
tially be surprising is that the per-task time with no horizons 
(the dotted line) is independent of the number of nodes the 
application is scheduled on. This is due to the task-count-
induced tracking overhead with N = 15000 completely dom-
inating the task generation time. Since there is no communi-
cation required by this benchmark structure, the number of 
involved nodes does not have a significant impact.

Given this understanding of the application, it might then 
be counter-intuitive that, once more frequent breadth-trig-
gered horizons are enabled by setting M

E
 to smaller values, 

the number of nodes starts to actually factor into the over-
head. Two main factors explain this behaviour:

•	 The introduction of Horizons at reasonably low settings 
for M

E
 reduces the overall tracking overhead, making 

other aspects which are more dependent on the total node 
count more relevant again.

•	 With a larger number of nodes, there is a larger mini-
mum number of distinct data fragments which need to 
be tracked, regardless of the chosen threshold M

E
 . This 

means that the potential for tracking overhead reduction 
due to Horizon application is lower with a larger number 
of nodes.

Finally, the results indicate that choosing a very high thresh-
old M

E
 can actually be detrimental to performance, com-

pared to not using Horizons at all. However, a setting of e.g. 
M

E
= 256 extracts a very large benefit from Horizons, with 

an overhead reduction of factor 8.2, 7.9, and 2.5 respectively 
for 1, 16 and 256 Nodes. Such a setting does, due to the 
asynchronous application of Horizons (see Sect. 3.3), still 
allow for 512 high-level tasks to be running asynchronously 
in the system, each of which can be split to further increase 
available parallelism.

Overhead for Other Parallel Patterns

For Horizons to provide a suitable solution for coalescing 
dependencies in a general runtime system, they need to have 
no significant negative performance impact in applications 
with non-generative access patterns and a smaller number 
of highly splittable tasks. Figure 10 summarizes results for 
two such applications: WaveSim, a 2D stencil computation, 
and Nbody, an all-pairs N-body physics simulation.

In the WaveSim application, the overall impact of Hori-
zons is negligible: the total dry-run time varies by less 
than 3 ms with and without Horizon use and with differ-
ent step sizes, and less than 0.5 ms outside of the extreme 
Horizon step size setting of S = 1 . For the Nbody bench-
mark, there is a more notable impact—although it is still 
minor compared to applications with generative patterns. 

Fig. 8   Many-independent-task microbenchmark structure

Fig. 9   Per-task time for inde-
pendent many-task benchmark; 
each line shows a different 
number of cluster nodes, as 
indicated in the legend; the 
X axis depicts the maximum 
execution front size M

E
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Two particular results stand out: the horizon overhead at 
step size 1, and the fact that the introduction of Horizons 
has a positive overall performance impact on the order of 
7%. The former is explained by the particular structure 
of this application, which has two different types of main 
compute kernels, one of which features only a one-on-one 
read dependency that can be satisfied locally, while the 
other requires all-to-all communication. With a Horizon 
step size of 1, Horizons are inserted after the latter ker-
nel, requiring a much larger number of dependencies. The 
overall positive impact of Horizons can be explained by 
their application being utilized to clean up various internal 
data structures, which can be slightly beneficial even in 
non-generative cases.

Real‑World Application

To confirm the data obtained using microbenchmarking and 
dry-run experimentation, Fig. 11 shows the result of a strong 
scaling experiment with the Celerity version of RSim [22], 
a room response simulation application, over 1000 time 
steps. RSim computes the spread of a light impulse through 
a 3D space modeled as a set of triangles. In each time step, 
the incident light for each triangle depends on the radiosity 
of all other triangles visible from it, at a point in time that 
depends on the spatial—and therefore also temporal—dis-
tance between the two triangles. As such, the main compu-
tational kernel of RSim exhibits a generative access pattern 
in which subsequent time steps depend on the per-element 
radiosity computed in prior time steps.

We compare the current default setting of the Celerity 
runtime system, Horizon step size 2, with no Horizons. In 
the latter case, with 4 and more GPUs, command generation 
overhead starts to dominate the overall simulation run time. 
With Horizons, near-linear strong scaling is maintained 
up to 16 GPUs, and strong scaling continues to 32 GPUs. 
The remaining drop from linear scaling, particularly at 32 
GPUs, is not caused by data location tracking overhead in 

the runtime system. Instead, it can be attributed to the fact 
that this is a strong scaling experiment with fixed-size per-
timestep communication requirements.

Conclusion

In this paper, we have presented Command Horizons, an 
approach to limiting the data tracking and command gen-
eration overhead in data-flow-driven distributed runtime 
systems with automatic communication, particularly in the 
presence of generative data access patterns or a very large 
number of user-defined asynchronous tasks, while main-
taining asynchronicity.

Based on their current implementation in the Celerity 
runtime system, we have demonstrated that Horizons can 
be generated and applied very efficiently and with low 
overhead in a variety of applications, and that they are 
effective at capping command generation overhead and 
the complexity of internal tracking data structures at a 
stable level.

Horizons also have additional applications, e.g. in 
providing a consistent distributed state for decision mak-
ing without requiring communication, which we hope to 
explore in the future.

Fig. 10   Horizon impact and 
overhead for two non-generative 
applications. X-axis shows 
Horizon use/step size

Fig. 11   Horizon impact on RSim application
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