
Vol.:(0123456789)

SN Computer Science (2024) 5:409
https://doi.org/10.1007/s42979-024-02749-w

SN Computer Science

ORIGINAL RESEARCH

Balancing Tracking Granularity and Parallelism in Many‑Task Systems:
The Horizons Approach

Peter Thoman1  · Philip Salzmann1

Received: 29 September 2023 / Accepted: 24 February 2024
© The Author(s) 2024

Abstract
Reducing the need for users to manually manage the details of work and data distribution is an important goal of high-level
many-task runtime systems. For distributed memory platforms this means that the runtime system has to keep track of both
fine-grained task dependencies and data residency meta-information. The amount of such meta-information is proportional
to the granularity of parallelism which needs to be managed, introducing a trade-off. More precise tracking of data state
allows leveraging more opportunities for compute and transfer parallelism, while also introducing more overhead. As such,
the fidelity of the information being tracked needs to be managed carefully, ideally without introducing additional latency,
communication or substantial compute overhead. We present the “Horizons” approach, designed to fulfill these goals. Spe-
cifically, horizons allow for the effective and efficient management of parallelism and the coalescing of previous fine-grained
tracking information while maintaining an easily configurable scheduling window with full information precision. As an
additional benefit, they provide consistent cluster-wide decision points without requiring any inter-node communication, and
effectively cap the size of state tracking data structures even in the presence of problematic access patterns. Experimental
evaluation on microbenchmarks and dry runs demonstrates that horizons are effective in keeping the scheduling complexity
constant, while their own overhead is negligible—below 10 μs per horizon when building a command graph for 512 GPUs.
We additionally demonstrate the performance impact of horizons—as well as their low overhead—on a real-world application.

Keywords  Dependency tracking · Task graph · Asynchronicity · Command generation · Gpu cluster

Introduction and Related Work

Modern high performance computing (HPC) hardware
platforms feature many layers of parallelism, memory and
communication. While they employ state-of-the-art methods
to keep latencies as low as possible, the increase in com-
putational throughput and bandwidth outpaces reductions
in latency. Communication latency is thus an important

limiting factor for performance, particularly at larger scales.
As such, software for HPC systems is frequently designed to
leverage asynchronicity as much as possible, enabling e.g.
communication and computation overlapping.

Developing software which implements these techniques
is a challenging endeavor, particularly while relying on the
established de-facto standard approach to developing dis-
tributed GPU applications: “MPI + X”, where the Message
Passing Interface (MPI) [1] is combined with a data parallel
programming model such as OpenMP, CUDA or OpenCL.
Together with other factors such as lacking funding, this
complexity leads to the development of new software
for HPC typically being left to a select few HPC experts,
and research is frequently performed using a small set of
domain-specific software packages.

Parallel Runtime Systems

One promising avenue for improving programmability or
enabling more flexible development of and experimentation

This article is part of the topical collection “Applications and
Frameworks using the Asynchronous Many Task Paradigm” guest
edited by Patrick Diehl, Hartmut Kaiser, Peter Thoman, Steven R.
Brandt and ''Ram” Ramanujam.

 *	 Peter Thoman
	 peter.thoman@uibk.ac.at

	 Philip Salzmann
	 philip.salzmann@uibk.ac.at

1	 Distributed and Parallel Systems Group, University
of Innsbruck, Technikerstraße 21a, Innsbruck 6020, Tirol,
Austria

http://orcid.org/0000-0002-4028-7451
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-02749-w&domain=pdf

	 SN Computer Science (2024) 5:409 409   Page 2 of 12

SN Computer Science

with high performance code for distributed memory GPU
clusters are higher-level runtime systems. These typically
introduce an API and custom terminology, as well as ena-
bling ecosystems of tooling and derived software projects.

A notable example is StarPU [2], an extensible runtime
system for programming heterogeneous systems. It offers
a wide array of scheduling approaches, from simple FCFS
policies, over work-stealing and heuristics, to dedicated
schedulers for dense linear algebra on heterogeneous archi-
tectures [3, 4]. Nevertheless, StarPU’s C API is rather low
level and requires the explicit handling of data distribution
when executing in cluster environments.

Legion [5] is a runtime system designed to make effi-
cient use of heterogeneous hardware through highly con-
figurable and efficient work splitting and mapping to the
available resources. Its C++API is intricate and precise, with
the explicit intent of putting performance first, before any
programmability considerations, making it unsuitable for
non-expert users.

HPX [6] is a C++ runtime system for parallel and dis-
tributed applications of any scale with a particular focus
on enabling asynchronous data transfers and computation.
Its heterogeneous compute backend supports targeting both
CUDA and SYCL [7].

PaRSEC [8] uses a custom graph representation lan-
guage called JDF to describe the dataflow of an applica-
tion [9]. Either automatically generated or written by hand,
this representation enables a fully decentralized scheduling
model and automatic handling of data dependencies across
a distributed system, although the initial distribution of data
needs to be provided by the user.

The Celerity programming model [10] was designed to
minimally extend the SYCL programming standard [11]
while enabling automated distributed memory execution,
specifically for clusters of GPU-like accelerators. It asyn-
chronously generates and executes a distributed command
graph from an implicit task graph derived from data access
patterns [12].

While all the projects mentioned so far are primarily
library-based runtime systems, a related category com-
prises those approaches which extend the grammar of
existing programming languages, for example the pragma-
based OmpSs [13]. Some related projects introduce entirely
new languages altogether, such as Chapel [14], X10 [15]
or Regent [16]. However, they, too, require an associated
runtime system.

Finally, skeleton-based approaches trade some general-
ity for a more tailored and user-friendly API, and this focus
can also allow for simpler or higher-level data management
and dependency tracking. Early implementations include the
Quaff library by Falcou et al. [17], as well as the Orléans
Skeleton Library by Noman and Loulergue [18]. Shigeyuki
et al. [19] developed an early application of algorithmic

skeletons to GPU computing. More recently, Ernstsson
et al. [20] developed an extension to the SkePU skeleton
programming model which lazily records the lineage of skel-
eton invocations, and applies tiling once partial results are
actually required by the program.

What is clear from this broad and sustained interest is
that ways to quickly develop distributed applications and
efficiently experiment with different work and data distri-
bution patterns are widely desired. Depending on the level
of abstraction targeted by a system, data distribution and
synchronization is either manual, semi-automatic or fully
automatic.

Tracking Data State

For those systems which transparently manage distributed
memory transfers and/or derive their task and command
graphs from memory access patterns, tracking the state of
data in the system at any given point in time is a significant
challenge. On the one hand, all opportunities for asynchro-
nous compute and transfer operations should be leveraged,
but on the other hand, in an HPC context, scheduling and
command generation also need to be sufficiently fast to scale
to potentially thousands of cluster nodes. This is particular
relevant when targeting strong scaling, as the time avail-
able to schedule individual tasks while maintaining efficient
throughput shrinks even for fully asynchronous systems.

Tracking for some data access patterns—e.g. stencil-like
computations—is quite manageable with a relatively simple
approach, which means that some skeleton-based systems
can largely circumvent these issues. However, a general
high-level runtime system may be presented with more unu-
sual patterns which can present additional difficulties. In
particular, as we will outline in more detail in Sect. 2.3, gen-
erative patterns have the potential to overwhelm data track-
ing. However, even relatively straightforward many-task
processing of large data sets can become problematic when
individual tasks are sufficiently short-lived, as described in
Sect. 2.4.

The Horizons Concept

In this work, we present Horizons, a concept which mani-
fests as a special type of node in task or command graphs
for distributed parallel runtime systems. The basic working
principle of Horizons is that, when specific conditions are
met during the live generation of a task graph, a Horizon
node is introduced. Crucially, at this point, that particular
Horizon does not yet have any impact on subsequent par-
allelism or the granularity of dependency tracking: it only
becomes active at a later point, when it subsumes details
about prior computations.

Core design goals and features of horizons include:

SN Computer Science (2024) 5:409 	 Page 3 of 12  409

SN Computer Science

•	 Maintaining asynchronous command generation and
execution.

•	 Allowing for a configurable trade-off in the level of detail
regarding data state available for command generation.

•	 Allowing for a configurable cap on the degree of task-
level parallelism concurrently managed by the system.

•	 Never directly introducing a synchronization point.
•	 Requiring no additional inter-node communication.

Our implementation of Horizons in the Celerity runtime sys-
tem achieves all of these goals. Section 2 provides a concise
overview of the Celerity system, and describes the types of
access patterns and task graph structures which Horizons are
particularly effective at managing. Section 3 explains how
Horizons are generated, managed and applied, illustrating
their impact on command generation. In Sect. 4 we present
an in-depth empirical evaluation of the implementation of
Horizons in Celerity, including both microbenchmarks and
real-world applications. Finally, Sect. 5 concludes the paper.

Background

The Celerity Runtime System

Celerity is a modern, open C++ framework for distributed
GPU computing [12]. Built on the SYCL industry stand-
ard [11] published by the Khronos Group, it aims to bring
SYCL to clusters of GPUs with a minimal set of API exten-
sions. A full overview of the SYCL and Celerity APIs is
beyond the scope of this paper,1 so in this section we will
focus on how Celerity extends the data parallelism of SYCL
kernels to distributed multi-GPU execution, and the data
state tracking requirements this induces for the runtime
system.

A typical SYCL program is centered around buffers of
data and kernels which manipulate them. The latter are
wrapped in so-called command groups and submitted to a
queue, which is then processed asynchronously with respect
to the host process. Crucially, buffers are more than sim-
ple pointers returned by a malloc-esque API: they are
accessed through so-called accessors, which are declared
within a command group before a kernel is launched. Upon
creating buffer accessors, the user additionally has to declare
how a buffer will be accessed, i.e., for reading, writing or
both. This allows the SYCL runtime to construct a task
graph based on the dataflow of buffers through kernels.

SYCL—in the same fashion as CUDA and OpenCL—
abstracts the concept of a (GPU) hardware thread: it allows

users express their programs in terms of linear-looking ker-
nel code, which is invoked on an N-dimensional range of
work items. Celerity extends this concept to distributed com-
putation. While Celerity kernels are written in the same way
as in SYCL, they can be executed across multiple devices
on different nodes, with all resulting data transfers handled
completely transparently to the user.

The most fundamental extension to SYCL introduced by
Celerity are range mappers, functions that provide addi-
tional information about how buffers are accessed from a
kernel. By evaluating these range mappers on sub-domains
of the execution range, the Celerity runtime system infers
which parts of a buffer will be read, and which ones will be
written—at arbitrary granularity.

1 distr_queue queue;
2 auto rg = range <2>(512, 512);
3 buffer <float , 2> buf_in(hst_in.data(), rg);
4 buffer <float , 2> buf_out(rg);
5

6 queue.submit ([=](handler& cgh) {
7 access or in{buf_in , cgh ,
8 access :: one_to_one{}, read_only };
9 access or out{buf_out , cgh ,

10 access :: one_to_one{}, write_only };
11 cgh.parallel_for(rg, [=](item <2> itm) {
12 out[itm] = in[itm] * 2.f;
13 });
14 });

Listing 1: A basic matrix operation in Celerity

Tasks

Listing 1 shows an example of a simple matrix operation
implemented in Celerity. To transparently enable asynchro-
nous execution, all compute operations in a Celerity program
are invoked by means of a queue object. In the first line of
Listing 1, this queue of type celerity::distr_queue
is created. Subsequently, two two-dimensional buffer objects
are created, with the former initialized from some host data
hst_in.

The central call to distr_queue::submit on line
6 submits a command group, which creates a new task that
will later be scheduled onto one or more GPUs across the
given cluster. The index space of this task (the 2D range rg
in this example) will be split into multiple chunks that can
be executed by different workers. The provided callback (the
kernel code) is subsequently invoked with an index object
(itm) of corresponding dimensionality, which is used to
uniquely identify each kernel thread.

Range Mappers

This program closely resembles a canonical SYCL pro-
gram, with one important difference: Each constructor for
celerity::accessor is provided with a range map-
per, in this case a two-dimensional instance of the one_
to_one mapper. This particular range mapper indicates

1  Readers may refer to [10–12, 21], as well as the Celerity documen-
tation at https://​celer​ity.​github.​io/​docs/​getti​ng-​start​ed.

https://celerity.github.io/docs/getting-started

	 SN Computer Science (2024) 5:409 409   Page 4 of 12

SN Computer Science

that every work item of the 512 × 512 global iteration space
accesses exactly one element from buf_in and buf_out
each—precisely at the work item index.

In general, range mappers can be arbitrary user-defined
functions, with a small set of constraints, primarily related to
overlapping output accessors not being valid. This allows for
a high degree of flexibility, while the included one-to-one,
slice, neighborhood and fixed range mappers reduce verbos-
ity and make user programs more readable in common cases.

Execution Principle

The actual execution of Celerity program involves three
major steps, each of which proceeds asynchronously with
the others in a pipelined fashion: (i) task graph generation,
(ii) command graph generation, and (iii) execution.

The task graph encapsulates the behaviour of the program
at a high level. Essentially, every submission on the queue
is represented by a task, and dependencies are computed
based on each task’s accessor specification. In the lower-
level command graph, task executions are split up for each
GPU, and the required commands for transfers are also
generated. Therefore, the number of nodes in the command
graph is generally larger than the task graph by a factor of at
least O(N). These commands are finally executed on a set of
parallel execution lanes.

Summary

While Celerity can be considered a task-based runtime sys-
tem, its default mode of operation differs significantly from
the more common approach taken, particularly in distributed
memory settings. Instead of leaving the choice of how to
split work or data fully or partially to the user, the Celerity
approach is to consider each data-parallel computation as a
single splittable task. The runtime system is provided with
sufficient information, primarily by means of accessors and
their associated range mappers, to split these tasks in various
ways and distribute them across the cluster.

Data State Tracking

From a theoretical point of view (in practice, custom acceler-
ation data structures are employed2), the runtime system has
to track the state of each individual data element, in order to
be able to build a data dependence graph and construct the
necessary transfer commands. These data structures—one
for each buffer managed by the runtime system—track the
last operation which wrote to any particular data element. As
such, they need to be updated for each write access requested

by a program, and are queried whenever read access to a
buffer is required by a kernel. The performance of these
operations is thus crucial to the overall efficiency of the
runtime system.

For data access patterns common in many physical simu-
lations and linear algebra, the number of individual regions
which need to be tracked generally scales with the number
of GPUs in the system, as all elements are replaced in each
successive time step or iteration of the algorithm. In these
cases, distributed command graph generation [12], which
only locally tracks the perspective on the total system state
which is required for the operations on one node, is highly
effective and can scale up to thousands of GPUs. However,
it can not mitigate tracking data structure growth with some
more complex access patterns, or when the user application
generates a very large number of tasks operating on indi-
vidual portions of the same buffer.

Generative Data Access Patterns

In some domains, data access patterns iteratively generate
new data over the execution of a program, and might refer
to all the generated data in some subsequent computations.
We call these access patterns generative, and they present a
unique challenge for data state tracking.

Figure 1 illustrates the state of the tracking data struc-
ture of a 2D buffer with a generative data access pattern
running on two nodes, after one, two and 5 time steps. In
this example pattern, every time step one row of the buffer
is generated in parallel, and every subsequent time step
requires all previously computed data. For this example, we
assume a static 50:50 split in computation between the two

Fig. 1   State tracking with a generative access pattern

2  https://​github.​com/​celer​ity/​celer​ity-​runti​me/​pull/​184.

https://github.com/celerity/celerity-runtime/pull/184

SN Computer Science (2024) 5:409 	 Page 5 of 12  409

SN Computer Science

participating nodes. As such, after timestep t1, each node
will push its computed data to the other in order to perform
the computation at t2, and so forth.

With N GPUs, this means that the tracking data structure
will contain O(N ⋅ t) separate last writer regions at time step
t. Even with a highly efficient data structure, the time to
query the full previously computed area (e.g. all rows up
to t − 1 ) will thus scale linearly (at best) with the number
of time steps.

A simple solution to this particular problem might appear
to be to only track whether some data is available locally
or on some other node, rather than precise information on
which command will have generated it. While this would
result in a functionally correct execution, it also implies a
complete sequentialization of the command graph up to the
most recent data transfer. This would prevent e.g. automatic
communication and computation overlapping, the asynchro-
nous sending or receiving of many separate data chunks, or
the parallel execution of several independent kernels access-
ing the same buffers. Horizons provide an elegant solution
to this dilemma.

Explicit Many‑Task Processing of Large Data Sets

Generative access patterns are not the only case in which
some sort of consolidation of the data state tracking infor-
mation is desired. While many data-parallel algorithms for
which Celerity is used in practice lead to a relatively small
number of user-defined task invocations—with parallelism
provided by splitting the execution ranges of these tasks as
required—some algorithms benefit from parallelism being
expressed as individual, independent tasks at the user level.
One of the simplest possible examples of this pattern that
is also relevant to the data state tacking discussion is when
a large number of individual parallel tasks independently
process distinct sub-ranges of a given buffer.

Figure 2 illustrates the result of buffer tracking in such
a scenario. In the upper pair of illustrations, only one
task has been processed (“Compute 0” was chosen in this
case, though, since the tasks are independent, this choice

is arbitrary), and has computed the upper half of the first
column of the buffer on node 0, and the lower half on
node 1. The state of the internal tracking structure after
all tasks have been processed is shown in the lower part
of the figure.

For M user-defined, independent tasks, the tracking data
structure will contain M + 1 entries in this case. Note that
unlike the generative pattern, this complexity does not
grow with the number of nodes or GPUs N, since there
is no communication involved in this sample. In a real-
world use case subsequent computation steps would likely
access larger parts of the buffer, requiring data transfers,
but for our purposes of analyzing the impact of Horizons
this simple scenario is already sufficient.

Horizons

Figure 3 illustrates a simplified view of the command
graph generated for the first five iterations of a computa-
tion with a basic generative data pattern (see Sect. 2.3)
scheduled on two nodes/GPUs. It includes compute com-
mands, as well as data push and receive commands. As
each row of the involved data buffer is generated by subse-
quent time steps, the number of dependencies in the com-
mand graph scales with the iteration count, as indicated in
the figure at location 1 .

Horizons solve this issue by selectively coalescing data
structures and dependencies, asynchronously and with a
configurable level of detail being maintained. From a high-
level point of view, “Horizons” describe synchronization
points during the execution of a program, in both the task
and command graph.

However, it is crucial to note that no single horizon
implies full and immediate synchronization. Instead, at any
point during the scheduling and command generation for
a program (after the startup phase), two relevant Hori-
zons exist: the older of the two is the most recent Horizon
which was applied, which means that all tracking data
related to commands scheduled before it was subsumed
and coalesced; the newer of the two is the most recent
Horizon to be generated—it will eventually be applied,
but as of now it imposes no synchronization. As such,
the window between the applied Horizon and the current
execution front maintains all opportunities for parallel and
asynchronous execution and fine-grained scheduling which
would be available without Horizons.

For clarity, we split our detailed description of the
horizons concept into three parts: (i) the decision mak-
ing procedure, (ii) horizon generation, and (iii) horizon
application.

Fig. 2   State tracking for a many-independent-task processing pattern

	 SN Computer Science (2024) 5:409 409   Page 6 of 12

SN Computer Science

Horizon Decision Making

The decision on whether and where to generate a new Hori-
zon is made during task graph generation. There are two fun-
damental scenarios in which Horizon generation is useful:

•	 When working on a sequence of dependent tasks, as rep-
resented by the generative data access pattern example
(see Sect. 2.3). We call these Horizons depth-triggered,
as they simplify deep task graphs, that is, ones where
a significant portion of all tasks is on the critical path.
We discuss the circumstances under which these types
of Horizons are generated in Sect. 3.1.1.

•	 When a very large number of independent parallel tasks
are scheduled by the user code, as represented by the
many-task data tracking example (see Sect. 2.4). We call
these types of Horizons breadth-triggered, since they
simplify tracking in cases where the task graph is very
wide, i.e. when there are many independent asynchro-
nous tasks. We discuss when precisely these Horizons
are generated in Sect. 3.1.2.

Note that these two cases are distinct only in the conditions
which trigger the generation of a Horizon. The actual gen-
eration and application of the Horizons, constituting the vast

majority of their implementation, are shared between both
cases.

Depth‑Triggered Horizons

Whenever new nodes are inserted into the task graph, they
are associated with the current critical path length C from
the start of the program, computed in O(P) from their P
predecessors. Additionally, we also track the most recent
Horizon position H, where e.g. H = 5 means that the most
recent Horizon was generated at critical path length 5.

A dynamically configurable value S > 0 , the Horizon
Step Size, then defines how frequently new depth-triggered
Horizons are generated. A new Horizon task is inserted into
the task graph every time the critical path length grows by
S, that is, whenever

Breadth‑Triggered Horizons

The goal of breadth-triggered Horizons is to allow for con-
solidating tracking data in cases where a very large number

C > H ∧ (C − H) mod S ≡ 0 .

Fig. 3   Command graph and buffer tracking for a generative data pattern

SN Computer Science (2024) 5:409 	 Page 7 of 12  409

SN Computer Science

of independent asynchronous tasks are generated by the user
program, as exemplified by the simple pattern described in
Sect. 2.4.

To directly address this use case, a trigger condition based
on the size of the current execution front of the task graph
is employed. The execution front contains all commands
for which there currently are no successors, and is easily
tracked throughout the task generation process with only
minimal, constant overhead per task. This execution front is
also already required for other operations on the task graph,
so in practice there is no additional cost for implementing
breadth-triggered Horizons other than the check itself.

When this execution front is available, the specifics of
breadth-triggered Horizons are extremely simple: given a
Maximum Task Execution Front Size of M

E
 , a new Horizon

task is inserted into the task graph iff, after the generation of
any new task, the current task front size exceeds M

E
 . Note

that therefore the smallest meaningful value for M
E
 is 2.

Horizon Generation

When command generation encounters a new Horizon
task, a corresponding per-node horizon command is gen-
erated. This command has a true dependency on each of
the nodes in the entire current per-node execution front of
the command graph. As a consequence, after each Horizon

generation, the execution front contains only the horizon
command.

To illustrate this principle, Fig. 4 shows the generation
of Horizon 0 at 2 and Horizon 1 at 3  . Note that the com-
mands associated with the former only depend on the ini-
tial compute commands of each respective node, while all
later horizons depend on both the most recent compute and
receive commands on their respective node.

Whenever a Horizon is generated for e.g. critical path
length C, if a previous Horizon generated for critical path
length C − S exists, it is applied.

Horizon Application

Applying a Horizon is arguably the most crucial step of the
process, as it is what allows for the consolidation of tracking
data structures, and therefore a reduction in dependencies.
Crucially, Horizons are always applied with a delay of one
step, which maintains fine-grained tracking and therefore
asynchronicity for the most recent group of commands.

When a given Horizon is applied, all references to pre-
vious writers in the tracking data structures which refer to
commands preceding the Horizon are updated to instead
refer to the Horizon being applied. In the example shown in
Fig. 4, at 3 Horizon 0 is applied, thus replacing Compute
0 in the tracking data structures. Note that all commands

Fig. 4   Command graph and buffer tracking for a generative data pattern with Horizons, using the minimum step size S = 1

	 SN Computer Science (2024) 5:409 409   Page 8 of 12

SN Computer Science

are consecutively numbered internally, so there is no graph
traversal or other complex operation required to determine
whether a given Horizon should replace any given entry in
the tracking data structure.

After Horizon application, during any subsequent com-
mand generation steps, dependencies which would have
been generated referring to commands prior to the Horizon
boundary directly will instead refer to the appropriate Hori-
zon. A comparison between 4 in Fig. 4 and 1 in Fig. 3
illustrates how Horizons thus maintain a constant command
dependency structure with generative data access patterns.

Summary and Features of the Horizon Approach

The Horizon approach as presented has the following
properties:

1.	 It is independent of the specifics of the data access pat-
tern, and its induced dependency graph.

2.	 It maintains a constant maximum on the per-node
dependencies which need to be tracked.

3.	 A window of high-fidelity dependency information is
maintained, and the size of this window can be adjusted
by setting the step size S.

4.	 An easily adjustable degree of task parallelism is main-
tained, which can be modified by setting M

E
.

5.	 Horizon triggering and command generation are both
efficient, as the required information (current critical
path length and execution front) can be tracked with a
small fixed overhead during the generation of each graph
node.

6.	 Horizon application is highly efficient, as due to the
numbering scheme of commands a simple integer check
suffices (no graph traversal is required).

7.	 No additional communication is required for any step
in the process, all nodes can continue to proceed com-
pletely asynchronously.

We show the practical value of this scheme and demonstrate
the impact of varying the parameters S and M

E
 in Sect. 4.

Evaluation

In this section, we present empirical results which illustrate
the effectiveness and efficiency of the Horizon approach as
it is currently implemented in the Celerity runtime system.
We first show microbenchmarks of simple generative data
patterns to precisely track the impact of Horizon step sizes
(S) on command generation times.

Secondly, we benchmark a representative explicit many-
task processing pattern, illustrating the relationship between

the maximum task execution front size ( M
E
 ) and the overall

graph generation time of the Celerity system.
Thirdly, we demonstrate that Horizons have negligible

overhead at both small and large scales, and can even be
beneficial for programs without generative access patterns
or many user-defined tasks, using dry-run benchmarks. In
dry-run mode, the Celerity runtime system performs all the
scheduling and command generation work of a real pro-
gram, but skips the execution of its kernels. This allows us to
quickly execute benchmarks on a large—simulated—number
of nodes and observe the impact of various optimizations
and data structure choices on task and command graph gen-
eration performance, without occupying a large-scale HPC
cluster.

Finally, we show the impact of Horizons on a full run of
a real-world application in room response simulation, which
exhibits a generative access pattern.

Experiment Setup

The hardware and software stack for the microbenchmarks
and dry-run benchmarks comprises a single node featuring
an AMD Threadripper TR-2920X CPU, running Ubuntu
Linux 22.04. As the dry-run benchmarks need no additional
hardware and are relatively quick to complete, 30 runs of
each configuration were performed and the median result is
reported. The variation observed across all results of these
runs was less than 3%, therefore we omit it from the charts
for readability. The real-world application benchmarks were
performed on the Marconi-100 supercomputer3 at CINECA
in Bologna, Italy, with a lower count of 5 runs each due to
hardware availability limitations. Marconi-100 is an IBM
Power9 system with 4 NVIDIA V100 GPUs per node.

Celerity is available on Github, with the specific revision
f190da34 being used for this publication. The Celerity dis-
tribution also includes the source of the microbenchmarks
discussed in the following sections. The benchmarks were
performed with the hipSYCL (now AdaptiveCPP) SYCL
implementation.5

Generative Access Microbenchmarks

Figure 5 shows the per-iteration time spent on command
generation for a cluster of 512 GPUs, in a microbenchmark
of a 2D generative access pattern, with different Horizon
configurations. Note that this plot is logarithmic in the Y
axis, to better capture the differences between the settings.

3  https://​www.​top500.​org/​system/​179845/
4  https://​github.​com/​celer​ity/​celer​ity-​runti​me/​commit/​f190d​a3db7​
23ac7​8b855​90467​ccb36​c5115​0cb00
5  https://​github.​com/​Adapt​iveCpp/​Adapt​iveCpp

https://www.top500.org/system/179845/
https://github.com/celerity/celerity-runtime/commit/f190da3db723ac78b85590467ccb36c51150cb00
https://github.com/celerity/celerity-runtime/commit/f190da3db723ac78b85590467ccb36c51150cb00
https://github.com/AdaptiveCpp/AdaptiveCpp

SN Computer Science (2024) 5:409 	 Page 9 of 12  409

SN Computer Science

Without horizons (the solid black line), the command
generation overhead grows with each iteration of the bench-
mark, as expected due to the growth of dependencies out-
lined in Sect. 3. With a Horizon step size of 16, a drop in
overhead is seen for the first time in iteration 33, as the Hori-
zon generated after iteration 16 was applied in iteration 32.
The same pattern is visible for the smaller step sizes 4 and
2, but at a smaller scale. With step size 1, the per-iteration
time is almost entirely flat.

Figure 6 provides the same view on a benchmark of a
3D generative access pattern. We note that the behavior
once the first horizon has been applied is almost identical
to the 2D case, despite the difference in buffer and there-
fore tracking dimensionality. In the initial few iterations,
a slightly higher per-iteration time can be observed. This

is due to the slightly more complex and nested data struc-
tures involved in tracking data dependencies for 3D access
patterns, which incur a somewhat larger initial overhead
until they are fully built and cached.

Figure 7 illustrates the total execution time (blue dia-
mond, left axis) and total time spent on horizon generation
and application (green triangle, right axis) of the same
microbenchmark. Besides the remarkable decrease in
the overall benchmark runtime due to Horizons, which
matches the per-iteration results, the behaviour of the
Horizon overhead is interesting: when generating a Hori-
zon every time step, the overhead is slightly higher, then
it drops, but increases again at S = 16 . This result can be
explained by the fact that, although Horizons are generated
far less frequently, the accumulated complexity in the data
tracking structure and command graph after 16 iterations
makes Horizon generation significantly more expensive.
However, even in this case, the Horizon generation over-
head only amounts to a total of 12 ms over 256 iterations.

We also measured this data for 1D and 3D generative
access patterns, and the shape across different Horizon
step sizes is almost identical to the 2D case. The total
times for the 1D pattern are generally lower—roughly
1/3rd of the 2D time—while the 3D times are slightly
higher. This corresponds to the general expected tracking
overhead, independently of Horizons, and proves that they

Fig. 5   Per-iteration time for
2D generative access micro-
benchmark; each line shows a
different horizon step setting S
(or no Horizons), as indicated in
the legend

Fig. 6   Per-iteration time for
3D generative access micro-
benchmark; each line shows a
different horizon step setting S
(or no Horizons), as indicated in
the legend

Fig. 7   Total times for 2D generative access microbenchmark

	 SN Computer Science (2024) 5:409 409   Page 10 of 12

SN Computer Science

work equally well for generative access patterns regardless
of the dimensionality of the buffer being tracked.

Many‑Task Parallelism Microbenchmarks

While the previous microbenchmarks demonstrate the effect
of horizons for generative data access patterns, they do not
cover the independent many-task parallelism case as out-
lined in Sect. 2.4. In order to analyze this pattern, we created
a representative many-task application which generates N
parallel, independent tasks each working on its own chunk
of a buffer, with R repetitions. Figure 8 depicts the high-level
task dependency graph modeled by this application.

We performed a benchmark of this application with
N = 15000 and R = 5 , and the resulting per-task generation
times are depicted in Fig. 9. The first result which may ini-
tially be surprising is that the per-task time with no horizons
(the dotted line) is independent of the number of nodes the
application is scheduled on. This is due to the task-count-
induced tracking overhead with N = 15000 completely dom-
inating the task generation time. Since there is no communi-
cation required by this benchmark structure, the number of
involved nodes does not have a significant impact.

Given this understanding of the application, it might then
be counter-intuitive that, once more frequent breadth-trig-
gered horizons are enabled by setting M

E
 to smaller values,

the number of nodes starts to actually factor into the over-
head. Two main factors explain this behaviour:

•	 The introduction of Horizons at reasonably low settings
for M

E
 reduces the overall tracking overhead, making

other aspects which are more dependent on the total node
count more relevant again.

•	 With a larger number of nodes, there is a larger mini-
mum number of distinct data fragments which need to
be tracked, regardless of the chosen threshold M

E
 . This

means that the potential for tracking overhead reduction
due to Horizon application is lower with a larger number
of nodes.

Finally, the results indicate that choosing a very high thresh-
old M

E
 can actually be detrimental to performance, com-

pared to not using Horizons at all. However, a setting of e.g.
M

E
= 256 extracts a very large benefit from Horizons, with

an overhead reduction of factor 8.2, 7.9, and 2.5 respectively
for 1, 16 and 256 Nodes. Such a setting does, due to the
asynchronous application of Horizons (see Sect. 3.3), still
allow for 512 high-level tasks to be running asynchronously
in the system, each of which can be split to further increase
available parallelism.

Overhead for Other Parallel Patterns

For Horizons to provide a suitable solution for coalescing
dependencies in a general runtime system, they need to have
no significant negative performance impact in applications
with non-generative access patterns and a smaller number
of highly splittable tasks. Figure 10 summarizes results for
two such applications: WaveSim, a 2D stencil computation,
and Nbody, an all-pairs N-body physics simulation.

In the WaveSim application, the overall impact of Hori-
zons is negligible: the total dry-run time varies by less
than 3 ms with and without Horizon use and with differ-
ent step sizes, and less than 0.5 ms outside of the extreme
Horizon step size setting of S = 1 . For the Nbody bench-
mark, there is a more notable impact—although it is still
minor compared to applications with generative patterns.

Fig. 8   Many-independent-task microbenchmark structure

Fig. 9   Per-task time for inde-
pendent many-task benchmark;
each line shows a different
number of cluster nodes, as
indicated in the legend; the
X axis depicts the maximum
execution front size M

E

SN Computer Science (2024) 5:409 	 Page 11 of 12  409

SN Computer Science

Two particular results stand out: the horizon overhead at
step size 1, and the fact that the introduction of Horizons
has a positive overall performance impact on the order of
7%. The former is explained by the particular structure
of this application, which has two different types of main
compute kernels, one of which features only a one-on-one
read dependency that can be satisfied locally, while the
other requires all-to-all communication. With a Horizon
step size of 1, Horizons are inserted after the latter ker-
nel, requiring a much larger number of dependencies. The
overall positive impact of Horizons can be explained by
their application being utilized to clean up various internal
data structures, which can be slightly beneficial even in
non-generative cases.

Real‑World Application

To confirm the data obtained using microbenchmarking and
dry-run experimentation, Fig. 11 shows the result of a strong
scaling experiment with the Celerity version of RSim [22],
a room response simulation application, over 1000 time
steps. RSim computes the spread of a light impulse through
a 3D space modeled as a set of triangles. In each time step,
the incident light for each triangle depends on the radiosity
of all other triangles visible from it, at a point in time that
depends on the spatial—and therefore also temporal—dis-
tance between the two triangles. As such, the main compu-
tational kernel of RSim exhibits a generative access pattern
in which subsequent time steps depend on the per-element
radiosity computed in prior time steps.

We compare the current default setting of the Celerity
runtime system, Horizon step size 2, with no Horizons. In
the latter case, with 4 and more GPUs, command generation
overhead starts to dominate the overall simulation run time.
With Horizons, near-linear strong scaling is maintained
up to 16 GPUs, and strong scaling continues to 32 GPUs.
The remaining drop from linear scaling, particularly at 32
GPUs, is not caused by data location tracking overhead in

the runtime system. Instead, it can be attributed to the fact
that this is a strong scaling experiment with fixed-size per-
timestep communication requirements.

Conclusion

In this paper, we have presented Command Horizons, an
approach to limiting the data tracking and command gen-
eration overhead in data-flow-driven distributed runtime
systems with automatic communication, particularly in the
presence of generative data access patterns or a very large
number of user-defined asynchronous tasks, while main-
taining asynchronicity.

Based on their current implementation in the Celerity
runtime system, we have demonstrated that Horizons can
be generated and applied very efficiently and with low
overhead in a variety of applications, and that they are
effective at capping command generation overhead and
the complexity of internal tracking data structures at a
stable level.

Horizons also have additional applications, e.g. in
providing a consistent distributed state for decision mak-
ing without requiring communication, which we hope to
explore in the future.

Fig. 10   Horizon impact and
overhead for two non-generative
applications. X-axis shows
Horizon use/step size

Fig. 11   Horizon impact on RSim application

	 SN Computer Science (2024) 5:409 409   Page 12 of 12

SN Computer Science

Acknowledgements  This project has received funding from the Euro-
pean High Performance Computing Joint Undertaking, grant agreement
No 956137, as well as the Austrian Research Promotion Agency (FFG)
via the UMUGUC project (FFG #4814683, 903595).

Funding  Open access funding provided by University of Innsbruck and
Medical University of Innsbruck.

Data availability  The relevant implementation source code is available
in the Celerity github repository, which is already linked in the paper.
(See “experiment setup”).

Declarations 

Conflict of interest  On behalf of all authors, the corresponding author
states that there is no conflict of interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

	 1.	 Message Passing Interface Forum. MPI: a message-passing inter-
face standard, version 3.1. https://​www.​mpi-​forum.​org/​docs/​mpi-
3.​1/​mpi31-​report.​pdf Accessed 05 Feb 2019.

	 2.	 Augonnet C, Clet-Ortega J, Thibault S, Namyst R. Data-aware task
scheduling on multi-accelerator based platforms. In: 2010 IEEE
16th international conference on parallel and distributed systems;
2010.

	 3.	 Thibault S. On runtime systems for task-based programming on
heterogeneous platforms. Thesis, Université de Bordeaux; 2018.
https://​hal.​inria.​fr/​tel-​01959​127 Accessed 24 Sep 2020.

	 4.	 Kumar S. Scheduling of dense linear algebra kernels on hetero-
geneous resources. PhD Thesis, Université de Bordeaux; 2017.
https://​tel.​archi​ves-​ouver​tes.​fr/​tel-​01538​516. Accessed 19 Nov
2020.

	 5.	 Bauer M, Treichler S, Slaugther E, Aiken A. Legion: expressing
locality and independence with logical regions. In: 2012 interna-
tional conference for high performance computing, networking,
storage and analysis (SC). IEEE, New York; 2012.

	 6.	 Heller T, Diehl P, Byerly Z, Biddiscombe J, Kaiser H. Hpx—an
open source C++ standard library for parallelism and concur-
rency. In: Proceedings of OpenSuCo, vol. 5; 2017.

	 7.	 Copik M, Kaiser H. Using sycl as an implementation framework
for hpx. compute. In: Proceedings of the 5th international work-
shop on OpenCL, pp. 1–7; 2017.

	 8.	 Bosilca G, Bouteiller A, Danalis A, Faverge M, Herault T, Don-
garra JJ. PaRSEC: exploiting heterogeneity to enhance scalabil-
ity. Comput Sci Eng. 2013;15(6):36–45. https://​doi.​org/​10.​1109/​
MCSE.​2013.​98.

	 9.	 Bosilca G, Bouteiller A, Danalis A, Herault T, Lemarinier P,
Dongarra J. DAGuE: a generic distributed DAG engine for high
performance computing. In: 2011 IEEE international symposium
on parallel and distributed processing workshops and PhD forum,
pp. 1151–1158; 2011. https://​doi.​org/​10.​1109/​IPDPS.​2011.​281.
ISSN: 1530-2075.

	10.	 Thoman P, Salzmann P, Cosenza B, Fahringer T. Celerity: high-
level C++ for accelerator clusters. In: Euro-Par 2019: parallel pro-
cessing vol. 11725, pp. 291–303. Springer, Basel; 2019. https://​
doi.​org/​10.​1007/​978-3-​030-​29400-7_​21 . http://​link.​sprin​ger.​com/​
10.​1007/​978-3-​030-​29400-7_​21. Accessed 24 Sep 2020.

	11.	 The Khronos Group: SYCL specification, version 2020 revision
5. https://​regis​try.​khron​os.​org/​SYCL/​specs/​sycl-​2020/​html/​sycl-​
2020.​html. Accessed 05 Dec 2022.

	12.	 Salzmann P, Knorr F, Thoman P, Gschwandtner P, Cosenza B,
Fahringer T. An asynchronous dataflow-driven execution model
for distributed accelerator computing. In: 2023 IEEE/ACM 23rd
international symposium on cluster, cloud and internet computing
(CCGrid), pp. 82–93; 2023. IEEE, New York.

	13.	 Duran A, Ayguadé E, Badia RM, Labarta J, Martinell L, Mar-
torell X, Planas J. OmpSs: a proposal for programming het-
erogeneous multi-core architectures. Parallel Process Lett.
2011;21(02):173–93.

	14.	 Chamberlain BL, Callahan D, Zima HP. Parallel programmabil-
ity and the chapel language. Int J High Perform Comput Appl.
2007;21(3):291–312. https://​doi.​org/​10.​1177/​10943​42007​078442.
SAGE Publications Ltd STM. Accessed 24 Feb 2021.

	15.	 Ebcioglu K, Saraswat V, Sarkar V. X10: programming for hierar-
chical parallelism and non-uniform data access. In: Proceedings
of the international workshop on language runtimes, OOPSLA,
Citeseer, vol. 30; 2004.

	16.	 Slaughter E, Lee W, Treichler S, Bauer M, Aiken A Regent: a
high-productivity programming language for HPC with logical
regions. In: Proceedings of the international conference for high
performance computing, networking, storage and analysis, SC ’15,
pp. 1–12; 2015. https://​doi.​org/​10.​1145/​28075​91.​28076​29. ISSN:
2167-4337.

	17.	 Falcou J, Sérot J, Chateau T, Lapresté JT. Quaff: efficient C++
design for parallel skeletons. Parallel Comput Algorithm Skelet.
2006;32(7):604–15.

	18.	 Javed N, Loulergue F. Parallel programming and performance
predictability with Orléans skeleton library. In: 2011 international
conference on high performance computing and simulation, pp.
257–263; 2011.

	19.	 Sato S, Iwasaki H. A skeletal parallel framework with fusion opti-
mizer for GPGPU programming. In: Hu Z, editor. Programm Lang
Syst. Berlin: Springer; 2009. p. 79–94.

	20.	 Ernstsson A, Kessler C. Extending smart containers for data
locality-aware skeleton programming. Concurr Comput Pract Exp.
2019;31(5):5003.

	21.	 Knorr F, Thoman P, Fahringer T. Declarative data flow in a graph-
based distributed memory runtime system. In: International sym-
posium on high-level parallel programming and applications
(HLPP 2022); 2022.

	22.	 Thoman P, Wippler M, Hranitzky R, Gschwandtner P, Fahringer
T. Multi-GPU room response simulation with hardware raytrac-
ing. Concurr Comput Pract Exp. 2022;34(4):6663.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://hal.inria.fr/tel-01959127
https://tel.archives-ouvertes.fr/tel-01538516
https://doi.org/10.1109/MCSE.2013.98
https://doi.org/10.1109/MCSE.2013.98
https://doi.org/10.1109/IPDPS.2011.281
https://doi.org/10.1007/978-3-030-29400-7_21
https://doi.org/10.1007/978-3-030-29400-7_21
http://springerlink.bibliotecabuap.elogim.com/10.1007/978-3-030-29400-7_21
http://springerlink.bibliotecabuap.elogim.com/10.1007/978-3-030-29400-7_21
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html
https://registry.khronos.org/SYCL/specs/sycl-2020/html/sycl-2020.html
https://doi.org/10.1177/1094342007078442
https://doi.org/10.1145/2807591.2807629

	Balancing Tracking Granularity and Parallelism in Many-Task Systems: The Horizons Approach
	Abstract
	Introduction and Related Work
	Parallel Runtime Systems
	Tracking Data State
	The Horizons Concept

	Background
	The Celerity Runtime System
	Tasks
	Range Mappers
	Execution Principle
	Summary

	Data State Tracking
	Generative Data Access Patterns
	Explicit Many-Task Processing of Large Data Sets

	Horizons
	Horizon Decision Making
	Depth-Triggered Horizons
	Breadth-Triggered Horizons

	Horizon Generation
	Horizon Application
	Summary and Features of the Horizon Approach

	Evaluation
	Experiment Setup
	Generative Access Microbenchmarks
	Many-Task Parallelism Microbenchmarks
	Overhead for Other Parallel Patterns
	Real-World Application

	Conclusion
	Acknowledgements
	References

