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Abstract
Groundwater resources are under increasing pressure, nevertheless, as a result of population growth, climate change, and 
overuse. Accurate estimates of groundwater levels are essential for the management of water resources to be sustainable. 
Deep learning algorithms have the potential to enhance groundwater level prediction by extracting complex patterns from the 
previous data. In recent years, groundwater level forecasting using deep learning has received increasing attention. Recur-
rent neural networks (RNNs) are a common deep learning technique for predicting groundwater levels. Since RNNs are 
capable of learning long-range dependencies in the data, they are well suited for time-series prediction problems. Utilizing 
convolutional neural networks (CNNs) is an additional strategy. CNNs are frequently employed for tasks such as segment-
ing and classifying images, but they may also be used to predict time series. CNNs are capable of effectively identifying 
spatial patterns in the data, which can be helpful for predicting groundwater levels. Numerous researches have shown that 
groundwater level prediction models based on deep learning produce promising outcomes. But there are still some issues 
that need to be resolved, such as the requirement for a substantial amount of training data and the complexity of deciphering 
the output of deep learning models. Overall, deep learning is a promising new strategy for predicting groundwater levels. 
Future groundwater level prediction algorithms should become progressively more precise and trustworthy as deep learning 
techniques in the future.
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Introduction

Human health and welfare depend on groundwater levels. 
They sustain the well-being of ecological systems, assist 
farming and manufacturing, and provide drinking water 

for billions of people worldwide. However, a multitude of 
human tasks, such as over-extraction, pollution, and climate 
change, are endangering groundwater levels. Monitoring 
levels of groundwater and practicing sustainable manage-
ment of groundwater resources are crucial. This entails tak-
ing precautions to prevent groundwater pollution and using 
water at a rate which is below the rate at which it recharges. 
Groundwater resources can be preserved for generations to 
come if they are handled appropriately.

Due to a variety of factors, such as rising water demand, 
climate change, and over-extraction, groundwater lev-
els in Belagavi City, Karnataka, India, are predicted to 
decrease in the upcoming years. Water for agriculture and 
industrial needs is primarily obtained from groundwater. 
Additionally, it is crucial for preserving the well-being 
of ecosystems such as wetlands and forests. However, a 
multitude of human activities, such as over-extraction, pol-
lution, and climate change, are endangering groundwater 
levels. Reduced water demand, groundwater protection 
from pollution, and groundwater recharge are some of 
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the recommendations made by the Central Ground Water 
Board (CGWB) to address the diminishing groundwater 
levels in the Belagavi district [16].

Additional actions that can be used to forecast and con-
trol groundwater levels in Belagavi City by track changes 
and vegetation cover that impacts on groundwater recharg-
ing using remote sensing data. Create groundwater models 
to simulate groundwater flow and transport and to forecast 
how groundwater levels will react to various system changes. 
Work with stakeholders, including farmers, companies, and 
government representatives, to design groundwater manage-
ment strategies that will benefit all parties. Inform the people 
about water conservation, and how they can do it in their 
homes and places of work.

Using historical groundwater level data as well as other 
variables which influence groundwater recharge and dis-
charge, such as rainfall, temperature, and land use, artificial 
intelligence is able to forecast the level of groundwater. The 
following are a few machine learning techniques that can 
be used to estimate groundwater levels: SVMs, or support 
vector machines machine learning algorithms called SVMs, 
can be applied to tasks such as regression and classification. 
SVMs can be used to regress historical groundwater levels 
and other parameters to expect future groundwater levels in 
order to forecast groundwater levels [17].

A sort of machine learning system that draws inspiration 
from the way humans think is called a neural network. With 
a high degree of accuracy, neural networks can be used to 
understand complicated correlations among data inputs and 
outputs and to estimate the level of groundwater. A sort of 
ensemble machine learning technique known as random for-
est learning aggregates the forecasts of various decision trees 
to get a forecast that is more correct.

The first stage is to gather information on groundwater 
levels and other aspects that have an impact on groundwa-
ter recharge and discharge. Many other sources, including 
groundwater monitoring wells, weather stations, and land-
use surveys, can be used to gather this data. After it has been 
gathered, the data need to be ready for machine learning. 
This can entail scaling the data, cleansing the data, and elim-
inating outliers. Next, select a machine learning algorithm 
for predicting groundwater levels. The specific dataset and 
the required level of accuracy will choose the algorithm to 
use. In order to achieve this, the algorithm must be taught 
the correlations between various variables by being fed his-
torical data on groundwater levels and other parameters. The 
prediction performance of the model must be tested on a 
held-out test set once it has been trained. Future ground-
water levels can be predicted using the model when it has 
been tested and verified to be operating effectively. Studies 
have shown that machine learning algorithms can estimate 
groundwater levels more accurately than conventional sta-
tistical techniques.

Convolutional artificial neural networks (CNNs) have 
also been useful for predicting groundwater levels. The way 
CNNs operate is by employing a number of layers of con-
volution to derive characteristics from images. Each layer 
of convolution is made up of a variety of filters that are 
used to extract information from the input image. CNNs can 
learn properties that are unique to a given area in the image 
because the filters are often small and local. CNNs often fea-
ture a number of pooling layers after the convolutional layers 
have been processed. Convolutional map features formed 
by layer pooling are smaller while still retaining the most 
crucial data [18].

The use of a CNN to forecast levels of groundwater is 
covered in detail. Gather information on groundwater levels 
and other elements that influence the recharge and discharge 
of groundwater. Many other sources, including groundwater 
monitoring wells, weather stations, and land-use surveys, 
can be used to gather these data. Data preparation can entail 
scaling the data, cleansing the data, and eliminating outli-
ers. The dataset and problem should be taken into account 
when designing the CNN architecture. Utilize the previous 
data to prepare CNN. This entails feeding the CNN histori-
cal data on groundwater levels and other variables so that 
it can figure out how these variables relate to one another. 
The evaluation of CNN’s prediction uses a held-out test set.

For predicting groundwater levels, CNNs have a lot of 
advantages over conventional machine learning techniques. 
Complicated spatial connections among the input data and 
the target variable can be learned by CNNs. This is cru-
cial for predicting groundwater levels since there might be 
complicated and spatially variable relationships between 
groundwater levels and other factors such as land use and 
rainfall. Large volumes of data can be handled by CNNs. 
Given that a lot of data, such as satellite imagery and data 
from groundwater monitoring, are frequently available, this 
is crucial for predicting groundwater levels. CNNs can pick 
up new information from unlabeled data. This can be helpful 
for predicting groundwater levels because unlabeled data, 
like satellite imagery, are frequently more accessible than 
labeled data, like groundwater monitoring.

The computational cost of training CNNs can be a major 
barrier to their use in predicting groundwater levels. Transfer 
learning and cloud computing are two strategies to lower 
the computational cost of training CNNs, nevertheless. The 
potential sensitivity of CNNs to the caliber of the input data 
presents another difficulty in employing them to estimate 
groundwater levels. To train CNNs and obtain high predicted 
accuracy, it is crucial to use high-quality input data.

Sequence prediction challenges are ideally suited for 
deep learning algorithms called recurrent neural networks 
(RNNs). It has been demonstrated that RNNs are useful for 
predicting groundwater levels. RNNs operate by sequen-
tially processing data one step at a time. The RNN creates 
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an output and a new state at each step by using the current 
input and the previous state. The RNN may learn long-term 
dependencies in the data since the new state incorporates 
information about the prior inputs. Preparing the input data 
is the first stage in using an RNN to forecast groundwater 
levels. A list of groundwater levels should be the form of the 
supplied data. Any length can be used for the sequence, but 
it must be sufficiently lengthy to properly record the long-
term connections found in the data. The information that is 
input can be sent to the RNN after it has been properly pre-
pared. Each stage of the RNN’s processing of the incoming 
data results in a projected groundwater level [19].

For predicting groundwater level, RNNs have a variety 
of benefits over conventional machine learning algorithms. 
The long-term dependencies in the data can be learned 
using RNNs. This is crucial for predicting groundwater lev-
els since there might be complex and long-term relation-
ships between groundwater levels and other variables such 
as rainfall and land use. Variable sequence lengths can be 
handled using RNNs. As the delay between groundwater 
level readings can differ, this is significant for the forecast 
of groundwater level. RNNs can pick up new information 
from sequential data. Given that groundwater level data are 
often gathered in a sequential fashion, this is significant for 
groundwater level prediction.

RNNs can be challenging to train, which is one of the 
main drawbacks of using them to predict groundwater lev-
els. RNNs are susceptible to the initial settings and train-
ing set. The starting parameters should be carefully chosen, 
and RNNs should be trained on a sizable and representative 
dataset. RNNs can be costly to train mathematically, which 
presents another difficulty when utilizing them to estimate 
groundwater levels. Transfer learning and cloud computing 
are two strategies to lower the computational expense of 
training RNNs, nevertheless.

For the health and welfare of humans, groundwater levels 
are important. They support natural systems, aid in agri-
culture and industries, and give billions of people access to 
clean water globally. However, over-extraction, pollution, 
and climate change are a few of the reasons contributing 
to the global decline in groundwater levels. Machine learn-
ing can be used to forecast and regulate groundwater levels. 
To forecast future groundwater levels, machine learning 
algorithms can be used to examine past groundwater data 
and other elements that affect groundwater recharge and 
discharge. Using this knowledge, strategies for long-term 
groundwater management can be created.

While RNNs excel at learning long-term dependencies 
in sequential data, CNNs excel at learning intricate spatial 
correlations between input data and the target variable. 
Numerous studies have demonstrated the efficacy of CNNs 
and RNNs in predicting groundwater levels. It is crucial to 
keep in mind that these algorithms may be sensitive to the 

caliber of the input data and that they can be computation-
ally expensive to train [19].

A workflow of the paper is discussed in the following sec-
tions: “Literature Review” section, a review of the pertinent 
literature on the study’s subject is given in this section, along 
with information on earlier studies and any gaps that need 
to be filled. In “Materials and Methods” section, Materials 
and Methods including the data gathered, the experiments 
conducted, and the analytical techniques used are described. 
In “Results and Discussion” section, it gives the study’s find-
ings presented, and their implications are discussed. The 
findings are presented succinctly, and their interpretation 
and relevance to future research are discussed in conclusion.

Literature Review

Saskatchewan et al. used a dataset of historical data, the 
authors created a CNN model to forecast tunnel liner yield 
using measurements of tunnel liner yield, geological data, 
and ground freezing data. Cross-validation techniques were 
used to train and assess the CNN model. The findings dem-
onstrated that the CNN model was highly accurate at pre-
dicting tunnel liner yield [1].

An evolutionary hybrid neural network (EHN) method 
was put out by Zhang et al. [2] to anticipate shield tunneling-
induced ground settlements. In the evolutionary hybrid neu-
ral network (EHN) technique, an ANN and a differential 
evolution algorithm are combined to increase the ANN’s 
predictive power. The DE technique is used to optimize the 
ANN’s hyperparameters, and after that, the ANN is trained 
using a dataset of historical data to forecast ground settle-
ments. Using a case study of shield tunneling in Guangzhou, 
China, the EHN strategy was assessed. The outcomes dem-
onstrated that the EHN technique was better than the ANN 
without the DE algorithm at predicting ground settlements 
[2].

Rohde et al. [3] represented that ecosystems that depend 
on groundwater (GDEs) are significant for many reasons, 
including regulating stream flow, supplying habitat for plants 
and animals, and filtering water. But as a result of climate 
change, excessive mining, and other factors, groundwater 
levels are dropping, posing a growing threat to GDEs. In this 
study, the authors projected groundwater levels in California 
using machine learning. They trained a random forest model 
to forecast groundwater levels at a high spatial and temporal 
resolution using a dataset of historical groundwater data, 
satellite imagery, and other data [3].

In their work from 2021, Wunsch et al. looked at ANN 
architectures for forecasting groundwater levels. They also 
found that the LSTM architecture was more resilient to ini-
tialization effects than the NARX architecture. As a result, 
it is less likely that the weights and biases of the network’s 
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beginning values will affect the LSTM architecture. The 
results of this study suggest that NARX and LSTM designs 
are equally effective at forecasting groundwater levels. The 
best ANN architecture to use will depend on the specific 
dataset and the desired predicting accuracy [4].

The accuracy and reliability of groundwater level predic-
tion using machine learning were improved in this paper 
by the authors utilizing a spatial clustering approach. The 
groundwater monitoring well groupings with comparable 
groundwater level parameters were found using the geo-
graphic clustering method. Following that, machine learn-
ing models were trained on this data to forecast groundwater 
levels for each cluster. Using a dataset of groundwater data 
from the Iranian Birjand aquifer, the authors tested their 
methodology. Using a dataset of groundwater data from the 
Iranian Birjand aquifer, the authors tested their methodology. 
Group method of data handling (GMDH), Bayesian network 
(BN), and artificial neural network (ANN) were the three 
different machine learning techniques they employed [5].

A key strategy for efficient groundwater management is 
forecasting groundwater levels. On the basis of past ground-
water data, time series-based groundwater level forecasting 
algorithms produce forecasts regarding future groundwater 
levels. This study employs a deep neural network system that 
calculates groundwater levels using time series and gated 
recurrent units (GRUs). GRU networks, a type of recurrent 
neural network, excel at modeling time-series data. The 
authors tested their model using a collection of monthly 
groundwater level data from the Iranian plain. The model 
was trained and evaluated utilizing cross-validation methods 
[6].

Effective groundwater management depends on the abil-
ity to predict groundwater levels. The authors of this paper 
provided a hybrid methodology that combines metaheuristic 
optimization algorithms and machine learning strategies in 
order to enhance groundwater level prediction. Metaheuris-
tic optimization methods are used to optimize the hyper-
parameters of the machine learning model. The dataset 
of groundwater data from the Iranian Birjand aquifer was 
used by the authors to assess their suggested methodology. 
Additionally, they employed four alternative metaheuristic 
optimization algorithms: the genetic algorithm (GA), the 
particle swarm optimization (PSO), differential evolution 
(DE), and gray wolf optimizer (GWO) [7].

The general quality of groundwater for drinking and 
other uses is evaluated using groundwater quality indices 
(GWQIs). Numerous aspects of water quality, including pH, 
electrical conductivity, total dissolved solids, and nitrate, 
are used to generate GWQIs. It has been demonstrated that 
machine learning techniques are useful for GWQI predic-
tion. On which machine learning method is optimal for 
GWQI prediction, there is not a certain agreement, though. 
The authors of this study examined deep neural networks 

and gradient boosting machines (GBMs) for GWQI predic-
tion. The three machine learning methods were trained and 
evaluated using a dataset of groundwater quality data from 
the Indian state of Haryana [8].

Although expensive to train and refine, deep neural net-
works (DNNs) have been demonstrated to be useful for pre-
dicting groundwater. The authors of this paper suggested a 
surrogate optimization approach for building and enhancing 
DNNs for groundwater prediction. Surrogate optimization is 
a method for estimating more complex models using a sim-
pler one. This can be utilized to lower the DNN’s training 
and optimization computing expenses. Using a collection of 
groundwater data from the Butte County aquifer in Califor-
nia, the authors assessed their proposed methodology. They 
employed two different surrogate optimization techniques 
and four different DNN topologies. The findings demon-
strated that the surrogate optimization technique enabled 
the training and optimization of the DNNs while drastically 
reducing the cost [9].

In many regions of the world, groundwater storage loss 
(GSL) is a serious issue. Changes in land use, over-extrac-
tion, and climate change are a few of the factors that contrib-
ute to GSL. In order to efficiently manage groundwater, GSL 
must be projected. An innovative machine learning method 
for GSL prediction was developed by the researchers behind 
this work. The Harris Hawks optimization (HHO) method 
and the adaptive neuro-fuzzy inference system (ANFIS) 
algorithm are combined to form a hybrid model [10].

Groundwater levels have been declining in Selangor, 
Malaysia, as a result of a number of problems, includ-
ing population growth, urbanization, and climate change. 
Accurate forecasting of groundwater levels is required for 
effective groundwater management. The extreme gradient 
boosting model was created by the authors of this study to 
forecast groundwater levels in Selangor, Malaysia. Regres-
sion problems, such as predicting groundwater levels, can be 
effectively solved by machine learning algorithms like the 
XGBoost. The scientists used a dataset of historical ground-
water, rainfall, and temperature data to train and evaluate 
the XGBoost model. The collection contains data from five 
Malaysian municipalities in Selangor. The results showed 
the XGBoost model’s ability to predict groundwater levels 
with exceptional accuracy [11].

Effective groundwater management depends on the abil-
ity to predict groundwater levels. It is a challenging endeavor 
since groundwater systems are intricate and nonlinear. The 
proposed approach combines a wavelet transform with a 
self-adaptive but unaltered machine learning model. The 
wavelet transform is used to separate the groundwater level 
time series into discrete frequency components. The authors 
evaluated their proposed strategy using a dataset of monthly 
groundwater measurements from an Iranian well. The data-
set included data spanning 30 years. The results showed 
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that the proposed technique was quite good at forecasting 
monthly groundwater levels [12].

Effective groundwater management requires the ability to 
predict groundwater levels. It is a challenging endeavor since 
groundwater systems are intricate and nonlinear. A number 
of additional factors, such as meteorological components 
such as temperature and rainfall, also affect groundwater 
levels. In this paper, the authors proposed a gated recur-
rent unit (GRU) neural network model for groundwater level 
prediction that is responsive to climatic conditions. The sug-
gested methodology incorporates meteorological data into 
the GRU neural network design for more accurate predic-
tions of groundwater levels. The authors evaluated their 
proposed model using a set of groundwater level data and 
meteorological data from the Birjand aquifer in Iran [13].

Individual machine learning techniques, however, may 
not necessarily generalize effectively to new datasets 
because to their sensitivity to the distribution and quality 
of the input data. By combining different machine learn-
ing methods, ensemble learning creates predictions that are 
more reliable and precise. Ensemble learning algorithms can 
lower the possibility of overfitting and increase the mod-
el’s capacity for generalization. The prediction is based on 
ensemble boosting and bagging. Support vector regression, 
random forest, decision trees, gradient boosting machines, 
extreme gradient boosting machines, and bagging and boost-
ing approaches are five separate machines learning algo-
rithms that are combined in the suggested model [14].

The above discussed models are summarized in the given 
Table 1.

Materials and Methods

The dataset is a thorough compilation of facts on water for 
689 districts in India in 2017. It has 16 columns, each of 
which contains unique statistical information about water 
extraction and recharge. The dataset becomes more impor-
tant when considered against the backdrop of India’s status 
as a big and diversified nation, well-known for its rivers and 
harsh climatic zones. It is crucial to remember that despite 
the nation’s plentiful water supplies, numerous regions 
experience significant water shortages throughout the sum-
mer, which is mostly related to poor water management 
and waste. The dataset, which https://​data.​gov.​in/ so kindly 
donated, has a lot of study and analysis possibilities. Given 
the severe water problem that is currently impacting several 
regions of India, it is especially pertinent [15].

Among the most popular methods of classification are 
discussed here. For binary classification issues, logistic 
regression is a straightforward but powerful technique. Deci-
sion trees are a categorization method that creates a hierar-
chy of choices in order to categorize data points. Support 

vector machines are a classification method that identifies a 
hyperplane in the data that divide the data points into their 
corresponding classes. Random forests are a classification 
method that creates a group of decision trees and generates 
forecasts by averaging the results of each tree’s specific pre-
dictions. Gradient boosting is a classification technique that 
creates a series of decision trees and generates predictions 
by combining the results of each tree separately. The type of 
data and the desired result will determine which categoriza-
tion method is suitable for a given scenario.

An effective deep learning approach for geographical data 
processing is convolutional neural networks (CNNs). With 
the help of several convolution and pooling layers, CNNs 
extract characteristics from data. While the pooling layers 
lessen the dimensionality of the input, the convolution lay-
ers learn spatial correlations in the data. The first step in 
using a CNN to estimate groundwater levels is to prepare 
the data. The information must be presented in a format 
that CNN can comprehend, like a raster image or a time 
series. The data can be sent into CNN once it has been pre-
pared. The CNN will then take the data and extract features. 
The features that are extracted will vary depending on the 
CNN’s unique design and the type of data being used. For 
instance, data such as elevation, slope, and land cover may 
be extracted by a CNN that is used to forecast groundwater 
levels. The CNN will utilize these features to produce a pre-
diction once it has retrieved features from the data. A value 
for the level of groundwater at the predicted place and time 
will be provided.

Applying a transfer learning methodology is one way to 
apply CNNs for groundwater level prediction for 5000 lines. 
A pre-trained CNN model is utilized as a starting point for 
a new model in the process of transfer learning. Due to the 
fact that the new model does not need to be trained from 
start, this can save time and computational resources. The 
first step in using transfer learning to predict groundwater 
levels is to locate a pre-trained CNN model that has been 
trained on a related problem. For instance, a new model that 
is taught to predict groundwater levels could be based on 
a pre-trained CNN model that has been trained on picture 
classification [20].

The next thing to do is to extract the characteristics from 
the pre-trained CNN model that has been found. A new 
model that has been trained to forecast groundwater levels 
can then be created using these attributes as input. The train-
ing of a CNN model from scratch is another approach for 
using CNNs to estimate groundwater levels for 5000 lines. 
This method is more time and resource intensive than trans-
fer learning, but it may be more successful when training 
on data that are extremely dissimilar to that used to train the 
pre-trained CNN model.

Preparing the data is the initial stage in training a CNN 
model from scratch. The information must be presented 

https://data.gov.in/
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in a format that CNN can comprehend, like a raster image 
or a time series. An effective deep learning approach for 
time-series data analysis is recurrent neural networks 
(RNNs). RNNs operate by identifying temporal patterns 
in data. The first step in using an RNN to estimate ground-
water levels is to prepare the data. The information must 
be presented in a format that the RNN can comprehend, 
like a time series. The RNN can be fed data once it has 
been prepared. Following that, the RNN will discover tem-
poral correlations in the data. Based on previous ground-
water levels, these temporal correlations can be utilized 

to forecast future groundwater levels [21]. An RNN vari-
ant that is effective at learning long-term dependencies 
in data is the LSTM network. The first step in using an 
LSTM network to predict groundwater levels is to prepare 
the data. The data must be presented in a way that the 
LSTM network can comprehend such a time series. The 
LSTM network can be fed with the prepared data. In the 
following step, the LSTM network will discover temporal 
correlations in the data. Based on previous groundwater 
levels, these temporal correlations can be utilized to fore-
cast future groundwater levels [18].

Table 1   A summary of state-of-art models used by various researchers

S. No. Author(s) Methodology used Advantages Disadvantages Accuracy (%)

1 KardanMoghaddam et al. 
(2021)

Spatial clustering approach 
with machine learning 
algorithms

Improved accuracy and 
reliability of groundwater 
level prediction

Time complexity 97.2

2 Lin et al. (2022) Gated recurrent unit (GRU) 
deep neural network

High accuracy and time 
series-based forecasting

Can be sensitive to hyperpa-
rameters

92.3

3 Kayhomayoon et al. (2022) Hybrid approach that 
combines metaheuristic 
optimization algorithms 
and machine learning 
algorithms

Improved accuracy and 
reliability of groundwater 
level prediction

Computationally expensive 98.1

4 Raheja et al. (2022) Extreme gradient boosting 
(XGBoost) machine learn-
ing algorithm

High accuracy and effi-
ciency for GWQI predic-
tion

Can be sensitive to hyperpa-
rameters

99.5

5 Müller et al. (2021) Surrogate optimization 
approach to train and opti-
mize deep neural networks 
(DNNs)

Reduced computational cost 
of training and optimizing 
DNNs

Less accurate than tradi-
tional training methods

95.4

6 Kayhomayoon et al. (2021) Hybrid model that combines 
Harris Hawks optimization 
(HHO) algorithm

High accuracy for GSL 
prediction

Need more time to compute 95.0

7 Morgenroth et al. (2021) Convolutional neural net-
work (CNN)

High accuracy in predicting 
tunnel liner yield

Expensive 95.3

8 Zhang et al. (2020) Evolutionary hybrid neural 
network approach

High accuracy in predicting 
shield tunneling-induced 
ground settlements

Hyperparameter selection 
and optimization takes 
more time

92.2

9 Rohde et al. (2021) Machine learning approach Identifies ecosystems at risk 
due to groundwater level 
changes

Local minima 90.6

10 Wunsch et al. (2021) LSTM with exogenous input 
(NARX)

Provides a comparison of 
different machine learning 
algorithms for groundwa-
ter level forecasting

Underfitting 89.2

11 Osman et al. (2021) Extreme gradient boost-
ing machine learning 
algorithm

High accuracy in predicting 
groundwater levels

Hyperparameters are sensi-
tive

99.5

12 Malekzadeh et al. (2019) Hybrid wavelet High accuracy in predict-
ing monthly groundwater 
levels

More expensive 95.3

13 Gharehbaghi et al. (2022) Meteorologically sensitive 
gated recurrent unit (GRU) 
neural network model

High accuracy in predicting 
groundwater levels

Overfitting 95.1

14 Mosavi et al. (2021) Ensemble boosting and 
bagging

High accuracy in predicting 
groundwater potential

Time complexity 91.5
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Results and Discussion

Figure 1 represents the correlation matrix of the given 
dataset. Recharge from rainfall during the monsoon season 
and the total annual groundwater recharge are correlated 
by 0.87. This indicates that these two variables have a 
significant positive association [22].

Current annual groundwater extraction for irrigation 
and total natural discharges have a −0.62 correlation. This 
indicates that these two variables have a high negative 
association. In other words, the total natural discharges 
decline as the yearly groundwater extraction for irrigation 
continues to rise. Total current annual groundwater extrac-
tion and net groundwater availability for future usage are 
negatively correlated or − 0.86. This indicates that these 

two variables have a high negative association. In other 
words, the net groundwater availability for future usage 
falls as the overall yearly groundwater extraction rises.

The data in Fig. 2 indicate that Haryana, Rajasthan, Pun-
jab, and Delhi are in a critical zone as groundwater extrac-
tion is virtually equal to the availability. The following 
analysis compares groundwater extraction to availability. If 
the distribution of groundwater is not planned appropriately, 
there may be a serious water shortage in the future.

Estimated annual groundwater allotment to West Bengal 
districts is shown in Fig. 3. According to anticipated ground-
water allocation, the top three districts are North-24_Parga-
nas, Murshidabad, and Burdwan.

India is now extracting groundwater at a rate of 62.00% 
overall. This indicates that India is using more groundwa-
ter for extraction than for recharge. The potential for future 

Fig. 1   Correlation matrix
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Fig. 2   Groundwater extraction versus availability

Fig. 3   Estimated annual 
groundwater allotment
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groundwater depletion and water scarcity makes this a criti-
cal worry. Several states, including Punjab, Rajasthan, and 
Haryana, overuse their groundwater supplies, with extraction 
rates of greater than 100%. These states must move quickly 
to decrease groundwater exploitation and protect their water 
supplies. Manipur, Meghalaya, Mizoram, Nagaland, and Sik-
kim are among the states that do not overuse their groundwater 
resources. These states must still take action to protect their 
water supplies and guarantee that there is enough groundwa-
ter for present and future generations. Figure 4 represents the 
state-wise groundwater extraction distributions statistics.

(1)Accuracy =
(True positives + True negatives)

(Total samples)

(2)Precision =
True positives

(True positives + False positives)

(3)Recall =
True positives

(True positives + False negatives)

Equations 1, 2, 3, 4, and 5 represent the metrics such as 
accuracy, precision, recall, F1 score, and false-positive rate. 
The proportion of accurate predictions made by a model is 
known as accuracy. The proportion of correctly predicted 
favorable outcomes is known as precision. It is derived by 
dividing the total number of positive predictions by the 
number of real positives. The percentage of accurately pre-
dicted positive samples is known as recall. It is determined 
by multiplying the total number of positive samples by the 
number of true positives. A harmonic average of memory 
and precision makes up the F1 score. As it considers both 
precision and recall, it is a good indicator of an algorithm’s 
performance as a whole [23, 24].

Table 2 represents the various classification models and 
its results. The accuracy of the logistic regression model 
is 0.85, which indicates that accurate predictions are made 

(4)F1 score = 2 ∗
(Precision ∗ Recall)

(Precision + Recall)

(5)

False positive rate =
False positives

(False positives + True negatives)

Fig. 4   State-wise groundwater extraction distributions statistics
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85% of the time. A precision of 0.85 indicates that 85% of 
the positive predictions made by the decision tree classifier 
model are in fact accurate. With a recall of 0.91, the support 
vector machine model accurately predicts 91% of all positive 
cases. The random forest classifier model has an F1 score of 
0.92, indicating that precision and recall are well-balanced. 
Only 6% of negative cases are mistakenly predicted as posi-
tive using the gradient boosting classifier model, which has 
a false-positive rate of 0.06. The following Fig. 5 represents 
the ROC curve of the various models.

Figure 6 displays how various machine learning models 
performed on a categorization task. The accuracy metric, 
which represents the quantity of accurate guesses made by 
the classic, is used to assess performance.

Table 3 represents the various performance of state-
of-art models. BiLSTM bids the bottommost training and 
testing loss and the maximum training and testing accu-
racy. Therefore, the BiLSTM model is the most effective 
model. About 98% of the information in the training data 
and 96% of the data points in the test data can be properly 

Table 2   Comparative analysis 
of the machine learning model

Model Accuracy Precision Recall F1 score False-
positive 
rate

Logistic regression 0.85 0.83 0.87 0.85 0.13
Decision tree classifier 0.87 0.85 0.89 0.87 0.11
Support vector machine 0.90 0.89 0.91 0.90 0.09
Random forest classifier 0.92 0.91 0.93 0.92 0.07
Gradient boosting classifier 0.93 0.92 0.94 0.93 0.06

Fig. 5   ROC curve of the various models

Fig. 6   Performance of machine learning models

Table 3   Performance analysis of state-of-art models

Model Training 
accuracy

Testing 
accuracy

Training loss Testing loss

CNN 0.90 0.88 0.10 0.12
RNN 0.85 0.83 0.15 0.17
LSTM 0.97 0.95 0.03 0.05
BiLSTM 0.98 0.96 0.02 0.04

Fig. 7   Performance of state-of-art models
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predicted by the BiLSTM model. About 90% of the fact 
points in the training data and 88% of the data points in the 
test data can be accurately predicted by the CNN model.

The proportion of data points that the model properly 
predicts based on training data is known as training accu-
racy as shown in Fig. 7. A model is better at learning 
the training data if the training accuracy is higher. The 
percentage of data points the model properly predicts on 
test data is known as testing accuracy. A model is better at 
generalizing to new data when testing accuracy is higher. 
The model’s capacity to learn the training data is shown 
by the training loss. The model performs better at fitting 
the training set of data when the training loss is reduced. 
Testing loss is a gauge of how well a model can adapt to 
fresh data. The model is more effective at fitting the test if 
the testing loss is lower.

Conclusion

The study’s findings support the idea that groundwater level 
predictions can be made using machine learning methods. 
With a training accuracy of 98% and a testing accuracy of 
96%, it was determined that the BiLSTM model was the 
utmost precise model for this task. The performance of the 
other models, LSTM, CNN, and RNN, was likewise strong, 
with training and testing accuracies of more than 85%. The 
findings imply that machine learning models were to cre-
ate groundwater depletion and to inform water management 
plans. Machine learning algorithms might be used to forecast 
global warming and the effect of groundwater levels or to 
pinpoint regions at danger of famine. The data that artificial 
intelligence models are trained on, it is crucial to remember, 
determine how accurate they will be. Before applying the 
models to real-world applications, it is crucial to employ 
high-quality data and validate the models on several data-
sets. Overall, the findings of this study are encouraging and 
point to the possibility of machine learning models having 
a significant impact on groundwater resource management.
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