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Abstract
Noise reduction is one of the main challenges for researchers. Classical image de-noising methods reduce the image noise 
but sometimes lose image quality and information, such as blurring the edges of the image. To solve this challenge, this work 
proposes two optimal filters based on a generalized Cauchy (GC) distribution and two different nature-inspired algorithms 
that preserve image information while decreasing the noise. The generalized Cauchy filter and the bilateral filter are two 
parameter-based filters that significantly remove image noise. Parameter-based filters require proper parameter selection to 
remove the noise and maintain the edge details. To this end, two filters are considered. In the previous works, the parameters 
of the mask that was made with the GC function were optimized and the mask size was considered fixed. By studying dif-
ferent noisy images, we find that the selected mask size significantly impacts the designed filter performance. Therefore in 
this paper, a mask is designed using the GC function to formulate the first filter, and despite the optimization of the filter 
parameters, the selected mask size is also optimized using the peak signal-to-noise ratio (PSNR) as a fitness function. In most 
metaheuristic-based bilateral filters, only the domain and range parameters, which are based on Gaussian distribution, are 
optimized and the neighboring radius is a constant value. Filter results on different noisy images show that the neighboring 
radius has a major effect on the filter performance. Since the filter designed with the GC function causes significant noise 
removal, this function is effective, and on the other hand, it’s almost similar behavior with the Gaussian function has caused 
it to be combined with the bilateral filter to design the second filter in this paper. The kernel of the domain and range is con-
sidered to be the GC function instead of the Gaussian function. The domain and range parameters and the neighboring radius 
are optimized using the PSNR as a fitness function. With the help of optimization algorithms such as the whale optimization 
algorithm and the Gaining sharing knowledge-based optimization algorithm, bilateral filter; and GC filter parameters are 
optimized. Finally, the performance of the proposed filters is investigated on images corrupted by Gaussian and impulse 
noise. It is compared with other classical filters, the particle swarm optimization (PSO) based GC filter, and two PSO-based 
bilateral filters on various images. The experimental findings demonstrate that the suggested filters outperform the others.

Keywords Bilateral filter · Gaining sharing knowledge-based optimization algorithm · Generalized Cauchy filter · Image 
de-noising · Image noise · Particle swarm optimization algorithm · Whale optimization algorithm

Introduction

In recent years, digital images have found numerous applica-
tions in various analysis and engineering sciences, such as 
medical imaging, resonance imaging, computed tomography, 
satellite observation, etc. However, most sensor-captured 
images are corrupted by noise [1]. Various types of noises 
caused by hardware or atmospheric factors affect the image 
quality [2], so most researchers have considered image de-
noising to improve image quality by removing noise from 
the image while preserving structural information [3]. Noise 
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removal should be done early, not affecting other stages of 
image analysis, such as image segmentation, image clas-
sification, etc. Image de-noising can be done by hardware 
or software approaches. Despite new advances in optics 
and hardware to reduce the adverse effects of image noise, 
software-based methods, including some parameter-based 
algorithms, have been highly considered because they are 
device-independent and widespread.

Three types of image de-noising methods exist: filter-
based, transform-based, and non-local.

Recently, various filter-based methods have been divided 
into linear and non-linear categories. Among the linear fil-
ters, the Mean filter [4] can be mentioned, which helps elim-
inate image noise but blurs the edges of the image. Another 
linear filter that can be said is the Wiener filter [5]. This 
filter eliminates the noise and blurring of a signal that has 
damaged the image. It minimizes the square errors asso-
ciated with inverse filtering and noise removal. Although 
the Wiener filter can effectively remove Gaussian noise, it 
loses some details about the image edge. The median filter 
[6], which is more suitable for salt and pepper noise while 
reducing noise, is one of the most common non-linear filters. 
The main idea behind this filter is to insert the current pixel 
value with median values adjacent to the stated pixel. This 
filter is complicated and expensive because it takes a long 
time to calculate the median in each window. The bilateral 
filter [7] is another non-linear filter, a spatial Mean filter that 
protects the edges of the image and is an efficient filter for 
noise removal. The performance of this filter depends on 
the correct selection of the parameters of the filter, which is 
not related to the image and requires experimental efforts. 
Non-linear filters are preferred over linear ones due to 
their superior image noise removal and edge preservation 
performance.

Transform-based methods are also efficient for image de-
noising [8]. The wavelet transform is one of these transfor-
mations. In the transform-based methods, the image domain 
is first changed by applying some linear transformations on 
the image. Then, non-linear or multiple operations are per-
formed in this domain, and an inverse linear transformation 
returns the image domain. One transform-based method is 
the BLS-GSM method [9], a wavelet domain method. The 
basic idea of this method is that when the images are split 
into wavelengths in the multidimensional display, the adja-
cency of each wavelet coefficient is modeled using Gaussian 
Scale Mix (GSM), and noise-free coefficients are estimated 
using Bayesian least squares (BLS). Another transform-
based method is three-dimensional block-matching (BM3D) 
algorithm [10]; for reducing image noise. The idea of using 
this method to eliminate the noise is to enhance the dis-
persal of the image, which has scattered representations 
in the transform domain enhanced by two-dimensional 
grouping patches similar to the three-dimensional groups. 

A wavelet-based approach using the least square approach 
is proposed by Vishnu et al. [11]. The noisy image is con-
sidered and given as an input to different filters that per-
form decomposition and then entered into a Least Square 
weighted regularization stage. Wavelet-based algorithms 
have some defects, including a lack of good directionality 
and calculation complexity, and are time-consuming.

Other noise reduction methods are non-local methods that 
estimate the intensity of all pixels based on the information 
about the whole image and thus take advantage of similar 
patterns and features in an image; in this regard, the Non-
Local Mean filter [12] can be mentioned. Unlike local mean 
filters, which smooth the image by replacing the mean value 
of a group of pixels located adjacent to the target pixels with 
the value of the target pixels, the non-local mean method 
smooths the image by calculating the mean of all the pixels 
which the amount of similarity between these pixels and 
the target pixels has weighted. An iterative point filtering 
algorithm based on the Bayesian non-local mean filter model 
for ultrasound images is proposed by Zhou et al. [13]. Mehta 
and Prasad [14] presented a method for speckle noise reduc-
tion and entropy minimization of medical contrast-enhanced 
ultrasound images. Their method has been implemented and 
tested on different images using a filter bank. The statistical 
feature of the noise is used to apply the Bayesian non-local 
mean model to reconstruct the image, obtain the critical 
probability density function, and provide an iterative filter. 
For reducing the deviations created in the noise-free patches, 
the nearest statistical neighbor has been used as a measure 
of the set of dissimilar neighbors [15]. This method works 
better for white and color noise than the traditional methods 
and improves the bilateral filter's image quality. A Gauss-
ian lifting framework for bilateral and non-local filtering is 
provided by Young et al. [16], which appeals to similarities 
between separable wavelets transform and Gaussian pyra-
mids. The precise implementation of this filter was impor-
tant not only for image processing applications but also for 
several recently proposed bilateral regular inverse problems, 
in which the accuracy of the answer depends entirely on the 
precise execution of the filter. Gaussian lifting designs are 
also examined for bilateral and non-local filters.

Reviewing recent studies on image denoising revealed 
the drawbacks of various methods and techniques applied 
in this field. Therefore, new image-denoising methods using 
metaheuristic algorithms have been proposed. Karami and 
Tafakori [17] proposed a filter for noise removal. To design 
this filter, they made a mask with a fixed size and used the 
GC function in it and found that the GC function could be 
effective in removing the Gaussian noise. By applying this 
filter to different noisy images, it can be concluded that the 
mask size has a major effect on the filter performance. In this 
paper, a mask is designed, and the GC function parameters 
as well as the mask size are considered as parameters that 
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should be optimized. Most meta-heuristic algorithms applied 
to Bilateral filters optimize the intensity and spatial domain 
parameters in the Gaussian function and assume the neigh-
borhood radius to be constant except for Nabahat et al. [18] 
methods, or Wang et al. [19] method, which claims that the 
spatial domain parameter has little effect on the filter perfor-
mance; therefore, It is assumed to be constant and optimizes 
the neighborhood radius and intensity domain parameter. In 
this paper, it is claimed that the neighborhood radius, as well 
as the spatial and intensity domain parameters, significantly 
affect the bilateral filter's performance. On the other hand, 
due to the almost similar behavior, and the effective and better 
performance of the GC function compared to the Gaussian 
function in noise reduction, the GC function is used in the 
spatial and intensity domain of the bilateral filter. Here the 
WOA and GSK algorithms were applied to solve the Non-
deterministic polynomial time (NP) problem, which resulted 
from the anonymity of the exact values of parameters that 
must be optimized in the bilateral filter and GC filter. The GC 
filter parameters as well as mask size and the bilateral filter 
parameters such as the intensity domain, spatial domain, and 
spatial neighborhood radius were optimized using the WOA 
and GSK algorithms. The noise-free image was achieved and 
compared with classical noise removal filters such as Mean 
filter, Gaussian filter, Median filter, Wiener filter, Non-local 
mean filter, and three metaheuristic-based algorithms like 
PSO-based GC filter [17] (GC_PSO), and two PSO-based 
bilateral filters (Wang's method [19] ‘BW_PSO’ and Asokan's 
method [20] ‘BA_PSO’) on various images respectively.

The rest of the paper is organized as follows. “Prelimi-
naries” includes preliminaries (explain the GC distribution, 
Bilateral filter, PSO, WOA, and GSK algorithms). “Pro-
posed Method” presents the proposed filters based on the 
GC function. The experimental results and discussion of 
the proposed method and its description are explained in 
“Experimental Results and Discussion”, and finally, the con-
clusions and suggestions for future work are presented in 
“Conclusion and Future Directions”.

Related Works

By far, there have been several methods proposed for image 
denoising and restoration. This section reveals the recent 
studies conducted on image-denoising techniques.

Image denoising’s main goal is to remove the noise effec-
tively and preserve the original image details as much as 
possible, and to this end, many approaches have been con-
sidered [21].

Dhanushree et al. [22] used different filters to remove 
speckle noise on acoustic images and found that among the 
available filters, the bilateral filter; followed by the guided 
filter, further removes speckle noise from acoustic images.

A hierarchical sequence of development and creation 
of various Gaussian noise removal methods from the pri-
mary methods to more sophisticated hybrid techniques are 
reviewed by Goyal et al. [23]. Other de-noising techniques 
have been proposed in [24] and [25]. To train high-quality 
noise reduction models based on an unorganized group of 
corrupted images, a method described by Laine et al. [24]. 
This training eliminates the need for reference images using 
“blind spot” networks in the receiving field and can, there-
fore, be used in situations where access to such data is costly 
or impossible. This method also controls situations where 
the noise model parameters are variable and unclear in train-
ing and evaluation data. The model that adequately selects 
the regularization parameter in the total variation model was 
proposed by Pan et al. [25]. In this model, an iterative algo-
rithm was used to estimate the optimal upper bound using 
the stability between the value of the fitting data term and 
the upper bound. Then, a dual-based method was applied 
that avoids calculating the Lagrangian coefficient associated 
with that constraint, to solve the constrained problem.

Various complex background noise and weak desired 
signals have severely limited the practical application of 
Distributed Fiber Optic Acoustic Detection (DAS) as a 
transformative technology in seismic exploration. A residual 
encoder-decoder deep neural network (RED-Net) enhanced 
by deep repetitive memory block (DMB) and channel aggre-
gation block (CAB) called Residual Channel Aggregation 
Encoder-Decoder Network (RCEN) for vertical seismic pro-
file record (VSP) received by DAS is presented for effec-
tive noise removal [26]. DMB uses the theory of weight 
accumulation to improve the feature extraction ability and 
achieve accurate noise removal; meanwhile, CAB enhances 
the performance of weak signal storage using multi-channel 
analysis architecture.

Modifying the measurement index, defining a constraint 
function, and considering the collision between readers 
and between readers and tags led to the development of an 
improved radio-frequency identification (RFID) reader anti-
collision model [27]. Since the number of encoded variables 
increased because of the dense deployment of many readers 
and caused a high-dimensional problem that traditional algo-
rithms cannot solve, the Distributed Parallel Cooperative 
Particle Swarm Optimization (DPCCPSO) is used. Inertia 
weights and learning factors are adjusted during evolution, 
an improved clustering strategy is obtained, and various 
combinations of random number generation functions are 
tested.

A gated attention mechanism and a linear fusion method 
construct a two-stream interactive recurrent feature trans-
formation network (IRFR-Net) [28]. First, a context extrac-
tion module (CEM) is designed to obtain low-level, depth 
background information. Second, the gated attention fusion 
module (GAFM) obtains useful RGB depth information 
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(RGB-D) structural and spatial fusion features. Third, adja-
cent depth information is integrated globally to obtain com-
plementary context features. A Weighted Atrous Spatial 
Pyramid (WASPP) fusion module extracts multi-scale local 
information of depth features. Finally, the global and local 
features are combined in a bottom-up scheme to highlight 
salient objects effectively.

An image segmentation method based on deep learning to 
segment key regions in mineral images using morphologic 
transformation to process mineral image masks is presented 
by Yang et al. [29]. Four aspects of the deep learning mineral 
image segmentation model are considered: backbone selec-
tion, module configuration, building the loss function, and 
its application in the classification of the mineral image. A 
new loss function suitable for mineral image segmentation 
is also presented, and the formation performance of Con-
volution neural network (CNN) based segmentation mod-
els under various loss functions is compared. Hussain and 
Vanlalruata [30] de-noised the image using CNN to improve 
character recognition. By classifying the noise types, they 
identified the kind of noise to select a specific model of de-
noising to increase the image de-noising performance. A 
noisy and corresponding clean image is fed into the network 
for training. After that, the generated model de-noises the 
character image. Chaurasiya and Ganotra [31] have changed 
the receptive field and investigated its effect on image noise 
removal. For this purpose, they designed and compared the 
networks: CNN with expanded kernels, CNN without expan-
sion but with increased kernel size with the same receptive 
field, and CNN without any expansion and without increas-
ing the kernel size. After reviewing the previous three items, 
they added a fourth item with an optimized receptive field 
that improves advanced results.

In recent years, the use of meta-heuristic algorithms has 
received much attention, which plays an essential role in 
replacing human inspections and interpreting processed 
images. Meta-heuristic algorithms have demonstrated 
their effectiveness in solving high-dimensional optimiza-
tion problems. Using random initial solutions, these algo-
rithms generate optimal solutions for complex optimiza-
tion problems [32]. They are divided into four categories. 
Evolution-based algorithms, swarm-based algorithms, 
physics-based algorithms, and human-related algorithms. 
Each category has several algorithms, and they have been 
used in real-world applications in various fields of engi-
neering and science. The evolutionary algorithms that have 
gained widespread recognition include genetic algorithm 
(GA) [33] and differential evolution (DE) [34]. The swarm 
intelligence algorithms that are most commonly used are 
Artificial Bee Colony (ABC) [35], Firefly Algorithm (FA) 
[36], Particle Swarm Optimization (PSO) [37], Moth-Flame 
Optimization (MFO) [38], Salp Swarm Algorithm (SSA) 
[39], Grey Wolf Optimizer (GWO) [40], and WOA [41]. 

The simulated annealing algorithm (SA) [42] is a sample of 
the physics-based algorithm. Harmony Search (HS) [43], 
Teaching Learning-Based Optimization (TLBO) [44], and 
Gaining sharing knowledge-based optimization algorithm 
(GSK) [45] are the well-known human-based metaheuristic 
algorithms.

Improved Gray Wolf Optimization (IGWO) addresses the 
limitations of traditional Grey Wolf Optimization (GWO) by 
incorporating Dimension Learning-Based Hunting (DLH), 
inspired by wolf pack dynamics. DLH creates personalized 
neighborhoods for each wolf, allowing them to exchange 
information and maintain a balance between local and global 
search [46]. In response to the limitations of the traditional 
WOA algorithm, which can converge slowly and get stuck 
in local optima, a variant called Multi-Population Evolution-
ary Algorithm (MEWOA) was introduced in [47]. MEWOA 
divides the population into three subpopulations with dif-
ferent searching strategies: one that searches globally and 
locally, another that explores randomly, and a third that 
exploits the search space. This approach helps MEWOA 
find better solutions and avoid local optima more effectively.

Multi-Trials Vector-Based Differential Evolution 
(MTDE) [48] is a metaheuristic algorithm that combines 
multiple search algorithms to evolve better solutions. It uses 
a novel approach called Multi-Trial Vector (MTV), which 
adaptively adjusts the movement step size based on past 
successes. MTV incorporates three different Trial Vector 
Producer (TVP) strategies: Representative-based, Local 
Random, and Global Best History. These TVPs share their 
experiences through an archived database, allowing for more 
effective solution exploration.

Redundant or irrelevant features in datasets can degrade 
algorithms' performance. Effective feature selection through 
nature-inspired metaheuristics like the Aquila optimizer can 
improve accuracy and decision-making. A wrapper feature 
selection approach uses the Aquila optimizer to identify the 
most efficient feature subset, which was tested on medical 
datasets with binary feature selection methods (S-shaped 
binary Aquila optimizer (SBAO) and V-shaped binary 
Aquila optimizer (VBAO)) [49].

In [50], a Discrete Propeller-Flame Optimization Algo-
rithm (DMFO-CD) is proposed for community detection 
in graphs. It adapts Continuous Moth-Flame Optimization 
(CMFO) for discrete problems by representing solution vec-
tors, initializing, and moving strategy. DMFO-CD uses a 
locus-based adjacency representation and considers node 
relationships during initialization without assuming the 
number of communities. The movement strategy updates 
solutions with a two-point crossover for computing move-
ments, a single-point neighbor-based mutation for improving 
exploration and balancing exploitation and exploration, and 
a single-point crossover based on modularity in the fitness 
function.
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In “Monkey King Evolution” (MKE) [51], the combi-
nation of different methods and control parameters affects 
the convergence rate and balance between exploration and 
exploitation. By combining multiple strategies, the Multi-
Trial Vector-Based Monkey King Evolution (MMKE) algo-
rithm improves global search performance and avoids early 
convergence. GSK [45], is a novel algorithm that is derived 
from the concept of acquisition and distribution of knowl-
edge during the human lifetime. Many efforts have been 
made in different fields with this algorithm. A binary-based 
GSK algorithm for feature choice was implemented in [52]. 
Modifications for the GSK algorithm are done in [53] for its 
performance enhancement. Agrawal et al. [54] use the GSK 
algorithm for solving stochastic programming problems.

An Adaptive genetic algorithm (AGA) and bilateral fil-
tering [7] were combined to provide a noise reduction and 
image restoration filter [55]. The results obtained from this 
technique indicated that it offered better performance in de-
noising all types of noisy images with a higher de-noising 
Peak signal to noise ratio (PSNR) [56], and it restored all 
images with high quality. Another automatic PSO-based 
[37] method for the bilateral filter [7] parameter selection 
was introduced [19]. The Structural similarity index meas-
ure (SSIM) [57] was used as a fitness function to optimize 
the intensity domain and radius parameters by applying the 
PSO algorithm. The de-noising performance of the bilateral 
filter was significantly improved in their method, and the low 
stability of the bilateral filter without parameter optimiza-
tion was declared. The parameters of the bilateral filter [7] 
were also optimized using PSO, cuckoo search [58], and 
adaptive cuckoo search algorithms to reduce the satellite 
images that have been affected by Gaussian noise [20]. The 
proposed adaptive cuckoo search method and traditional fil-
ters were compared by evaluating the PSNR, Mean squared 
error (MSE), Feature Similarity Index (FSIM), Entropy, 
and CPU time. Their method is an edge-preserving filter 
with low complexity, and is faster than other optimization 
algorithms. The parameters of the bilateral filter, including 
the neighborhood radius, which was considered a param-
eter, were optimized by the WOA algorithm [41], and the 
obtained image was restored by optimizing the point spread 
function in the Richardson-Lucy algorithm (R-L) algorithm 
[18]. The morphological operation and Multi-objective par-
ticle swarm optimization (MOPSO) were used to design a 
de-noising filter [59]. In their approach, first, a series and 
parallel compound morphology filter were generated based 
on an open-close (OC) operation, and a structural element 
with various sizes aiming to remove all noises in a series 
link was chosen; after that, MOPSO was combined to solve 
the parameters’ setting of multiple structural elements. 
While smoothing the noise, the edges and texture details 
have been preserved in their methods. An APSO-based R-L 
algorithm was used for blurry elimination and restoration 

of the de-noised image using a Fuzzy-based median filter 
(FMF) [60]. They claimed that their FMF and APSO-RL 
methods have a higher value regarding PSNR and Second 
derivative like measure enhancement (SDME) than the other 
conventional filtering and restoration techniques. Singh et al. 
[61] used fuzzy linguistic quantifiers to remove impulse 
noise from images. They claimed that, since the median fil-
ter determines the median of a predefined mask, sometimes 
the estimated intensity of the median filter will again cause 
noise. The performance of the network can be increased 
by the size of the receptive field in noise removal. Some 
features of the GC distribution were used, and a mask was 
designed that reduces the image noise while preserving the 
edges and details of the image [17]. The parameters of the 
GC function optimized by the PSO algorithm [37] and MSE 
[62] value are selected as a fitness function. The result of this 
paper claims that maximum PSNR value can be achieved 
and it is an easily designed method.

Spatial filters include some drawbacks; for instance, these 
filters smooth the data while decreasing noise and blurring 
edges in the image. Also, linear filters cannot effectively 
remove signal-dependent noise. Likewise, spatial frequency 
filtering and wavelet-based algorithms have some defects, 
including the calculation complexity and time-consuming. 
By removing these disadvantages, image denoising and con-
sistency efficiency can be enhanced.

Filter-based denoising techniques can effectively reduce 
the noise, but they cannot preserve the image quality and 
useful information; so metaheuristic algorithms which play 
an important role in replacing human inspections and inter-
pretation of processed images, have been used. Due to the 
novelty of the GSK algorithm, and the lack of wide applica-
tions in image processing, the GSK algorithm is used for 
noise removal purposes. The WOA and GSK algorithms are 
used to optimize the parameters due to having a high con-
vergence speed. Since the WOA algorithm has two separate 
steps of exploration and exploitation in almost half of the 
iterations that prevent the possibility of getting stuck in local 
optima. The GSK algorithm's scalability ensures that it can 
effectively balance exploration and exploitation capabili-
ties. Therefore, the current paper aimed to de-noise images 
through the WOA and GSK algorithms in the bilateral and 
GSK filters to optimize the filter parameters. Table 1 details 
the previous similar efforts and the context of motivating 
the proposed filters.

The advantages of the proposed method include simple 
design, significant noise removal, and preservation of image 
information. However, in the proposed methods, the original 
noiseless image must be accessible for comparison, which is 
one of the disadvantages of these methods.

The proposed de-noising filters are applied to the images 
corrupted with Gaussian and salt & pepper (SAP) noises. 
The results are compared with each other, and traditional 
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methods such as Mean filter, Gaussian filter, Median filter, 
Wiener filter, Non-local mean filter, PSO-based GC filter 
[17] (GC_PSO), and two PSO-based bilateral filters (Wang's 
method [19] ‘BW_PSO’ and Asokan's method [20] ‘BA_
PSO’) on various images that are corrupted by Gaussian 
noise.

The SSIM, PSNR, Figure of merit (FOM) [63], Edge 
Preservative Factor (EPF) [64] values, and execution time 
are calculated for this comparison, and the proposed filters' 
efficiency is determined.

Preliminaries

At first, we try to explain the applied functions and algo-
rithms. The explanations about the generalized Cauchy 
distribution and the bilateral filter are given in “The GC 
Distribution” and “Bilateral Filter”, respectively. Details 
about PSO, WOA, and GSK algorithms are given in “PSO 
Algorithm”, “WOA Algorithm”, and “GSK Algorithm”, 
respectively.

The GC Distribution

The GC distribution is an asymmetric distribution with a 
bell-shaped density function, similar to the Gaussian dis-
tribution, but with a higher mass in the tails and is con-
sidered a particular distribution due to the heavy tails. The 
GC distribution family has properties that depend on the 
probability density function for the whole family and has 
algebraic tails that model many impulsive processes in real 
life [65]. Another parameterization of the GC distribution 
was performed by Miller and Thomas [66]. Later, the prob-
ability density function was given as follows, mainly used 
to eliminate radio speckle noise [67]. Details about the GC 
distribution have been described in reference [17].

where � corresponds to the tail constant (causes the sharp-
ness or non-sharpness of the peak point of the curve and 
moving the peak point of the curve up or down), � is the 
scale parameter (causes the tail of the curve to be closer or 
farther away) and � refers to the tail of the curve moving 
from symmetry and Γ(.) is the Gamma function.

Bilateral Filter

As mentioned in [20], the bilateral filter, which was pro-
posed by Tomasi [7], has been a non-linear, edge-preserving, 
and noise-reducing smoothing filter, which is a combina-
tion of range and domain filtering and replaces the intensity 
of each pixel with the weighted Mean intensity of adjacent 
pixels. The weights are based on the Gaussian distribution, 
replaced by the GC distribution in the proposed method. 
According to the bilateral filter definition, the noisy image 
is filtered from the following formula:

The weight W  is defined so that adjacent pixels within a 
neighborhood are compared with the central pixel, and the 
higher weights are assigned to pixels that are more similar 
and closer to the center pixel.

where Ifiltered and I represent the filtered and noisy images, 
respectively.x is the current pixel coordinate that needs to be 
filtered. N is the window centered in, x so xi ∈ N is another 
pixel. fr and gd are the range and domain kernel for smooth-
ing the differences in intensities and coordinates.

(1)

f (x) =
𝜇 𝛽 Γ(2∕𝛽)

2(Γ(1∕𝛽))2
(𝜇𝛽 + |x − 𝜃|𝛽)−

2

𝛽 , 𝛽,𝜇 > 0 , x, 𝜃 ∈ ℝ,

(2)Ifiltered =
1

W

∑

xi∈N

I
(
xi
)
fr
(
I
(
xi
)
− I(x)

)
gd
(
xi − x

)
.

(3)W =
∑

xi∈N

fr
(
I
(
xi
)
− I(x)

)
gd
(
xi − x

)
,

Table 1  Details of recently produced filters

Author Filter Metaheuristic algorithm Function Parameters Fitness function Neighboring radius

Karami and Tafakori [17] GC PSO GC GC parameters MSE Fix = 3
Nabahat et al. [18] Bilateral WOA Gaussian Domain, range, and 

radius
PSNR + SSIM Variable

Asokan and Anitha [20] Bilateral PSO, CS, ACS Gaussian Domain, range MSE Fix = 3
Wang et al. [19] Bilateral PSO Gaussian Range, and radius SSIM Variable
Sakthidasan and Nagappan 

[55]
Bilateral AGA Gaussian Domain, range PSNR Fix = 3

Proposed1 Bilateral WOA, GSK GC GC parameters and radius PSNR Variable
Proposed2 Bilateral WOA, GSK GC Domain, range, and 

radius
PSNR Variable
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PSO Algorithm

PSO [37] is a social search algorithm inspired by the social 
behavior of birds. The algorithm is based on particles repre-
senting a potential solution to the optimization problem. The 
algorithm aims to find the particle location in the response 
space that obtains the best value for the objective function. 
Each particle is considered a possible solution to the prob-
lem. The improvement in the solution provided by each 
particle comes from two sources; the first is using the par-
ticle's personal experience, called the cognitive component 
(pbest) . The other is to improve the answer in the particle 
community, which is called the social component (gbest) . 
pbest is the best solution that the particle has received so far 
from the implementation of the algorithm and gbest is the 
best solution experienced in the population so far from the 
implementation of the algorithm. To calculate the velocity 
of each particle in each location, pbest and gbest are used 
simultaneously. The cognitive and social components are 
combined to guide the particle to a better solution to define 
the particle velocity. The particle velocity in each iteration 
of the algorithm is calculated as follows.

where xi(t) and vi(t) display the current particle location 
and current velocity, respectively, and vi(t + 1) indicates the 
particle's new velocity to move from the current location to 
the new location. � is the inertia weight, c1 and c2 are the 
acceleration constant, r1 and r2 are the random values in the 
range (0,1). The new location of each particle is obtained 
from the following equation.

The weight w changes with the number of iterations and 
can be calculated according to Eq. (6) [68]

Moreover wmin , and wmax are the minimum and maximum 
weights, respectively, itercurrent and itermax indicate the cur-
rent and maximum iterations.

WOA Algorithm

One nature-inspired algorithm that uses the humpback whale 
hunting strategy is the whale algorithm [41]. The humpback 
whales usually go 10–15 m underwater and form spiral bub-
bles to encircle the prey. Afterward, it moves towards the 
surface of the water and the prey. This type of whale behav-
ior involves two phases exploration and exploitation.

(4)
vi(t + 1) = � vi(t) + c1r1

(
pbesti(t) − xi(t)

)
+ c2r2

(
gbest(t) − xi(t)

)
,

(5)xi(t + 1) = xi(t) + vi(t + 1).

(6)w = wmax −
wmax − wmin

itermax

× itercurrent.

The WOA starts with initializing the search agents 
(whales) and each search agent's position Yi , i = 1, 2,… , n , 
which n indicates the number of search agents. After ini-
tialization, the fitness function was evaluated for each 
search agent, and the best value among them was consid-
ered Y∗ . Since the exact location of the prey in the search 
space is unknown, the best answer Y∗ is to consider the 
location of the prey or close to it. The rest of the search 
agents update their position according to this answer; 
obtained from the following equations.

where u , �⃗Y∗ , �⃗Y  signifies the current iteration, the position 
vector of the current best solution, and the position vector 
respectively, “| |” is the absolute value, “.” is elementwise 
multiplication, and the vectors �⃗A and ��⃗C are obtained from 
Eqs. (9) and (10). It should be noted that if there is a better 
solution, Y∗ should be updated.

In the exploration and exploitation phases, �⃗n is a ran-
dom value in [0, 1][0, 1] , and ��⃗m decreases from 2 to 0 dur-
ing the iterations.

Two mechanisms of whale bubble network attack are 
mathematically modeled as follows:

• The shrinking surrounding mechanism is accomplished 
by reducing the value of ��⃗m in Eq. (9); correspondingly, 
the amount of �⃖��A  also decreased.

• The spiral updating position mechanism in which 
whales imitate the helix-shaped movement to update 
the position between the prey and the whale is 
described in Eq. (11).

where �⃗R′ , l  and b are the distance between the prey and 
ith whale (current optimal solution ���⃗Y∗ ), a random value in 
the range of [−1, 1] and a constant that corresponds to the 
logarithmic shape of the helix, respectively.

The humpback whales can use both mechanisms simul-
taneously. Given the same probability of both mechanisms, 
the mathematical model is as follows.

(7)�⃗R =
|||
��⃗C ⋅

��⃗Y∗(u) − �⃗Y(u)
|||,

(8)�⃗Y∗(u + 1) = �⃗Y∗(u) − �⃗A ⋅
�⃗R,

(9)�⃗A = 2��⃗m ⋅ �⃗n − ��⃗m,

(10)��⃗C = 2 �⃗n.

(11)�⃗Y(u + 1) = �⃗R�
⋅ ebl ⋅ cos(2𝜋l) + ���⃗Y∗(u),

(12)�⃗Y(u + 1) =

{
�⃗Y∗(u) − �⃗A ⋅

�⃗R p < 0.5

���⃗R�
⋅ ebl ⋅ cos(2𝜋l) + �⃗Y∗(u) p ≥ 0.5

,
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where p is a random number in [0, 1].
Changes in �⃗A values are considered the exploration 

phase. In this phase, the humpback whales search arbitrar-
ily according to the location of each one. The arbitrary val-
ues are in the range [− 1, 1], forcing the whale to travel far 
away from the reference whale. In the exploration phase, 
the position of the whales is updated according to the ran-
domly selected whale.

The WOA algorithm starts to find the best solution by 
arbitrarily tracing the whales in the search space. The whales 
update their location in each iteration according to the best or 
arbitrarily selected search agent. The value p reveals that the 
whales should have a spiral or shrinkage movement. The WOA 
algorithm ends when a predetermined termination condition 
is met.

GSK Algorithm

Gaining sharing knowledge-based optimization algorithm 
(GSK) [45] is a newly developed metaheuristic algorithm that 
follows the concept of gaining and sharing knowledge through-
out the human lifetime. Let 

{
y1, y2,… , yM

}
 be the individu-

als of the population size M . Each individual yj is defined 
as yj =

[
xj1, xj2,… , xjc

]
 where c is the branch of knowledge 

assigned to an individual. In each iteration, individuals are 
sorted in ascending order according to the value of the objec-
tive function and then use the junior gaining and sharing phase 
and the senior gaining and sharing phase to update the popula-
tion of individuals together.

Junior GSK Phase

Each yj gains knowledge from the two closest individuals, 
yj−1 (the best one) and yj+1 (the worst one). It also shares the 
knowledge of an individual yrand randomly. The individuals are 
updated through Eq. (15).

where ynew
j

 is a trial vector for yj , f  and kf  are the objective 

function value and knowledge factor, respectively.

Senior GSK Phase

After sorting individuals into ascending order (based on the 
objective function values) in this phase, the individuals are 

(13)�⃗R =
|||
��⃗C ⋅

�⃗Y rand(u) −
�⃗Y(u)

|||,

(14)�⃗Y(u + 1) = �⃗Y rand −
�⃗A ⋅

�⃗R.

(15)

ynew
j

=

{
yj + kf .

[(
yj−1 − yj+1

)
+
(
yrand − yj

)]
, iff

(
yrand

)
< f

(
yj
)

yj + kf .
[(
yj−1 − yj+1

)
+
(
yj − yrand

)]
, iff

(
yrand

)
≥ f

(
yj
) ,

classified into three categories (best, middle, and worst). The 
best and worst levels each contain n × M (n ∈ [0, 1]) indi-
viduals, and the middle level has the rest (1 − 2n) × M indi-
viduals. For each individual yj , it gains knowledge from three 
individuals of different groups using Eq. (16):

where ypb , ypw and ym are random individuals selected from 
the best, middle, and worst levels, respectively.

Both phases are done to update the different dimensions 
of an individual. Note that the numbers of dimensions that 
will be updated using the junior phase and the senior phase 
are calculated by the following formulation, respectively:

where k > 0 , u , and umax are a knowledge rate, the current 
iteration, and the maximum number of iterations, respec-
tively. In Algorithms 2 and 4, kr ∈ [0, 1] the knowledge ratio 
controls the total amount of gained and shared knowledge 
that will be inherited during generations (the ratio between 
the current and acquired experience).

Proposed Method

Designing an effective filter that preserves the edges and 
structural information of the image is one of the challenges 
most researchers face in image processing. The primary 
purpose of this paper is to develop two automatic filters to 
reduce the noise using the GC distribution. The definition of 
the first and second proposed filters is explained in “Mask 
Design Using the GC Function” and “Bilateral Filter Using 
the GC Function (BL-GC)”, respectively.

Mask Design Using the GC Function

A mask is designed to produce a noiseless image convolved 
with the noisy image to create an efficient filter. For this 
purpose, the parameters of the GC function �, � , � and 
mask size w are considered as parameters, and the optimal 
values of these parameters are found by maximizing the fit-
ness function Eq. (24) defined in “Fitness Function” in the 
WOA and GSK algorithms. Karami and Tafakori [17] used 
some features of the GC function and designed a mask that 
reduces image noise. They optimized the GC distribution 

(16)

ynew
j

=

{
yj + kf ⋅

[(
ypb − ypw

)
+
(
ym − yj

)]
, iff

(
ym

)
< f (yj)

yj + kf ⋅
[(
ypb − ypw

)
+
(
yj − ym

)]
, iff

(
ym

)
≥ f

(
yj
) ,

(17)cja =

(
1 −

u

umax

)k

× c,

(18)cse = c − cja
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parameters by considering the MSE [62] as a fitness func-
tion in the PSO [37]. Their method needed to recalculate the 
PSNR of the filtered image at the end of the algorithm. The 
selected mask size was considered constant and equal to 3, 
while in our proposed method, the mask size is regarded 
as a parameter that should be optimized. By repeating and 
examining their method on different images with different 
mask sizes, we found that the selected mask size signifi-
cantly impacts filter performance, so the proposed method 
addresses these issues. The diagram of the first proposed 
method is shown in Fig. 1.

Considering that Iinput is an m × n ordered noise-free 
grayscale image corrupted by an additive Noise, Inoisy (noisy 
image) is obtained.

The noisy image is convolved with the designed mask F , 
and the noise-free image is obtained.

To design the mask ‘F’, the bivariate GC function, an 
extension of the univariate function Eq. (1), is considered 
Eq. (21).

A discretization must be performed to store the continu-
ous generalized Cauchy function in the form of discrete 

(19)Inoisy = Iinput + noise.

(20)Ioutput = Inoisy × F.

(21)

f (x, y) =

(
𝜇𝛽 Γ(2∕𝛽)

2(Γ(1∕𝛽))2

)2

(𝜇𝛽 + |x − 𝜃|𝛽)−
2

𝛽 (𝜇𝛽 + |y − 𝜃|𝛽)−
2

𝛽 ,

𝛽,𝜇 > 0 , x, y, 𝜃 ∈ ℝ.

pixels. This process is done, and the mask is produced. The 
designed mask size has an odd value like 3, 5, etc., which 
the optimal value is computed through the whale algorithm. 
For example, the 5 × 5 mask with � = 1,� = 1 , � = 0 is as 
follows:

0.0042 0.0094 0.0375 0.0094 0.0042
0.0094 0.0211 0.0843 0.0211 0.0094
0.0375 0.0843 0.3371 0.0843 0.0375
0.0094 0.0211 0.0843 0.0211 0.0094
0.0042 0.0094 0.0375 0.0094 0.0042

In the WOA (and GSK), each search agent Yi , i = 1, ..., n 
(each individual yj, j = 1, ...,M  ) has four parameters 
�, � , � , wsize that the fitness function must optimize. 
At first, the number of n search agents (M individuals) 
containing four parameters �, � , � , wsize is randomly 
initialized according to the range of parameters defined 
in “WOA Algorithm””. Different masks are generated 
according to these search agents (individuals) and con-
volved with the noisy image, so different noiseless images 
are obtained. The fitness function Eq. (24) is evaluated for 
these output images, and the maximum value is considered 
the best solution. The WOA (GSK) is continued accord-
ing to pseudo-codes of Algorithms 1 or 2. Completing the 
predetermined number of iterations results in a noise-free 
image with the maximum fitness function. The pseudo-
codes of the first proposed filter using the WOA and GSK 
will be as algorithms 1 and 2.

Fig. 1  Diagram of the first 
proposed method
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Algorithm 1 The pseudo-code of the first proposed WOA-based filter
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Algorithm 2 The pseudo-code of the first proposed GSK-based filter

Bilateral Filter Using the GC Function (BL‑GC)

In this section, a filter is designed to reduce the noise using 
a bilateral filter, in which the GC function is used instead of 
the Gaussian function.

Assume that the pixel in position (i, j) must be de-noised 
using the adjacent pixels, and one of the adjacent pixels 

is in position (k, l) ; in this case, the weight assigned to 
the pixel (k, l) for noise reduction of the pixel (i, j) is as 
follows:

(22)

w(i, j, k, l) = (�
�d
d
+ �(

√
(i − k)2 + (j − l)2 ) − �d��d )

−
2

� d

(��r
r
+ ��I(i, j) − I(k, l)� − �r��r )

−
2

� r ,

Fig. 2  Diagram of the second 
proposed method

Bilateral filter

Input Image Noisy Image

Noise

Filtered Image

GCauchy domain filter

WOA or GSK

Neighboring Radius 

GCauchy range filter
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where �d, �d , � d are the smoothing parameters in the spatial 
domain and �r, �r , � r are the smoothing parameters in the 
range domain, and I(i, j), I(k, l) are the intensity of the cor-
responding pixels. The proposed filter output is calculated 
as follows:

In Eq. (23), the fraction's denominator is the normali-
zation factor and ID is filtered pixel intensity at the loca-
tion (i, j) . Since the optimal values of the smoothing 
parameters require experimental and manual efforts, the 
WOA (and GSK) is used to obtain the optimal values of 
these parameters by considering Eq. (24) in “PSO Algo-
rithm” as a fitness function. In the proposed filter, the 
neighboring radius r is also considered a parameter that 
should be optimized, and correspondingly, the window size 
( wsize = 2r + 1, r = 1, 2,… ) is obtained. The diagram of 
the second proposed method is shown in Fig. 2

(23)ID(i, j) =

∑
k,l I(k, l) w(i, j, k, l)
∑

k,l w(i, j, k, l)
.

In WOA (or GSK), each search agent (each individual) 
has parameters �d, �d , � d, �r, �r , � r, r that achieve the opti-
mum value according to the fitness function Eq. (24).

Suppose that Iinput is a m × n noise-free grayscale image 
corrupted by additive noise and Inoisy obtained. Equation (23) 
is applied to all pixels of the noisy image, and the noiseless 
image is obtained. The noisy image is entered into the WOA 
(GSK), each search agent (each individual) which contains 
parameters “ �d, �d , � d, �r, �r , � r, r “ is initialized randomly 
in the range defined in “WOA Algorithm”, and according to 
these parameters, Eq. (23) is applied to all pixels of the noisy 
image, and different noiseless images are obtained. The fit-
ness of the output images is calculated through Eq. (24), 
the maximum value is considered the best solution, and the 
WOA (or GSK) is continued to complete a predetermined 
number of iterations. A noise-free image with a maximum 
fitness function is obtained when the algorithm terminates. 
The pseudo-code of the second proposed method using 
WOA and GSK will be as Algorithm 3 and 4.

Algorithm 3 The pseudo-code of the second proposed WOA-based filter
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Algorithm 4 The pseudo-code of the second proposed GSK-based filter

Fitness Function

The goal of optimization problems is to find the optimal 
solution to the problem. The primary purpose of this paper 
is to achieve the best results in the proposed filters. The 
search agents must get better in each iteration. These search 
agents must be evaluated according to the fitness function 
in each iteration. The desired fitness function for the first 
and second proposed filters is the PSNR , which is computed 
using Eq. (24) [62].

where MSE is the mean squared error calculated from 
Eq. (25) [62], I and ID are M × N ordered original and de-
noised images, respectively.

(24)PSNR = 10 log10
2552

MSE
,

A higher PSNR value indicates a further improvement in 
the filtered image.

Parameter Setting

Since all meta-heuristic algorithms are parameter-based. 
Therefore, the analysis of these parameters plays a sig-
nificant role in determining the optimal solution. Accord-
ing to the parameter values used in meta-heuristic algo-
rithms to solve different types of problems in [41, 45, 
46], and also the test results of meta-heuristics-based 
noise reduction filters on different images, the optimal 
values of the parameters can be considered as follows. 

(25)MSE =
1

M × N

M∑

x=1

N∑

y=1

(
I(x, y) − ID(x, y)

)2
.
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The WOA parameters follow the values given in “WOA 
Algorithm”, and the PSO parameters are considered 
c1, c2 = 2 ,wmax = 0.9 ,wmin = 0.4 . The GSK parameters 
“  M = 20, umax = 50, k = 10, n = 0.1, kf = 0.5, kr = 0.9  “ 
are as mentioned in “Experimental Results and Discussion”. 
In the first proposed filter using WOA (or GSK) and the 
GC_PSO filter, the maximum number of iterations and the 
population size are 300 and 50, respectively. The GC func-
tion parameters are concluded from [17], so the mask size 
and GC parameters are set as follows.

The WOA (or GSK) obtains the optimal GC function 
parameters and mask size values. As shown in Table 4, the 
optimal mask size increases by increasing the Gaussian 
noise standard deviation. In the second proposed method, 
BW_PSO; and BA_PSO filters [19, 20], the population size 
and the maximum number of iterations are considered 20 
and 50, respectively. The domain and range parameters of 
the GC function in the bilateral filter and the neighboring 
radius have been experimentally obtained by trying on dif-
ferent images and set as follows:

The domain and range parameters and the radius param-
eter in the BW_PSO filter [19] are considered as follows:

The domain and range parameters in the BA_PSO filter 
[20] are considered as follows:

Given the stochastic nature of the proposed methods and 
PSO-based filters, the presented results are an average of 20 
times, the execution of these algorithms.

Experimental Results and Discussion

To demonstrate the efficiency of the proposed filters using 
WOA and GSK, they are compared with each other, five 
classical filters, and GC_PSO, BW_PSO, and BA_PSO 
filters. To this end, six grayscale images such as Bar-
bara “512 × 512”, Boats “512 × 512”, Hill “512 × 512”, 
Couple “512 × 512”, Peppers “256 × 256”, and House 
“256 × 256” are considered as data sets. These are noise-
less test images with a resolution of 8 bits per pixel and 
are taken from https:// www. kaggle. com/ datas ets/ saeed 
ehkam joo/ stand ard- test- images. To evaluate the perfor-
mance of the proposed methods in the presence of noise, 

(26)� ∈ (0, 5] , � ∈ (0, 2] , � ∈ [−1, 1] , wsize ∈ [3, 11].

(27)

�
d
∈ (0, 1] , �

d
∈ [100, 230] , �

d
∈ [−0.5, 0.5] ,

�
r
∈ [0.01, 50] , �

r
∈ [20, 150] , �

r
∈ [−70, 70] , r ∈ [1, 5].

(28)�d = 10 , �r ∈ [1, 200] , d ∈ [1, 5].

(29)�d = [0.1, 10] , �r ∈ [1, 200] .

each image is corrupted with different standard deviations 
of Gaussian noise and various densities of SAP noise. 
These images are corrupted with four standard devia-
tions “ � = 20, 30, 50, 70 “ of the Gaussian noise and three 
different densities “ d = 0.02, 0.03, 0.05 “ of SAP noise. 
Later for all levels of Gaussian noise standard deviation, 
the classical filters such as Mean filter, Gaussian filter, 
Median filter, Wiener filter, non-local mean filter (NLM), 
the GC_PSO filter, BW_PSO, BA_PSO, WOA-based 
P1_WOA filter (P1_WOA), GSK-based P1_WOA filter 
(P1_GSK), WOA-based P2_WOA filter (P2_WOA), and 
GSK-based P2_WOA (P2_GSK) filters are applied to the 
noisy images, for all densities of SAP noise, Mean fil-
ter, Gaussian filter, Median filter, Wiener filter, non-local 
mean filter, GC_PSO filter, BW_PSO filter, BA_PSO 
filter, P1_WOA filter, and P2_WOA filter are evaluated. 
The SSIM [26] value between the filtered image and the 
original image and the SSIM value between the original 
image and the noisy image are calculated and are listed in 
Table 2. The SSIM [57] value is calculated from Eq. (30). 
Note that the SSIM values between the filtered and the 
original noiseless images are calculated manually in all 
methods except for the BW_PSO, which is automatically 
calculated by the PSO algorithm. In the GC_PSO filter 
and the BA_PSO, the MSE value between the filtered and 
original images is calculated automatically, but the SSIM 
value between the filtered and original images is calcu-
lated manually. In the proposed filters, the PSNR value 
is calculated automatically by WOA (or GSK). To make 
a fair comparison between the noise reduction filters in 
all images, the PSNR value between the filtered and the 
original images is also calculated manually. The results 
are listed in Table 3.

The SSIM [57] is a number between zero and one and 
evaluates the similarity between two images; in contrast, 
brightness, and structure. The primary purpose is to assess 
this criterion between the original noiseless image and the 
filtered output image. Higher values indicate that the struc-
tural similarity of the resulting image is close to the origi-
nal noiseless image, and the filter performance is better.

where, �I ,�In
 and �2

I
, �2

In
 are the mean value and variance 

value of corresponding original and noisy images, and �I,In 
is the covariance between original and noisy image. 
c1 = (0.01 × 255)2, c2 = (0.03 × 255)2 are two constants.

As an example, the results of the calculations are shown 
on some images in Fig. 3, in which the images “ Hill , Couple , 
Barbara and Boats “ are corrupted with standard deviations 
20, 30, 50 and 70 of the Gaussian noise, respectively. In 

(30)SSIM =

(
2�I�In

+ c1
)(
2�I,In + c2

)

(
�2
I
+ �2

In
+ c1

)(
�2
I
+ �2

In
+ c2

) ,

https://www.kaggle.com/datasets/saeedehkamjoo/standard-test-images
https://www.kaggle.com/datasets/saeedehkamjoo/standard-test-images
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Fig. 3, “ a, b, c, d, e, f , g, h, i, j, k , l,m and n “ represent the 
Original, Noisy, Mean filter, Gaussian filter, Median filter, 
Wiener filter, NLM filter, GC_PSO filter, BW_PSO filter, 
BA_PSO filter, P1_WOA filter, P2_WOA filter, P1_GSK, 
and P2_GSK filter images respectively.

As shown in Tables 2 and 3, higher values are marked 
in bold, and the P2_GSK filter in almost all images and all 
standard deviations of the Gaussian noise have better SSIM 
and PSNR than other methods. After the P2_GSK filter, the 
P2_WOA filter performs better than other filters. BW_PSO 
filter has better SSIM and PSNR than others, even compared 
to the P1_WOA and P1_GSK. The comparison between 
methods shows that the metaheuristic-based methods have 
almost better fitness function and SSIM values. The fitness 
and SSIM value of the proposed filters will be even bet-
ter than the GC_PSO method. The P2_WOA and P2_GSK 
filters act better than the P1_WOA and P1_GSK filters. 
BW_PSO filter acts better than the BA_PSO, P1_WOA, and 
P1_GSK filters. However, the proposed methods have better 
results than the classical filters and GC_PSO, which shows 
the proposed methods' superiority.

After implementing the P1_WOA method and GC_PSO, 
the corresponding optimal GC distribution parameters and 
window size values are obtained for each Gaussian noise 
standard deviation level. The results are placed in Table 4. 
By plotting the GC function diagram for the optimal param-
eters obtained from the WOA algorithm and increasing the 
image noise, the shape of the GC function will be close 
to the Gaussian function, which reduces undesirable noise 
effects. Figure 4 shows an example of the GC distribution 
shape concerning the parameters obtained from the WOA for 
different noise levels in the Hill image to explain the above 
claim. Figure 4; a, b, c, and d are the GC distribution shape 
concerning the optimal parameters for � = 20, 30, 50, 70 the 
Gaussian noise in the Hill image, respectively.

Table 4 shows the PSNR value of the P1_WOA filter 
and GC_PSO filter for all Gaussian noise standard devia-
tions. All images practically depend on the optimal choice 
of filter parameters and the selected mask size. For � = 20 
both methods have almost similar results in all images, and 
even for some images, the P1_WOA method provides more 
desirable results. By increasing the Gaussian noise standard 
deviation, the P1_WOA filter has better PSNR results than 
the GC_PSO filter. So, the role of the selected mask size in 
the filter efficiency can be better understood

To assess whether the proposed methods preserve the 
edges of the image or not, the figure of merit (FOM) [63] 
and Edge Preservative Factor (EPF) [64] are evaluated. The 
FOM is a method for quantitative comparison between edge 
detection algorithms in image processing and has a value 
between zero and one. The closer the importance of this 
criterion is to one, the better it shows the edge values and is 
formulated in Eq. (31) [63].

Furthermore N1 , N2 representing the number of actual 
edges and detected edges achieved by the Sobel edge 
detector, C represents a constant value equal to 1/9, d(i) 
representing the distance between the actual edge and the 
detected edge.

The EPF is a measure that computes the details preser-
vation ability of the filtered image and is computed from 
Eq. (32) [64].

where IL and DIL are the Laplacian operators of the original 
and filtered image, respectively, �IL

 and �DIL
 are the cor-

responding mean values. The higher EPF value indicates 
that the filtered image has more details. The FOM and EPF 
values are calculated for all filtered images and placed in 
Tables 5 and 6, respectively.

A filter with a higher PSNR, SSIM, FOM, and EPF 
value and less computational complexity and computa-
tional time is efficient. The proposed filter's computational 
time is described in “Bilateral Filter Using the GC Func-
tion (BL-GC)”. It is claimed that all de-noising filters pro-
duced by meta-heuristic algorithms are convergent, whose 
convergence is reviewed in “Fitness Function”.

According to Table  5, the highest FOM values are 
marked in bold, and the FOM value for the P2_GSK filter 
compared to other filters in most images and almost all 
Gaussian noise standard deviation levels has the highest 
value. After P2_GSK, the P2_WOA filter has better per-
formance than the others. In some images, for some levels 
of Gaussian noise standard deviation, the BW_PSO filter 
performed better.

As shown in Table 6, the highest EPF values of the filters 
are marked in bold and vary in different images and different 
standard deviations of Gaussian noise.

To accurately compare the performance of filters with 
different images and for different levels of Gaussian noise 
standard deviation, in terms of criteria like PSNR, SSIM, 
FOM, and EPF, Friedman's algorithm is used, which is men-
tioned in “Mask Design Using the GC Function”.

It is clear from Fig. 3 that the images “l” and “n” obtained 
by P2_WOA and P2_GSK filters respectively; for all stand-
ard deviations of Gaussian noise perform better than other 
images in noise reduction.

The exact process applies to all images with SAP noise. 
At first, all images are corrupted with a density of 0.02, 0.03, 
and 0.05 SAP noise. The noisy images are de-noised with 
the abovementioned filters, and the noiseless images have 

(31)R =
1

Max
(
N1,N2

)
N2∑

i=1

1

1 + Cd2(i)
.

(32)EPF =

∑
(IL − �IL

) × (DIL − �DIL
)

�∑
(IL − �IL

)2 ×
∑

(DIL − �DIL
)2
,
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Fig. 3  Images before and after Gaussian noise removal
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Table 4  Optimal parameter 
values for different images

Method PSNR � � � � wsize

Barbara (512 × 512)

GC_PSO 26.0062 20 1 1.081 − 0.0036 3
P1_WOA 26.0062 20 0.71387 2 − 0.0037 3
GC_PSO 24.1580 30 0.9714 1.9997 0.0087 3
P1_WOA 24.3498 30 4.1724 0.5747 0.0002 7
GC_PSO 21.7443 50 1.4756 1.9993 0.0096 3
P1_WOA 22.7465 50 1.6732 1.0356 0.0121 9
GC_PSO 19.9321 70 1.7865 1.9992 0.0287 3
P1_WOA 21.6707 70 1.2793 1.7659 0.0191 9
Boats (512 × 512)

GC_PSO 27.8698 20 1.261 1.4027 0.0245 3
P1_WOA 27.9572 20 4.9417 0.5944 0.0083 5
GC_PSO 25.8282 30 1.4281 1.9885 0.0142 3
P1_WOA 26.2993 30 4.0744 0.7681 0.0074 5
GC_PSO 22.8076 50 2.1409 1.9977 − 0.0047 3
P1_WOA 24.287 50 2.4962 1.0993 0.0089 7
GC_PSO 20.6456 70 2.4775 2 0.0138 3
P1_WOA 22.8973 70 2.4648 1.2722 − 0.0018 9
Hill (512 × 512)

GC_PSO 28.2908 20 2 1.0014 0.0749 3
P1_WOA 28.5627 20 1.6464 0.8056 0.1122 5
GC_PSO 26.1781 30 1.5026 2 0.0872 3
P1_WOA 27.0754 30 1.5081 1.0385 0.1304 7
GC_PSO 23.0669 50 2.2173 1.9792 0.0800 3
P1_WOA 25.1941 50 1.7451 1.3417 0.1725 9
GC_PSO 20.7988 70 2.6376 2 0.0578 3
P1_WOA 23.6728 70 2.1347 1.5234 0.1505 9
Couple (512 × 512)

GC_PSO 27.7644 20 1.2806 1.2919 − 0.0308 3
P1_WOA 27.7981 20 4.9917 0.5898 − 0.0202 5
GC_PSO 25.6916 30 1.3674 1.9569 − 0.0346 3
P1_WOA 26.0875 30 4.9221 0.7265 − 0.0148 5
GC_PSO 22.6881 50 2.0281 2 − 0.0353 3
P1_WOA 24.0951 50 2.1412 1.1273 − 0.0347 7
GC_PSO 20.5707 70 2.2755 2 − 0.0218 3
P1_WOA 22.7805 70 1.8349 1.4029 − 0.0493 9
Peppers (256 × 256)

GC_PSO 27.1008 20 0.9968 1.2048 − 0.1314 3
P1_WOA 27.1593 20 4.9713 0.5349 − 0.0872 5
GC_PSO 25.1302 30 1.9996 1.0643 − 0.1240 3
P1_WOA 25.4925 30 2.1202 0.7869 − 0.1159 5
GC_PSO 22.3859 50 1.9999 1.6973 − 0.1660 3
P1_WOA 23.4346 30 1.2866 1.5553 − 0.2009 5
GC_PSO 20.2678 70 2.4408 1.6512 − 0.1108 3
P1_WOA 21.9154 70 2.1939 1.2401 − 0.1495 7
House (256 × 256)

GC_PSO 28.0577 20 2.8144 0.7981 0.0792 3
P1_WOA 28.2282 20 1.8432 0.7200 0.1003 5
GC_PSO 25.936 30 1.8416 1.4047 0.1176 3
P1_WOA 26.5715 30 1.7616 1.0008 0.1399 5
GC_PSO 22.9101 50 2.1653 1.9064 0.1179 3
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been obtained. Since the SAP noise affects some pixels of 
the image, it should not be directly applied to the designed 
filters. To create a unique procedure with Gaussian-noised 
images, the proposed filters are also applied to all the pix-
els of the image contaminated with SAP noise. The PSNR, 
SSIM, FOM, and EPF values are calculated to compare 
noise reduction filters.

As shown in Tables 7, 8, 9, 10, according to all criteria, 
the median filter and the P2_WOA filter have better results 
in some images and some noise densities. To check the 
performance of filters in terms of PSNR, SSIM, FOM, and 
EPF in the presence of SAP noise, Friedman’s algorithm 

explained in “Mask Design Using the GC Function” is used, 
the results of which are placed in Table 13.

Figure 5 displays the practical results in the House, Pep-
pers, and Couple images, which have been corrupted with 
SAP noise densities of 0.02, 0.03, and 0.05, respectively. In 
Fig. 5, “ a, b, c, d, e, f , g, h, i, j, k , and l “ are the images 
represented by “Original,” “Noisy,” “Mean filter,” “Gauss-
ian filter,” “Median filter,” “Wiener filter,” “NLM filter,” 
“GC_PSO filter,” “BW_PSO filter,” “BA_PSO filter,” “P1_
WOA filter,” and “P2_WOA filter” respectively. As shown 
in Fig. 5, the median and P2_WOA filters not only remove 
the noise but also maintain image quality, unlike the other 
methods that cause a loss of image quality. Therefore, it can 

Table 4  (continued) Method PSNR � � � � wsize

P1_WOA 24.5653 50 0.7789 1.8633 0.2983 7
GC_PSO 20.6497 70 2.3981 1.9761 0.1194 3
P1_WOA 22.9725 70 1.9132 1.5903 0.1444 7

Fig. 4  Cauchy distribution diagram for optimal parameters for the Hill image
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be concluded that the P2_WOA filter performs better than 
the other filters after the median filter.

To investigate the effect of the proposed filters on real-
world problems, we not only examined their impact on 
standard images corrupted with Gaussian noise or SAP 
noise but also considered a medical image (Brains MRI 
with dimensions of 454 × 448) corrupted by various stand-
ard deviations of Gaussian noise. We applied the mentioned 
filters to the image and calculated criteria such as PSNR, 
SSIM, FOM, and EPF. The results were then recorded in 
Table 11.

In Table 11, the highest values of the criteria are marked 
in bold. To determine which filter performs better for all 
standard deviations of Gaussian noise, Friedman's method 
is applied for each criterion and the results are listed in 
Table 14.

Statistical Analysis

Two non-parametric statistical hypothesis tests are utilized 
to examine the quality and performance of algorithms, 
such as the Friedman test and the multi-problem Wilcoxon 
signed-rank test [69]. The null assumption represents no 
meaningful divergence between the proficiency of the meth-
ods, and the alternative assumption is the opposite of the 
null assumption. According to the obtained p-value, it is 
decided to reject or accept the null assumption. If the p-value 
exceeds 0.05, the null assumption is accepted; otherwise, it 
is rejected.

For all standard deviations of Gaussian noise, the mean 
rank of the de-noising filters is obtained in different images 
using the Friedman test regarding the PSNR, SSIM, FOM, 
and EPF. Columns 2 to 5 and 8 to 12 of Tables 12 and 13 
list the mean rank of the filters for all standard deviations of 
Gaussian noise according to the Friedman test. The 6th and 

Table 5  The FOM results for Gaussian noise reduction

Noisy Mean Gaussian Median Wiener NLM GC_PSO BW_PSO BA_PSO P1_WOA P2_WOA P1_GSK P2_GSK

Barbara
� = 20 0.4288 0.6918 0.4692 0.6086 0.8009 0.7154 0.5027 0.9195 0.6443 0.5028 0.9118 0.623 0.9609
� = 30 0.3818 0.4847 0.4062 0.4732 0.7066 0.6131 0.4388 0.7682 0.4665 0.4537 0.7483 0.4602 0.8278
� = 50 0.3312 0.4023 0.3646 0.4113 0.4310 0.3970 0.3972 0.5239 0.3962 0.4154 0.5147 0.4262 0.5761
� = 70 0.298 0.3768 0.3338 0.3822 0.3981 0.3380 0.3744 0.4438 0.3782 0.4082 0.4674 0.4112 0.495
Boats
� = 20 0.3610 0.7341 0.4205 0.5914 0.7514 0.6703 0.5619 0.6859 0.6786 0.6288 0.8717 0.6384 0.9714
� = 30 0.3196 0.4726 0.3455 0.4321 0.47 0.5591 0.429 0.7999 0.4465 0.4936 0.7784 0.5051 0.7737
� = 50 0.2719 0.3535 0.3017 0.3586 0.3611 0.3294 0.345 0.4334 0.3491 0.4165 0.5135 0.4197 0.5352
� = 70 0.2426 0.3186 0.2727 0.3257 0.3244 0.2739 0.3188 0.39 0.3171 0.3818 0.4076 0.3865 0.412
Hill
� = 20 0.3986 0.5521 0.4326 0.528 0.5908 0.5768 0.4937 0.544 0.5277 0.5327 0.7477 0.5295 0.8317
� = 30 0.3651 0.4428 0.3873 0.4416 0.467 0.558 0.4259 0.5531 0.431 0.4709 0.5448 0.485 0.556
� = 50 0.3159 0.3842 0.3501 0.3961 0.4033 0.3772 0.3833 0.4368 0.3818 0.4229 0.4566 0.421 0.4644
� = 70 0.2854 0.3628 0.3211 0.3684 0.3777 0.3218 0.3603 0.4036 0.3643 0.3963 0.4104 0.4064 0.4297
Couple
� = 20 0.3026 0.7931 0.3643 0.6172 0.7724 0.7406 0.564 0.7475 0.6798 0.516 0.8723 0.6672 0.7638
� = 30 0.2528 0.4378 0.2804 0.369 0.4121 0.5127 0.3762 0.8321 0.3865 0.4601 0.7745 0.4712 0.7971
� = 50 0.2129 0.2871 0.2354 0.2831 0.2905 0.2583 0.2822 0.372 0.2826 0.3469 0.4491 0.3486 0.4527
� = 70 0.1878 0.2531 0.2126 0.2543 0.2528 0.2137 0.2509 0.3087 0.2475 0.3081 0.327 0.3121 0.3622
Peppers
� = 20 0.2568 0.7759 0.3094 0.5809 0.8129 0.6449 0.5381 0.9095 0.7391 0.5249 0.911 0.5465 0.9161
� = 30 0.2189 0.3912 0.2394 0.3264 0.8096 0.4313 0.3637 0.853 0.3383 0.3922 0.825 0.3952 0.8348
� = 50 0.1861 0.2509 0.2056 0.2485 0.2520 0.2239 0.2412 0.3759 0.2451 0.288 0.3896 0.2995 0.3448
� = 70 0.1646 0.2243 0.1850 0.2187 0.2267 0.1852 0.2229 0.2672 0.2223 0.2707 0.3065 0.2837 0.324
House
� = 20 0.3141 0.8769 0.4399 0.9409 0.9344 0.9326 0.8582 0.9227 0.9655 0.8828 0.9237 0.8848 0.9262
� = 30 0.2442 0.6489 0.2781 0.4566 0.5238 0.6205 0.5069 0.9193 0.6029 0.7612 0.9154 0.7781 0.9204
� = 50 0.2009 0.2926 0.2265 0.2812 0.2828 0.2451 0.2821 0.6842 0.2844 0.5689 0.8206 0.6107 0.8169
� = 70 0.1762 0.2495 0.1994 0.2389 0.2461 0.2013 0.2485 0.4166 0.2449 0.3912 0.5438 0.4113 0.5421
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12th column of Tables 12 and 13 shows the overall mean 
rank of the filters obtained by Friedman's test, and the 7th 
and last columns deal with the ranking of the filters. The 
p-value computed through the Friedman test is zero and less 
than 0.05. Thus, we can conclude that there is a significant 
difference between the performances of the algorithms.

According to the 7th column of the first and second parts 
of Table 12, P2_GSK, P2_WOA, and BW_PSO filters have 
the first to third rank, respectively, in terms of SSIM and 
PSNR. P1_WOA and P1_GSK filters have the fourth rank 
regarding SSIM and PSNR, respectively. The following 
ranks are assigned to other filters; the Gaussian filter has 
the lowest rank. By paying attention to filters with lower 
rankings, it is understandable that the Gaussian, NLM, and 
median filters are not appropriate for eliminating Gaussian 
noise on average. As the first part of Table 12, the last col-
umn shows, the P2_GSK filter has the highest Mean ranking 
in terms of FOM, and P2_WOA, BW_PSO, P1_GSK, and 

P1_WOA filters have the second to fifth rank, respectively. 
The BA_PSO and GC_PSO filters have lower rankings on 
average and perform poorly in terms of FOM. In the last col-
umns of the second section of Table 12, the P2_GSK filter 
has the highest EPF ranking, and the P2_WOA, P1_GSK, 
and P1_WOA filters have the second to fourth ranking. Gen-
erally, it can be said that the P2_GSK filter has the highest 
ranking concerning all of the measures, and after that, the 
P2_WOA filter has a better performance. The BW_PSO fil-
ter has the third rank in terms of PSNR, SSIM, and FOM 
and the fourth rank in terms of EPF. Considering all criteria, 
filters P2_GSK, P2_WOA, BW_PSO, P1_GSK, P1_WOA, 
Wiener, BA_PSO, GC_PSO, “Mean = NLM,” Median, and 
Gaussian, respectively have the best performances. It is clear 
that the GC_PSO filter has a weaker performance than all 
the proposed methods, and the P2_GSK and P2_WOA filters 
have a better performance than all other filters. Generally, 
it can be said that filters based on evolutionary algorithms 

Table 6  The EPF results for Gaussian noise reduction

Mean Gaussian Median Wiener NLM GC_PSO BW_PSO BA_PSO P1_WOA P2_WOA P1_GSK P2_GSK

Barbara
� = 20 0.2042 0.5825 0.2042 0.7014 0.7609 0.623 0.6772 0.7027 0.623 0.7028 0.5028 0.7113
� = 30 0.1447 0.4218 0.1294 0.5093 0.5693 0.4755 0.5121 0.5302 0.4443 0.538 0.439 0.5608
� = 50 0.0872 0.2572 0.0658 0.2908 0.2769 0.2359 0.2973 0.2525 0.255 0.346 0.2437 0.3468
� = 70 0.0619 0.1811 0.047 0.183 0.1733 0.1316 0.1885 0.1601 0.16 0.229 0.1525 0.2325
Boats
� = 20 0.1932 0.3812 0.3019 0.5088 0.5364 0.4517 0.534 0.5424 0.4639 0.5009 0.467 0.5569
� = 30 0.1405 0.2576 0.193 0.3442 0.3224 0.2902 0.3505 0.3451 0.3661 0.4374 0.3676 0.4345
� = 50 0.084 0.1507 0.0935 0.1737 0.1371 0.1291 0.1512 0.153 0.2519 0.2492 0.2552 0.2405
� = 70 0.0554 0.1074 0.0546 0.1063 0.0949 0.0758 0.1048 0.1134 0.1882 0.1558 0.189 0.1255
Hill
� = 20 0.1038 0.3066 0.1397 0.3344 0.3797 0.3359 0.3258 0.3501 0.3595 0.4076 0.3741 0.4043
� = 30 0.0736 0.2068 0.0792 0.2113 0.2252 0.1853 0.2056 0.1673 0.2745 0.2754 0.2788 0.2761
� = 50 0.0475 0.1261 0.0392 0.1151 0.1065 0.078 0.1303 0.0904 0.1759 0.1806 0.1844 0.1714
� = 70 0.0325 0.0916 0.0228 0.0773 0.0768 0.0456 0.0936 0.0743 0.1258 0.097 0.1291 0.0813
Couple
� = 20 0.2259 0.4083 0.2733 0.4911 0.5514 0.5211 0.5169 0.5535 0.4601 0.5366 0.5159 0.5274
� = 30 0.1617 0.2727 0.1719 0.3179 0.3155 0.3527 0.3064 0.3466 0.4158 0.3931 0.4175 0.4008
� = 50 0.0955 0.1546 0.0868 0.1503 0.1237 0.1533 0.1174 0.155 0.2869 0.235 0.2964 0.2354
� = 70 0.0715 0.1044 0.0593 0.0962 0.0819 0.1015 0.0853 0.1198 0.2191 0.1429 0.2283 0.1483
Peppers
� = 20 0.1588 0.4552 0.6026 0.7131 0.6692 0.4534 0.7172 0.735 0.5241 0.7222 0.5304 0.7576
� = 30 0.1057 0.3003 0.4443 0.4817 0.4192 0.3065 0.5161 0.5208 0.388 0.6060 0.3931 0.6178
� = 50 0.0531 0.1609 0.2398 0.2627 0.162 0.1336 0.1617 0.1373 0.1966 0.2229 0.2018 0.2704
� = 70 0.0324 0.1018 0.1485 0.1336 0.0988 0.0709 0.0625 0.0756 0.1222 0.1342 0.1174 0.116
House
� = 20 0.201 0.2835 0.2945 0.4148 0.4396 0.4018 0.4401 0.4305 0.3753 0.5008 0.3927 0.5119
� = 30 0.1365 0.1857 0.1755 0.2572 0.2307 0.2601 0.2687 0.214 0.2871 0.3527 0.3057 0.3785
� = 50 0.0817 0.1108 0.0821 0.1321 0.0945 0.1191 0.0982 0.1238 0.1887 0.2383 0.2088 0.238
� = 70 0.0584 0.0833 0.0499 0.0926 0.076 0.0778 0.1101 0.0957 0.1653 0.1495 0.162 0.1479
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work better than other filters. As the results show, the GSK 
algorithm performs better than the WOA algorithm on the 
proposed filters, which shows the GSK algorithm's superior-
ity in noise removal.

As shown in column 2, parts 1 and 2 of Table 13, for 
the noise density of 0.02, on average, in all images, the 
P2_WOA filter, the Median filter, and the BA_PSO filter 
have the first to third ranking in terms of PSNR and SSIM, 
respectively. Similarly, for the noise density of 0.03, the 
Median filter, the P2_WOA filter, and the BA_PSO filter 
have the first to third ranking regarding PSNR and SSIM, 
respectively. For the noise density of 0.05, the Median, the 
P2_WOA, and the BW_PSO filters have the first to third 
ranking in PSNR and SSIM, respectively. According to the 
6th column, parts 1 and 2 of Table 13, for all noise densi-
ties, it is determined that in terms of PSNR and SSIM, the 
Median, the P2_WOA, and the BA_PSO filters are ranked 
first to third, respectively. According to parts 1 and 2 of 
the 7th column of Table 13, for the noise density of 0.02, 
the FOM and the EPF values of the P2_WOA, the Median, 
and the NLM filters are ranked first to third, respectively. 
For the noise density 0.03, on average, the FOM mean 
rank of the Median and P2_WOA will be the same and 
equal to one, and the NLM and the BW_PSO filters are 
ranked second to third, respectively, and in terms of EPF, 
the P2_WOA, the Median, and the P1_WOA filters are 
ranked first to third, respectively. For the noise density 
of 0.05, on average, in terms of FOM, the Median, the 
P2_WOA, and the NLM are ranked first to third, respec-
tively, and in terms of EPF, the Median filter ranks first, 
the P1_WOA and P2_WOA filters have the second rank 
simultaneously, and the NLM filter ranks third. According 
to section 1 of the last column of Table 13, the Median 
and the P2_WOA filters both have the first rank in terms 
of FOM, the NLM and the BW_PSO are located in the 
second to the third rank, respectively, the BA_PSO has 
the fourth rank, the Wiener, the Gaussian, the P1_WOA, 
the Mean, and the GC_PSO filters are placed in the fifth 
to ninth rank, respectively. On average, the P2_WOA, the 
Median, and the P1_WOA filters are ranked first to third 
in terms of EPF, respectively, and the NLM, the GC_PSO, 
the Gaussian, the BA_PSO, the BW_PSO, the Wiener, and 
the Mean filters are ranked fourth to tenth, respectively 
as shown in last column of section 2 of Table 13. Based 
on all criteria, the Median, the P2_WOA, the BA_PSO, 
the BW_PSO, the P1_WOA, the NLM, the GC_PSO, the 
Gaussian, the Wiener, and the Mean filters perform better 
in reducing SAP noise, respectively. It can be concluded 
that based on all criteria, the median filter is an efficient 
filter to remove SAP noise, and after that, the P2_WOA 
filter is efficient.

Table 14 columns 2 to 5, denotes the mean rank of filters, 
the higher values are bolded and indicate the filter's better 

performance. The 6th column of Table 14 shows the mean 
rank according to all considered criteria, and the last col-
umn shows the ranking of the filters. As the last column of 
Table 14 shows, the P2_GSK method performs better than 
other filters in Gaussian noise reduction, followed by the 
P2_WOA filter. In general, the first proposed method was not 
successful in the noise removal of this image, and bilateral-
based filters are better than other filters. Figure 6 shows the 
results of the proposed filters on the brain MRI image. In 
that figure, a, b, c, and d represent the original image, noisy 
(with different standard deviations) images, and filtered-out 
images with P1_GSK and P2_GSK, respectively.

A multi-problem Wilcoxon signed-rank test is used 
to check the differences between all algorithms. In this 
method, S + represents the sum of ranks for all images, 
which describes the first algorithm performs better than the 
other one, and S − indicates the opposite of the previous 
one. Larger ranks indicate more considerable performance 
differences. The p value is used for comparison. The null 
hypothesis is rejected if the p value is less than or equal to 
the assumed significance level of 0.05. The following results 
show the p values and decisions corresponding to the p val-
ues in bold, and the test is performed with SPSS 26.00. For 
each standard deviation of Gaussian noise, the performance 
of the GSK-based proposed filters is compared to other fil-
ters in terms of SSIM, PSNR, FOM, and EPF using the Wil-
coxon method and listed in Tables 15, 16, 17, 18.

Fig. 5  Images before and after SAP noise reduction
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In Tables  15, 16, 17, 18 the 7th and 13th columns 
(F1?F2) represent the efficiency between two filters. For 
� = 20, 50, 70 according to the 7th column of Tables 15 and 
16, P2_GSK outperforms other filters in terms of SSIM and 
PSNR except for the P2_WOA filter. For � = 30 , P2_GSK 
outperforms all other filters. As the 7th column of Table 17 
shows � = 20 , P2_GSK is better than other filters in terms 
of FOM, except Wiener and P2_WOA filters. For � = 30 , 
P2_GSK is better than other filters, except the BW_PSO 
filter. For � = 50 , P2_GSK is better than other filters, except 
BW_PSO and P2_WOA filters. For � = 70 , P2_GSK acts 
better than all other filters.

As the 7th column of Table 18 shows, the following 
results were obtained in terms of EPF: � = 20 , P2_GSK is 
better than other filters, except NLM, BW_PSO, and P2_
WOA filters. For � = 30, 50 , P2_GSK is better than other 
filters, except P1_WOA, P2_WOA, and P1_GSK filters. For 
� = 70 , P2_GSK acts better than other filters, except Wie-
ner, P1_WOA, P2_WOA, and P1_GSK filters. In general, 
it can be concluded that the P2_GSK filter performs better 

than other methods on average in terms of all criteria, and 
this shows the superiority of the GSK-based proposed filter.

According to the 13th column of Table 15, which shows 
the results of the Wilcoxon method for the P1_GSK filter in 
terms of SSIM, we have: for � = 20 , P1_GSK is better than 
Mean, Gaussian and Median filters, but it is weaker than 
Wiener, BW_PSO, BA_PSO, P2_WOA, and P2_GSK filters, 
and P1_GSK does not have the significant difference with 
NLM, GC_PSO, and P1_WOA filters. For � = 30 , P1_GSK 
is better than Mean, Gaussian, Median, Wiener, NLM, and 
GC_PSO filters, but it is weaker than BW_PSO, P2_WOA, 
and P2_GSK filters, P1_GSK does not have a significant 
difference with BA_PSO, and P1_WOA filters. For � = 50 , 
P1_GSK is better than Mean, Gaussian, Median, Wiener, 
NLM, GC_PSO, and BA_PSO filters, but it is weaker than 
BW_PSO, P2_WOA, and P2_GSK filters; it does not have 
a significant difference with P1_WOA filter. For � = 70 , 
P1_GSK is better than Mean, Gaussian, Median, Wiener, 
NLM, GC_PSO, and BA_PSO filters, but it is weaker than 
P1_WOA, P2_WOA, and P2_GSK filters, and it does not 
have a significant difference with BW_PSO filters.

Table 12  Friedman test results for Gaussian noise removal

SSIM FOM

Filters � 20 30 50 70 Total rank Ranking 20 30 50 70 Total rank Ranking

Mean 10.75 8.83 8 7.33 8.63 9 5.33 7 7.33 7.83 7.00 7
Gaussian 11.5 12 11 11 11.50 12 12 12 12 12 12.00 12
Median 10.25 9.83 10 10 10.00 10 7.83 9.83 7.83 7.67 8.25 9
Wiener 5.5 9.17 9 9 8.00 8 3.33 6.67 6 6.83 5.38 5
NLM 5.67 10.17 12 12 10.25 11 5.5 4.33 10.83 11 8.00 8
PSO_GC 8.67 7 7 6.33 7.25 7 10.67 10.33 9.5 8.67 10.25 11
BPSO_W 3.58 3.5 3.33 4 3.50 3 4.67 1.67 2.67 3.67 3.00 3
BPSO_A 3.42 4.25 6 7.33 5.13 5 6.17 9 9.17 9 8.75 10
P1_WOA 7.58 5 4.08 3.5 5.00 4 9.5 6.67 5 4.83 6.63 6
P2_WOA 2.08 2 1.67 1.5 1.88 2 2.67 3 1.83 1.83 2.25 2
P1_GSK 7.42 5.25 4.58 4.5 5.75 6 8.17 5.67 4.33 3.5 5.25 4
P2_GSK 1.58 1 1.33 1.5 1.13 1 2.17 1.83 1.5 1.17 1.25 1

PSNR EPF

Mean 10.5 8.83 8 7.33 8.75 9 11.92 11.83 11.5 11.17 12.00 11
Gaussian 11.67 12 11 11 11.5 12 10 9.67 7.17 6.17 8.25 8
Median 10.33 9.83 10 10 10 10 10.25 10.33 10.17 10.17 11.00 10
Wiener 5.67 8.5 9 9 7.75 8 6.17 6.33 5.17 6 5.88 5
NLM 6 10.67 12 12 10.25 11 3.17 6.17 8 8.5 6.75 6
PSO_GC 8.58 7.17 7 6 7.25 7 7.75 7.67 9.17 9.33 9.25 9
BPSO_W 3.5 3.17 3.67 4 3.5 3 5.33 6 7 6.67 5.75 4
BPSO_A 3.5 5 6 7.67 5.63 5 3.33 6.33 7.33 6.83 6.88 7
P1_WOA 7.58 5.5 4.67 4.5 6 6 7.92 5.17 4 3.17 4.88 3
P2_WOA 2 2 1.83 1.5 1.88 2 3 2.5 2.67 2.83 1.75 1
P1_GSK 7 4.33 3.67 3.5 4.38 4 7.33 4.17 3.33 3.17 3.88 2
P2_GSK 1.67 1 1.17 1.5 1.13 1 1.83 1.83 2.5 4 1.75 1
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According to the 13th column of Table 16, which shows 
the results of the Wilcoxon method for the P1_GSK filter 
in terms of PSNR, we have: for � = 20 , P1_GSK is better 
than Mean, Gaussian, Median, and GC_PSO filters, but it is 
weaker than BW_PSO, BA_PSO, P2_WOA, and P2_GSK 
filters, and it does not have the significant difference with 
Wiener, NLM, and P1_WOA filters. For � = 30 , P1_GSK 
is better than Mean, Gaussian, Median, Wiener, NLM, 

GC_PSO, and P1_WOA filters, but it is weaker than BW_
PSO, P2_WOA, and P2_GSK filters, and it does not have a 
significant difference with BA_PSO filter. For � = 50, 70 , 
P1_GSK is better than Mean, Gaussian, Median, Wiener, 
NLM, GC_PSO, BA_PSO, and P1_WOA filters, but it is 
weaker than P2_WOA and P2_GSK filters, and it does not 
have a significant difference with BW_PSO filter.

Table 13  Friedman test results for SAP noise reduction

PSNR FOM

Filters d 0.02 0.03 0.05 Mean rank Ranking 0.02 0.03 0.05 Mean rank Ranking

Mean 7.67 7.17 7.00 7.33 7 8.17 8.50 9.00 8.83 8
Gaussian 8.67 8.67 8.17 8.67 9 5.67 7.00 7.17 6.50 6
Median 2.50 1.17 1.17 1.33 1 2.00 1.50 1.17 1.50 1
Wiener 10.00 9.83 10.00 10.00 10 6.33 5.50 5.50 6.00 5
NLM 6.67 7.67 8.83 8.00 8 3.50 3.67 3.50 3.00 2
GC_PSO 5.50 5.67 6.00 6.00 6 8.33 9.50 9.33 10.00 9
BW_PSO 4.33 4.08 3.50 3.83 4 5.50 4.58 4.58 4.00 3
BA_PSO 3.67 3.42 3.50 3.17 3 5.83 5.42 5.58 5.67 4
P1_WOA 4.83 5.50 5.00 5.00 5 8.17 7.83 7.17 8.00 7
P2_WOA 1.17 1.83 1.83 1.67 2 1.50 1.50 2.00 1.50 1

SSIM EPF

Mean 8.00 7.33 7.00 7.33 7 9.83 9.67 9.50 10.00 10
Gaussian 8.50 8.83 8.17 8.67 9 5.17 5.17 4.67 5.83 6
Median 2.50 1.17 1.17 1.33 1 2.83 2.50 1.83 1.67 2
Wiener 10.00 10.00 10.00 10.00 10 8.50 8.67 8.17 8.67 9
NLM 6.50 7.67 8.83 8.00 8 3.83 4.17 3.83 3.83 4
GC_PSO 5.33 5.42 6.00 6.00 6 4.33 4.17 4.67 5.00 5
BW_PSO 4.42 4.08 3.17 3.67 4 8.17 8.33 8.83 8.33 8
BA_PSO 3.58 3.50 3.83 3.33 3 7.17 7.00 7.50 7.00 7
P1_WOA 5.00 5.17 5.00 5.00 5 4.00 3.83 3.00 3.17 3
P2_WOA 1.17 1.83 1.83 1.67 2 1.17 1.50 3.00 1.50 1

Table 14  Friedman test results 
for Gaussian noise reduction in 
Brains MRI image

Filters Criteria SSIM PSNR FOM EPF Total rank Ranking

Mean 2.75 3 4.75 1 2.13 10
Gaussian 1.75 1.75 1 5 1.75 11
Median 8.5 6.25 4.75 2 5.13 8
Wiener 4.5 4 9.25 10 7 4
NLM 5.5 5 9 6.25 6.63 6
PSO_GC 5.25 5 2.75 3.25 3.38 9
BPSO_W 9.63 9.25 8.75 9.75 9.63 2
BPSO_A 8.38 8.25 7.5 9 8.25 3
P1_WOA 5.38 6.63 5.5 5.5 5.75 7
P2_WOA 10.13 10.25 8.75 8.5 9.63 2
P1_GSK 5.88 7.38 5 6.5 6.75 5
P2_GSK 10.38 11.25 11 11.25 12 1
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According to the 13th column of Table 17, which shows 
the results of the Wilcoxon method for the P1_GSK filter in 
terms of FOM, we have: for � = 20 , P1_GSK is better than 
Gaussian, and GC_PSO filters, but it is weaker than Mean, 
Wiener, NLM, BW_PSO, BA_PSO, P2_WOA, and P2_GSK 
filters, and it does not have the significant difference with 

Median and P1_WOA filters. For � = 30 , P1_GSK is better 
than Gaussian, Median, GC_PSO, BA_PSO, and P1_WOA 
filters, but it is weaker than BW_PSO, P2_WOA, and P2_
GSK filters, and it does not have a significant difference 
with Mean, Wiener, and NLM filters. For � = 50 , P1_GSK 
is better than Mean, Gaussian, Median, Wiener, NLM, 

Fig. 6  Brains MRI Images before and after Gaussian noise reduction
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Table 15  The results of the Wilcoxon test, according to SSIM

SSIM

� Filters (F) S+ S− p value Decision F1?F2 Filters S+ S− p value Decision F1?F2

20 P2_GSK vs. Mean 21 0 0.028 Reject  > P1_GSK vs. Mean 21 0 0.028 Reject  > 
P2_GSK vs. Gaussian 21 0 0.028 Reject  > P1_GSK vs Gaussian 21 0 0.028 Reject  > 
P2_GSK vs. Median 21 0 0.028 Reject  > P1_GSK vs Median 20 1 0.046 Reject  > 
P2_GSK vs. Wiener 21 0 0.028 Reject  > P1_GSK vs Wiener 1 20 0.046 Reject  < 
P2_GSK vs. NLM 20 1 0.046 Reject  > P1_GSK vs NLM 4 17 0.172 Retain –
P2_GSK vs GC_PSO 21 0 0.027 Reject  > P1_GSK vs GC_PSO 10 0 0.068 Retain –
P2_GSK vs BW_PSO 15 0 0.043 Reject  > P1_GSK vs BW_PSO 0 21 0.028 Reject  < 
P2_GSK vs BA_PSO 20 1 0.046 Reject  > P1_GSK vs BA_PSO 0 21 0.027 Reject  < 
P2_GSK vs P1_WOA 21 0 0.028 Reject  > P1_GSK vs P1_WOA 1 0 0.317 Retain –
P2_GSK vs P2_WOA 17 4 0.172 Retain – P1_GSK vs P2_WOA 0 21 0.028 Reject  < 
P2_GSK vs P1_GSK 21 0 0.028 Reject  > P1_GSK vs P2_GSK 0 21 0.028 Reject  < 

30 P2_GSK vs. Mean 21 0 0.028 Reject  > P1_GSK vs. Mean 21 0 0.028 Reject  > 
P2_GSK vs. Gaussian 21 0 0.028 Reject  > P1_GSK vs Gaussian 21 0 0.028 Reject  > 
P2_GSK vs. Median 21 0 0.028 Reject  > P1_GSK vs Median 21 0 0.028 Reject  > 
P2_GSK vs. Wiener 21 0 0.028 Reject  > P1_GSK vs Wiener 21 0 0.028 Reject  > 
P2_GSK vs. NLM 21 0 0.028 Reject  > P1_GSK vs NLM 21 0 0.028 Reject  > 
P2_GSK vs GC_PSO 21 0 0.028 Reject  > P1_GSK vs GC_PSO 21 0 0.027 Reject  > 
P2_GSK vs BW_PSO 21 0 0.028 Reject  > P1_GSK vs BW_PSO 1 20 0.046 Reject  < 
P2_GSK vs BA_PSO 21 0 0.028 Reject  > P1_GSK vs BA_PSO 3 18 0.115 Retain –
P2_GSK vs P1_WOA 21 0 0.028 Reject  > P1_GSK vs P1_WOA 1.5 4.5 0.414 Retain –
P2_GSK vs P2_WOA 21 0 0.028 Reject  > P1_GSK vs P2_WOA 0 21 0.028 Reject  < 
P2_GSK vs P1_GSK 21 0 0.028 Reject  > P1_GSK vs P2_GSK 0 21 0.028 Reject  < 

50 P2_GSK vs. Mean 21 0 0.028 Reject  > P1_GSK vs. Mean 21 0 0.028 Reject  > 
P2_GSK vs. Gaussian 21 0 0.028 Reject  > P1_GSK vs Gaussian 21 0 0.028 Reject  > 
P2_GSK vs. Median 21 0 0.028 Reject  > P1_GSK vs Median 21 0 0.028 Reject  > 
P2_GSK vs. Wiener 21 0 0.028 Reject  > P1_GSK vs Wiener 21 0 0.028 Reject  > 
P2_GSK vs. NLM 21 0 0.028 Reject  > P1_GSK vs NLM 21 0 0.028 Reject  > 
P2_GSK vs GC_PSO 21 0 0.028 Reject  > P1_GSK vs GC_PSO 21 0 0.028 Reject  > 
P2_GSK vs BW_PSO 21 0 0.028 Reject  > P1_GSK vs BW_PSO 1 20 0.046 Reject  < 
P2_GSK vs BA_PSO 21 0 0.028 Reject  > P1_GSK vs BA_PSO 21 0 0.028 Reject  > 
P2_GSK vs P1_WOA 21 0 0.028 Reject  > P1_GSK vs P1_WOA 5 10 0.498 Retain –
P2_GSK vs P2_WOA 7 3 0.461 Retain – P1_GSK vs P2_WOA 0 21 0.028 Reject  < 
P2_GSK vs P1_GSK 21 0 0.028 Reject  > P1_GSK vs P2_GSK 0 21 0.028 Reject  < 

70 P2_GSK vs. Mean 21 0 0.028 Reject  > P1_GSK vs. Mean 21 0 0.028 Reject  > 
P2_GSK vs. Gaussian 21 0 0.028 Reject  > P1_GSK vs Gaussian 21 0 0.028 Reject  > 
P2_GSK vs. Median 21 0 0.028 Reject  > P1_GSK vs Median 21 0 0.028 Reject  > 
P2_GSK vs. Wiener 21 0 0.028 Reject  > P1_GSK vs Wiener 21 0 0.028 Reject  > 
P2_GSK vs. NLM 21 0 0.028 Reject  > P1_GSK vs NLM 21 0 0.028 Reject  > 
P2_GSK vs GC_PSO 21 0 0.028 Reject  > P1_GSK vs GC_PSO 21 0 0.028 Reject  > 
P2_GSK vs BW_PSO 21 0 0.028 Reject  > P1_GSK vs BW_PSO 6 15 0.345 Retain –
P2_GSK vs BA_PSO 21 0 0.028 Reject  > P1_GSK vs BA_PSO 21 0 0.028 Reject  > 
P2_GSK vs P1_WOA 21 0 0.028 Reject  > P1_GSK vs P1_WOA 0 21 0.027 Reject  < 
P2_GSK vs P2_WOA 8.5 12.5 0.674 Retain – P1_GSK vs P2_WOA 0 21 0.028 Reject  < 
P2_GSK vs P1_GSK 21 0 0.028 Reject  > P1_GSK vs P2_GSK 0 21 0.028 Reject  < 



SN Computer Science           (2024) 5:417  Page 33 of 41   417 

SN Computer Science

Table 16  The results of the Wilcoxon test, according to PSNR

PSNR

� Filters S+ S− p value Decision F1?F2 Filters S+ S− p value Decision F1?F2

20 P2_GSK vs. Mean 21 0 0.028 Reject  > P1_GSK vs. Mean 21 0 0.028 Reject  > 
P2_GSK vs. Gaussian 21 0 0.028 Reject  > P1_GSK vs Gaussian 21 0 0.028 Reject  > 
P2_GSK vs. Median 21 0 0.028 Reject  > P1_GSK vs Median 20 1 0.046 Reject  > 
P2_GSK vs. Wiener 21 0 0.028 Reject  > P1_GSK vs Wiener 2 19 0.075 Retain –
P2_GSK vs. NLM 20 1 0.046 Reject  > P1_GSK vs NLM 6 15 0.345 Retain –
P2_GSK vs GC_PSO 21 0 0.028 Reject  > P1_GSK vs GC_PSO 20 1 0.046 Reject  > 
P2_GSK vs BW_PSO 20 1 0.046 Reject  > P1_GSK vs BW_PSO 0 21 0.028 Reject  < 
P2_GSK vs BA_PSO 20 1 0.046 Reject  > P1_GSK vs BA_PSO 0 21 0.028 Reject  < 
P2_GSK vs P1_WOA 21 0 0.028 Reject  > P1_GSK vs P1_WOA 19 2 0.075 Retain –
P2_GSK vs P2_WOA 17 4 0.173 Retain – P1_GSK vs P2_WOA 0 21 0.028 Reject  < 
P2_GSK vs P1_GSK 21 0 0.028 Reject  > P1_GSK vs P2_GSK 0 21 0.028 Reject  < 

30 P2_GSK vs. Mean 21 0 0.028 Reject  > P1_GSK vs. Mean 21 0 0.028 Reject  > 
P2_GSK vs. Gaussian 21 0 0.028 Reject  > P1_GSK vs Gaussian 21 0 0.028 Reject  > 
P2_GSK vs. Median 21 0 0.028 Reject  > P1_GSK vs Median 21 0 0.028 Reject  > 
P2_GSK vs. Wiener 21 0 0.028 Reject  > P1_GSK vs Wiener 21 0 0.028 Reject  > 
P2_GSK vs. NLM 21 0 0.028 Reject  > P1_GSK vs NLM 21 0 0.028 Reject  > 
P2_GSK vs GC_PSO 21 0 0.028 Reject  > P1_GSK vs GC_PSO 21 0 0.028 Reject  > 
P2_GSK vs BW_PSO 21 0 0.028 Reject  > P1_GSK vs BW_PSO 1 20 0.046 Reject  < 
P2_GSK vs BA_PSO 21 0 0.028 Reject  > P1_GSK vs BA_PSO 9 12 0.753 Retain –
P2_GSK vs P1_WOA 21 0 0.028 Reject  > P1_GSK vs P1_WOA 21 0 0.028 Reject  > 
P2_GSK vs P2_WOA 21 0 0.028 Reject  > P1_GSK vs P2_WOA 0 21 0.028 Reject  < 
P2_GSK vs P1_GSK 21 0 0.028 Reject  > P1_GSK vs P2_GSK 0 21 0.028 Reject  < 

50 P2_GSK vs. Mean 21 0 0.028 Reject  > P1_GSK vs. Mean 21 0 0.028 Reject  > 
P2_GSK vs. Gaussian 21 0 0.028 Reject  > P1_GSK vs Gaussian 21 0 0.028 Reject  > 
P2_GSK vs. Median 21 0 0.028 Reject  > P1_GSK vs Median 21 0 0.028 Reject  > 
P2_GSK vs. Wiener 21 0 0.028 Reject  > P1_GSK vs Wiener 21 0 0.028 Reject  > 
P2_GSK vs. NLM 21 0 0.028 Reject  > P1_GSK vs NLM 21 0 0.028 Reject  > 
P2_GSK vs GC_PSO 21 0 0.028 Reject  > P1_GSK vs GC_PSO 21 0 0.028 Reject  > 
P2_GSK vs BW_PSO 21 0 0.028 Reject  > P1_GSK vs BW_PSO 4 17 0.173 Retain –
P2_GSK vs BA_PSO 21 0 0.028 Reject  > P1_GSK vs BA_PSO 21 0 0.028 Reject  > 
P2_GSK vs P1_WOA 21 0 0.028 Reject  > P1_GSK vs P1_WOA 21 0 0.028 Reject  > 
P2_GSK vs P2_WOA 18 3 0.116 Retain – P1_GSK vs P2_WOA 0 21 0.028 Reject  < 
P2_GSK vs P1_GSK 21 0 0.028 Reject  > P1_GSK vs P2_GSK 0 21 0.028 Reject  < 

70 P2_GSK vs. Mean 21 0 0.028 Reject  > P1_GSK vs. Mean 21 0 0.028 Reject  > 
P2_GSK vs. Gaussian 21 0 0.028 Reject  > P1_GSK vs Gaussian 21 0 0.028 Reject  > 
P2_GSK vs. Median 21 0 0.028 Reject  > P1_GSK vs Median 21 0 0.028 Reject  > 
P2_GSK vs. Wiener 21 0 0.028 Reject  > P1_GSK vs Wiener 21 0 0.028 Reject  > 
P2_GSK vs. NLM 21 0 0.028 Reject  > P1_GSK vs NLM 21 0 0.028 Reject  > 
P2_GSK vs GC_PSO 21 0 0.028 Reject  > P1_GSK vs GC_PSO 21 0 0.028 Reject  > 
P2_GSK vs BW_PSO 21 0 0.028 Reject  > P1_GSK vs BW_PSO 9 12 0.753 Retain –
P2_GSK vs BA_PSO 21 0 0.028 Reject  > P1_GSK vs BA_PSO 21 0 0.028 Reject  > 
P2_GSK vs P1_WOA 21 0 0.028 Reject  > P1_GSK vs P1_WOA 21 0 0.028 Reject  > 
P2_GSK vs P2_WOA 18 3 0.6 Retain – P1_GSK vs P2_WOA 0 21 0.028 Reject  < 
P2_GSK vs P1_GSK 21 0 0.028 Reject  > P1_GSK vs P2_GSK 0 21 0.028 Reject  < 
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Table 17  The results of the Wilcoxon test according to FOM

FOM

� Filters S+ S− p value Decision F1?F2 Filters S+ S− p value Decision F1?F2

20 P2_GSK vs. Mean 20 1 0.046 Reject  > P1_GSK vs. Mean 1 20 0.046 Reject  < 
P2_GSK vs. Gaussian 21 0 0.028 Reject  > P1_GSK vs Gaussian 21 0 0.028 Reject  > 
P2_GSK vs. Median 20 1 0.046 Reject  > P1_GSK vs Median 12 9 0.753 Retain –
P2_GSK vs Wiener 18 3 0.116 Retain – P1_GSK vs Wiener 0 21 0.028 Reject  < 
P2_GSK vs. NLM 20 1 0.046 Reject  > P1_GSK vs NLM 0 21 0.028 Reject  < 
P2_GSK vs GC_PSO 21 0 0.028 Reject  > P1_GSK vs GC_PSO 21 0 0.028 Reject  > 
P2_GSK vs BW_PSO 21 0 0.028 Reject  > P1_GSK vs BW_PSO 0 21 0.028 Reject  < 
P2_GSK vs BA_PSO 20 1 0.046 Reject  > P1_GSK vs BA_PSO 1 20 0.046 Reject  < 
P2_GSK vs P1_WOA 21 0 0.028 Reject  > P1_GSK vs P1_WOA 19 2 0.075 Retain –
P2_GSK vs P2_WOA 15 6 0.345 Retain – P1_GSK vs P2_WOA 0 21 0.028 Reject  < 
P2_GSK vs P1_GSK 21 0 0.028 Reject  > P1_GSK vs P2_GSK 0 21 0.028 Reject  < 

30 P2_GSK vs. Mean 21 0 0.028 Reject  > P1_GSK vs. Mean 19 2 0.075 Retain –
P2_GSK vs. Gaussian 21 0 0.028 Reject  > P1_GSK vs Gaussian 21 0 0.028 Reject  > 
P2_GSK vs. Median 21 0 0.028 Reject  > P1_GSK vs Median 20 1 0.046 Reject  > 
P2_GSK vs. Wiener 21 0 0.028 Reject  > P1_GSK vs Wiener 11 10 0.917 Retain –
P2_GSK vs. NLM 20 1 0.046 Reject  > P1_GSK vs NLM 6 15 0.345 Retain –
P2_GSK vs GC_PSO 21 0 0.028 Reject  > P1_GSK vs GC_PSO 21 0 0.028 Reject  > 
P2_GSK vs BW_PSO 9 12 0.753 Retain – P1_GSK vs BW_PSO 0 21 0.028 Reject  < 
P2_GSK vs BA_PSO 21 0 0.028 Reject  > P1_GSK vs BA_PSO 20 1 0.046 Reject  > 
P2_GSK vs P1_WOA 21 0 0.028 Reject  > P1_GSK vs P1_WOA 21 0 0.028 Reject  > 
P2_GSK vs P2_WOA 20 1 0.046 Reject  > P1_GSK vs P2_WOA 0 21 0.028 Reject  < 
P2_GSK vs P1_GSK 21 0 0.028 Reject  > P1_GSK vs P2_GSK 0 21 0.028 Reject  < 

50 P2_GSK vs. Mean 21 0 0.028 Reject  > P1_GSK vs. Mean 21 0 0.028 Reject  > 
P2_GSK vs. Gaussian 21 0 0.028 Reject  > P1_GSK vs Gaussian 21 0 0.028 Reject  > 
P2_GSK vs. Median 21 0 0.028 Reject  > P1_GSK vs Median 21 0 0.028 Reject  > 
P2_GSK vs. Wiener 21 0 0.028 Reject  > P1_GSK vs Wiener 20 1 0.046 Reject  > 
P2_GSK vs. NLM 21 0 0.028 Reject  > P1_GSK vs NLM 21 0 0.028 Reject  > 
P2_GSK vs GC_PSO 21 0 0.028 Reject  > P1_GSK vs GC_PSO 21 0 0.028 Reject  > 
P2_GSK vs BW_PSO 19 2 0.075 Retain – P1_GSK vs BW_PSO 0 21 0.028 Reject  < 
P2_GSK vs BA_PSO 21 0 0.028 Reject  > P1_GSK vs BA_PSO 21 0 0.028 Reject  > 
P2_GSK vs P1_WOA 21 0 0.028 Reject  > P1_GSK vs P1_WOA 19 2 0.075 Retain –
P2_GSK vs P2_WOA 14 7 0.463 Retain – P1_GSK vs P2_WOA 0 21 0.028 Reject  < 
P2_GSK vs P1_GSK 21 0 0.028 Reject  > P1_GSK vs P2_GSK 0 21 0.028 Reject  < 

70 P2_GSK vs. Mean 21 0 0.028 Reject  > P1_GSK vs. Mean 21 0 0.028 Reject  > 
P2_GSK vs. Gaussian 21 0 0.028 Reject  > P1_GSK vs Gaussian 21 0 0.028 Reject  > 
P2_GSK vs. Median 21 0 0.028 Reject  > P1_GSK vs Median 21 0 0.028 Reject  > 
P2_GSK vs. Wiener 21 0 0.028 Reject  > P1_GSK vs Wiener 21 0 0.028 Reject  > 
P2_GSK vs. NLM 21 0 0.028 Reject  > P1_GSK vs NLM 21 0 0.028 Reject  > 
P2_GSK vs GC_PSO 21 0 0.028 Reject  > P1_GSK vs GC_PSO 21 0 0.028 Reject  > 
P2_GSK vs BW_PSO 21 0 0.028 Reject  > P1_GSK vs BW_PSO 8 13 0.6 Retain –
P2_GSK vs BA_PSO 21 0 0.028 Reject  > P1_GSK vs BA_PSO 21 0 0.028 Reject  > 
P2_GSK vs P1_WOA 21 0 0.028 Reject  > P1_GSK vs P1_WOA 21 0 0.028 Reject  > 
P2_GSK vs P2_WOA 20 1 0.046 Reject  > P1_GSK vs P2_WOA 0 21 0.028 Reject  < 
P2_GSK vs P1_GSK 21 0 0.028 Reject  > P1_GSK vs P2_GSK 0 21 0.028 Reject  < 
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Table 18  The results of the Wilcoxon test, according to EPF

EPF

� Filters S+ S− p value Decision F1?F2 Filters S+ S− p value Decision F1?F2

20 P2_GSK vs. Mean 21 0 0.028 Reject  > P1_GSK vs. Mean 21 0 0.028 Reject  > 
P2_GSK vs. Gaussian 21 0 0.028 Reject  > P1_GSK vs Gaussian 18 3 0.116 Retain –
P2_GSK vs. Median 21 0 0.028 Reject  > P1_GSK vs Median 20 1 0.046 Reject  > 
P2_GSK vs. Wiener 21 0 0.028 Reject  > P1_GSK vs Wiener 5 16 0.249 Retain –
P2_GSK vs. NLM 15 6 0.345 Retain – P1_GSK vs NLM 0 21 0.028 Reject  < 
P2_GSK vs GC_PSO 21 0 0.028 Reject  > P1_GSK vs GC_PSO 12 9 0.753 Retain –
P2_GSK vs BW_PSO 21 0 0.028 Reject  > P1_GSK vs BW_PSO 3 18 0.116 Retain –
P2_GSK vs BA_PSO 17 4 0.173 Retain – P1_GSK vs BA_PSO 1 20 0.046 Reject  < 
P2_GSK vs P1_WOA 21 0 0.028 Reject  > P1_GSK vs P1_WOA 15 6 0.345 Retain –
P2_GSK vs P2_WOA 17 4 0.173 Retain – P1_GSK vs P2_WOA 0 21 0.028 Reject  < 
P2_GSK vs P1_GSK 21 0 0.028 Reject  > P1_GSK vs P2_GSK 0 21 0.028 Reject  < 

30 P2_GSK vs. Mean 21 0 0.028 Reject  > P1_GSK vs. Mean 21 0 0.028 Reject  > 
P2_GSK vs. Gaussian 21 0 0.028 Reject  > P1_GSK vs Gaussian 21 0 0.028 Reject  > 
P2_GSK vs. Median 21 0 0.028 Reject  > P1_GSK vs Median 20 1 0.046 Reject  > 
P2_GSK vs. Wiener 21 0 0.028 Reject  > P1_GSK vs Wiener 12 9 0.753 Retain –
P2_GSK vs. NLM 20 1 0.046 Reject  > P1_GSK vs NLM 14 7 0.463 Retain –
P2_GSK vs GC_PSO 21 0 0.028 Reject  > P1_GSK vs GC_PSO 19 2 0.075 Retain –
P2_GSK vs BW_PSO 21 0 0.028 Reject  > P1_GSK vs BW_PSO 12 9 0.753 Retain –
P2_GSK vs BA_PSO 21 0 0.028 Reject  > P1_GSK vs BA_PSO 12 9 0.753 Retain –
P2_GSK vs P1_WOA 19 2 0.075 Retain – P1_GSK vs P1_WOA 16 5 0.249 Retain –
P2_GSK vs P2_WOA 19 2 0.075 Retain – P1_GSK vs P2_WOA 3 18 0.116 Retain –
P2_GSK vs P1_GSK 18 3 0.116 Retain – P1_GSK vs P2_GSK 3 18 0.116 Retain –

50 P2_GSK vs. Mean 21 0 0.028 Reject  > P1_GSK vs. Mean 21 0 0.028 Reject  > 
P2_GSK vs. Gaussian 21 0 0.028 Reject  > P1_GSK vs Gaussian 20 1 0.046 Reject  > 
P2_GSK vs. Median 21 0 0.028 Reject  > P1_GSK vs Median 20 1 0.046 Reject  > 
P2_GSK vs. Wiener 21 0 0.028 Reject  > P1_GSK vs Wiener 18 3 0.116 Retain –
P2_GSK vs. NLM 21 0 0.028 Reject  > P1_GSK vs NLM 20 1 0.046 Reject  > 
P2_GSK vs GC_PSO 21 0 0.028 Reject  > P1_GSK vs GC_PSO 21 0 0.028 Reject  > 
P2_GSK vs BW_PSO 21 0 0.028 Reject  > P1_GSK vs BW_PSO 19 2 0.075 Retain –
P2_GSK vs BA_PSO 21 0 0.028 Reject  > P1_GSK vs BA_PSO 20 1 0.046 Reject  > 
P2_GSK vs P1_WOA 14 7 0.463 Retain – P1_GSK vs P1_WOA 16 5 0.249 Retain –
P2_GSK vs P2_WOA 11 10 0.917 Retain – P1_GSK vs P2_WOA 8 13 0.6 Retain –
P2_GSK vs P1_GSK 14 7 0.463 Retain – P1_GSK vs P2_GSK 7 14 0.463 Retain –

70 P2_GSK vs. Mean 21 0 0.028 Reject  > P1_GSK vs. Mean 21 0 0.028 Reject  > 
P2_GSK vs. Gaussian 20 1 0.046 Reject  > P1_GSK vs Gaussian 19 2 0.075 Retain –
P2_GSK vs. Median 20 1 0.046 Reject  > P1_GSK vs Median 20 1 0.046 Reject  > 
P2_GSK vs Wiener 19 2 0.075 Retain – P1_GSK vs Wiener 18 3 0.116 Retain –
P2_GSK vs. NLM 21 0 0.028 Reject  > P1_GSK vs NLM 19 2 0.075 Retain –
P2_GSK vs GC_PSO 21 0 0.028 Reject  > P1_GSK vs GC_PSO 21 0 0.028 Reject  > 
P2_GSK vs BW_PSO 20 1 0.046 Reject  > P1_GSK vs BW_PSO 19 2 0.075 Retain –
P2_GSK vs BA_PSO 21 0 0.028 Reject  > P1_GSK vs BA_PSO 20 1 0.046 Reject  > 
P2_GSK vs P1_WOA 6 15 0.345 Retain – P1_GSK vs P1_WOA 9.5 11.5 0.833 Retain –
P2_GSK vs P2_WOA 5 16 0.249 Retain – P1_GSK vs P2_WOA 14 7 0.463 Retain –
P2_GSK vs P1_GSK 5.5 15.5 0.293 Retain – P1_GSK vs P2_GSK 15.5 5.5 0.293 Retain –
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GC_PSO, and BA_PSO filters, but it is weaker than BW_
PSO, P2_WOA, and P2_GSK filters, and it does not have 
a significant difference with P1_WOA filter. For � = 70 , 
P1_GSK is better than Mean, Gaussian, Median, Wiener, 
NLM, GC_PSO, BA_PSO, and P1_WOA filters, but it is 
weaker than P2_WOA and P2_GSK filters, and it does not 
have a significant difference with BW_PSO filter.

According to the 13th column of Table 18, which shows 
the results of the Wilcoxon method for the P1_GSK filter in 
terms of EPF, we have: for � = 20 , P1_GSK is better than 
Mean and Median filters. However, it is weaker than NLM, 
BA_PSO, P2_WOA, and P2_GSK filters, and it does not 
have a significant difference with Gaussian, Wiener, GC_
PSO, BW_PSO, and P1_WOA filters. For � = 30 , P1_GSK 
is better than Mean, Gaussian, and Median filters, and it 
does not have a significant difference with Wiener, NLM, 
GC_PSO, BW_PSO, BA_PSO, P1_WOA P2_WOA, and 
P2_GSK filters. For � = 50 , P1_GSK is better than Mean, 

Gaussian, Median, NLM, GC_PSO, and BA_PSO filters, 
and it does not have a significant difference with Wiener, 
BW_PSO, P1_WOA, P2_WOA, and P2_GSK. For � = 70 , 
P1_GSK is better than Mean, Median, GC_PSO, and BA_
PSO filters, and it does not have a significant difference with 
Gaussian, Wiener, NLM, BW_PSO, P1_WOA, P2_WOA, 
and P2_GSK filters. On average, it can be concluded that the 
P1_GSK performs better than the P1_WOA and GC_PSO 
filters.

Algorithms Complexity

The computational complexity of the de-noising filters is 
described below:

(33)O
(
Niter × Npop × O(fitness)

)
,

Table 19  The execution time of filters

� Mean Gaussian Median Wiener NLM GC_PSO BW_PSO BA_PSO P1_WOA P2_WOA P1_GSK P2_GSK

Barbara
20 0.03 0.035 0.034 0.118 3.0552 153.987 2978.01 2975.495 433.703 8448.866 153.017 7082.656
30 0.028 0.038 0.035 0.119 3.1867 133.483 3131.713 2964.487 574.267 8049.411 283.712 6847.685
50 0.029 0.031 0.035 0.126 3.1807 173.738 3166.065 2968.972 864.318 8708.544 411.023 8189.58
70 0.031 0.028 0.035 0.158 3.1856 176.225 3183.529 3189.06 503.529 8856.344 251.99 8039.307
Boats
20 0.029 0.038 0.035 0.097 3.1182 237.754 3131.951 3138.784 516.07 5671.362 134.964 5991.875
30 0.043 0.028 0.035 0.102 3.1958 185.77 3110.684 3166.83 528.203 6467.656 168.834 5585.727
50 0.031 0.028 0.035 0.101 3.5141 226.432 3059.916 2982.108 662.117 7219.754 199.986 6023.622
70 0.028 0.029 0.035 0.118 3.1378 203.974 2723.735 2920.032 657.787 7198.452 264.384 6684.572
Hill
20 0.03 0.029 0.035 0.103 3.1093 142.19 3045.954 2961.877 693.109 6156.326 189.768 6263.08
30 0.034 0.034 0.035 104 3.3549 157.756 3098.803 2929.649 702.494 7923.84 227.011 6207.691
50 0.043 0.029 0.035 0.101 3.1906 139.762 3114.774 2924.958 727.982 7223.56 383.12 6911.45
70 0.031 0.033 0.035 0.098 3.2889 132.498 2983.197 2927.853 699.869 8137.202 344.301 6961.083
Couple
20 0.03 0.051 0.035 0.226 3.1363 108.48 3164.815 2764.66 408.898 6417.769 138.454 6253.925
30 0.084 0.029 0.037 0.136 3.0271 100.214 3796.254 3579.322 495.274 7142.277 165.349 6223.353
50 0.032 0.031 0.045 0.134 3.2091 133.046 3811.057 3630.811 671.423 8868.97 247.843 8666.027
70 0.031 0.044 0.057 0.215 3.1837 140.862 3785.207 3575.181 549.774 10,664.148 263.223 8479.445
Peppers
20 0.027 0.033 0.034 0.053 1.111 40.769 777.276 713.808 322.837 1558.812 40.129 1385.312
30 0.027 0.027 0.034 0.051 1.103 37.345 764.437 712.063 309.317 1514.819 54.781 1441.287
50 0.028 0.029 0.034 0.077 1.1571 40.965 756.805 723.496 313.31 1822.188 54.345 1454.856
70 0.027 0.029 0.033 0.051 1.1063 38.055 772.014 619.194 308.231 1782.606 72.953 1541.356
House
20 0.04 0.029 0.035 0.053 1.0732 40.035 733.319 820.3 167.909 1493.068 51.217 1449.7278
30 0.026 0.015 0.102 0.236 1.0012 31.367 919.927 920.513 168.923 2016.288 61.659 1475.073
50 0.05 0.03 0.036 0.061 1.0877 31.928 922.958 931.894 194.68 2222.874 70.711 1533.73
70 0.038 0.029 0.042 0.061 1.0851 31.597 904.798 932.659 202.541 2338.861 83.017 1709.991
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where Niter and Npop indicate the maximum number of itera-
tions and population size, respectively.

In algorithms that neighboring radius “ r ” and mask size 
“ w ” are considered as optimization parameters like BW_
PSO, P1_WOA, P2_WOA, P1_GSK, and P2_GSK O(fitness) 
is as follows:

In other algorithms like GC_PSO and BA_PSO, the com-
putational complexity of the fitness function “ O(fitness) “ is 
as follows:

where Imagesize describes the size of an image.
The execution time of nature-inspired filters depends 

on factors such as the number of iterations, population 
size, the number of parameters, the length of variable 
ranges, and window size, whether fixed or considered an 
optimization parameter. Therefore, the execution time of 
P2_WOA and P2_GSK filters will be longer than others 
because these algorithms must optimize the number of 7 
parameters. The execution time of P1_WOA and P1_GSK 
filters is also more than GC_PSO because the mask size 
is an optimization parameter. Regardless of the variables 
range, the execution time of the BW_PSO filter is more 
extended than BA_PSO since the neighboring radius is an 
optimization parameter. One of the variable ranges in both 
BW_PSO and BA_PSO filters is the same. However, the 
size of the second variable ranges in the BW_PSO filter 
is smaller than that of the second variable ranges in the 
BA_PSO filter, increasing the processing speed. However, 
in the BW_PSO method, the radius of the neighborhood is 
variable, which increases the evaluation time of this algo-
rithm. In general, considering the same variable ranges for 
both filters, “BW_PSO and BA_PSO filters,” the execution 
time of the BW_PSO will be longer due to the variable 
neighboring radius. The execution time of the filters is 
listed in Table 19. All computations were implemented 
and executed using MATLAB R2012b running on a PC 
with core i5-2410 M (2.30 GHz) CPU and 4 GB RAM 
running Win7 OS.

Table 19 shows that the execution time of P2_GSK and 
P2_WOA filters are more extended than all filters, and sub-
sequently, the execution time of BW_PSO and BA_PSO fil-
ters is longer. The execution time of P2_GSK and P1_GSK 
filters is longer than P2_WOA and P1_WOA, respectively. 
This shows that the GSK algorithm is faster than WOA.

O(fitness) = O(Imagesize × wsize)

(34)
wsize = w × w or wsize = (2r + 1) × (2r + 1), r = 1, 2,…

(35)O(fitness) = O(Imagesize)

Convergence Curve

Figure 7 illustrates the convergence attributes based on the 
fitness of all algorithms to analyze the convergence atti-
tude of algorithms. For instance, the convergence rate of 
algorithms � = 20 in the ‘Couple’ image is represented. In 
Fig. 7, “a, b, c, d, and e” represent the convergence rates 
of GC_PSO, BW_PSO, BA_PSO, P1_WOA-P2_GSK, and 
P1_WOA-P1_GSK filters, respectively. The GSK-based fil-
ter convergence velocity is higher in the initial stages of the 
optimization procedure.

In fact, due to the use of the generalized Cauchy func-
tion instead of the Gaussian function in the spatial and 
intensity domain of the bilateral filter, which is a heavy-
tailed function compared to the Gaussian function, and 
neighboring radius optimization, the second proposed fil-
ter performs better than other filters. Since the mask size 
optimization is considered in the first proposed filter, this 
filter performs better than the GC_PSO filter. On the other 
hand, this filter has a weaker performance than the second 
filter because the generated mask is swept over the noisy 
image and does not consider spatial information of the 
image pixels. Because the neighborhood radius is opti-
mized in the BW_PSO filter, this filter has a more robust 
performance than the BA_PSO filter. One of the disadvan-
tages of the second proposed filter is its long execution 
time compared to the first one.

Conclusion and Future Directions

To summarize, we present two effective WOA-based and 
GSK-based filters for noise reduction. The GSK's novelty, 
the lack of widespread application in image processing, and 
the ability to solve complex and large-scale problems, as 
well as WOA's ability to solve image processing problems, 
have led to the use of GSK and WOA in this research. Since 
the constancy of the selected mask size can affect the effi-
ciency of the filter made by the GC function. First, a mask 
was designed using the GC function, and the parameters of 
this function and the size of the chosen mask were optimized 
by maximizing the PSNR value as the fitness function with 
WOA and GSK. In most bilateral-based designed filters, 
the neighborhood radius is constant and the parameters of 
the intensity and spatial domain, are the Gaussian function 
parameters that should be optimized. The similar and better 
performance of the GC function in noise removal, compared 
to the Gaussian function, as well as the lack of its usage in 
the bilateral filter in previous works, has caused it to be used 
in the bilateral filter. So, a hybrid filter was designed by 
replacing the GC function with a Gaussian function in the 
bilateral filter, and the domain and range parameters of the 
GC function, as well as the size of the neighboring radius, 
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were optimized by maximizing the PSNR as a fitness func-
tion using WOA and GSK. The GSK and WOA-based pro-
posed filters are compared with each other and classical fil-
ters, as well as the PSO-based GC filter and two PSO-based 
bilateral filters (BW_PSO, BA_PSO) on various images 
corrupted with a different standard deviation of Gaussian 
noise. Also, a comparison is made between the WOA-based 
proposed filters and other filters on images corrupted with 
various densities of the SAP noise. On average, the superior 
performance of the P2_GSK and P2_WOA filters is achieved 
in terms of PSNR and SSIM in Gaussian noise removal. 
However, the P1_GSK and P2_GSK filters have a more 
robust performance than those of P1_WOA and P2_WOA 
in Gaussian noise removal. Following the P2_GSK and P2_
WOA filters in terms of PSNR and SSIM, the BW_PSO, 
P1_GSK, P1_WOA, BA_PSO, and GC_PSO filters work 
better than traditional methods in Gaussian noise removal. It 
was also found that as the Gaussian noise standard deviation 
increased, the parameters of the GC function were quantified 
by the WOA (or GSK) so that the GC distribution curve was 
closer to the Gaussian distribution curve. However, the tail 
was heavier than the Gaussian distribution. Since the mean 
ranking of the P2_GSK and P2_WOA filters is high in terms 
of the FOM and EPF, the second proposed method preserves 
the edges and structural details of the image. The P1_GSK 
filter performs better than P1_WOA in terms of EPF, and 
in terms of FOM, it performs better than P1_WOA either. 
In general, it can be said that the second proposed filter is 
better than all other filters in terms of PSNR, SSIM, FOM, 

and EPF. The first proposed filter is also better than all other 
filters in terms of PSNR, SSIM, and EPF, and in terms of 
FOM, they are better than other filters after BW_PSO and 
Wiener.

In the SAP noise removal, after the median filter, the 
P2_WOA filter is more efficient than other methods, and 
after these filters, the BA_PSO, the BW_PSO, the P1_WOA, 
and the GC_PSO methods work better than classical filters 
in terms of PSNR and SSIM. The P2_WOA filters out the 
SAP noise and after the median filter is better than all other 
filters in terms of EPF and FOM.

The P1_WOA filter performs better than other filters in 
terms of EPF, and in terms of FOM performs weaker than 
NLM, BW_PSO, BA_PSO, Wiener, and Gaussian filters in 
SAP noise removal. According to the obtained results, it can 
be said that the second proposed filter performs better than 
other filters in SAP noise removal after the median filter, and 
the first proposed filter is weak in removing the SAP noise 
compared to other filters. In other words, the proposed filters 
are not suitable for SAP noise reduction.

The results obtained in “Statistical Analysis” on brain 
MRI images indicate that the second proposed filter with 
GSK and WOA algorithm works better than other filters in 
terms of all criteria. The second proposed filter is ranked 
fifth with the GSK algorithm and seventh with the WOA 
algorithm. In general, the proposed filters with the GSK 
algorithm perform better than the WOA algorithm. How-
ever, the first proposed filter is more successful in removing 
the noise than the second proposed filter.

Fig. 7  Convergence curve of the 
algorithms
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Since both the neighborhood radius and the parameters of 
the GC function are optimized instead of the parameters of 
the Gaussian function in the bilateral filter, and considering 
that the GC function has a better performance compared to 
the Gaussian function, the second proposed filter performs 
better than other filters. The selected mask size is optimized 
in the first proposed filter, so this filter is better than the 
GC_PSO method. GSK-based filters get the first ranking 
among all other filters. Non-parametric tests like Friedman's 
and Wilcoxon's tests are utilized to statistically evaluate the 
performance of proposed filters with a significance level of 
0.05. The results of the used non-parametric tests show that 
the GSK-based proposed filters are better than WOA-based 
filters.

One of the advantages of the proposed filters is the sig-
nificant noise reduction and their easy design. GSK-based 
filters are more robust and faster, which is one of their 
advantages. One of the disadvantages of the second pro-
posed filter is its long execution time, and another disad-
vantage is the lack of precise upper and lower bounds of 
the GC function parameters. A method can be investigated 
for future work to find the exact limits for the parameters. 
Adaptive meta-heuristic algorithms can also be used to 
increase the convergence speed. Algorithms can also be 
used to avoid premature convergence, local optimal trap-
ping, and imbalance between exploration and exploitation. 
Implementing the proposed method for filtering other noise 
types, such as speckle noise, is also possible. Also, the pro-
posed methods can be examined on color, ultrasound, and 
satellite images.
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