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Abstract
Breast cancer is a deadly, noncommunicable disease that affects women worldwide. Early detection is crucial in providing 
effective treatment and improving survival rates. Towards that, a novel DualNet-deep-learning-classifier model for efficient 
and accurate breast cancer detection is proposed. The proposed model includes five major phases: “pre-processing, segmen-
tation, feature extraction, feature selection, and breast cancer detection”. The pre-processing phase involves noise removal 
via Wiener filtering and image contrast enhancement via a contrast stretching approach. Then, from the pre-processed mam-
mogram images, the ROI region is identified using the new gradient-based watershed segmentation approach. Subsequently, 
from the identified ROI regions the texture [grey level run-length matrix (GLRLM), multi-threshold rotation invariant LBP 
(MT-RILBP) (proposed)], color (color correlogram), and shape features (Zernike moment) are extracted; and among the 
extracted features, the optimal features are chosen using a hybrid optimization model-FlyBird optimization algorithm (FBO), 
which incorporates both the “fruit fly optimization algorithm and bird mating optimizer”. The breast cancer classification 
phase uses a DualNet-deep-learning-classifiers approach that includes “long short-term memory networks (LSTM), convo-
lutional spiking neural networks (CSNN), and a new optimized autoencoder (OptAuto)”. The LSTM and CSNN are trained 
using the identified optimal features. The outcome from LSTM and CSNN is fed as input to OptAuto, wherein the outcome 
regarding the presence/absence of breast cancer is identified. Moreover, the weight function of the autoencoder is tuned 
using the new FBO. The proposed model is evaluated in terms of “sensitivity, accuracy, specificity, precision, TPR, FPR, 
TNR, F1-score, and recall”. Overall, the proposed model holds promise for accurate and efficient breast cancer detection, 
with potential for future clinical applications.

Keywords Breast cancer diagnosis · DualNet-deep-learning-classifiers · Fruit Fly optimization algorithm · Bird mating 
optimizer · LSTM · CSNN · OptAuto

Introduction

Cancer of the breast is the most common cause of death 
among women worldwide. Early discovery and precise 
diagnosis can lead to a full recovery and prevent fatalities 

[1]. The likelihood of survival for cancer is considerably 
increased by early diagnosis. Sadly, pathological analysis is 
a challenging, time-consuming process requiring in-depth 
understanding [2]. Radiologists recommend using digital 
mammograms, ultrasounds, and MRIs among other breast 
cancer detection methods. Due to its low cost, ease, and 
superior results for early detection, mammography is a 
widely utilized technique. Mammogram images can be used 
in computer-aided diagnosis systems to provide useful data 
about “breast density, shape, and anomalies such as calcifi-
cations and masses”, aiding in early identification. “Mam-
mography” is the most effective method of early breast can-
cer detection [3]. “Mammograms” is a type of X-ray that is 
used to detect breast cancer in women aged 50–70. They are 
incredibly good at finding little cancers and giving precise 
results [4]. 
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To avoid tiredness and errors, research has been done 
to automatically identify cancer cells in mammography 
images using image processing and computer vision. Tech-
nologies built on artificial intelligence have been launched 
to improve detection speed and reduce human error. These 
techniques make it easier and more accurate for radiol-
ogy specialists to identify the condition [5]. To identify 
malignant cancers, a classifier is trained using the struc-
tural, morphological, and texture aspects of the extracted 
region of interest or the complete image. To differentiate 
between benign and malignant cancers, the nuclei must 
first be segmented. Modern techniques for segmentation 
include watershed segmentation, the threshold method, 
active contours, and regional expansion. Segmentation 
methods can be supervised or unsupervised [6]. A breast 
cancer grading technique, Bayesian classifier, and domain 
knowledge structural constraints can be used to develop 
gland and nuclei segmentation [7]. Patch combining and 
semantic classification are used in a technique for seg-
menting breast cancers. The image can then be improved 
by histogram equalization, bilateral filtering, and pyramid 
mean shift filtering [8]. By lowering false-negative and 
false-positive rates, modified VGG can increase the effec-
tiveness of mammography analysis, making it a useful tool 
for radiologists [9]. Using mammography and ultrasound 
pictures, a “deep convolutional neural network (CNN)” 
breast cancer classification model has now been devel-
oped. The models consist of four convolutional layers and 
one fully linked layer that enables the automatic extraction 
of standout characteristics with fewer adjustable param-
eters [10]. By combining context data and high-resolution 
characteristics, STAN, a new deep learning architecture, 
outperforms conventional methods for segmenting tiny 
breast cancers [11]. The SHA-MTL is a multi-task learn-
ing model for image segmentation and binary classifica-
tion in breast ultrasound [12]. “Skin, fibro glandular tis-
sue, mass, and fatty tissue” may all be distinguished in 
3D breast ultrasound images using a CNN [13]. Using 
only five learnable layers and effective feature extraction, 
a deep CNN model might be used to automatically clas-
sify breast cancer from mammography and ultrasound 
pictures [14]. For classifying cancer-normal instances on 
mammograms, a CNN architecture was created employing 
a revised classifier model and accelerated feature learning 
[15].

The major contribution of this research work is:

• To introduce a new multi-threshold rotation invariant 
LBP (MT-RILBP)-based texture feature extraction 
model.

• To select the optimal features using the new hybrid 
optimization model-FlyBird optimization algorithm 
(FBO), which incorporates both the “Fruit Fly opti-

mization algorithm (FOA) and bird mating optimizer 
(BMO)”.

• To design a new DualNet-deep-learning-classifiers 
approach with “long short-term memory networks 
(LSTM), convolutional spiking neural networks (CSNN), 
and a new optimized autoencoder (OptAuto)”.

• To fine-tune the weight of the optimized autoencoder 
(OptAuto) using the new FBO.

The rest of this paper is arranged as: Section “Literature 
Review” portrays the literature review of the works under the 
subject.  Section “Proposed Methodology for Breast Cancer 
Prediction Using DualNet Deep Learning Classifiers” por-
trays the proposed methodology for breast cancer detection.  
Section “Results and Discussion” discusses the recorded 
results. This paper is concluded in Section “Conclusion”.

Literature Review

In 2021, Salama and Aly et al. [16] presented a framework 
for segmenting and classifying breast cancer images using 
three datasets and evaluated using various models, such 
as “InceptionV3, DenseNet121, ResNet50, VGG16, and 
MobileNetV2”. The breast area in mammography images 
was segmented using the “modified U-Net model”. To get 
over the death of tagged data.

In 2019, Vijayarajeswari et al. [17] classified mammo-
grams by feature extraction using the Hough transform. To 
accomplish this, support vector machines were utilized to 
classify the mammography images after the Hough trans-
form to detect features of a specific shape. The findings dem-
onstrated that the suggested method successfully identified 
abnormal mammography pictures, with a higher degree of 
accuracy being attained with the application of the SVM 
classifier. Ninety-five mammograms from a dataset were 
used to evaluate the approach.

In 2021, AlGhamdi and Mottaleb et al. [18] presented 
a model to identify whether patches corresponded to the 
same mass. The network was made up of a feature extrac-
tion component that used tied dense blocks and a three-layer 
nearby patch matching component, including a cross-input 
neighborhood differences layer that defined a summary of 
the neighborhood differences.

In 2020, Sha et al. [19] suggested to use of a variety of 
techniques, such as image noise reduction, the “grasshop-
per optimization algorithm, and CNN-based optimal image 
segmentation” were used to identify the cancerous area in 
mammogram images, and its effectiveness was compared 
to ten other cutting-edge techniques. The outcomes demon-
strated that the suggested strategy increased precision and 
reduced computational expense.
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In 2021, Zebari et al. [20] proposed a novel approach 
to classify breast cancer using mammography pictures. It 
employs wavelet transform and an improved FD technique 
to extract features and uses it to calculate ROI, using a com-
bination of thresholding and machine learning. The classi-
fication process makes use of five classifiers, and the output 
is then fused.

In 2022, Maqsood et al. [21] developed a deep learn-
ing system using an "end-to-end" training method, to rec-
ognize mammography screening images for breast cancer. 
To extract texture features, the method used a modified 
contrast enhancement technique with a transferable texture 
CNN with an energy layer. Using the deep properties of 
different “CNN models”, the performance of TTCNN was 
examined. In three datasets, the approach was tested, and it 
outperformed existing techniques with an average accuracy 
of 97.49%. According to the study, deep learning algorithms 
can enhance clinical tools for Breast cancer detection at an 
early stage.

In 2022, Li et al. [22] proposed using a multi-input deep 
learning network to automatically classify breast cancer. To 
preserve contextual information during pooling, the network 
simultaneously analyzed four images of each breast, each 
with a unique set of characteristics. The technique lowers 
the likelihood of incorrect diagnoses and avoidable biopsies, 
assisting physicians in correctly identifying breast cancer 
from numerous CESM images.

In 2021, Kavitha et al. [23] introduced OMLTS-DLCN, 
a new digital mammogram-based breast cancer diagnosis 
model. The model uses a back-propagation neural network 
for classification, for “segmentation, optimal Kapur’s based 
multilevel thresholding with shell game optimization algo-
rithm” was used.

In 2019, Khan et al. [24] suggested a Mammography 
classification using a CAD system according to Multi-View 
Feature Fusion. Anomaly classification is based on mass/
calcification and malignancy, and the system had three steps. 
For each view, CNN-based feature extraction models were 
applied, and the retrieved features were then merged to get 
the final forecast. The system had four views of mammo-
grams for training, and it outperformed single-view-based 
methods for mammography classification using accuracy.

In 2020, Song et al. [25] proposed a deep learning-based 
network which has been used during the feature extraction 
to extract the features of CESM images. A test was run 
to assess the performance of a dataset of internal CESM 
images using a framework with three stages: input, image 
feature extraction, and classification. 760 pictures from 95 
patients made up the collection.

Problem Statement

Manual mammography examination can be time-consuming 
and error-prone when looking for breast cancer. An infra-
red photo collection is analyzed to identify breast cancer 
images using a variety of pre-processing approaches. One of 
these methods involves eliminating the pectoral muscle area 
before feature extraction, because it has less intensity varia-
tion than the tumor. Thermal mapping is then used to iden-
tify cancerous regions, and cancer is found in these pictures 
using feature selection and classification methods. Although 
classification divides the data into non-cancerous and malig-
nant portions, feature selection identifies the most pertinent 
features from the database. The need for more effective and 
accessible breast cancer screening methods is highlighted 
by the fact that the present techniques are time-consuming, 
costly, and necessitate additional labor for radiologists to 
operate the equipment.

Proposed Methodology for Breast Cancer 
Prediction Using DualNet Deep Learning 
Classifiers

Early pre-processing of the mammograms makes a differ-
ence in how distinct desired items are from unwanted back-
ground noise. The variable being measured here is inten-
sity, because mammographic images have low contrast and 
it is difficult to distinguish between masses in them; pre-
processing is done. Comparing pectoral muscle intensity to 
cancer intensity, there is typically little variance. The pro-
posed methodology for the DualNet-deep-learning-classifier 
model for efficient and accurate breast cancer detection can 
be described in the following steps:

• Pre-processing: The mammogram images are pre-pro-
cessed using Wiener filtering and contrast stretching to 
reduce noise and enhance image contrast.

• Segmentation: The pre-processed mammogram images 
are segmented using the Gradient-based watershed seg-
mentation approach to identify the ROI regions.

• Feature extraction: Subsequently, from the identified 
ROI regions the texture [Grey level run-length matrix 
(GLRLM), multi-threshold rotation invariant LBP (MT-
RILBP) (proposed)], color (color correlogram), and 
shape features (Zernike moment) are extracted.

• Feature selection: The extracted features are fed to FBO 
that incorporates both the FOA and the BMO to select 
the optimal features.

• Breast cancer detection: The breast cancer classifica-
tion phase uses a DualNet-deep-learning-classifiers 
approach that includes LSTM, CSNN, and a new opti-
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mized autoencoder (OptAuto). The LSTM and CSNN 
are trained using the identified optimal features. The out-
come from LSTM and CSNN is fed as input to OptAuto 
to identify the presence/absence of breast cancer.

• Evaluation: The proposed model is evaluated using met-
rics, such as sensitivity, accuracy, specificity, precision, 
TPR, FPR, TNR, F1-score, and recall to assess the accu-
racy and efficiency of breast cancer detection.

Overall, the proposed methodology involves pre-process-
ing the mammogram images to reduce noise and enhance 
contrast, segmenting the images using improved watershed 
segmentation, extracting and selecting optimal features, and 
using a DualNet-deep-learning-classifier approach for breast 
cancer detection. The model holds promise for accurate and 
efficient breast cancer detection with the potential for future 
clinical applications (Fig. 1).

Pre‑processing

The pre-processing stage's primary goal is to remove 
noise from the mammogram and improve the image's con-
trast enhancement. Therefore, in research, raw mammo-
gram images are pre-processed using Wiener filtering (for 
noise removal) and contrast stretching (for image contrast 
enhancement).

Wiener Filtering

The Wiener filter technique is a statistical approach to 
remove noise from each pixel in an image. It carries out 
the best possible exchange between noise smoothing and 
inverse filtering. It is the ideal filter to use for reducing the 
overall MSE during the noise-smoothing process. By placing 
an MSE restriction between the estimates and the original 
image, it attempts to construct an image. Wiener filters ana-
lyze frequency domain data, but they may fail to recover 
noise-damaged frequency components. The minimum Wie-
ner filter function in the frequency domain is described by 
Eq. (1), and the minimized error is shown by Eq. (2). The 
inversion of blurring and additive noise is instantly removed 
by the Wiener filter

(1)b2 = B
{
G(c, d) − Ĝ(c, d)

}

(2)Ĝ(t, n) =

⎡⎢⎢⎣
1

f (t, n)

�f (t, n)�2
�f (t, n)�2 + WO(t,n)

WG(t,n)

⎤⎥⎥⎦
k(t, n),

where the degradation function is f (t, n) ; the complex con-
jugate of f  is |f (t, n)|2, f ∗(t, n) = f (t, n)f ∗(t, n), noise's power 
spectrum is f (t, n);WO(t, n) , and the unaltered image's power 
spectrum is WG(t, n).

Contrast Stretching

Contrast stretching, also known as normalizing, is used in 
the second phase. Adjusting the range of intensity values is a 
technique for stretching images that improves image quality.

1. Initially, before computing the gradient, the dermo copy 
images are modified using the Sobel edge filter while 
maintaining a 3 × 3 kernel size.

2. Dividing the grey image into several equal-sized blocks 
(4, 8, 12,…) and rearranging them in ascending order 
based on gradient intensities. Weights are now changed 
for each block following the gradient's strength. This 
method is described by Eq. (3)

where gtI is the threshold for gradient intervals and �sI
�

 
(I = 1,…, 4) are statistical weight coefficients.

3. Cumulative weighted grey values are now calculated for 
each block according to Eq. (4).

where VI(y) represents the sum of the grey-level pixel values 
for each block I.

For an optimum solution, three factors including the max-
imum region extraction, block size, and weighting criteria 
should all be considered. Yet, the informative regions are 
between 25 and 75%; therefore, choosing 12 blocks with an 
aspect ratio of 8:3 considers the minimum value of 25%. The 
weights are assigned according to the number of edge points, 
Epi, for each block, as shown in Eq. (5) for this purpose

DL
max

 max is the block with the greatest number of edges. 
Morphological operations, which are a sequence of connect-
ing stages used before feature vector creation to provide the 
greatest amount of differentiability between foreground and 
background, are used. Closing, filling, and reconstruction 

(3)𝜓(h, j) =

⎧⎪⎪⎨⎪⎪⎩

𝜚s1
𝜔
if𝜗C(h, j) ≤ gt1;

𝜚s2
𝜔
gt1 < 𝜗C(h, j) ≤ gt2

𝜚s3
𝜔
gt1 < 𝜗C(h, j) ≤ gt3;

𝜚s4
𝜔
otherwise

(4)Cr(y) =

4∑
I=1

�gI
�
VI(y),

(5)��I =
Da

DL
max

;
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Fig. 1  Overall flow diagram of the proposed model
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are uses of morphological processes that effectively operate 
on all segment’s pictures. These adjustments to make to all 
photographs to make the objects stand out more against the 
background.

ROI Identification

Breast cancer detection requires the use of segmentation 
techniques. Through image analysis, segmentation which 
comprises detection, feature extraction, classification, and 
treatment plays a crucial role. Physicians use segmentation 
to calculate the amount of breast tissue for planning treat-
ments. Subsequently, from the pre-processed data, the ROI 
is identified via Improved Watershed segmentation.

Gradient‑Based Watershed Segmentation (Proposed)

One of the main limitations of the watershed segmentation 
technique is that it can lead to over-segmentation, where 
regions that should be merged are split into multiple seg-
ments. This can be addressed by adding gradient-based seg-
mentation techniques within the watershed model. These 
techniques involve using gradient information to identify 
boundaries and separate regions based on their gradient val-
ues. Gradient information-based watershed segmentation is a 
popular image-processing technique for identifying regions 
of interest (ROIs) in an image. This method is based on the 
analysis of the gradient information of the image, which can 
be used to identify the boundaries between different regions. 
In this technique, the gradient image is first computed from 
the input image, and then, the watershed segmentation algo-
rithm is applied to the gradient image to obtain the ROIs. 
Here is a workflow for gradient information-based watershed 
segmentation in image processing with some expressions:

Step 1: Load the image: Load the pre-processed image 
imgpre

n
 into memory.

Step 2: Convert to grayscale: Convert the input image to 
grayscale gray_img = img.convert('imgpre

n
'). The gray-

scale image is pointed as imggray
n

.
Step 3: Compute gradient: Compute the gradient of the 

grayscale image imggray
n

 . This is done using a Canny 
edge detector ( Gmag , Gdir)

Step 4: Thresholding: Threshold (T) the gradient image 
to obtain a binary image that contains the edges and 
boundaries of the objects in the image

(6)Gmag(x, y) = sqrt(Gmagx(x, y)
2 + Gmagy(x, y)

2

(7)Gdir(x, y) = atan2(G−y(x, y)
2 + G−x(x, y)

2.

Step 5: Morphological operations: Apply reconstruction 
filter operations (Tmorph) such as erosion and dilation to 
the binary image to remove noise and fill gaps in the 
edges.

Step 6: Morphological reconstruction filter: When the con-
tour edge information is lost, the region contour shifts 
in position, despite the standard pre-smoothing filter's 
ease of use in improving outcomes in decreasing noise 
and irregular details. Because of the characteristics of 
the chest cancer in the mammogram image, the target's 
edge contour information can be successfully retained 
during reconstruction filtering. It also does not cause a 
positional shift in the visible area's contour in the rebuilt 
image. The following describes morphological recon-
struction:

where Rtl is a morphological reconstruction of the mask 
images acquired from the marker image w , where tl is 
the structural component responsible for the enlargement 
of the marker image; � it also represents the original 
image used as a mask; and Rn and is the final iteration's 
output image. The marker image a 's initial iteration is 
RE . When Rn+1 = Rn , Eq. (6) is iterated till the end.

When using morphological reconstruction or closed 
reconstruction, which can only remove one noise or detail 
from an image, a shift in the position of the target contour 
has been easily possible. Hence, by employing the hybrid 
opening and closure reconstruction process, texture details, 
as well as shading noise, can be removed simultaneously, 
and image morphology reconstruction helps to improve 
the boundary information while decreasing the number of 
pseudo-minimum values

A morphological corrosion procedure is ⊖ shown in 
Eq. (10).

The closed operation reconstruction is described in 
Eq. (11) as

Equation (12) gives the following definition of the closed 
operation reconstruction:

(8)T(x, y) = 1;ifGmag(x, y) > T

T(x, y) = otherwise.

(9)Rn+1 =
(
Rn ⊕ tl

)⋂
w,

(10)Ptl(w) = Rtl[(w⊖ tl),w].

(11)ctl(w) =∼ Ptl(∼ w).

(12)gtl = ctl
[
Ptl(w),w

]
.
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Step 7: Marker generation: Generate markers for the 
watershed segmentation algorithm. This is done using 
regional minima/maxima. Breast cancermammogram 
images that have undergone morphological reconstruc-
tion filtering still contain a few small value points in the 
image that are not suppressed, because they are unre-
lated to the target object, and the segmentation results 
contain a large number of meaningless regions that can 
be used for marker extraction. Fix it. When using the 
watershed segmentation method on a target image, imply 
the target region's minimum value in the gradient image 
and mask any additional minimum values to minimize 
the number of meaningless regions in the segmentation 
result. Only the target area's minimum value used may 
be preserved to reduce the likelihood of over-segmen-
tation issues. As a result, the soiled-proposes morpho-
logical-bases extend minimum transform technique h is 
used to address the issue of regional minimum value 
labeling. This technique's main challenge is choosing 
the threshold h, which, when established, effectively 
eliminates the local minimum with a depth of less than 
h. The h-minima approach has the advantage of allowing 
for direct threshold determination. The constant thresh-
old h, insufficient flexibility, and single adaption are the 
disadvantages. The threshold h can be chosen using the 
adaptive acquisition method to prevent the impact of 
artificial setting elements. The threshold h divides the 
target image into two groups, If h is the value of the 
threshold, then pixels in the target class Te of the gray-
scale of {0, 1,… h} T 1 is a backdrop class that includes 
pixels in the h + 1, h + 2,… , L − 1 grayscale. Discover 
the target class Te and the background class T1 's intra or 
inter-class variance.

  Target class Te occurrence likelihood:

background class T1 occurrence likelihood

  The target class Te 's average value is

  Background class T1 average

(13)Ze =

h∑
I=e

VI ;

(14)Z1 =

L−1∑
I=h+1

VI .

(15)�e =

∑h

I=e
IVI

ze
.

(16)�1 =

∑L−1

I=h+1
IVI

z1

Step 8: Watershed segmentation: Perform the water-
shed segmentation algorithm on the input image using 
the generated markers. The above-mentioned “Otsu 
method” is used to calculate the threshold H, and the 
reconstructed gradient image. To avoid the appearance 
of meaningless minima, Gse is recovered using the 
extended minimum transform method. As a result, the 
marker appears at a low value. Following the acquisi-
tion of the local minimum value marker image linked to 
the target region, the gradient image is modified using 
Soiled's minim imposition technique, so that other pixel 
values become consistent as needed. This ensures that 
the local minimum occurs only at the marked position 
and eliminates any other local minimum regions. This 
is shown in Eq. (19)

where gmark denotes the updated gradient image and 
imimposemin denotes the forced minimum operation 
suggested by Soiled. Following the minimal value 
forced minimum operation, the watershed segmenta-
tion method is then applied to the gradient image gmark , 
which is shown in Eq. (20)

where Watershed represents using marker value; for the 
marking completion, an image of the relevant target area 
could be obtained gws.

Step 9: Post-processing: Apply post-processing techniques 
such as merging or filtering to the segmented image to 
remove over-segmentation and refine the segmentation 
results.

Step 10: Output: Save the segmented image (ROI-identi-
fied image)imgROI

n
 as output. This is the identified ROI 

region.

Feature Extraction

The process of extracting relevant and useful information or 
features from pre-processed images is referred to as feature 
extraction.

Texture Feature

Texture features refer to the visual attributes of a surface or 
material, including its pattern, roughness, smoothness, and 

(17)h = argmin0≤h<L
{
𝜎2
Z

}

(18)h = argmin0≤h<L
{
𝜎2
n

}
.

(19)gmark = imimposemin(gtl, T1 ⋮ Te),

(20)gws = watershade
(
gmark

)
,
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other surface characteristics. These characteristics are used 
in different types of applications, such as “computer vision, 
image processing, and machine learning”, to classify and 
analyze images based on their texture.

Grey‑Level Run Length Matrix (GLRLM) The “grey level run 
length technique” works by calculating the number of grey-
level runs of varying lengths. A grey-level run is a collection 
of adjacent image points that have similar grey-level val-
ues.N seems to be a run-length matrix as follows: N(k, j) , k 
signifies the number of runs with grey-level intensity pixels, 
and j the length of a run on a particular orientation. Matrix 
N is defined as zbyy , where c is the image's maximum grey 
level and b is the image's longest possible run length. The 
orientation is described by a displacement vector k(c, b) , 
where c and b are the displacements for the x and y axes, 
respectively. In this methodology run, texture is defined in 
four directions (0°, 45°, 90°, and 135°), and four run-length 
matrices are produced as a result.

“GLRLM” is used to derive seven features: “short run 
emphasis (SRE), long run emphasis (LRE), grey level non-
uniformity (GLN), run-length non-uniformity (RLN), run 
percentage (RP), low grey-level run emphasis (LGRE), and 
high grey-level run emphasis (HGRE)”.

(21)SRE =
1

o

∑
k,j

N(k, j)

j2

(22)LRE =
1

o

∑
k,j

j2N(k, j)

(23)GLN =
1

o

∑
k

(∑
j

N(k, j)

)2

(24)RLN =
1

o

∑
k

(∑
j

N(k, j)

)2

(25)RP =
∑
k,j

o

N(k, j)j

(26)LGRE =
1

o

∑
k,j

N(k, j)

j2

(27)HGRE =
1

o

∑
k,j

k2N(k, j).

Multi‑threshold Rotation Invariant LBP (MT‑RILBP) (Pro‑
posed) Local binary patterns (LBP) is a popular method 
for describing the texture of an image. It works by compar-
ing each pixel with its surrounding pixels and assigning a 
binary code to each pixel based on the comparison results. 
The binary codes are then used to create a histogram of the 
texture features in the image. However, the standard LBP 
method is sensitive to rotation, which means that the resulting 
histogram may be different for the same texture if the image is 
rotated. To address this issue, an improved rotation invariant 
LBP (IRI-LBP) method aims to generate a histogram that is 
invariant to rotation. Multi-threshold rotation invariant LBP 
(MT-RILBP) is an extension of the standard LBP and its vari-
ants that aims to address the limitations of previous rotation 
invariant LBP methods. The novel concept in MT-RILBP is 
the use of a novel rotation invariant coding scheme that takes 
into account the gradient information of the image in addition 
to the texture information. Another important concept in MT-
RILBP is the use of multiple thresholds for generating LBP 
patterns. The traditional LBP uses a single threshold to deter-
mine whether a neighbor pixel is brighter or darker than the 
center pixel. However, this threshold may not be optimal for 
all images and textures. To address this limitation, MT-RILBP 
uses multiple thresholds to generate multiple LBP patterns for 
each pixel. IRI-LBP uses multiple thresholds to generate mul-
tiple LBP patterns for each pixel. Specifically, for each pixel 
in an image, MT-RILBP computes several LBP codes with 
different thresholds. Let us assume that we use Ti thresholds, 
denoted as t1, t2,… , and  P neighbors to compute the LBP 
codes. For each threshold, a binary code Ci is assigned to each 
pixel P based on whether its P neighbors are brighter or darker 
than the center pixel, using the following formula:

When U
(
LBPK,I

)
≤ 2 , LBP is defined as LBPu2

K,I
 with 

K(K − 1) + 2 discriminative patterns. Although the histogram 
spectrum feature can be shortened using a uniform pattern, this 
processing method is feasible. Experiments and observations 
show that uniform LBPs are fundamental texture properties 
that comprise the vast majority of patterns, accounting for 
up to 90% of the time. Furthermore, no matter how the LBP 
is rotated, its structure remains the same, implying that the 
original and rotated LBPs have the same order and bitwise 0/1 
changes. The rotation invariant texture description is obtained 
by

(28)

U
(
LBPK,I

)
=

[
P−1∑
K=1

|||h
(
Gk − Gx

)
− h(Go − Gx)

|||

+

o∑
k=2

|||h
(
Gr − Gx

)
− h(Gr−1 − Gx)

||| + Ti

]2

.

(29)LBPir
K,I

= min
{
ROR

(
LBPK,I , k

)}
, (k = 0,… , k − 1).
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ROR(c, k) indicates the rotation of the LBP code c , k times 
around the center pixel, where ri denotes rotation invariance. 
In other words, the LBP with the smallest decimal value serves 
as a stand-in for other LBPs in the same family. The uniform 
rotation invariant LBP.LBPriu2

K,I
 can be calculated as follows:

Rotation invariant uniform pattern with K + 2 discrimina-
tive patterns is denoted by riu2 . As a result, the texture spec-
trum histogram's dimension has also been greatly reduced. 
The texture spectrum histogram Soriginal can be obtained by 
gathering statistics on the frequency of occurrences LBPriu2

K,I
 

at every possible pixel position in the image.

Color Feature

Color features are image features that focus on analyz-
ing the colors present in an image. By analyzing the 
colors, computers can extract useful information about 
an image's content for tasks such as object recognition, 
image retrieval, and image segmentation. However, color 
features can be sensitive to changes in lighting conditions 
and color variations. As a result, they are often used in 
conjunction with other types of image features. Despite 
these challenges, color features remain an important tool 
for analyzing images, particularly in applications such as 
content-based image retrieval. As technology advances, we 
can expect even more sophisticated techniques for analyz-
ing color features.

Color Correlogram A color correlogram is a type of color 
feature that analyzes the spatial relationships between 
colors in an image. Specifically, it computes the frequency 
of occurrence of color pairs separated by a certain dis-
tance in an image. By analyzing the spatial relationships 
between colors, a computer can extract useful information 
about an image's content, which can be used for tasks such 
as image retrieval and segmentation. Color correlograms 
are particularly useful for analyzing textures in images 
and are often used in conjunction with other types of 
image features to enhance the precision of image analysis 
algorithms (Fig. 2).

Let w ∈ [m] n be a fixed a priori distance. The correlo-
gram of I is then defined for r, q ∈ [n], r ∈ [w]

Given any pixel of color xr in the image,� (r)
xr,xq

 calculates 
the likelihood that a pixel located r pixels away from the 

(30)LBPriu2
K,I

=

⎧
⎪⎨⎪⎩

K−1∑
k=0

h
�
Gk − Gx

�
if U

�
LBPK,I

�
≤ 2,

K + 1 otherwise

.

(31)� (r)
xr,xq

(I) ≜ Pr
k1∈I��,k2∈I��

[
k2 ∈ Ixq|||k1 − k2

|| = r
]
.

given pixel are of color xq . The correlogram's size is O
(
n2w

)
. 

Only spatial correlation between identical colors is captured 
by the auto correlogram of I

These data are a subset of the correlogram and takes up 
only O(nw) space.

We must address the following issue when deciding on 
w to define the correlogram. A large w would necessitate 
costly computation and large storage requirements. A small 
w could jeopardize the quality.

Shape Feature Shape features are image features that focus 
on analyzing the shape and geometric properties of objects 
in an image. By analyzing the shape features, a computer 
can extract useful information about the objects' character-
istics and use it for tasks, such as object recognition, image 
retrieval, and segmentation (Fig. 3).

Zernike Moment The Zernike moments of order m with 
repetition n for a continuous image function f(c, b) which 
vanishes outside the unit circle have been calculated

where m isa nonnegative integer and n an integer m − |n| that 
is both nonnegative and even. The complex-valued functions 
Emn(c, b) are defined as follows:

where � and � is just the unit's polar coordinates disc Imn and 
� are (Zernike polynomials) given by

Im,−n(�) = Imn(�) are the polynomials orthogonal as well 
as satisfy

with

The origin is set to the image's center to compute the 
Zernike moments, and the pixel coordinates are mapped 
to the unit circle range. It is possible to compute a discre-
tized original image function f (c, b) whose moments are the 
same as those of f (c, b) up to the specified order. We can 

(32)�(r)
x
(I) ≜ � (r)

x,x
(I).

(33)Zmn =
m + 1

� � � c2+b2≤1

f (c, b)E∗
mn
(�, �)dcdb,

(34)Emn(c, b) = Emn(�, �) = Imn(�)exp(qn�),

(35)Imn(�) =

m−|n|∕2∑
h=0

(−1)h[(m − h)!]�m−2h

h!
(

m+|n|
2

− h
)
!
(

m−|n|
2

− h
)
!
;

(36)
� � c2+b2≤1

[
E∗
mn
(c, b)

]
× Ekj(c, b)dcdb =

�

m + 1
�mk�nj

�zy =

{
1 z = y

0, otherwise
.
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reconstruct f̂ (c, b) as a result of the orthogonality of the 
Zernike basis

Hybrid Optimization Model for Optimal Feature 
Selection

The optimization algorithm to use from a group of many 
algorithms that accomplish the same optimization is 
selected by hybrid optimizations dynamically at com-
pile time. For each section of code being optimized, they 
employ a heuristic to forecast the best algorithm. The 
hybridization of different optimization algorithms has 
become a common practice in recent years. In this case, 
we will discuss the hybridization of the FOA and BMO for 
optimal feature selection for breast cancer classification. 
FOA is a population-based optimization algorithm that is 
inspired by the foraging behavior of fruit flies. It has been 
successfully applied in various optimization problems, 
including feature selection. BMO, on the other hand, is a 
recently developed algorithm that is based on the mating 
behavior of birds. It has shown promising results in solv-
ing optimization problems, including feature selection. To 
hybridize these two algorithms, we can take advantage of 
their strengths and combine them to overcome their weak-
nesses. FOA is good at exploring the search space and 
avoiding getting stuck in local optima, while BMO is good 
at exploiting the search space by focusing on promising 
regions. As per the proposed approach, the FOA model is 
induced with the BMO model (Fig. 4).

Mathematically, the proposal can be given as:

Step 1: Initialization: Initialize the population of fruit flies 
and birds randomly. The current solution is denoted as t
.

Step 2: Evaluate: Evaluate the fitness of each solution as 
Fit = min(Error).

Step 3: Selection: Select two birds (male and female) 
randomly from the population. Males and females 
so make up the two genders in a bird society. The 
birds with the most genetic promise in civilization 
are those that are female. There are two groups of 
ladies. Males are split into three types, with the 
females being parthenogenetic and polyandrous and 
the men being monogamous, polygynous, and pro-
miscuous.

Step 4: Mating: Perform mating between the selected 
birds to create a new offspring bird. A male typically 
mates with just one female in a two-parent mating pat-
tern known as monogamy. To decide which of the girls 

(37)f̂ (c, b) =

mmax∑
m=0

∑
n

ZmnEmn(�, �).

to choose as his mate, each guy a probabilistic method 
is used to rate the quality of females. A higher chance 
of selection exists for female birds with superior DNA. 
Equation (39) depicts how two chosen parents can create 
a new brood

where n is the problem dimension, w  is a time-varying 
weight that is used to alter the selected female, r⃗ is a 
one-dimensional vector 1 × d with each element being 
a random number between 0 and 1 distributed, and 
this random vector impacts the respective element of 
( ��⃗xi − ��⃗x), u and l are the lower and upper limits of the 
elements. The first part of Eq. (39) suggests that each 
male bird seeks a deserving female to mate with to cre-
ate new genes to raise a high-quality brood. Then, with 
a probability of 1 − mcf  , the male bird seeks to increase 
the quality of his offspring by altering one of its genes.

Mutation (proposed): Perform mu where n is the prob-
lem dimension, w is a time-varying weight that is used to 
alter the selected female, r⃗ is a one-dimensional vector 
1 × d with each element being a random number between 
0 and 1 distributed, and this random vector impacts the 
respective element of ( ��⃗xi − ��⃗x), u and l are the lower and 
upper limits of the elements. The first part of Eq. (39) 
suggests that each male bird seeks a deserving female 
to mate with to create new genes to raise a high-quality 
brood. Then, with a probability of 1 − mcf  , the male bird 
seeks to increase the quality of his offspring by altering 
one of its genes.

tation on the offspring bird to increase its diversity. The 
offspring generated are updated based on the levy flight 
mechanism of levy flight enhanced FOA (LFOA). The 
“Levy flight mechanism” is frequently utilized to enhance 
metaheuristics. Levy statistics is the name given to the phe-
nomenon. In essence, stochastic non-Gaussian walks make 
up the LF (Fig. 5). Relative to the Levy stable distribution, 
its step value is scattered. The following serves as a repre-
sentation of the Levy distribution

� represents step length (s) is a crucial Levy index for adjust-
ing stability.

Step 5: Evaluate: Evaluate the fitness of the offspring bird.
Step 6: Replacement: Replace the worst bird in the popula-

tion with the offspring bird.

(38)��⃗xi = �⃗x + w × r⃗ ×
(
�⃗x
i
− �⃗x

)
;

(39)
c = a random integer number between1and n

if r1 > mcf ; xbrood(c) = l(c) − r2 × (l(c) − u(c)),

(40)Levy(s) ∼ |s|−1−𝛽 , 0 < 𝛽 ≤ 2;
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Breast Cancer Classification 
via DualNet‑Deep‑Learning‑Classifier Model

The breast cancer classification phase uses a DualNet-
deep-learning-classifiers approach that includes “LSTM, 
CSNN, and a new optimized autoencoder (OptAuto)”. 
The LSTM and CSNN are trained using the identified 
optimal features. The outcome from LSTM and CSNN 
is fed as input to OptAuto, wherein the outcome regard-
ing the presence/absence of breast cancer is identified. 
Moreover, the weight function of the autoencoder is 
tuned using the new FBO (Fig. 6).

Convolution‑Spiking Neural Networks

Since neurons are arranged in layers in ANNs, the SNN's 
architecture is comparable. With a fully connected tech-
nique, neurons in adjacent layers are linked. A neuron's 
output is produced immediately following the ANN propa-
gation spatial information layer by layer; it receives pre-
synaptic input from neurons in the layer above it. A spike 
train time series describing the output patterns of SNN 
neurons contrasts with how neurons interpret information 
in the spatial domain. The leaky integrate and fire model 
is one of three widely used neuron models that currently 
exist to explain the spiking behavior of SNNs (LIF). Given 
its straightforward hardware implementation and low 
computational complexity, LIF is known to be the neuron 
model that is utilized the most frequently (Fig. 7). The 
following equation describes how the neuron's membrane 
potential changes (u) in the LIF model:

where I(t) stands for presynaptic input, which is defined by 
the spiking activity of incoming synaptic routes at time t 
and synaptic weights, and ui(t) is the neuron's membrane 
potential iattimet . The presynaptic input is equal to the sum 
of the synaptic weights w1 and w2 when the first two incom-
ing synaptic routes are stimulated simultaneously. Until it 
crosses a predetermined threshold, the membrane potential 
u continuously updates. The membrane potential u is then 
reset after neuron I fire the spike.

Long Short‑Term Memory

It will be possible to store and convert the memory of an 
LSTM cell in the cell state from input to output. An LSTM 
cell is made up of the “input gate, forget gate, update 
gate, and the output gate”. The forget gate, as the name 
implies, selects information to the input gate and selects 

(41)
dui(t)

dt
= −ui(t) + I(t),

information to be incorporated the input gate feeds infor-
mation into the neuron, the update gate updates the cell, 
and the output gate generates new long-term memory from 
previous memory units. The LSTM's four key elements 
will function and interact uniquely as it receives long-term 
memory, short-term memory, and input sequence at a par-
ticular time step, and generates new short-term memory, 
long-term memory, and output sequence during the same 
time step (Fig. 8). The input gate, which may be math-
ematically expressed as the following, determines which 
data must be supplied to the cell:

The vectors are multiplied element by element by the 
operator " ∗".

The forget gate, which complies with the following 
mathematical definition, controls which prior memory 
information is ignored:

The update gate, which is theoretically represented by 
the following formula, modifies the cell state:

The output gate updates the previous time step's hidden 
layer, which can also update the output as provided by the 
previous time step

Optimized Autoencoder (OptAuto)

“Deep autoencoder” is a strong unsupervised feature represen-
tation strategy with several layers that are hidden. The fact that 
hidden layer parameters motivate the neural idea of data learn-
ing is automatically learned by the provided data rather than 
being generated manually. With the help of DAE, we were 
inspired to discover the Video sequence's time axis charac-
teristics. The high-dimensional deep features are compressed 
to low dimensions with a small error during the transforma-
tion. Deep characteristics from a series of frames are extracted 
and learned using an effective four-layered architecture, along 
with hidden patterns and frame-to-frame changes. To make the 
autoencoder's time complexity less complicated, high-dimen-
sional data are reduced by a half factor. High computational 
complexity is obtained by compressing large dimensional data 

(42)it = �
(
wi ∗

[
ht−1,Xt

]
+ bi

)

(43)ft = �
(
wf ∗

[
ht−1,Xt

]
+ bf

)

(44)c̃t = tan h
(
wC ∗

[
ht−1,Xt

]
+ bc

)

(45)ct = ft ∗ Ct−1 + it ∗ c̃t.

(46)Ot = �
(
wo ∗

[
ht−1,Xt

]
+ bo

)

(47)ht = Ot ∗ tanh
(
Ct

)
.
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using numerous deep layers and short steps. Via "hierarchi-
cal grouping" or "part-whole decomposition" in the incoming 
data, the DAE learns. The stacked autoencoder's early stages 
capture changes and features of the first order in the raw input 
data. In contrast, the intermediate layers are taught features 
of the second order which correspond to first-order feature 
patterns. In light of this, we contend that the suggested DAE 
successfully picks up on the variations and recurring patterns 
of human behavior in video sequences.

Both of these processes make up the autoencoder. Fol-
lowing some nonlinearity functions, such as the sigmoid and 
relu described in Eq. (48), comes encoding, which involves 
multiplying data by weights, adding biases, and then encod-
ing. After that, the data are decoded to the same number of 
inputs as in Eq. (49), which is the second step. Reducing the 
mean squared error to nearly zero, the weights are modified 
using a back-propagation algorithm

According to Eqs. (50) and (51), the first hidden layer of 
the stacked autoencoder receives input x , while the other 
receives input from the network's previously hidden layer. 
Here, εnε stands for the number of encoding layers, and 
wl, xl, bl stand for the relevant layer's data, weights, and 
biases, respectively

The weight wlxl of the autoencoder is optimized via a 
new hybrid optimization model, to enhance the detection 
accuracy of the model.

(48)h(x) = sigm
(
wx + b

)

(49)x̂ = sigm (W(h(x) + b))

(50)h(x)(1+1) = sigm
(
wlxl + bl

)

(51)x̂(n+l+1) = sigm
(
w(n−1)h(x)(n+1) + b(n−1)

)
.

Results and Discussion

Experimental Setup

The proposed breast cancer diagnosis model has been imple-
mented in MATLAB. The evaluation has been made using 
the data collected from: database 1: https:// www. kaggle. 
com/ datas ets/ awsaf 49/ cbis- ddsm- breast- cancer- image- 
datas et; and Database 2:https:// www. kaggle. com/ datas ets/ 
kmader/ mias- mammo graphy. The proposed model is eval-
uated in terms of “sensitivity, accuracy, specificity, preci-
sion, TPR, FPR, TNR, F1-Score, and Recall”. The proposed 
model has been tested by varying the learning rate from 70, 
80, and 90, respectively.

Overall Performance Analysis of the Proposed 
Model for Database 1 and Database 2

The Table 1 provides a performance of various models on 
a given dataset-1. The proposed model achieved the high-
est accuracy of 0.938221, outperforming all other models, 
including FOA, BMO, CHO, and MSA. The suggested 
model's precision is also the highest among all models, with 
a value of 0.978307. The model's sensitivity and specific-
ity are 0.942722 and 0.963072, respectively, indicating a 
well-balanced model. Additionally, the proposed model's 
F-measure of 0.953127 and MCC of 0.908756 are the high-
est among all models. The proposed model also has the low-
est FPR of 0.062134, indicating the lowest rate of false posi-
tives. Overall, the proposed model is the most accurate and 
precise model among all the models evaluated in this study.

Overall Performance Analysis of the Proposed 
Model for Database 2

Table 2 shows the metrics of various models’ performance 
on a given dataset, using a learning rate of 1. With an accu-
racy of 0.947704, the proposed model outperformed all other 

Table 1  Overall performance analysis for database 1

Measures FOA BMO CHO MSA Proposed

Accuracy 0.900944 0.817062 0.823274 0.888519 0.938221
Precision 0.961924 0.897705 0.894813 0.956859 0.978307
Sensitivity 0.907372 0.834859 0.842764 0.895582 0.942722
Specificity 0.936447 0.880891 0.886571 0.927569 0.963072
F-Measure 0.919142 0.840764 0.849468 0.907260 0.953127
MCC 0.861043 0.739668 0.745543 0.845265 0.908756
NPV 0.936447 0.880891 0.886571 0.927569 0.963072
FPR 0.088763 0.144319 0.138639 0.097639 0.062134
FNR 0.117838 0.190351 0.182446 0.129628 0.082488

Table 2  Overall performance analysis for database 2

Measures FOA BMO CHO MSA Proposed

Accuracy 0.831589 0.825314 0.897489 0.866108 0.947704
Precision 0.903856 0.906767 0.966527 0.847951 0.988190
Sensitivity 0.851273 0.843286 0.904635 0.874873 0.952246
Specificity 0.895521 0.889790 0.936939 0.942065 0.972801
F-Measure 0.858049 0.849253 0.916425 0.817420 0.962754
MCC 0.753068 0.747142 0.853805 0.769389 0.917932
NPV 0.895521 0.889790 0.936939 0.942065 0.972801
FPR 0.140044 0.145785 0.098625 0.093497 0.062761
FNR 0.184292 0.192278 0.130930 0.160691 0.083321

https://www.kaggle.com/datasets/awsaf49/cbis-ddsm-breast-cancer-image-dataset
https://www.kaggle.com/datasets/awsaf49/cbis-ddsm-breast-cancer-image-dataset
https://www.kaggle.com/datasets/awsaf49/cbis-ddsm-breast-cancer-image-dataset
https://www.kaggle.com/datasets/kmader/mias-mammography
https://www.kaggle.com/datasets/kmader/mias-mammography
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models, CHO was next, with an accuracy of 0.897489. The 
proposed model also had the highest precision of 0.988190, 
indicating a low false-positive rate. Furthermore, the model 
has high values of 0.952246 and 0.972801 for sensitivity and 

specificity, respectively, indicating a well-balanced model. 
The proposed model's F-measure and MCC are 0.962754 
and 0.917932, respectively, which are the highest among 
all models. The model also has the lowest FPR value of 

Table 3  Overall performance 
analysis for database 1 and 2

Measures FOA BMO CHO MSA Proposed

Accuracy 0.8662665 0.821188 0.8603815 0.8773135 0.942957
Precision 0.93289 0.902236 0.93067 0.902405 0.983248
Sensitivity 0.8793225 0.8390725 0.8736995 0.8852275 0.947478
Specificity 0.915984 0.8853405 0.911755 0.934817 0.947478
F-Measure 0.8885955 0.8450085 0.8829465 0.86234 0.957936
MCC 0.8070555 0.743405 0.799674 0.807327 0.913339
NPV 0.915984 0.8853405 0.911755 0.934817 0.967942
FPR 0.1144035 0.145052 0.118632 0.095568 0.062448
FNR 0.151065 0.1913145 0.156688 0.1451595 0.082905

Fig. 2  Performance analysis: accuracy

Fig. 3  Performance ANALYSIS: F-measure

Fig. 4  Performance analysis: FNR

Fig. 5  Performance analysis: FPR
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0.062761, indicating the lowest rate of false positives. Over-
all, the proposed model is the most accurate and precise 
model among all the models evaluated in this study, with 
a well-balanced performance on sensitivity and specificity.

Table  1 shows the overall performance analysis of 
the proposed model for database 1. The proposed model 
achieved an accuracy of 0.938221, which is higher than the 
accuracies achieved by the FOA, BMO, CHO, and MSA 
models. The precision, sensitivity, and specificity of the 
proposed model are also higher than the other models. The 
F-Measure and MCC of the proposed model are 0.953127 
and 0.908756, respectively, which are also higher than the 
other models. These results suggest that the proposed model 
outperforms the other models in terms of accuracy and 
various other metrics. In terms of false-positive rate (FPR) 
and false-negative rate (FNR), the proposed model has the 
lowest FPR (0.062134) among all the models, indicating 
that the proposed model can identify benign cases accu-
rately. The FNR of the proposed model is also lower than 
the other models except for the CHO model, indicating that 
the proposed model can detect malignant cases with higher 
accuracy. The results suggest that the proposed model has a 
higher potential for identifying both benign and malignant 
cases. Table 2 shows the overall performance analysis of 
the proposed model for database 2. The proposed model 
achieved an accuracy of 0.947704, which is higher than the 
accuracies achieved by the FOA, BMO, CHO, and MSA 
models. The precision, sensitivity, and specificity of the 
proposed model are also higher than the other models. The 
F-Measure and MCC of the proposed model are 0.962754 
and 0.917932, respectively, which are also higher than the 
other models. These results suggest that the proposed model 
outperforms the other models in terms of accuracy and vari-
ous other metrics. In terms of false-positive rate (FPR) and 
false-negative rate (FNR), the proposed model has the lowest 

Fig. 6  Performance analysis: MCC

Fig. 7  Performance analysis: NPV

Fig. 8  Performance analysis: precision

Fig. 9  Performance analysis: sensitivity
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FPR (0.062761) among all the models, indicating that the 
proposed model can identify benign cases accurately. The 
FNR of the proposed model is also lower than the other 
models, indicating that the proposed model can detect malig-
nant cases with higher accuracy. The results suggest that 
the proposed model has a higher potential for identifying 
both benign and malignant cases. The results from both 
tables indicate that the proposed model outperforms the 
other models in terms of accuracy, sensitivity, specificity, 
precision, F-Measure, and MCC. The proposed model has 
the lowest FPR among all the models, indicating that the 
proposed model can identify benign cases with higher accu-
racy. The FNR of the proposed model is also lower than the 
other models, indicating that the proposed model can detect 
malignant cases with higher accuracy. Overall, the proposed 
breast cancer diagnosis model is effective in identifying both 
benign and malignant cases of breast cancer with higher 
accuracy than the other models. The results suggest that the 
proposed model has the potential to aid in the early detec-
tion and diagnosis of breast cancer, which can significantly 
improve patient outcomes and survival rate (Fig. 9).

Performance Analysis for Varying Training Rates

Based on the given metrics in Table 3, it appears that for all 
performance metrics, the suggested technique generates the 
most effective outcomes. Specifically, the proposed method 
has the highest accuracy (0.942957), sensitivity (0.947478), 
precision (0.983248), and specificity (0.947478) among all 
methods compared (0.967942), F-measure (0.957936), MCC 
(0.913339), NPV (0.967942), and the lowest false-positive 
rate (0.062448) and false-negative rate (0.082905). On 
the other hand, the FOA method has the lowest specificity 
(0.932254) and the highest false-negative rate (0.130284), 

while the CHO method has the lowest accuracy (0.827437) 
and the highest false-positive rate (0.139336). The BMO 
and MSA methods have relatively good performance but 
are outperformed by the proposed method in most measures. 
Overall, based on these metrics, it appears that the suggested 
technique is the best-performing method among those con-
sidered (Fig. 10).

Conclusion

In this research work, a novel deep learning approach has 
been introduced. The proposed model includes five major 
phases: “Pre-processing, segmentation, feature extraction, 
feature selection, and breast cancer detection”. The pre-
processing phase involves noise removal via Wiener filter-
ing and image contrast enhancement via contrast stretch-
ing approach. Then, from the pre-processed mammogram 
images, the ROI region is identified using the new gradient-
based watershed segmentation approach. Subsequently, from 
the identified ROI regions, the texture [Grey level run-length 
matrix (GLRLM), Multi-Threshold Rotation invariant LBP 
(MT-RILBP) (Proposed)], color (Color correlogram), and 
shape features (Zernike Moment) are extracted; and among 
the extracted features, the optimal features are chosen using 
a hybrid optimization model-FBO, which incorporates 
both the “FOA and BMO”. The breast cancer classification 
phase uses a DualNet-deep-learning-classifiers approach 
that includes “LSTM, CSNN, and a new optimized autoen-
coder (OptAuto)”. The LSTM and CSNN are trained using 
the identified optimal features. The outcome from LSTM 
and CSNN is fed as input to OptAuto, wherein the outcome 
regarding the presence/absence of breast cancer is identified. 
Moreover, the weight function of the autoencoder is tuned 
using the new FBO. The proposed model is evaluated in 
terms of “sensitivity, accuracy, specificity, precision, TPR, 
FPR, TNR, F1-Score, and Recall”.
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