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Abstract
Path planning is one of the most important steps in the navigation and control of swarm of drones. It is primarily concerned 
with avoiding collision among drones and environmental obstacles while determining the most efficient flight path to the 
region of interest. Whenever there is a high density and complex mission, path planning becomes the most challenging and 
indispensable task. The problem of path planning is not only relevant to finding the optimum path from the start point to the 
destination point but also to provide a mechanism for preventing collisions on the path. Hence, an appropriate algorithm is 
needed to plan the optimal path for the swarm of drones. This paper proposes an efficient methodology for drone swarm path 
planning problems in 3D environments. An improved population-based meta-heuristic algorithm, Sine Cosine Algorithm 
(SCA), has been proposed to solve this problem. As part of the improvements, the population of SCA is initialized using a 
chaotic map, and a non-linearly decreasing step size is used to balance the local and global search. In addition, a convergence 
factor is employed to increase the convergence rate of the original SCA. The performance of the proposed improved SCA 
(iSCA) is tested over the drone swarm path planning problem, and the results are compared with those of the original SCA, 
and other state-of-the-art meta-heuristic algorithms. The experimental results show that the drone swarm 3D path planning 
problem can be efficiently handled with the proposed improved SCA.

Keywords Path planning · Internet of drones (IoDs) · Meta-heuristics · Sine cosine algorithm (SCA) · Drone swarm · 
Obstacle avoidance

Introduction

In recent years, the field of Unmanned Aerial Vehicles 
(UAVs) has grown rapidly, including miniature aircraft, air-
ships, and drones for a wide range of purposes such as sur-
veillance, military operations, telecommunications, medical 
supplies delivery, rescue operations, and monitoring [1–3]. 
A large number of UAV systems rely on only one aerial vehi-
cle. Nevertheless, the active cooperation of several UAVs 
is essential in many applications. In addition to being cost-
effective and more robust, they can perform complex tasks 
beyond the capacity of a single UAV, and more robust.

An Internet of Drones (IoDs) or drone swarm is a network 
of drones connecting to each other, a layered network con-
trol architecture that is primarily responsible for coordinat-
ing the access of UAVs, controlling airspace, and providing 
navigation services between nodes [4]. Drone swarm can 
be utilized in a variety of applications, including intelligent 
transportation systems (ITS) for improving vehicle-infra-
structure communication. In this application, drone swarm 
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is an efficient way to improve traffic rules on the ground and 
provide ground users with efficient information dissemina-
tion. To accomplish such complex tasks, drones must col-
laborate due to the heterogeneity of their goals and com-
munication technologies. In the current scenario, drones are 
becoming increasingly autonomous as technology advances, 
and they gain new capabilities. However, as drones get closer 
to each other or obstacles in case of high drone density or 
challenging missions, they pose new threats.

Obstacles can be static or dynamic. The static obstacles 
are fixed, such as mountains and buildings, while the 
dynamic obstacles include other drones or air vehicles, 
birds, etc. Furthermore, controlling drone swarm and 
communicating among drones become more complicated 
tasks. Moreover, if the drone swarm merges in different 
directions, a catastrophic collision is more likely to occur. 
Since the likelihood of collision among drones in a swarm 
increases, preventing or avoiding collisions becomes more 
challenging, and hence, drone swarm should have a proper 
collision-avoiding method.

One of the most important problems for autonomous 
multi-UAV system i.e. drone swarm is path planning. 
Considering the given f light conditions and f light 
environment, a collision-free path for drone swarm needs 
to be planned based on the given starting and destination 
points. The planned path should be cost-effective and 
comply with relevant constraints. Thus the drone swarm 
path planning can be viewed as an optimization problem 
that involves multiple constraints [5], and the objective is to 
find the shortest feasible path between one point and another 
point based on various optimization criteria and mission 
constraints [6, 7]. These constraints include the minimum 
flight length, minimum flight time, and state constraints of 
the drones. Recently, research on drone swarm path planning 
has received much attention since it enables unmanned 
systems to operate autonomously and intelligently.

In recent years, for UAVs and autonomous robots, several 
path planning algorithms have been proposed. In addition 
to Graph-based algorithms such as the Voronoi diagram 
algorithm [8], there are also A* algorithm [9], Probabilistic 
road maps algorithm [10, 11], rapidly-exploring random 
trees-based algorithm [12, 13]. Nevertheless, these 
algorithms rarely consider UAV kinematic and dynamic 
constraints, so they cannot be used in practical applications. 
In addition, these algorithms are dependent on cost maps, 
which must be developed and saved in advance, making 
the cost maps time-consuming to create. Another type of 
effective path-planning method is the potential fields-based 
method. Two classic instances of this type are the Artificial 
potential field algorithm [14] and interfered fluid dynamical 
system algorithm [15]. Such algorithms must globally 
establish the interaction between the attractive and repulsive 
fields to construct the flyable path for UAVs. Consequently, 

they are easily trapped in a local minima. Furthermore, 
sometimes it is impossible to guarantee a feasible path when 
the target and obstacles are too close.

It has been demonstrated that drone swarm path planning 
problem is an NP-hard problem, and the complexity of the 
problem grows with problem size [16]. To solve the NP-hard 
problems, meta-heuristics algorithms are effective and easy 
to implement.

The key challenge in dense swarm and environmental 
constraints is generating a collision-free path for drone 
swarm [17, 18]. In addition, deterministic approaches for 
building paths for drone swarm require a large amount of 
storage capacity and a long execution time [19].

Hence, to solve such a problem, proper optimization 
methods are necessary. Furthermore, optimization criteria 
may include the shortest path length, avoiding obstacles, 
shorter time missions, drone constraints (e.g., the amount 
of energy required to complete a mission, coverage area, 
etc.), and so on [20].

In recent years, population-based evolutionary 
algorithms have benefited greatly from advancements in 
swarm intelligence technology [21, 22], and they have 
a great capability to discover the optimal solution in an 
efficient and flexible manner. As a result, researchers are 
increasingly focusing on UAV path planning using these 
methods. A few of the most commonly used algorithms 
include Genetic Algorithm (GA) [23], Artificial Bee Colony 
(ABC) algorithm [24], Ant Colony Optimization (ACO) [25, 
26], Differential Evolution (DE) [27, 28], Particle Swarm 
Optimization (PSO) [29], Spider Monkey Optimization 
(SMO) [30] etc.

The sine-cosine algorithm is one of the newly introduced 
swarm intelligence-based algorithm, which draws significant 
attention from the researchers because of its simplicity and 
ease of implementation in real-life applications. Mirjalili 
initially proposed this algorithm to solve optimization 
problems [31].

Over the last few years, several improved versions of SCA 
have been proposed. To enhance the exploitation ability of 
solutions and reduce the overflow of diversity present in the 
search equations of SCA, “an improved sine cosine algorithm 
for global optimization” was proposed in [32]. To enhance the 
exploration of the search space, the authors in [33], applied 
the opposition-based learning mechanism in SCA. The com-
parison results demonstrated that the proposed algorithm 
performs better than the original SCA and other considered 
meta-heuristic algorithms in terms of solving optimization 
problems. To effectively recognize the pathological brain in 
real-time, the authors in [34] combined an extreme learn-
ing machine with a modified sine cosine algorithm. Here 
the authors used the concept of mutation strategy in SCA to 
enhance the global search capability. Besides, a variety of 
meta-heuristic algorithms have been used to study the UAV 
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path planning problems [35–37]. However, SCA has not been 
proposed for path planning for drone swarm in a 3D environ-
ment. This is due to its shortcomings of slow convergence and 
falling into local optimality when solving complex problems. 
Since the drone swarm path planning problem in a 3D envi-
ronment is a very complex optimization problem, an appro-
priate path planning algorithm is required to be developed. 
To effectively plan the paths for the swarm of drones and 
overcome the disadvantages of the existing algorithms, such 
as frequently falling into local optimum solution and slow 
convergence, this paper proposes an “improved sine cosine 
algorithm” namely, iSCA. The main contributions of this 
paper are as follows.

• In iSCA, the chaos-based initialization of the population 
for better uniformity is used.

• It uses non-linearly decreasing step size to balance 
between local and global search process of SCA.

• The convergence factor is employed for faster 
convergence of SCA.

• The proposed iSCA is tested over drone swarm path 
planning problem and compared with other state-of-the-
art algorithms.

• Applied the iSCA for tackling the 3D path planning 
problem for the drone swarm.

The remainder of this paper is arranged as follows: 
“Mathematical model for drone swarm path planning 
problem” describes the mathematical model for drone 
swarm path planning problem. The path planning algorithm 
based on the proposed iSCA is presented in “Path planning 
algorithm”. “Simulation results and discussions” discusses 
the simulation results with a detailed comparison among 
the algorithms. Finally, the conclusion of this work is 
summarized in “Conclusion and future direction”.

Mathematical Model for Drone Swarm Path 
Planning Problem

When planning the paths for drone swarm, it is important to 
consider some factors such as terrain area, the cost associated 
with each path, and drone’s safety. The mission environment 
can have dangers like buildings, radars, mountains, or other 
impediments. In addition, the drone swarm consists of a 
large number of drones. Hence, objective functions must 
incorporate all these environmental factors as well as reflect 
their effects on performance. Drone swarm path planning 
problem is formulated as an optimization problem and then 
solved using the iSCA. Environmental restrictions and 
objective functions are covered in the ensuing sections.

Representations of Flying Area for Drone Swarm

In drone swarm path planning, the goal is to find an optimal 
and feasible path for the drones from their starting position 
to their target position under complex environmental 
constraints. Throughout this study, we refer to (x, y, z) as the 
three-dimensional coordinates of waypoints of the path. The 
flying spaces for drone swarm is expressed as follows [38].

Where xlb , ylb , and zlb are the lower limits of the flying space 
while xub , yub , and zub are the upper bounds.

Obstacle Model

Nowadays, it is possible to obtain accurate, up-to-date 
terrain maps and obstacles position using various sensing 
technologies such as infrared, LiDAR, GPS, etc. In this 
paper, it is assumed that the spatial boundaries and the 
locations of the obstacles are well known in advance. We 
model the obstacles as given in [36]. If (xk1 , yk1 , zk1 ) are the 
coordinates of the k1 th circular obstacle in a 3D environment 
with radius Rk1

 then the k1 th obstacle can be represented as 
follows [39].

Where the coordinates (xk1 , yk1 , zk1 ) are calculated as follows:

Where (xc, yc, zc) are the coordinates of center of the k1 th 
obstacle and � ∈ [0, 2�],� ∈

[
0,�∕2

]
.

Objective Function Modeling

In path planning, the objective function includes determining 
the length of the path, considering environmental constraints, 
and avoiding collisions with obstacles and other drones in 
the swarm. Our objective function aims to minimize the 
overall path length while avoiding obstacles. The objective 
function can therefore be expressed as follows [38].

Where Fpl is the cost associated with path length, Foc is 
the cost of drones collision with obstacles and Fmc is the 

(1)
S =

{
(x, y, z)|xlb ≤ x ≤ xub, ylb ≤ y ≤ yub, zlb ≤ z ≤ zub

}

(2)Ok1
=
(
xk1 , yk1 , zk1 ,Rk1

)

(3)xk1 = Rk1
cos (�) sin (�) + xc

(4)yk1 = Rk1
sin (�) sin (�) + yc

(5)zk1 = Rk1
cos (�) + zc

(6)F = Fpl + Foc + Fmc
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collision cost among drones. The goal is to minimize the 
objective function F. The next subsection describes the 
mathematical formulations of Fpl , Foc , and Fmc.

Cost Associated with Path Length

The expected flight path of a mission is a shorter one because 
shorter paths consume less fuel and are less likely to incur 
unforeseen threats. To evaluate the cost associated with path 
length, we use the following path length ratio (PLR) [40].

Where D denotes the total number of waypoints in the path, 
(xj, yj, zj) are the coordinates of the jth waypoint, (x1, y1, z1) 
and (xD, yD, zD) are the coordinates of the start and end 
waypoints of the path, respectively.

Here, the denominator represents the length of the 
shortest path between the start and the end waypoint while 
the numerator represents the length of the flight path. So, 
Fpl is always ≥ 1 and a smaller value of Fpl corresponds to a 
flight path with shorter length.

Obstacle Cost

To fly a drone safely, the planned path must avoid all 
obstacles. Even one point in the solution that passes through 
an obstacle may incur a high cost. If pathi is the planned path 
for dronei and (xj, yj, zj) , j = 1, 2,… ,D are the coordinates 
of the jth waypoint in the pathi then every waypoint 
( j = 1, 2,… ,D ) of the pathi should be checked against all 
obstacles to see if they fall into them. To do so, the distance 
between the waypoint’s and the center of obstacles is taken 
into account. It is assumed that the waypoint does not fall 
into the obstacle if the distance between the waypoint 
and the center of the obstacle is greater than the radius of 
the obstacle. In this case, a negligible cost is given to the 
objective function as the obstacle cost. In contrast, when 
the distance between them is shorter than the radius of the 
obstacle, then the high cost is assigned as the penalty.

Thus, the cost for the obstacle avoidance is defined as 
follows [38].

where � ∈ [0, 1] is a control parameter, k is the total number 
of obstacles, Rk1

 is the radius of k1 th obstacle and dist(j, k1) 
represents the distance between jth waypoint of the pathi and 
center of the k1 th obstacle and is defined as follows:

(7)Fpl =

∑D−1

j=1

�
(xj+1 − xj)

2 + (yj+1 − yj)
2 + (zj+1 − zj)

2

√
(xD − x1)

2 + (yD − y1)
2 + (zD − z1)

2
.

(8)Foc =

D∑
j=1

k∑
k1=1

exp

(
−
� × dist(j, k1)

Rk1

)

where (x(j), y(j), z(j)) represents the coordinates of the jth 
waypoint and (x0(k1), y0(k1), z0(k1)) are the coordinates of the 
center of the k1 th obstacle.

Cost of Drone Member Collision

When planning the paths for drone swarm, collision 
avoidance must be considered. All drones should maintain 
a reasonable distance from one another. The probability of 
collision among drones increases as the drone swarm density 
increases space. It is therefore extremely important to ensure 
that drones are not too close to each other when drone swarm 
paths are generated. If pathi is the planned path for dronei 
and patho is the planned path for any other drone then every 
waypoint’s of pathi must be checked with every waypoint’s 
of other paths ( patho ). To do so, it is necessary to consider 
a safety distance (sd) between paths.

The cost associated with collision among drones can be 
written as follows [38].

where D and D̃ are the number of waypoints in the pathi and 
patho , respectively. � ∈ [0, 1] is a control parameter, sd is the 
inter-drone distance, and dist(j, j1) represents the distance 
between pathi and patho and is defined as follows:

where (xj, yj, zj) and (xj1 , yj1 , zj1 ) are the waypoints of pathi 
and patho , respectively.

In the above model, the cost of member collisions among 
drones is mostly driven by the distance between pathi and 
other paths ( patho ). As the safety distance (sd) should be 
maintained, the cost will increase when the distance between 
paths is ≤ sd , and it decreases rapidly as the distance 
between the paths increases.

Path Planning Algorithm

Sine Cosine Algorithm (SCA)

The SCA is a new population-based meta-heuristic algorithm 
developed by Mirjalili [31], which utilizes a set of candidate 
solutions for performing the search. This is a method whereby 
guided randomness is created through the use of sine and 

(9)
dist(j, k1) =

√
(x(j) − x0(k1))

2 + (y(j) − y0(k1))
2 + (z(j) − z0(k1))

2

(10)Fmc =

D∑
j=1

D̃∑
j1=1

exp

(
−
𝛼 × dist(j, j1)

sd

)

(11)dist(j, j1) =
√

(xj − xj1 )
2 + (yj − yj1 )

2 + (zj − zj1 )
2
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cosine trigonometric functions. In SCA, the global solution 
is called a destination point and the solution vectors are called 
candidate solutions.

For the drone swarm path planning problem, let each 
feasible path represent the feasible candidate solution of the 
population in SCA. Assuming that the number of waypoints 
for each candidate solution is D, then for the three-dimensional 
path planning problem, the waypoints of the pathi (ith 
candidate solution) can be expressed as follows:

where xi,j , j ∈ 1,… ,D represents the jth waypoint of the ith 
candidate solution and are denoted as follows:

(xx
i,j
, x

y

i,j
, xz

i,j
) , j ∈ 1,… ,D represents the coordinates of jth 

waypoint of the ith candidate solution in a three-dimensional 
space.

Thus if N denote the total number of candidate solutions 
then the population (swarm) can be represented as

For SCA with N number of candidate solutions, there is 
one destination point (global best solution), which can be 
written as

Now, in tth iteration the position of each candidate solution 
is updated based on the following formula [31]:

(12)Xi = (xi,1,… , xi,D)
T

(13)xi,1 = (xx
i,1
, x

y

i,1
, xz

i,1
)

(14)
…

(15)xi,D = (xx
i,D
, x

y

i,D
, xz

i,D
)

(16)P = (X1,X2,… ,XN)
T

(17)Gbest = (gbest,1,… , gbest,D)

Where r2 , r3 , and r4 are random numbers in the ranges 
(0, 2�) , (0, 1), and (0, 1), respectively. Here, the parameter 
r4 is known as the switching parameter because it is used to 
choose the search paths using the sine or cosine function.

The parameter r1 is known as the control parameter, which 
decreases linearly from a number � to 0. It is responsible to 
manage the exploration and exploitation during the search 
by changing its value. r1 > 1 indicates the exploration of the 
search space, while r1 < 1 indicates exploitation. r1 is defined 
as follows:

Where t and Maxiteration are the current iteration number and 
the maximum number of iterations, respectively.

The pseudo-code of SCA is shown in Algorithm 1.

Improved Sine Cosine Algorithm (iSCA)

Despite the fact that the original SCA has enough 
exploration capability to diversify the search space, it 
often gets stuck in local optima and undergoes premature 
convergence when tackling complex problems [41]. Drone 
swarm path planning problem is a complex problem. It needs 
an efficient algorithm that balances the exploration and 
exploitation, efficiently. Therefore, it is essential to balance 
exploration and exploitation in SCA when performing the 
search operations to find the optimal path.

To prevent trapping in local optima and to search more 
accurately and rapidly for global optima, the present study 
proposes improvements in the SCA as follows:

(18)

X
(t+1)

i,j
=

{
X
(t)

i,j
+ r1 × sin(r2)× ∣ r3 × Gt

best
− Xt

i,j
∣, if r4 < 0.5

X
(t)

i,j
+ r1 × cos(r2)× ∣ r3 × Gt

best
− Xt

i,j
∣, Otherwise

(19)r1 = � ×

(
1 −

t

Maxiteration

)

Algorithm 1  Pseudo-code of 
SCA



 SN Computer Science           (2024) 5:286   286  Page 6 of 19

SN Computer Science

• Chaos-based initialization of candidate solutions.
• Better position update strategy by introducing non-

linearly decreasing step size.
• Incorporation of the convergence factor in the search 

mechanism to speed up the convergence rate.

Chaos‑Based Population Initialization

The population initialization in any evolutionary algorithm 
plays a very important role in the convergence speed and quality 
of the final solution. In general, random initialization is the 
most commonly used method of generating initial population 
in the absence of any information about the solution. The SCA 
uses uniformly distributed random solutions to initialize the 
population of candidate solutions. According to [42], when 
the distribution is more uniform, the population maintains rich 
diversity, which increases the chance of faster convergence 
and better solution quality. Hence, chaos-based initialization 
contributes in maintaining better diversity among the potential 
drone swarm paths. Logistic maps have the advantage of a more 
uniform distribution when compared with random distribution 
over 10,000 times [42].

In this work, to enrich the diversity of the initial 
population, the logistic map, which is one of the simplest 
and the most widely used chaotic map, is used [43].

(20)yj+1 = � × yj × (1 − yj), j = 0, 1, 2,…

Where yj is the jth chaotic variable. � is the bifurcation coef-
ficient. A chaotic state occurs if � ∈ [3.57, 4] . When � = 4 , 
y0 ∈ (0, 1) , the system produces a uniform chaotic signal, 
which will be employed for the initialization of the candidate 
solutions.

Steps to implement logistic map-based initialization are 
as follows: 

1. First, set y0 ∈ (0, 1) and generate D (population dimen-
sion) chaotic variables using following Eq. (21). 

 Where yj denotes the jth variable.
2. Repeat step 1 for i = 1, 2,… ,N (population size), and 

generate the initial chaotic variables for each candidate 
solution i.

3. Initialize the candidate solutions as follows: 

 Where xmax,j and xmin,j are the upper and lower bounds 
of the jth variable, respectively.

4. Finally, ith candidate solution using logistic map is 

Pseudo-code of chaos based population initialization is pre-
sented in Algorithm 2.

(21)yj+1 = � × yj × (1 − yj), j = 0, 1, 2,… ,D

(22)xi,j = xmin,j + yi,j × (xmax,j − xmin,j), i = 1, 2,… ,N, j = 1, 2,… ,D

(23)Xi = (xi,1, xi,2,… , xi,D); ∀i = 1, 2,… ,N

Algorithm 2  Chaos based population initialization
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Improved Position Updating Mechanism

In SCA, the control parameter r1 controls exploration in the 
early iteration and exploitation in the later iteration. This 
transition parameter can be further modified to balance the 
exploration and exploitation of the search process. The con-
trol parameter r1 in SCA is a linear function that decreases 
linearly from � to 0. Because of its linearity, sometimes it 
creates abrupt changes in jumping from one iteration to the 
next. In some cases, abrupt changes may result in the skip-
ping of good solutions; thus, valuable information about the 
quality of search areas might be lost. In this study, a modi-
fied formula for r1 so that it decreases exponentially from � 
to 0 is proposed to avoid all these issues.

where t and MAXiteration are current and maximum number of 
iterations, respectively. � is a user-defined parameter.

Convergence Factor

Further, a convergence factor CF is employed in the search 
mechanism. This convergence factor CF helps iSCA to con-
verge rapidly while balancing exploration and exploitation. 
CF is defined as follows:

(24)r1new = � × exp

(
−

t2

(� ×MAXiteration)
2

)

In Eq. (25), the convergence factor (CF) is inversely propor-
tional to the number of iterations. Its small value corresponds 
to less dependency over the current position, and its higher 
value plays more role of the current position in deciding the 
new position. Initially, when CF is large, the search process 
is significantly guided by the current position, and in the later 
iteration, when CF is small, it plays less role, and the new 
position is more depends upon the global best solution.

As mentioned above, the non-linearly decreasing step size 
(Eq. 24) helps in balancing exploration and exploitation of the 
search process very well, while the convergence factor (Eq. 25) 
helps in fast convergence. Thus the following proposed search 
Eq. (26) is used in iSCA which merges both techniques, can-
cels the absolute value term, to obtain better performance in 
drone swarm path planning in terms of solution quality, accu-
racy, and convergence speed.

Symbols have their usual meaning. The pseudo-code of 
improved SCA (iSCA) for drone swarm path planning is 
shown in Algorithm 3.

(25)CF = � ×

(
1 −

t

MAXiteration

)

(26)
X
(t+1)

i,j
=

⎧⎪⎨⎪⎩

CF × X
(t)

i,j
+ r1new × sin(r2) ×

�
r3 × Gt

best
− Xt

i,j

�
, if r4 < 0.5

CF × X
(t)

i,j
+ r1new × cos(r2) ×

�
r3 × Gt

best
− Xt

i,j

�
, Otherwise

Algorithm 3  The improved SCA (iSCA) for drone swarm path planning
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Time Complexity of the Proposed Algorithm

In the process of initializing the population, N number 
of candidate solutions are generated, and each candidate 
solution is a D dimensional vector in a 3D environment. If 
Maxiteration denotes the maximum number of iterations and 
ddrones denotes the size of the swarm then the time com-
plexity to solve the path planning problem in a 3D environ-
ment using any population-based optimization algorithm is 
O(N ∗ D ∗ Maxiteration ∗ ddrones) . Therefore it is clear that the 

Table 1  Drones starting and destination positions

Drones Starting position Destination position

Drone1 (200, 800, 350) (16000, 4000, 350)
Drone2 (200, 3800, 350) (16000, 7000, 350)
Drone3 (200, 6800, 350) (16000, 10000, 350)
Drone4 (200, 9800, 350) (16000, 13000, 350)
Drone5 (200, 12800, 350) (16000, 16000, 350)

Table 2  Obstacles position

Obstacles Positions Radius

Obstacle1 (5000, 10000, 0) 1800
Obstacle2 (10000, 2000, 0) 1200
Obstacle3 (10000, 8000, 0) 1100
Obstacle4 (5000, 2000, 0) 1500

Fig. 1  Two-dimensional view of the obstacles, starting and destina-
tion points of the drone swarm

Fig. 2  Three-dimensional view of the obstacles, starting and destina-
tion points of the drone swarm

Table 3  Parameters setting for all algorithms

Algorithms Parameters

SCA Same as in [31]
RCN � = 2 , � = 1

CL � = 2 , � = 4

iSCA � = 2 , � = 1

PSO wmax = 0.8 , wmin = 0.4 , c1 = 1.47 , c2 = 1.47

IPSO wmax = 0.9 , wmin = 0.4 , c1 = 1.47 , 
c2 = 1.47 , �max = 0.9 , �min = 0.05 , 
Vmax = 0.3

ABC Same as in [24]

Table 4  Common parameters
Population size (N) = 300

Maximum iteration = 150

Safety distance (sd) = 80m

Number of waypoints (D) = 20

� = 4

Fig. 3  Framework of RCN

Fig. 4  Framework of CL
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modifications in the proposed iSCA over SCA are not add-
ing any time complexity in solving the considered problem.

Simulation Results and Discussions

In this section, simulation results and comparisons are pre-
sented in order to show the performance of the proposed 
iSCA over drone swarm path planning problem. The experi-
ments are carried out in a MATLAB environment on a server 
with a 3.70 GHz CPU, 64 GB of RAM, and a 64-bit operat-
ing system.

Parameter Settings

Parameter settings play an important role in the performance 
of an algorithm as appropriate parameters may lead to better 
results of the algorithm. In the simulation environment, five 
drones are assumed to fly, simultaneously from their starting 
position to their destination position. Table 1 shows the posi-
tions of the starting and destination positions of each drone 
in a 3D space of size 16000 × 16000 × 16000 . Four static 
obstacles are placed in the search space, whose positions 
are listed in Table 2. The location of each obstacle and the 
current positions of drones with their destinations (goals) are 

Fig. 5  Fitness value over iteration for drone swarm path formation
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presented in 2D and 3D views in Figs. 1 and 2, respectively. 
The parameters corresponding to all the considered algo-
rithms are presented in Table 3. The parameters in Table 4 
are common to all the algorithms. In Table 4, sd stands for 
safety distance for collision avoidance among the drones, D 
stands for the total number of waypoints, N represents the 
population size, and � is the bifurcation coefficient.

Results and Comparisons

This section examines the effectiveness of the proposed iSCA by 
taking into account a number of performance metrics, including 
drone swarm formation running time, failure and success rates, 
convergence speed, and solution quality. The corresponding sub-
sections contain an analysis and record of the outcomes from the 
algorithms under consideration.

Fig. 6  2D view of the planned path for drone swarm
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Comparison with Original SCA

In this subsection, the performance of the proposed iSCA is 
compared with the original SCA. Since iSCA is proposed 
with two important inclusions, that is, convergence factor 
and non-linearly decreasing step size, so to examine the 

significance of each modifications, we additionally consid-
ered both factors, independently for the comparison. Follow-
ing two variants of SCA are considered using each modifica-
tion independently for the comparison.

Fig. 7  3D view of the planned path for drone swarm

Table 5  Average fitness value of the formation

Bold values represent the best results that the associated algorithm produced when compared to all other algorithms that were taken into 
consideration

Algorithm Drone1 Drone2 Drone3 Drone4 Drone5 FAFV Improved %

SCA 1.150535239 1.045553413 1.111839756 1.141272442 1.063580563 1.102556283 NA
iSCA 1.125486909 1.038086312 1.097011195 1.111504654 1.026271119 1.079672038 2.076
RCN 1.133059711 1.037975431 1.103182588 1.119762864 1.028719366 1.084539992 1.634
CL 1.150075141 1.048581918 1.118792639 1.139484139 1.061501466 1.103687061 −0.103
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• RCN: This algorithm is formed by including uniformly 
distributed population initialization along with non-lin-
early decreasing step size and convergence factor in the 
original SCA as shown in Fig. 3.

• CL: This algorithm initializes the population using a 
chaos map and linearly decreasing step size in SCA as 
shown in Fig. 4.

The performances over drone swarm path planning problem 
of SCA, iSCA, RCN, and CL are discussed and comparative 

Fig. 8  Average fitness value over iteration on 40 runs for drone swarm path formation

Table 6  Average minimum 
iterations of the formation

Bold values represent the best results that the associated algorithm produced when compared to all other 
algorithms that were taken into consideration

Algorithm DRONE1 DRONE2 DRONE3 DRONE4 DRONE5 FAMI

SCA 25 38 37 31 40 34.2
iSCA 38 78 111 37 50 62.8
RCN 22 28 61 41 41 38.6
CL 29 45 57 38 21 38
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study has been carried out based on the performance indica-
tors given below:

Comparison based on solution quality: The solution 
quality can only be measured through objective function 
value (fitness value (FV)). Firstly, we have recorded 
the fitness values of all the considered algorithms over 
all the iterations in a single run. Figure 5a–d show the 
graphical representation of fitness values over iterations 
of all the algorithms considered in this subsection. From 
these results, it is clear that the FV of the proposed 
iSCA outperforms SCA, RCN, and CL. This comparison 
justifies that both the modifications along with chaos-
based initialization is necessary to achieve this 
superior performance of iSCA. In other words, all three 
modifications in SCA are jointly responsible for better 
performance of iSCA.

Since randomness is present in all the considered algo-
rithms so it is not enough to take a decision through a sin-
gle run. Thus in order to do a fair comparison among algo-
rithms, we use the Monte-Carlo simulations with 40 runs to 
each algorithms and analysed the results. Figure 6a–d show 
the planned paths for drones by SCA, iSCA, RCN, and CL, 
respectively in 2D views. While Fig. 7a–d represent the 3D 
views of the planned path for drones for considered algo-
rithms. From Figs. 6a–d and 7a–d, it can be seen that the 
planned path for each drone by each algorithm is obtained 
without collision with obstacles and among drones. Thus 
it is guaranteed that all the algorithms SCA, iSCA, RCN, 
and CL can generate a feasible path for each drone. Table 5 

shows the average fitness value (AFV) of the formation 
during Monte-Carlo simulations. The best results are high-
lighted with boldface. Figure 8a–d shows the iteration-wise 
average fitness value (AFV). It can be observed from Table 5 
that from the single drone perspective, iSCA has outper-
formed all the algorithms SCA, RCN, and CL for drones 
1, 3, 4, and 5 but in the case of drone 2, iSCA no longer 
outperforms RCN. However, it is reasonable that the AFV 
of the formation is more important and fair than the indi-
vidual drone’s performance. Because the AFV of the forma-
tion indicates the overall solution quality of an algorithm, as 
well as the safety and cost-effectiveness of drone operations 
in the flying environment. Moreover, AFV for a single drone 
can easily be affected by different environmental constraints, 
so it is not good enough to evaluate the performance of an 
algorithm from a single drone’s perspective in the case of 
drone swarm optimal path planning. The AFV of the forma-
tion in Table 5 shows that iSCA has the least AFV, RCN 
performs second, and CL worst. As compared to original 
SCA, the AFV of iSCA, RCN, and CL has decreased to 
2.076% , 1.634% , and − 0.103% , respectively. Note that CL 
is not able to outperform SCA while RCN outperforms SCA 
independently, but RCN and CL which forms iSCA outper-
forms SCA as shown in Table 5. Overall, iSCA has a better 
solution quality than SCA, RCN, and CL.

Comparison based on convergence speed: The conver-
gence speed is an important performance indicator in analyz-
ing the effectiveness of the algorithm. Figures 5a–d and 8a–d 
are the convergence curves of SCA, iSCA, RCN, and CL in 
single and multiple runs, respectively. To show the evolution 
process of the algorithms over iterations, we assume that the 
x-axis represents the iteration number and y-axis represents 
the average fitness value in these Figures. In addition, we 
also adopt the minimum number of iterations that requires 
to reach the optimal solution as another indicator to evaluate 
the convergence speed. In this process, firstly, we set the cri-
teria for the feasible solution as |AFVt−20 − AFVt| < 0.001 . 
In other words, |AFVt−20 − AFVt| < 0.001 represents the dif-
ference in AFV obtained in 20 consecutive iterations. Here, 
t represents the current iteration number and AFV represents 
the average fitness value that is obtained in 40 runs. Table 6 
represents the average minimum iterations (AMIs) of the 
formation for each of the considered algorithms. It can be 

Table 7  Failure rate of the 
formation

Bold values represent the best results that the associated algorithm produced when compared to all other 
algorithms that were taken into consideration

Algorithm DRONE1 DRONE2 DRONE3 DRONE4 DRONE5 AFN FR % improvement

SCA 40 0 4 25 0 13.8 34% NA
iSCA 9 0 1 1 0 2.2 5.5% 84.057
RCN 16 0 3 5 0 4.8 12% 65.217
CL 40 0 9 27 0 15.2 38% −10.144

Table 8  Formation running time by different algorithms

Bold values represent the best results that the associated algorithm 
produced when compared to all other algorithms that were taken into 
consideration

Algorithm Formation running time 
(seconds)

% improvement

SCA 1.482247 NA
iSCA 1.163345 21.5147
RCN 1.163345 21.5147
CL 1.467294 1.0088
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Fig. 9  2D view of the planned path for drone swarm

Fig. 10  3D view of the planned path for drone swarm

Table 9  AFV of the formation

Bold values represent the best results that the associated algorithm produced when compared to all other algorithms that were taken into 
consideration

Algorithm Drone1 Drone2 Drone3 Drone4 Drone 5 FAFV

iSCA 1.125486909 1.038086312 1.097011195 1.111504654 1.026271119 1.079672038
PSO 1.274060312 1.031918232 1.150279379 1.137454152 1.039364774 1.12661537
% improved in iSCA 11.6613 − 0.5977 4.6309 2.2813 1.2598 4.1667
IPSO 1.167843329 1.030065184 1.152098958 1.116741579 1.039040203 1.10115785
%improved in iSCA 3.6274 − 0.7786 4.7815 0.4689 1.229 1.9512
ABC 1.298236247 1.163505086 1.15079026 1.466059323 1.103041915 1.236326566
%improved in iSCA 13.3064 10.7794 3.5704 35.4554 6.9599 12.671
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seen from Table 6 that SCA has the least AMI with a value 
of 34.2, while iSCA has the largest AMI with a value of 
62.8. On the other hand, CL and RCN are 2nd and 3rd in 
the list with values 38 and 38.6, respectively. Though SCA 
obtained the highest convergence speed than iSCA, RCN, 
and CL, but it can be observed that the solution obtained 
by SCA with this fast convergence speed is sub-optimal and 
inferior than iSCA, RCN, and CL. This means that SCA 
can easily get trapped to local optima. Since the non-line-
arly decreasing step-size along with convergence factor are 

present in iSCA, these factors help iSCA to avoid stagna-
tion and provide the searching ability for more iterations to 
obtain global optima.

Comparison based on success and failure rates: 
Besides solution quality and convergence speed, success 
and failure rate is also another important factor in analysing 
the performance of the considered algorithms. This indica-
tor measures the reliability of the algorithm. In this work, 
Monte-Carlo simulations are carried out with 40 runs, and 
failure number (FN) is defined as the number of times the 

Table 10  Failure rate of the 
formation

Bold values represent the best results that the associated algorithm produced when compared to all other 
algorithms that were taken into consideration

Algorithm DRONE1 DRONE2 DRONE3 DRONE4 DRONE5 AFN FR % 
improved 
in iSCA

iSCA 9 0 1 1 0 2.2 5.5% NA
PSO 40 0 35 21 0 19.2 48% 60.416
IPSO 40 0 40 0 0 16 40% 86.25
ABC 40 27 25 40 8 30 55% 92.142

Table 11  Average minimum 
iterations of the formation

Bold values represent the best results that the associated algorithm produced when compared to all other 
algorithms that were taken into consideration

Algorithm DRONE1 DRONE2 DRONE3 DRONE4 DRONE5 FAMI

iSCA 38 78 111 37 50 62.8
PSO 48 77 30 44 68 53.4
IPSO 45 42 52 57 32 45.6
ABC 21 21 21 21 21 21

Fig. 11  Fitness value over iteration for drone swarm path formation
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final fitness value ( FVt=150 ) is greater than or equal to 1.13. 
This means that the path generated by the algorithm is too 
long, and/or the drone collides with an obstacle, and/or the 
collision happens among drones. On the other hand, a zero 
failure rate indicates that FVt=150 < 1.13 . The average failure 
number (AFN) of the formation and the accumulated path 
failure rate (FR) in the Monte-Carlo simulations on 40 runs 
are presented in Table 7. Figure 14 is the graphical represen-
tation of the formation failure number (FN) of considered 
algorithms. From Table 7, one can see that the proposed 
iSCA has the least failure rate with an improved percentage 
of 84.057 as compared to the original SCA, while 65.217% 
improvement is obtained by RCN. On the other hand, there 

Fig. 12  Average fitness value over iteration on 40 runs for drone swarm path formation

Table 12  Formation running time of different algorithms

Bold values represent the best results that the associated algorithm 
produced when compared to all other algorithms that were taken into 
consideration

Algorithm Formation running time 
(seconds)

% 
improved 
in iSCA

iSCA 1.163345 NA
PSO 1.18559 1.8762
IPSO 1.45934 20.2827
ABC 1.45934 20.2827

Fig. 13  Formation average minimum iterations by different algo-
rithms

Fig. 14  Formation failure number by different algorithms
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is no improvement in CL. This shows that the proposed 
iSCA can achieve the highest success rate or reliability in 
path generation and guarantees a significant improvement in 
solution quality as compared to SCA, RCN, and CL.

Comparison based on running time: A drone swarm 
path planning and collision avoidance depend heavily 
on running time, which is another crucial component to 
consider when assessing an algorithm’s performance. The 
running time is the time required to complete the task from 
the starting position to the destination position of the drone 
swarm. The results are presented in Table 8 and Fig. 15a. 
From Table 8, one can see that the increased percentage of 
the iSCA, RCN, and CL as compared to the original SCA 
are 21.5147, 21.5147, and 1.0088, respectively. These results 
demonstrate the ability of the proposed iSCA to generate the 
optimal paths for drone swarm in a faster way.

Comparison with Other Algorithms

In this subsection, we have compared the proposed iSCA 
with other meta-heuristics such as PSO [29], ABC [24], 
and one of the recently proposed improved PSO (IPSO) 
[38], which increases the solution quality and convergence 
speed of basic PSO. The population size and the maximum 
number of iterations are set to 300 and 150, respectively. 
Table 3 shows the parameter settings for the considered 
algorithms. For a fair comparison among the algorithms, 
we have performed the Monte-Carlo simulations with 40 
runs. The detailed comparison among the algorithms based 
on the performance indicators: solution quality, convergence 
speed, success and failure rate, and drone swarm formation 
running time are described as follows.

Figures 9a–c and 10a–c are the 2D and 3D views of the 
planned paths generated by PSO, IPSO, and ABC, respec-
tively. The planned paths for the proposed iSCA are shown 
in Figs. 6b and 7b in 2D and 3D views, respectively. One 
can see from these figures that iSCA and IPSO can generate 
a feasible path for each drone, while PSO and ABC are not 
able to generate a feasible path. Moreover, ABC can not 
even maintain the safety distance among the drones as the 
collision happened among themselves also. This is because 
of the extensive exploration capability of ABC and unable 
to maintain the proper balance between exploration and 
exploitation. While due to the non-linearly decreasing step 
size and convergence factor in iSCA, it can easily construct 
a desired path for the drones while maintaining the safety 
distance among the drones. This comparison exhibits the 
advantages of the proposed method as compared to other 
considered algorithms.

In Tables 9 and 10, AFV of the formation and path 
failure rate (FR) of the considered algorithms are given, 
respectively. It is clear from Table 9 that iSCA obtains the 
least AFV with a reduced percentage of 4.1667, 1.9512, 
and 12.671 than PSO, IPSO, and ABC, respectively. 
This proves the ability of the proposed method to obtain 
the best solution than PSO, IPSO, and ABC. When the 
reliability of the algorithms is taken into consideration, 
Table 10 shows that iSCA has the highest reliability than 
that of PSO, IPSO, and ABC. In Table 10, one can see that 
the proposed iSCA has the least failure rate while ABC has 
the highest failure rate. The improved percentage in iSCA 
as compared to PSO, IPSO, and ABC are 60.416, 86.250, 
and 92.142, respectively. All these results demonstrate the 

Fig. 15  Formation running time by different algorithms
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effectiveness of the proposed iSCA both in terms of reli-
ability as well as solution quality.

When the convergence speed is taken into account among 
the considered algorithms, Table 11 shows the average mini-
mum iteration (AMI) of the formation that requires to satisfy 
the feasible criterion. The definition of feasible criterion is 
the same as defined above. Figure 11a–c represents the FV 
of PSO, IPSO, and ABC respectively, while Fig. 12a–c rep-
resents the AFV of PSO, IPSO, and ABC respectively. The 
AMI of the formation is graphically presented in Fig. 13. As 
it can be seen from Table 11, ABC has the least AMI, while 
IPSO is 2nd in the list. This shows that ABC has the highest 
convergence speed as compared to other algorithms. On the 
other hand, ABC has the largest function value. Therefore, 
though PSO, IPSO, and ABC have smaller AMI than iSCA, 
their function values are no longer outperformed iSCA. This 
is a clear indication of the fact that these algorithms suf-
fers from premature convergence while iSCA continues to 
improve through iterations.

The formation running time for the considered algorithms 
is presented in Table 12 and Fig. 15b. It can be easily seen 
from Table 12 that the increased percentage of iSCA as com-
pared to PSO, IPSO, and ABC are 1.8762, 20.2827, and 
20.2827, respectively. Thus the proposed iSCA can gener-
ate feasible paths for the drone swarm more accurately and 
faster, as compared to PSO, IPSO, and ABC.

Conclusion and Future Direction

Drone swarm path planning problem in a 3D environment 
has been dealt with using an improved variant of the Sine 
Cosine Algorithm. A case study with 4 obstacles, 5 drones, 
and 16000 × 16000 × 16000 size flying space has been used 
to check the performance of the proposed improved SCA 
(iSCA). The results are compared with the original SCA 
and other state-of-the-art meta-heuristic algorithms. The 
comparison results show that the proposed iSCA can gener-
ate the optimal paths for the drones more accurately with 
high convergence speed as compared to other considered 
algorithms. Our future research will concentrate on path-
planning algorithms with dynamic obstacle environments. 
A further improvement of SCA or development of a new 
swarm intelligence-based algorithm for solving the drone 
swarm path planning problem in complex environments, 
such as re-planning the path in the event of unforeseen dan-
gers or moving impediments will also be taken into account 
in future research. Furthermore, the development of an algo-
rithm for re-planning the path of the swarm of drones when 
obstacles constantly change their shapes would also be an 
interesting and challenging future research topic.
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