
Vol.:(0123456789)

SN Computer Science (2024) 5:286
https://doi.org/10.1007/s42979-024-02605-x

SN Computer Science

ORIGINAL RESEARCH

Efficient 3D Path Planning for Drone Swarm Using Improved Sine
Cosine Algorithm

Probhat Pachung1 · Kopal Pandya2 · Atulya Nagar3 · Jagdish Chand Bansal1 

Received: 29 September 2023 / Accepted: 3 January 2024
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2024

Abstract
Path planning is one of the most important steps in the navigation and control of swarm of drones. It is primarily concerned
with avoiding collision among drones and environmental obstacles while determining the most efficient flight path to the
region of interest. Whenever there is a high density and complex mission, path planning becomes the most challenging and
indispensable task. The problem of path planning is not only relevant to finding the optimum path from the start point to the
destination point but also to provide a mechanism for preventing collisions on the path. Hence, an appropriate algorithm is
needed to plan the optimal path for the swarm of drones. This paper proposes an efficient methodology for drone swarm path
planning problems in 3D environments. An improved population-based meta-heuristic algorithm, Sine Cosine Algorithm
(SCA), has been proposed to solve this problem. As part of the improvements, the population of SCA is initialized using a
chaotic map, and a non-linearly decreasing step size is used to balance the local and global search. In addition, a convergence
factor is employed to increase the convergence rate of the original SCA. The performance of the proposed improved SCA
(iSCA) is tested over the drone swarm path planning problem, and the results are compared with those of the original SCA,
and other state-of-the-art meta-heuristic algorithms. The experimental results show that the drone swarm 3D path planning
problem can be efficiently handled with the proposed improved SCA.

Keywords  Path planning · Internet of drones (IoDs) · Meta-heuristics · Sine cosine algorithm (SCA) · Drone swarm ·
Obstacle avoidance

Introduction

In recent years, the field of Unmanned Aerial Vehicles
(UAVs) has grown rapidly, including miniature aircraft, air-
ships, and drones for a wide range of purposes such as sur-
veillance, military operations, telecommunications, medical
supplies delivery, rescue operations, and monitoring [1–3].
A large number of UAV systems rely on only one aerial vehi-
cle. Nevertheless, the active cooperation of several UAVs
is essential in many applications. In addition to being cost-
effective and more robust, they can perform complex tasks
beyond the capacity of a single UAV, and more robust.

An Internet of Drones (IoDs) or drone swarm is a network
of drones connecting to each other, a layered network con-
trol architecture that is primarily responsible for coordinat-
ing the access of UAVs, controlling airspace, and providing
navigation services between nodes [4]. Drone swarm can
be utilized in a variety of applications, including intelligent
transportation systems (ITS) for improving vehicle-infra-
structure communication. In this application, drone swarm

This article is part of the topical collection “Emerging Applications
of Data Science for Real-World Problems” guest edited by Satyasai
Jagannath Nanda, Rajendra Prasad Yadav and Mukesh Saraswat.

 *	 Jagdish Chand Bansal
	 jcbansal@sau.ac.in

	 Probhat Pachung
	 probhatpachung23@gmail.com

	 Kopal Pandya
	 kopal.pandya@student.manchester.ac.uk

	 Atulya Nagar
	 atulya.nagar@hope.ac.uk

1	 Department of Mathematics, South Asian University,
New Delhi 110068, New Delhi, India

2	 Department of Mechanical, Aerospace and Civil
Engineering, University of Manchester, Oxford Road,
Manchester M13 9PL, UK

3	 Department of Mathematics, Liverpool Hope University,
Hope Park, Liverpool L16 9JD, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-024-02605-x&domain=pdf
http://orcid.org/0000-0001-9029-5129

	 SN Computer Science (2024) 5:286 286   Page 2 of 19

SN Computer Science

is an efficient way to improve traffic rules on the ground and
provide ground users with efficient information dissemina-
tion. To accomplish such complex tasks, drones must col-
laborate due to the heterogeneity of their goals and com-
munication technologies. In the current scenario, drones are
becoming increasingly autonomous as technology advances,
and they gain new capabilities. However, as drones get closer
to each other or obstacles in case of high drone density or
challenging missions, they pose new threats.

Obstacles can be static or dynamic. The static obstacles
are fixed, such as mountains and buildings, while the
dynamic obstacles include other drones or air vehicles,
birds, etc. Furthermore, controlling drone swarm and
communicating among drones become more complicated
tasks. Moreover, if the drone swarm merges in different
directions, a catastrophic collision is more likely to occur.
Since the likelihood of collision among drones in a swarm
increases, preventing or avoiding collisions becomes more
challenging, and hence, drone swarm should have a proper
collision-avoiding method.

One of the most important problems for autonomous
multi-UAV system i.e. drone swarm is path planning.
Considering the given f light conditions and f light
environment, a collision-free path for drone swarm needs
to be planned based on the given starting and destination
points. The planned path should be cost-effective and
comply with relevant constraints. Thus the drone swarm
path planning can be viewed as an optimization problem
that involves multiple constraints [5], and the objective is to
find the shortest feasible path between one point and another
point based on various optimization criteria and mission
constraints [6, 7]. These constraints include the minimum
flight length, minimum flight time, and state constraints of
the drones. Recently, research on drone swarm path planning
has received much attention since it enables unmanned
systems to operate autonomously and intelligently.

In recent years, for UAVs and autonomous robots, several
path planning algorithms have been proposed. In addition
to Graph-based algorithms such as the Voronoi diagram
algorithm [8], there are also A* algorithm [9], Probabilistic
road maps algorithm [10, 11], rapidly-exploring random
trees-based algorithm [12, 13]. Nevertheless, these
algorithms rarely consider UAV kinematic and dynamic
constraints, so they cannot be used in practical applications.
In addition, these algorithms are dependent on cost maps,
which must be developed and saved in advance, making
the cost maps time-consuming to create. Another type of
effective path-planning method is the potential fields-based
method. Two classic instances of this type are the Artificial
potential field algorithm [14] and interfered fluid dynamical
system algorithm [15]. Such algorithms must globally
establish the interaction between the attractive and repulsive
fields to construct the flyable path for UAVs. Consequently,

they are easily trapped in a local minima. Furthermore,
sometimes it is impossible to guarantee a feasible path when
the target and obstacles are too close.

It has been demonstrated that drone swarm path planning
problem is an NP-hard problem, and the complexity of the
problem grows with problem size [16]. To solve the NP-hard
problems, meta-heuristics algorithms are effective and easy
to implement.

The key challenge in dense swarm and environmental
constraints is generating a collision-free path for drone
swarm [17, 18]. In addition, deterministic approaches for
building paths for drone swarm require a large amount of
storage capacity and a long execution time [19].

Hence, to solve such a problem, proper optimization
methods are necessary. Furthermore, optimization criteria
may include the shortest path length, avoiding obstacles,
shorter time missions, drone constraints (e.g., the amount
of energy required to complete a mission, coverage area,
etc.), and so on [20].

In recent years, population-based evolutionary
algorithms have benefited greatly from advancements in
swarm intelligence technology [21, 22], and they have
a great capability to discover the optimal solution in an
efficient and flexible manner. As a result, researchers are
increasingly focusing on UAV path planning using these
methods. A few of the most commonly used algorithms
include Genetic Algorithm (GA) [23], Artificial Bee Colony
(ABC) algorithm [24], Ant Colony Optimization (ACO) [25,
26], Differential Evolution (DE) [27, 28], Particle Swarm
Optimization (PSO) [29], Spider Monkey Optimization
(SMO) [30] etc.

The sine-cosine algorithm is one of the newly introduced
swarm intelligence-based algorithm, which draws significant
attention from the researchers because of its simplicity and
ease of implementation in real-life applications. Mirjalili
initially proposed this algorithm to solve optimization
problems [31].

Over the last few years, several improved versions of SCA
have been proposed. To enhance the exploitation ability of
solutions and reduce the overflow of diversity present in the
search equations of SCA, “an improved sine cosine algorithm
for global optimization” was proposed in [32]. To enhance the
exploration of the search space, the authors in [33], applied
the opposition-based learning mechanism in SCA. The com-
parison results demonstrated that the proposed algorithm
performs better than the original SCA and other considered
meta-heuristic algorithms in terms of solving optimization
problems. To effectively recognize the pathological brain in
real-time, the authors in [34] combined an extreme learn-
ing machine with a modified sine cosine algorithm. Here
the authors used the concept of mutation strategy in SCA to
enhance the global search capability. Besides, a variety of
meta-heuristic algorithms have been used to study the UAV

SN Computer Science (2024) 5:286 	 Page 3 of 19  286

SN Computer Science

path planning problems [35–37]. However, SCA has not been
proposed for path planning for drone swarm in a 3D environ-
ment. This is due to its shortcomings of slow convergence and
falling into local optimality when solving complex problems.
Since the drone swarm path planning problem in a 3D envi-
ronment is a very complex optimization problem, an appro-
priate path planning algorithm is required to be developed.
To effectively plan the paths for the swarm of drones and
overcome the disadvantages of the existing algorithms, such
as frequently falling into local optimum solution and slow
convergence, this paper proposes an “improved sine cosine
algorithm” namely, iSCA. The main contributions of this
paper are as follows.

•	 In iSCA, the chaos-based initialization of the population
for better uniformity is used.

•	 It uses non-linearly decreasing step size to balance
between local and global search process of SCA.

•	 The convergence factor is employed for faster
convergence of SCA.

•	 The proposed iSCA is tested over drone swarm path
planning problem and compared with other state-of-the-
art algorithms.

•	 Applied the iSCA for tackling the 3D path planning
problem for the drone swarm.

The remainder of this paper is arranged as follows:
“Mathematical model for drone swarm path planning
problem” describes the mathematical model for drone
swarm path planning problem. The path planning algorithm
based on the proposed iSCA is presented in “Path planning
algorithm”. “Simulation results and discussions” discusses
the simulation results with a detailed comparison among
the algorithms. Finally, the conclusion of this work is
summarized in “Conclusion and future direction”.

Mathematical Model for Drone Swarm Path
Planning Problem

When planning the paths for drone swarm, it is important to
consider some factors such as terrain area, the cost associated
with each path, and drone’s safety. The mission environment
can have dangers like buildings, radars, mountains, or other
impediments. In addition, the drone swarm consists of a
large number of drones. Hence, objective functions must
incorporate all these environmental factors as well as reflect
their effects on performance. Drone swarm path planning
problem is formulated as an optimization problem and then
solved using the iSCA. Environmental restrictions and
objective functions are covered in the ensuing sections.

Representations of Flying Area for Drone Swarm

In drone swarm path planning, the goal is to find an optimal
and feasible path for the drones from their starting position
to their target position under complex environmental
constraints. Throughout this study, we refer to (x, y, z) as the
three-dimensional coordinates of waypoints of the path. The
flying spaces for drone swarm is expressed as follows [38].

Where xlb , ylb , and zlb are the lower limits of the flying space
while xub , yub , and zub are the upper bounds.

Obstacle Model

Nowadays, it is possible to obtain accurate, up-to-date
terrain maps and obstacles position using various sensing
technologies such as infrared, LiDAR, GPS, etc. In this
paper, it is assumed that the spatial boundaries and the
locations of the obstacles are well known in advance. We
model the obstacles as given in [36]. If (xk1 , yk1 , zk1) are the
coordinates of the k1 th circular obstacle in a 3D environment
with radius Rk1

 then the k1 th obstacle can be represented as
follows [39].

Where the coordinates (xk1 , yk1 , zk1) are calculated as follows:

Where (xc, yc, zc) are the coordinates of center of the k1 th
obstacle and � ∈ [0, 2�],� ∈

[
0,�∕2

]
.

Objective Function Modeling

In path planning, the objective function includes determining
the length of the path, considering environmental constraints,
and avoiding collisions with obstacles and other drones in
the swarm. Our objective function aims to minimize the
overall path length while avoiding obstacles. The objective
function can therefore be expressed as follows [38].

Where Fpl is the cost associated with path length, Foc is
the cost of drones collision with obstacles and Fmc is the

(1)
S =

{
(x, y, z)|xlb ≤ x ≤ xub, ylb ≤ y ≤ yub, zlb ≤ z ≤ zub

}

(2)Ok1
=
(
xk1 , yk1 , zk1 ,Rk1

)

(3)xk1 = Rk1
cos (�) sin (�) + xc

(4)yk1 = Rk1
sin (�) sin (�) + yc

(5)zk1 = Rk1
cos (�) + zc

(6)F = Fpl + Foc + Fmc

	 SN Computer Science (2024) 5:286 286   Page 4 of 19

SN Computer Science

collision cost among drones. The goal is to minimize the
objective function F. The next subsection describes the
mathematical formulations of Fpl , Foc , and Fmc.

Cost Associated with Path Length

The expected flight path of a mission is a shorter one because
shorter paths consume less fuel and are less likely to incur
unforeseen threats. To evaluate the cost associated with path
length, we use the following path length ratio (PLR) [40].

Where D denotes the total number of waypoints in the path,
(xj, yj, zj) are the coordinates of the jth waypoint, (x1, y1, z1)
and (xD, yD, zD) are the coordinates of the start and end
waypoints of the path, respectively.

Here, the denominator represents the length of the
shortest path between the start and the end waypoint while
the numerator represents the length of the flight path. So,
Fpl is always ≥ 1 and a smaller value of Fpl corresponds to a
flight path with shorter length.

Obstacle Cost

To fly a drone safely, the planned path must avoid all
obstacles. Even one point in the solution that passes through
an obstacle may incur a high cost. If pathi is the planned path
for dronei and (xj, yj, zj) , j = 1, 2,… ,D are the coordinates
of the jth waypoint in the pathi then every waypoint
( j = 1, 2,… ,D ) of the pathi should be checked against all
obstacles to see if they fall into them. To do so, the distance
between the waypoint’s and the center of obstacles is taken
into account. It is assumed that the waypoint does not fall
into the obstacle if the distance between the waypoint
and the center of the obstacle is greater than the radius of
the obstacle. In this case, a negligible cost is given to the
objective function as the obstacle cost. In contrast, when
the distance between them is shorter than the radius of the
obstacle, then the high cost is assigned as the penalty.

Thus, the cost for the obstacle avoidance is defined as
follows [38].

where � ∈ [0, 1] is a control parameter, k is the total number
of obstacles, Rk1

 is the radius of k1 th obstacle and dist(j, k1)
represents the distance between jth waypoint of the pathi and
center of the k1 th obstacle and is defined as follows:

(7)Fpl =

∑D−1

j=1

�
(xj+1 − xj)

2 + (yj+1 − yj)
2 + (zj+1 − zj)

2

√
(xD − x1)

2 + (yD − y1)
2 + (zD − z1)

2
.

(8)Foc =

D∑
j=1

k∑
k1=1

exp

(
−
� × dist(j, k1)

Rk1

)

where (x(j), y(j), z(j)) represents the coordinates of the jth
waypoint and (x0(k1), y0(k1), z0(k1)) are the coordinates of the
center of the k1 th obstacle.

Cost of Drone Member Collision

When planning the paths for drone swarm, collision
avoidance must be considered. All drones should maintain
a reasonable distance from one another. The probability of
collision among drones increases as the drone swarm density
increases space. It is therefore extremely important to ensure
that drones are not too close to each other when drone swarm
paths are generated. If pathi is the planned path for dronei
and patho is the planned path for any other drone then every
waypoint’s of pathi must be checked with every waypoint’s
of other paths ( patho ). To do so, it is necessary to consider
a safety distance (sd) between paths.

The cost associated with collision among drones can be
written as follows [38].

where D and D̃ are the number of waypoints in the pathi and
patho , respectively. � ∈ [0, 1] is a control parameter, sd is the
inter-drone distance, and dist(j, j1) represents the distance
between pathi and patho and is defined as follows:

where (xj, yj, zj) and (xj1 , yj1 , zj1) are the waypoints of pathi
and patho , respectively.

In the above model, the cost of member collisions among
drones is mostly driven by the distance between pathi and
other paths ( patho ). As the safety distance (sd) should be
maintained, the cost will increase when the distance between
paths is ≤ sd , and it decreases rapidly as the distance
between the paths increases.

Path Planning Algorithm

Sine Cosine Algorithm (SCA)

The SCA is a new population-based meta-heuristic algorithm
developed by Mirjalili [31], which utilizes a set of candidate
solutions for performing the search. This is a method whereby
guided randomness is created through the use of sine and

(9)
dist(j, k1) =

√
(x(j) − x0(k1))

2 + (y(j) − y0(k1))
2 + (z(j) − z0(k1))

2

(10)Fmc =

D∑
j=1

D̃∑
j1=1

exp

(
−
𝛼 × dist(j, j1)

sd

)

(11)dist(j, j1) =
√

(xj − xj1)
2 + (yj − yj1)

2 + (zj − zj1)
2

SN Computer Science (2024) 5:286 	 Page 5 of 19  286

SN Computer Science

cosine trigonometric functions. In SCA, the global solution
is called a destination point and the solution vectors are called
candidate solutions.

For the drone swarm path planning problem, let each
feasible path represent the feasible candidate solution of the
population in SCA. Assuming that the number of waypoints
for each candidate solution is D, then for the three-dimensional
path planning problem, the waypoints of the pathi (ith
candidate solution) can be expressed as follows:

where xi,j , j ∈ 1,… ,D represents the jth waypoint of the ith
candidate solution and are denoted as follows:

(xx
i,j
, x

y

i,j
, xz

i,j
) , j ∈ 1,… ,D represents the coordinates of jth

waypoint of the ith candidate solution in a three-dimensional
space.

Thus if N denote the total number of candidate solutions
then the population (swarm) can be represented as

For SCA with N number of candidate solutions, there is
one destination point (global best solution), which can be
written as

Now, in tth iteration the position of each candidate solution
is updated based on the following formula [31]:

(12)Xi = (xi,1,… , xi,D)
T

(13)xi,1 = (xx
i,1
, x

y

i,1
, xz

i,1
)

(14)
…

(15)xi,D = (xx
i,D
, x

y

i,D
, xz

i,D
)

(16)P = (X1,X2,… ,XN)
T

(17)Gbest = (gbest,1,… , gbest,D)

Where r2 , r3 , and r4 are random numbers in the ranges
(0, 2�) , (0, 1), and (0, 1), respectively. Here, the parameter
r4 is known as the switching parameter because it is used to
choose the search paths using the sine or cosine function.

The parameter r1 is known as the control parameter, which
decreases linearly from a number � to 0. It is responsible to
manage the exploration and exploitation during the search
by changing its value. r1 > 1 indicates the exploration of the
search space, while r1 < 1 indicates exploitation. r1 is defined
as follows:

Where t and Maxiteration are the current iteration number and
the maximum number of iterations, respectively.

The pseudo-code of SCA is shown in Algorithm 1.

Improved Sine Cosine Algorithm (iSCA)

Despite the fact that the original SCA has enough
exploration capability to diversify the search space, it
often gets stuck in local optima and undergoes premature
convergence when tackling complex problems [41]. Drone
swarm path planning problem is a complex problem. It needs
an efficient algorithm that balances the exploration and
exploitation, efficiently. Therefore, it is essential to balance
exploration and exploitation in SCA when performing the
search operations to find the optimal path.

To prevent trapping in local optima and to search more
accurately and rapidly for global optima, the present study
proposes improvements in the SCA as follows:

(18)

X
(t+1)

i,j
=

{
X
(t)

i,j
+ r1 × sin(r2)× ∣ r3 × Gt

best
− Xt

i,j
∣, if r4 < 0.5

X
(t)

i,j
+ r1 × cos(r2)× ∣ r3 × Gt

best
− Xt

i,j
∣, Otherwise

(19)r1 = � ×

(
1 −

t

Maxiteration

)

Algorithm 1   Pseudo-code of
SCA

	 SN Computer Science (2024) 5:286 286   Page 6 of 19

SN Computer Science

•	 Chaos-based initialization of candidate solutions.
•	 Better position update strategy by introducing non-

linearly decreasing step size.
•	 Incorporation of the convergence factor in the search

mechanism to speed up the convergence rate.

Chaos‑Based Population Initialization

The population initialization in any evolutionary algorithm
plays a very important role in the convergence speed and quality
of the final solution. In general, random initialization is the
most commonly used method of generating initial population
in the absence of any information about the solution. The SCA
uses uniformly distributed random solutions to initialize the
population of candidate solutions. According to [42], when
the distribution is more uniform, the population maintains rich
diversity, which increases the chance of faster convergence
and better solution quality. Hence, chaos-based initialization
contributes in maintaining better diversity among the potential
drone swarm paths. Logistic maps have the advantage of a more
uniform distribution when compared with random distribution
over 10,000 times [42].

In this work, to enrich the diversity of the initial
population, the logistic map, which is one of the simplest
and the most widely used chaotic map, is used [43].

(20)yj+1 = � × yj × (1 − yj), j = 0, 1, 2,…

Where yj is the jth chaotic variable. � is the bifurcation coef-
ficient. A chaotic state occurs if � ∈ [3.57, 4] . When � = 4 ,
y0 ∈ (0, 1) , the system produces a uniform chaotic signal,
which will be employed for the initialization of the candidate
solutions.

Steps to implement logistic map-based initialization are
as follows:

1.	 First, set y0 ∈ (0, 1) and generate D (population dimen-
sion) chaotic variables using following Eq. (21).

 Where yj denotes the jth variable.
2.	 Repeat step 1 for i = 1, 2,… ,N (population size), and

generate the initial chaotic variables for each candidate
solution i.

3.	 Initialize the candidate solutions as follows:

 Where xmax,j and xmin,j are the upper and lower bounds
of the jth variable, respectively.

4.	 Finally, ith candidate solution using logistic map is

Pseudo-code of chaos based population initialization is pre-
sented in Algorithm 2.

(21)yj+1 = � × yj × (1 − yj), j = 0, 1, 2,… ,D

(22)xi,j = xmin,j + yi,j × (xmax,j − xmin,j), i = 1, 2,… ,N, j = 1, 2,… ,D

(23)Xi = (xi,1, xi,2,… , xi,D); ∀i = 1, 2,… ,N

Algorithm 2   Chaos based population initialization

SN Computer Science (2024) 5:286 	 Page 7 of 19  286

SN Computer Science

Improved Position Updating Mechanism

In SCA, the control parameter r1 controls exploration in the
early iteration and exploitation in the later iteration. This
transition parameter can be further modified to balance the
exploration and exploitation of the search process. The con-
trol parameter r1 in SCA is a linear function that decreases
linearly from � to 0. Because of its linearity, sometimes it
creates abrupt changes in jumping from one iteration to the
next. In some cases, abrupt changes may result in the skip-
ping of good solutions; thus, valuable information about the
quality of search areas might be lost. In this study, a modi-
fied formula for r1 so that it decreases exponentially from �
to 0 is proposed to avoid all these issues.

where t and MAXiteration are current and maximum number of
iterations, respectively. � is a user-defined parameter.

Convergence Factor

Further, a convergence factor CF is employed in the search
mechanism. This convergence factor CF helps iSCA to con-
verge rapidly while balancing exploration and exploitation.
CF is defined as follows:

(24)r1new = � × exp

(
−

t2

(� ×MAXiteration)
2

)

In Eq. (25), the convergence factor (CF) is inversely propor-
tional to the number of iterations. Its small value corresponds
to less dependency over the current position, and its higher
value plays more role of the current position in deciding the
new position. Initially, when CF is large, the search process
is significantly guided by the current position, and in the later
iteration, when CF is small, it plays less role, and the new
position is more depends upon the global best solution.

As mentioned above, the non-linearly decreasing step size
(Eq. 24) helps in balancing exploration and exploitation of the
search process very well, while the convergence factor (Eq. 25)
helps in fast convergence. Thus the following proposed search
Eq. (26) is used in iSCA which merges both techniques, can-
cels the absolute value term, to obtain better performance in
drone swarm path planning in terms of solution quality, accu-
racy, and convergence speed.

Symbols have their usual meaning. The pseudo-code of
improved SCA (iSCA) for drone swarm path planning is
shown in Algorithm 3.

(25)CF = � ×

(
1 −

t

MAXiteration

)

(26)
X
(t+1)

i,j
=

⎧⎪⎨⎪⎩

CF × X
(t)

i,j
+ r1new × sin(r2) ×

�
r3 × Gt

best
− Xt

i,j

�
, if r4 < 0.5

CF × X
(t)

i,j
+ r1new × cos(r2) ×

�
r3 × Gt

best
− Xt

i,j

�
, Otherwise

Algorithm 3   The improved SCA (iSCA) for drone swarm path planning

	 SN Computer Science (2024) 5:286 286   Page 8 of 19

SN Computer Science

Time Complexity of the Proposed Algorithm

In the process of initializing the population, N number
of candidate solutions are generated, and each candidate
solution is a D dimensional vector in a 3D environment. If
Maxiteration denotes the maximum number of iterations and
ddrones denotes the size of the swarm then the time com-
plexity to solve the path planning problem in a 3D environ-
ment using any population-based optimization algorithm is
O(N ∗ D ∗ Maxiteration ∗ ddrones) . Therefore it is clear that the

Table 1   Drones starting and destination positions

Drones Starting position Destination position

Drone1 (200, 800, 350) (16000, 4000, 350)
Drone2 (200, 3800, 350) (16000, 7000, 350)
Drone3 (200, 6800, 350) (16000, 10000, 350)
Drone4 (200, 9800, 350) (16000, 13000, 350)
Drone5 (200, 12800, 350) (16000, 16000, 350)

Table 2   Obstacles position

Obstacles Positions Radius

Obstacle1 (5000, 10000, 0) 1800
Obstacle2 (10000, 2000, 0) 1200
Obstacle3 (10000, 8000, 0) 1100
Obstacle4 (5000, 2000, 0) 1500

Fig. 1   Two-dimensional view of the obstacles, starting and destina-
tion points of the drone swarm

Fig. 2   Three-dimensional view of the obstacles, starting and destina-
tion points of the drone swarm

Table 3   Parameters setting for all algorithms

Algorithms Parameters

SCA Same as in [31]
RCN � = 2 , � = 1

CL � = 2 , � = 4

iSCA � = 2 , � = 1

PSO wmax = 0.8 , wmin = 0.4 , c1 = 1.47 , c2 = 1.47

IPSO wmax = 0.9 , wmin = 0.4 , c1 = 1.47 ,
c2 = 1.47 , �max = 0.9 , �min = 0.05 ,
Vmax = 0.3

ABC Same as in [24]

Table 4   Common parameters
Population size (N) = 300

Maximum iteration = 150

Safety distance (sd) = 80m

Number of waypoints (D) = 20

� = 4

Fig. 3   Framework of RCN

Fig. 4   Framework of CL

SN Computer Science (2024) 5:286 	 Page 9 of 19  286

SN Computer Science

modifications in the proposed iSCA over SCA are not add-
ing any time complexity in solving the considered problem.

Simulation Results and Discussions

In this section, simulation results and comparisons are pre-
sented in order to show the performance of the proposed
iSCA over drone swarm path planning problem. The experi-
ments are carried out in a MATLAB environment on a server
with a 3.70 GHz CPU, 64 GB of RAM, and a 64-bit operat-
ing system.

Parameter Settings

Parameter settings play an important role in the performance
of an algorithm as appropriate parameters may lead to better
results of the algorithm. In the simulation environment, five
drones are assumed to fly, simultaneously from their starting
position to their destination position. Table 1 shows the posi-
tions of the starting and destination positions of each drone
in a 3D space of size 16000 × 16000 × 16000 . Four static
obstacles are placed in the search space, whose positions
are listed in Table 2. The location of each obstacle and the
current positions of drones with their destinations (goals) are

Fig. 5   Fitness value over iteration for drone swarm path formation

	 SN Computer Science (2024) 5:286 286   Page 10 of 19

SN Computer Science

presented in 2D and 3D views in Figs. 1 and 2, respectively.
The parameters corresponding to all the considered algo-
rithms are presented in Table 3. The parameters in Table 4
are common to all the algorithms. In Table 4, sd stands for
safety distance for collision avoidance among the drones, D
stands for the total number of waypoints, N represents the
population size, and � is the bifurcation coefficient.

Results and Comparisons

This section examines the effectiveness of the proposed iSCA by
taking into account a number of performance metrics, including
drone swarm formation running time, failure and success rates,
convergence speed, and solution quality. The corresponding sub-
sections contain an analysis and record of the outcomes from the
algorithms under consideration.

Fig. 6   2D view of the planned path for drone swarm

SN Computer Science (2024) 5:286 	 Page 11 of 19  286

SN Computer Science

Comparison with Original SCA

In this subsection, the performance of the proposed iSCA is
compared with the original SCA. Since iSCA is proposed
with two important inclusions, that is, convergence factor
and non-linearly decreasing step size, so to examine the

significance of each modifications, we additionally consid-
ered both factors, independently for the comparison. Follow-
ing two variants of SCA are considered using each modifica-
tion independently for the comparison.

Fig. 7   3D view of the planned path for drone swarm

Table 5   Average fitness value of the formation

Bold values represent the best results that the associated algorithm produced when compared to all other algorithms that were taken into
consideration

Algorithm Drone1 Drone2 Drone3 Drone4 Drone5 FAFV Improved %

SCA 1.150535239 1.045553413 1.111839756 1.141272442 1.063580563 1.102556283 NA
iSCA 1.125486909 1.038086312 1.097011195 1.111504654 1.026271119 1.079672038 2.076
RCN 1.133059711 1.037975431 1.103182588 1.119762864 1.028719366 1.084539992 1.634
CL 1.150075141 1.048581918 1.118792639 1.139484139 1.061501466 1.103687061 −0.103

	 SN Computer Science (2024) 5:286 286   Page 12 of 19

SN Computer Science

•	 RCN: This algorithm is formed by including uniformly
distributed population initialization along with non-lin-
early decreasing step size and convergence factor in the
original SCA as shown in Fig. 3.

•	 CL: This algorithm initializes the population using a
chaos map and linearly decreasing step size in SCA as
shown in Fig. 4.

The performances over drone swarm path planning problem
of SCA, iSCA, RCN, and CL are discussed and comparative

Fig. 8   Average fitness value over iteration on 40 runs for drone swarm path formation

Table 6   Average minimum
iterations of the formation

Bold values represent the best results that the associated algorithm produced when compared to all other
algorithms that were taken into consideration

Algorithm DRONE1 DRONE2 DRONE3 DRONE4 DRONE5 FAMI

SCA 25 38 37 31 40 34.2
iSCA 38 78 111 37 50 62.8
RCN 22 28 61 41 41 38.6
CL 29 45 57 38 21 38

SN Computer Science (2024) 5:286 	 Page 13 of 19  286

SN Computer Science

study has been carried out based on the performance indica-
tors given below:

Comparison based on solution quality: The solution
quality can only be measured through objective function
value (fitness value (FV)). Firstly, we have recorded
the fitness values of all the considered algorithms over
all the iterations in a single run. Figure 5a–d show the
graphical representation of fitness values over iterations
of all the algorithms considered in this subsection. From
these results, it is clear that the FV of the proposed
iSCA outperforms SCA, RCN, and CL. This comparison
justifies that both the modifications along with chaos-
based initialization is necessary to achieve this
superior performance of iSCA. In other words, all three
modifications in SCA are jointly responsible for better
performance of iSCA.

Since randomness is present in all the considered algo-
rithms so it is not enough to take a decision through a sin-
gle run. Thus in order to do a fair comparison among algo-
rithms, we use the Monte-Carlo simulations with 40 runs to
each algorithms and analysed the results. Figure 6a–d show
the planned paths for drones by SCA, iSCA, RCN, and CL,
respectively in 2D views. While Fig. 7a–d represent the 3D
views of the planned path for drones for considered algo-
rithms. From Figs. 6a–d and 7a–d, it can be seen that the
planned path for each drone by each algorithm is obtained
without collision with obstacles and among drones. Thus
it is guaranteed that all the algorithms SCA, iSCA, RCN,
and CL can generate a feasible path for each drone. Table 5

shows the average fitness value (AFV) of the formation
during Monte-Carlo simulations. The best results are high-
lighted with boldface. Figure 8a–d shows the iteration-wise
average fitness value (AFV). It can be observed from Table 5
that from the single drone perspective, iSCA has outper-
formed all the algorithms SCA, RCN, and CL for drones
1, 3, 4, and 5 but in the case of drone 2, iSCA no longer
outperforms RCN. However, it is reasonable that the AFV
of the formation is more important and fair than the indi-
vidual drone’s performance. Because the AFV of the forma-
tion indicates the overall solution quality of an algorithm, as
well as the safety and cost-effectiveness of drone operations
in the flying environment. Moreover, AFV for a single drone
can easily be affected by different environmental constraints,
so it is not good enough to evaluate the performance of an
algorithm from a single drone’s perspective in the case of
drone swarm optimal path planning. The AFV of the forma-
tion in Table 5 shows that iSCA has the least AFV, RCN
performs second, and CL worst. As compared to original
SCA, the AFV of iSCA, RCN, and CL has decreased to
2.076% , 1.634% , and − 0.103% , respectively. Note that CL
is not able to outperform SCA while RCN outperforms SCA
independently, but RCN and CL which forms iSCA outper-
forms SCA as shown in Table 5. Overall, iSCA has a better
solution quality than SCA, RCN, and CL.

Comparison based on convergence speed: The conver-
gence speed is an important performance indicator in analyz-
ing the effectiveness of the algorithm. Figures 5a–d and 8a–d
are the convergence curves of SCA, iSCA, RCN, and CL in
single and multiple runs, respectively. To show the evolution
process of the algorithms over iterations, we assume that the
x-axis represents the iteration number and y-axis represents
the average fitness value in these Figures. In addition, we
also adopt the minimum number of iterations that requires
to reach the optimal solution as another indicator to evaluate
the convergence speed. In this process, firstly, we set the cri-
teria for the feasible solution as |AFVt−20 − AFVt| < 0.001 .
In other words, |AFVt−20 − AFVt| < 0.001 represents the dif-
ference in AFV obtained in 20 consecutive iterations. Here,
t represents the current iteration number and AFV represents
the average fitness value that is obtained in 40 runs. Table 6
represents the average minimum iterations (AMIs) of the
formation for each of the considered algorithms. It can be

Table 7   Failure rate of the
formation

Bold values represent the best results that the associated algorithm produced when compared to all other
algorithms that were taken into consideration

Algorithm DRONE1 DRONE2 DRONE3 DRONE4 DRONE5 AFN FR % improvement

SCA 40 0 4 25 0 13.8 34% NA
iSCA 9 0 1 1 0 2.2 5.5% 84.057
RCN 16 0 3 5 0 4.8 12% 65.217
CL 40 0 9 27 0 15.2 38% −10.144

Table 8   Formation running time by different algorithms

Bold values represent the best results that the associated algorithm
produced when compared to all other algorithms that were taken into
consideration

Algorithm Formation running time
(seconds)

% improvement

SCA 1.482247 NA
iSCA 1.163345 21.5147
RCN 1.163345 21.5147
CL 1.467294 1.0088

	 SN Computer Science (2024) 5:286 286   Page 14 of 19

SN Computer Science

Fig. 9   2D view of the planned path for drone swarm

Fig. 10   3D view of the planned path for drone swarm

Table 9   AFV of the formation

Bold values represent the best results that the associated algorithm produced when compared to all other algorithms that were taken into
consideration

Algorithm Drone1 Drone2 Drone3 Drone4 Drone 5 FAFV

iSCA 1.125486909 1.038086312 1.097011195 1.111504654 1.026271119 1.079672038
PSO 1.274060312 1.031918232 1.150279379 1.137454152 1.039364774 1.12661537
% improved in iSCA 11.6613 − 0.5977 4.6309 2.2813 1.2598 4.1667
IPSO 1.167843329 1.030065184 1.152098958 1.116741579 1.039040203 1.10115785
%improved in iSCA 3.6274 − 0.7786 4.7815 0.4689 1.229 1.9512
ABC 1.298236247 1.163505086 1.15079026 1.466059323 1.103041915 1.236326566
%improved in iSCA 13.3064 10.7794 3.5704 35.4554 6.9599 12.671

SN Computer Science (2024) 5:286 	 Page 15 of 19  286

SN Computer Science

seen from Table 6 that SCA has the least AMI with a value
of 34.2, while iSCA has the largest AMI with a value of
62.8. On the other hand, CL and RCN are 2nd and 3rd in
the list with values 38 and 38.6, respectively. Though SCA
obtained the highest convergence speed than iSCA, RCN,
and CL, but it can be observed that the solution obtained
by SCA with this fast convergence speed is sub-optimal and
inferior than iSCA, RCN, and CL. This means that SCA
can easily get trapped to local optima. Since the non-line-
arly decreasing step-size along with convergence factor are

present in iSCA, these factors help iSCA to avoid stagna-
tion and provide the searching ability for more iterations to
obtain global optima.

Comparison based on success and failure rates:
Besides solution quality and convergence speed, success
and failure rate is also another important factor in analysing
the performance of the considered algorithms. This indica-
tor measures the reliability of the algorithm. In this work,
Monte-Carlo simulations are carried out with 40 runs, and
failure number (FN) is defined as the number of times the

Table 10   Failure rate of the
formation

Bold values represent the best results that the associated algorithm produced when compared to all other
algorithms that were taken into consideration

Algorithm DRONE1 DRONE2 DRONE3 DRONE4 DRONE5 AFN FR %
improved
in iSCA

iSCA 9 0 1 1 0 2.2 5.5% NA
PSO 40 0 35 21 0 19.2 48% 60.416
IPSO 40 0 40 0 0 16 40% 86.25
ABC 40 27 25 40 8 30 55% 92.142

Table 11   Average minimum
iterations of the formation

Bold values represent the best results that the associated algorithm produced when compared to all other
algorithms that were taken into consideration

Algorithm DRONE1 DRONE2 DRONE3 DRONE4 DRONE5 FAMI

iSCA 38 78 111 37 50 62.8
PSO 48 77 30 44 68 53.4
IPSO 45 42 52 57 32 45.6
ABC 21 21 21 21 21 21

Fig. 11   Fitness value over iteration for drone swarm path formation

	 SN Computer Science (2024) 5:286 286   Page 16 of 19

SN Computer Science

final fitness value ( FVt=150 ) is greater than or equal to 1.13.
This means that the path generated by the algorithm is too
long, and/or the drone collides with an obstacle, and/or the
collision happens among drones. On the other hand, a zero
failure rate indicates that FVt=150 < 1.13 . The average failure
number (AFN) of the formation and the accumulated path
failure rate (FR) in the Monte-Carlo simulations on 40 runs
are presented in Table 7. Figure 14 is the graphical represen-
tation of the formation failure number (FN) of considered
algorithms. From Table 7, one can see that the proposed
iSCA has the least failure rate with an improved percentage
of 84.057 as compared to the original SCA, while 65.217%
improvement is obtained by RCN. On the other hand, there

Fig. 12   Average fitness value over iteration on 40 runs for drone swarm path formation

Table 12   Formation running time of different algorithms

Bold values represent the best results that the associated algorithm
produced when compared to all other algorithms that were taken into
consideration

Algorithm Formation running time
(seconds)

%
improved
in iSCA

iSCA 1.163345 NA
PSO 1.18559 1.8762
IPSO 1.45934 20.2827
ABC 1.45934 20.2827

Fig. 13   Formation average minimum iterations by different algo-
rithms

Fig. 14   Formation failure number by different algorithms

SN Computer Science (2024) 5:286 	 Page 17 of 19  286

SN Computer Science

is no improvement in CL. This shows that the proposed
iSCA can achieve the highest success rate or reliability in
path generation and guarantees a significant improvement in
solution quality as compared to SCA, RCN, and CL.

Comparison based on running time: A drone swarm
path planning and collision avoidance depend heavily
on running time, which is another crucial component to
consider when assessing an algorithm’s performance. The
running time is the time required to complete the task from
the starting position to the destination position of the drone
swarm. The results are presented in Table 8 and Fig. 15a.
From Table 8, one can see that the increased percentage of
the iSCA, RCN, and CL as compared to the original SCA
are 21.5147, 21.5147, and 1.0088, respectively. These results
demonstrate the ability of the proposed iSCA to generate the
optimal paths for drone swarm in a faster way.

Comparison with Other Algorithms

In this subsection, we have compared the proposed iSCA
with other meta-heuristics such as PSO [29], ABC [24],
and one of the recently proposed improved PSO (IPSO)
[38], which increases the solution quality and convergence
speed of basic PSO. The population size and the maximum
number of iterations are set to 300 and 150, respectively.
Table 3 shows the parameter settings for the considered
algorithms. For a fair comparison among the algorithms,
we have performed the Monte-Carlo simulations with 40
runs. The detailed comparison among the algorithms based
on the performance indicators: solution quality, convergence
speed, success and failure rate, and drone swarm formation
running time are described as follows.

Figures 9a–c and 10a–c are the 2D and 3D views of the
planned paths generated by PSO, IPSO, and ABC, respec-
tively. The planned paths for the proposed iSCA are shown
in Figs. 6b and 7b in 2D and 3D views, respectively. One
can see from these figures that iSCA and IPSO can generate
a feasible path for each drone, while PSO and ABC are not
able to generate a feasible path. Moreover, ABC can not
even maintain the safety distance among the drones as the
collision happened among themselves also. This is because
of the extensive exploration capability of ABC and unable
to maintain the proper balance between exploration and
exploitation. While due to the non-linearly decreasing step
size and convergence factor in iSCA, it can easily construct
a desired path for the drones while maintaining the safety
distance among the drones. This comparison exhibits the
advantages of the proposed method as compared to other
considered algorithms.

In Tables 9 and 10, AFV of the formation and path
failure rate (FR) of the considered algorithms are given,
respectively. It is clear from Table 9 that iSCA obtains the
least AFV with a reduced percentage of 4.1667, 1.9512,
and 12.671 than PSO, IPSO, and ABC, respectively.
This proves the ability of the proposed method to obtain
the best solution than PSO, IPSO, and ABC. When the
reliability of the algorithms is taken into consideration,
Table 10 shows that iSCA has the highest reliability than
that of PSO, IPSO, and ABC. In Table 10, one can see that
the proposed iSCA has the least failure rate while ABC has
the highest failure rate. The improved percentage in iSCA
as compared to PSO, IPSO, and ABC are 60.416, 86.250,
and 92.142, respectively. All these results demonstrate the

Fig. 15   Formation running time by different algorithms

	 SN Computer Science (2024) 5:286 286   Page 18 of 19

SN Computer Science

effectiveness of the proposed iSCA both in terms of reli-
ability as well as solution quality.

When the convergence speed is taken into account among
the considered algorithms, Table 11 shows the average mini-
mum iteration (AMI) of the formation that requires to satisfy
the feasible criterion. The definition of feasible criterion is
the same as defined above. Figure 11a–c represents the FV
of PSO, IPSO, and ABC respectively, while Fig. 12a–c rep-
resents the AFV of PSO, IPSO, and ABC respectively. The
AMI of the formation is graphically presented in Fig. 13. As
it can be seen from Table 11, ABC has the least AMI, while
IPSO is 2nd in the list. This shows that ABC has the highest
convergence speed as compared to other algorithms. On the
other hand, ABC has the largest function value. Therefore,
though PSO, IPSO, and ABC have smaller AMI than iSCA,
their function values are no longer outperformed iSCA. This
is a clear indication of the fact that these algorithms suf-
fers from premature convergence while iSCA continues to
improve through iterations.

The formation running time for the considered algorithms
is presented in Table 12 and Fig. 15b. It can be easily seen
from Table 12 that the increased percentage of iSCA as com-
pared to PSO, IPSO, and ABC are 1.8762, 20.2827, and
20.2827, respectively. Thus the proposed iSCA can gener-
ate feasible paths for the drone swarm more accurately and
faster, as compared to PSO, IPSO, and ABC.

Conclusion and Future Direction

Drone swarm path planning problem in a 3D environment
has been dealt with using an improved variant of the Sine
Cosine Algorithm. A case study with 4 obstacles, 5 drones,
and 16000 × 16000 × 16000 size flying space has been used
to check the performance of the proposed improved SCA
(iSCA). The results are compared with the original SCA
and other state-of-the-art meta-heuristic algorithms. The
comparison results show that the proposed iSCA can gener-
ate the optimal paths for the drones more accurately with
high convergence speed as compared to other considered
algorithms. Our future research will concentrate on path-
planning algorithms with dynamic obstacle environments.
A further improvement of SCA or development of a new
swarm intelligence-based algorithm for solving the drone
swarm path planning problem in complex environments,
such as re-planning the path in the event of unforeseen dan-
gers or moving impediments will also be taken into account
in future research. Furthermore, the development of an algo-
rithm for re-planning the path of the swarm of drones when
obstacles constantly change their shapes would also be an
interesting and challenging future research topic.

Acknowledgements  Author Jagdish Chand Bansal acknowledges the
funding from Liverpool Hope University UK.

Author Contributions  PP: Conceptualization, methodology, writing
original draft. KP, AN: Review, JCB: Supervision, review.

Declarations 

Conflict of interest  The authors declare that they have no known com-
peting financial interests or personal relationships that could have ap-
peared to influence the work reported in this paper.

Ethical approval  This article does not contain any studies with human
participants or animals performed by any of the authors.

Informed consent  Informed consent was obtained from all individual
participants included in the study.

References

	 1.	 Mozaffari M, Saad W, Bennis M, Debbah M. December. Drone
small cells in the clouds: design, deployment and performance
analysis. In: 2015 IEEE global communications conference
(GLOBECOM). IEEE;2015. pp. 1–6.

	 2.	 Valavanis KP, Vachtsevanos GJ, editors. Handbook of unmanned aerial
vehicles, vol. 1. Dordrecht: Springer; 2015.

	 3.	 Al-Hourani A, Kandeepan S, Lardner S. Optimal LAP altitude for maxi-
mum coverage. IEEE Wirel Commun Lett. 2014;3(6):569–72.

	 4.	 Gharibi M, Boutaba R, Waslander SL. Internet of drones. IEEE Access.
2016;4:1148–62.

	 5.	 Huo L, Zhu J, Wu G, Li Z. A novel simulated annealing based strat-
egy for balanced UAV task assignment and path planning. Sensors.
2020;20(17):4769.

	 6.	 Ma Y, Hu M, Yan X. Multi-objective path planning for unmanned surface
vehicle with currents effects. ISA Trans. 2018;75:137–56.

	 7.	 YongBo C, YueSong M, JianQiao Y, XiaoLong S, Nuo X. Three-dimen-
sional unmanned aerial vehicle path planning using modified wolf
pack search algorithm. Neurocomputing. 2017;266:445–57.

	 8.	 Pehlivanoglu YV. A new vibrational genetic algorithm enhanced with a
Voronoi diagram for path planning of autonomous UAV. Aerosp Sci
Technol. 2012;16(1):47–55.

	 9.	 Bayili S, Polat F. Limited-damage A*: a path search algorithm that
considers damage as a feasibility criterion. Knowl Based Syst.
2011;24(4):501–12.

	10.	 Baumann M, Leonard S, Croft EA, Little JJ. Path planning for
improved visibility using a probabilistic road map. IEEE Trans Robot.
2010;26(1):195–200.

	11.	 Brubaker MA, Geiger A, Urtasun R. Map-based probabilistic
visual self-localization. IEEE Trans Pattern Anal Mach Intell.
2015;38(4):652–65.

	12.	 Kothari M, Postlethwaite I. A probabilistically robust path plan-
ning algorithm for UAVs using rapidly-exploring random trees.
J Intell Robot Syst. 2013;71(2):231–53.

	13.	 Moon CB, Chung W. Kinodynamic planner dual-tree RRT (DT-
RRT) for two-wheeled mobile robots using the rapidly exploring
random tree. IEEE Trans Ind Electron. 2014;62(2):1080–90.

	14.	 Chen Y, Yu J, Su X, Luo G. Path planning for multi-UAV forma-
tion. J Intell Robot Syst. 2015;77(1):229–46.

	15.	 Chen YB, Luo GC, Mei YS, Yu JQ, Su XL. UAV path plan-
ning using artificial potential field method updated by optimal
control theory. Int J Syst Sci. 2016;47(6):1407–20.

SN Computer Science (2024) 5:286 	 Page 19 of 19  286

SN Computer Science

	16.	 Zhang X, Duan H. An improved constrained differential evolu-
tion algorithm for unmanned aerial vehicle global route plan-
ning. Appl Soft Comput. 2015;26:270–84.

	17.	 Besada-Portas E, de la Torre L, Jesus M, de Andrés-Toro B.
Evolutionary trajectory planner for multiple UAVs in realistic
scenarios. IEEE Trans Robot. 2010;26(4):619–34.

	18.	 Zheng C, Li L, Xu F, Sun F, Ding M. Evolutionary route planner
for unmanned air vehicles. IEEE Trans Robot. 2005;21(4):609–20.

	19.	 Ma Y, Zamirian M, Yang Y, Xu Y, Zhang J. Path planning for
mobile objects in four-dimension based on particle swarm opti-
mization method with penalty function. Math Probl Eng. 2013.
https://​doi.​org/​10.​1155/​2013/​613964.

	20.	 Ma Y, Hu M, Yan X. Multi-objective path planning for unmanned
surface vehicle with currents effects. ISA Trans. 2018;75:137–56.

	21.	 Ma H, Shen S, Yu M, Yang Z, Fei M, Zhou H. Multi-population
techniques in nature inspired optimization algorithms: a com-
prehensive survey. Swarm Evol Comput. 2019;44:365–87.

	22.	 Zhao Y, Zheng Z, Liu Y. Survey on computational-intelligence-
based UAV path planning. Knowl Based Syst. 2018;158:54–64.

	23.	 Roberge V, Tarbouchi M, Labonté G. Comparison of parallel
genetic algorithm and particle swarm optimization for real-time
UAV path planning. IEEE Trans Ind Inf. 2012;9(1):132–41.

	24.	 Karaboga D, Basturk B. A powerful and efficient algorithm for
numerical function optimization: artificial bee colony (ABC) algo-
rithm. J Glob Optim. 2007;39(3):459–71.

	25.	 Dorigo M, Birattari M, Stutzle T. Ant colony optimization. IEEE
Comput Intell Mag. 2006;1(4):28–39.

	26.	 Konatowsłiowski P. Ant colony optimization algorithm for UAV
path planning. In: 2018 14th International conference on advanced
trends in radio electronics, telecommunications and computer
engineering (TCSET). IEEE;2018. pp. 177–182.

	27.	 Price KV. Differential evolution: a fast and simple numerical
optimizer. In: Proceedings of North American fuzzy information
processing. IEEE;1996. pp. 524–527.

	28.	 Pan JS, Liu N, Chu SC. A hybrid differential evolution algorithm
and its application in unmanned combat aerial vehicle path plan-
ning. IEEE Access. 2020;8:17691–712.

	29.	 James K, Russell E. Particle swarm optimization. In: Proceedings
of ICNN’95-international conference on neural networks, vol. 4.
IEEE;1995.

	30.	 Bansal JC, et al. Spider monkey optimization algorithm for numer-
ical optimization. Memet Comput. 2014;6(1):31–47.

	31.	 Mirjalili S. SCA: a sine cosine algorithm for solving optimization
problems. Knowl Based Syst. 2016;96:120–33.

	32.	 Gupta S, Deep K. Improved sine cosine algorithm with cross-
over scheme for global optimization. Knowl Based Syst.
2019;165:374–406.

	33.	 Nayak DR, et al. Combining extreme learning machine with modi-
fied sine cosine algorithm for detection of pathological brain. Comput
Electr Eng. 2018;68:366–80.

	34.	 Elaziz A, Mohamed DO, Xiong S. An improved opposition-based
sine cosine algorithm for global optimization. Expert Syst Appl.
2017;90:484–500.

	35.	 Duan H, Qiao P. Pigeon-inspired optimization: a new swarm intel-
ligence optimizer for air robot path planning. Int J Intell Comput
Cybern. 2014;7:24–37.

	36.	 Wang G, Guo L, Duan H, Liu L, Wang H. A modified firefly algorithm
for UCAV path planning. Int J Hybrid Inf Technol. 2012;5(3):123–44.

	37.	 Zhu W, Duan H. Chaotic predator–prey biogeography-based opti-
mization approach for UCAV path planning. Aerosp Sci Technol.
2014;32(1):153–61.

	38.	 Ahmed G, Sheltami T, Mahmoud A, Yasar A. IoD swarms collision
avoidance via improved particle swarm optimization. Transp Res Part
A Policy Pract. 2020;142:260–78.

	39.	 Weisstein EW. Hemisphere. 2002. https://​mathw​orld.​wolfr​am.​com/.
	40.	 Yang P, Tang K, Lozano JA, Cao X. Path planning for single

unmanned aerial vehicle by separately evolving waypoints. IEEE
Trans Robot. 2015;31(5):1130–46.

	41.	 Gupta S. Enhanced sine cosine algorithm with crossover: a
comparative study and empirical analysis. Expert Syst Appl.
2022;198:116856.

	42.	 Shao S, Peng Y, He C, Du Y. Efficient path planning for UAV
formation via comprehensively improved particle swarm optimi-
zation. ISA Trans. 2020;97:415–30.

	43.	 Tian D, Shi Z. MPSO: modified particle swarm optimization and
its applications. Swarm Evol Comput. 2018;41:49–68.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1155/2013/613964
https://mathworld.wolfram.com/

	Efficient 3D Path Planning for Drone Swarm Using Improved Sine Cosine Algorithm
	Abstract
	Introduction
	Mathematical Model for Drone Swarm Path Planning Problem
	Representations of Flying Area for Drone Swarm
	Obstacle Model
	Objective Function Modeling
	Cost Associated with Path Length
	Obstacle Cost
	Cost of Drone Member Collision

	Path Planning Algorithm
	Sine Cosine Algorithm (SCA)
	Improved Sine Cosine Algorithm (iSCA)
	Chaos-Based Population Initialization
	Improved Position Updating Mechanism
	Convergence Factor

	Time Complexity of the Proposed Algorithm

	Simulation Results and Discussions
	Parameter Settings
	Results and Comparisons
	Comparison with Original SCA
	Comparison with Other Algorithms

	Conclusion and Future Direction
	Acknowledgements
	References

