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Abstract
Chest X-ray images (CXR) can convey a great deal about a patient’s condition; hence, the standard chest radiograph should 
be reconsidered. Interpretation of radiographs is challenging and requires skilled people to determine lung disease without 
false positives and negatives. A detailed investigation addressing lung diseases COVID-19, Pneumonia, and Tuberculosis is 
presented here with the goal of assisting investigators in constructing models that automatically identify lung diseases. This 
paper is presented in three folds. The first is an exploration of how research has progressed from classic feature engineering 
approaches to deep learning methods; the second is how these are used to identify the listed diseases using radiology images 
such as Chest X-rays (CXRs); and the third is the future path way of research to detect these diseases.
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Introduction

Automated medical image analysis began when the first 
medical image was digitized. It has combined low-level 
pixel processing (edge and line detector filters, extracting 
region) and computational analysis (fitting lines, circles, 
and ellipses) to develop compound rule-based systems that 
perform complex operations during the 1970–1990s [90]. 
Any condition that prevents lung functioning is referred to 
as lung disease. Lung diseases are divided into three cat-
egories [73]: airway, lung tissue, and lung circulation disor-
ders. Asthma, pneumo thorax, lung cancer, lung infection, 
and pulmonary edema are prevalent lung illnesses. In all of 
these, patients have breathing problems, such as shortness of 
breath, can not breathe deeply, and difficulty exhaling. In the 
same vein, in late 2002, a pneumonia-related disease known 

as “severe acute respiratory syndrome” (SARS) was reported 
from Guangdong Province, China, and was officially called 
SARS in 2003 [146]. In 2019, another severe respiratory dis-
ease known as COVID-19 was identified in Wuhan, Hubei 
Province, China [161].

This review examines and investigates techniques for 
recognizing chest ailments such as COVID-19, Pneumonia, 
and Tuberculosis (TB) and how technology has changed. 
This paper is presented in threefold. The first explores how 
research has progressed from classic feature engineering 
approaches to deep learning methods. The second is how 
these are used to identify the listed diseases using radiology 
images such as chest X-rays (CXRs); the third is the future 
research pathway to detect these diseases.

Chest X-ray(CXR) images can convey a great deal about 
a patient’s condition; hence, the standard chest radiograph 
should be reconsidered [151]. Early detection of lung disor-
ders is crucial for effective treatment and may reduce stress 
in the healthcare system. CXR images and computed tomog-
raphy (CT) scans are the standard image diagnosis tests for 
lung diseases. Although CT scans are the gold standard, 
CXRs are still valuable, because they are less expensive, 
faster, and widely available. A detailed literature review on 
the techniques to identify lung diseases is presented by [90, 
132]. Even though the authors [20] discussed various deep 
learning methods published between 2015 and Feb 2023, 
we emphasize how feature extraction is migrating from 
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traditional approaches (geometrical-based methods) to deep 
learning methods.

Ginneken [46] described how machine and deep learn-
ing surpassed prior rule-based approaches to become the 
most common ways to identify lung illness. Deep learning 
is based on the Convolution Neural Network (CNN), which 
was initially presented as “Cognitron” by Fukushima [41, 
42] and later improved as “Neocognitron,” a more vigi-
lant way for finding visual patterns based on geometrical 
similarities. Despite the use of Artificial Neural Networks 
(ANNs) to diagnose interstitial lung disorders in 1999 [13], 
ANNs had never been used to predict Pneumonia until 2003 
[58]. CXR images were used to predict Pneumonia in infants 
in 2004 [49]; later, researchers believed that a mix of pat-
tern recognition and clinical experience is the best way to 
diagnose lung condition [45]. Image wavelet transform coef-
ficients were predominantly used to generate feature vec-
tors [105], a 15-nearest neighbor algorithm, and distance-
dependent weighting was able to identify Pneumonia from 
CXR images. The authors [35] employed ANNs to diagnose 
Pneumonia, and TB from patient epicrisis reports, whereas 
[103] identified it by decoding the region of interest from 
CXR images. We can observe from Fig. 1 the number of 
publications over the years and how COVID-19 has pushed 
the research on other lung diseases.

Texture and shape features from segmented lung fields 
derived from CXR images Support Vector Machine (SVM) 
to classify TB and Pneumonia on top of it [75]. In contrast, 
a fuzzy inference system was introduced to detect TB from 
CXR images by [33]. A machine learning-based framework 
where Computer-Aided Detection (CAD) scores from CXR 
images and clinical features of each subject are considered 
to identify TB [100]. In contrast, a neural net is employed to 
identify TB and pneumonia by deriving geometrical features 
from segmented CXR images [80].

A customized CNN was developed to detect interstitial 
lung diseases using lung image patches [89] with adam opti-
mizer, learning rate of 0.001. Feature extraction through 
Transfer learning techniques has began [60, 87, 91, 94, 
102, 162] to classify lung diseases. Various Transfer learn-
ing methods, such as AlexNet [84], GoogleNet, Inception-
Net [141, 142], ResNet [56], VGG16 [135], and DenseNet 
[63] are different feature extractors. ChexNet [117] is a 121 
Dense layer CNN used to identify pneumonia that became 
the state-of-the-art method and a benchmark model by out-
performing average radiologist performance. However, [114, 
140] tailored CNN cannot be ignored. The authors [163] 
have extracted region of interest features through an atten-
tion-based mechanism to identify TB from CXR images.

Several review papers [3, 9, 83, 129, 137] have given 
detailed reviews with various deep learning methods from 
their perspective and compared with human readers, adding 
more value to state-of-the-art transfer learning techniques.

Despite these studies, the disease has mysterious hid-
den secrets that need further attention. The studies which 
detect COVID-19 from various authors include COVIDNet 
from [157], Dark Covid Net [106] inspired by Dark Net-19 
[145], COVIDX-Net from [59], COVID-ResNet from [39] 
with different scales of input images, Deep COVID from 
[101] employed with SqueezNet [67] and DenseNet, CoV-
Net-19 [76] is an ensemble of VGG19 and DenseNet121, 
CoroDet [65] is a custom CNN trained from scratch. Simi-
larly, a modified version of Extreme Inception [24, 78], a 
modified Efficient-Net [95], a VGG-19 with five additional 
Max pooling layers [107], a patch-based CNN with a limited 
set of trainable parameters [104], a fuzzy tree-based feature 
extraction with ensembles by [131, 149] proposed Distance 
Based Naive Bayes (DBNB), which uses a computational 
method called Advanced Particle Swarm Optimization 
(APSO), which extracts the most compelling and relevant 

Fig. 1   Worldwide research on 
various diseases from 1998 
to 2023 (Date last access: on 
20th March 2023, keywords-
COVID-19, Pneumonia, 
Tuberculosis,Lung cancer 
https://www.sciencedirect.com/
search)
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features from clinical findings and then employs Naive 
Bayes, Pre-trained models InceptionV3, DenseNet121, and 
VGG19 were used to extract features and then combined 
individual predictions using Choquet fuzzy integral to get 
final labels [32], Apostolopoulos [12] experimented with 
VGG19, MobiNetv2 [119], Inception, Xceptionv2 [24], 
InceptionResNet-v2 with different parameters.

CXR images were pre-processed through the fuzzy color 
technique, stacked with original images to avoid noise [147], 
fed to a Squeeznet and MobileNet, and classified through 
SVM. A state-of-the-art fully connected CNN with the 
adversarial critic model Attention U-Net to segment the 
lungs [43]. At the same time, Rajaraman et al. have focused 
on reducing network complexity by iterative pruning on an 
ensemble of deep learning techniques to classify COVID-
19 [115]. Hassantabar et al. [55] have used fractal methods 
to extract features and then a deep convolution neural net 
defined to classify COVID-19.

A Deep convolutional Generative adversarial network 
was employed for augmentation [116]. The Proposed Deep 
CNN model was trained to find pneumonia infections from 
CXR images from Chest X-ray8 datasets. It has achieved 
99.34% accuracy on unseen CXR images; However, Deep 
CNN was developed based on VGG19 with a few modi-
fications as per the binary classification problem. This 
network is trained for 500 epochs, with a batch size of 

16, and the learning rate is varied from 0.2 to 0.8 with a 
mini-batch gradient as optimizer on NVIDIA DGXI deep 
learning server. COVID-19, bacterial pneumonia, and non-
COVID-19 viral pneumonia infections [68] were classified 
using the AlexNet model. A wide variety of models were 
built from binary class to four class problems. AlexNet 
trained for 20 epochs with an initial learning rate of 0.0001 
on a Matlab-installed personal computer.

A multi-image augmentation mechanism [44] was pro-
posed to detect COVID-19 by employing preprocessing 
images using a Median filter, binary mark, image enhance-
ment, and Inception v3 was used to extract features. How-
ever, the images are fewer in numbers 87 COVID and 100 
Non-COVID, which raises questions about training for 500 
epochs to get good accuracy.

MethodologyThe evolution of the CAD and Deep learn-
ing methods is shown in Fig. 2. The rest of the paper is 
structured as follows: Sect. “Methodology” talks about 
data, image processing methods, disease materials, and 
methods, and various machine learning and deep learning 
methods; Sect. “Performance Evaluation” conversations 
about different evaluation metrics in classification and seg-
mentation, model validation, data imbalance, and results; 
Sect. “Discussion” is a discussion and Sect. “Conclusion 
and Future Research Perspective” is conclusion and future 
research perspective.

Fig. 2   Evolution of CAD and related methods [33, 46, 84, 88, 92, 93, 117, 148]
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Methodology

Datasets

Dr. J P Cohen’s from the University of Montreal collected 
data [30] consisting of CXR and CT scan images—as far 
as the author’s knowledge; this is the first COVID-19 data 
set is shared on the GitHub website.

COVIDx dataset [158] comprising 13,975 CXR images 
across 13,870 patient cases. The authors integrated and 
modified five publicly available data repositories to cre-
ate this dataset. i.COVID-19 image collection of Dr. 
J.P.Cohen, ii. COVID-19 Chest X-ray Dataset Initiative 
[28], iii. Actual Med COVID-19 Chest X-ray Dataset Ini-
tiative [27], iv. RSNA Pneumonia Detection Challenge 
dataset [124], and v. COVID-19 radiography database 
[123]. The dataset can be reproduced through the codes 
from [159]. Data distribution is shown in Table 1.

Non-COVID and COVID instances of both CXR and 
CT images are included in the COVID-19 dataset. A total 
of 17,099 X-ray and CT images are generated from the 
dataset using various techniques [34]. COVID-R [65] data-
set consists of 2843 COVID-19, 3108 Normal, and 1439 
Pneumonia CXR images. Some of the publicly available 
datasets has shown in Table 2.

The National Institute of Health released one of the 
largest publicly labeled dataset called Chest X-ray8 [160] 
in this field, containing 1,08,948 images of 32,717 dif-
ferent patients, classified into eight different categories. 
The radiologists’ annotations were labeled using natural 

language processing techniques. Chexpert [69] is a large 
dataset containing 2,24,316 CXRs from 65,240 people 
divided into 14 classes. Tuberculosis Chest X-ray database 
[10] consists of 3500 TB images and 3500 Normal CXR 
images. [139] Montgomery County X-ray Set consists of 
80 Normal, 58 TB from the Department of Health and 

Human Services of Montgomery County, MD, USA. Shen-
zhen Hospital X-ray 336 TB, 326 Normal CXR images. 
X-ray images in this data set have been collected by Shen-
zhen No.3 Hospital in Shenzhen, Guangdong province, 
China. Two Datasets named Dataset A(DA) Dataset B(DB) 
[22]. The training set (52 non-TB and 52 TB CXRs) and 
the test set (26 non-TB and 26 TB CXRs) made up the 
DA. DB, on the other hand, consists of 50 non-TB CXRs 
and 50 TB CXRs, and the test set is 25 non-TB and 25 TB 
CXRs. [134] Two radiologists collected Chest X-rays at 
each center (BWC, with 19 years of experience in chest 
radiology, MJC, 18 years of experience, and six chest 
radiologists with more than 10 years of experience) from 
four hospitals from 2015 to 2017. This dataset consists of 
200 Abnormal and 800 Normal images. The US National 
Library of Medicine [71] has made two datasets with a 
significant focus on Tuberculosis. One contains 80 normal 
cases and 58 TB; with 326 normal cases and 336 TB. [1] 
CXR images with lung nodules are 154 and 93 without a 
nodule were selected from 14 medical centers. Some of 
the datasets which are available for the public are shown 
in Table 3.

Image Preprocessing Methods

Image preprocessing is crucial step before feeding the 
images to the CNNs. Real-time image capturing techniques 
may lead to various resolutions that need resizing without 
loosing the quality of pixels; there may be occlusions or 
noise that needs to addressed with noise removal methods. 

Table 1   Data distribution in COVIDx Dataset

Type Normal Pneumonia COVID-19 Total

Train 7966 5421 152 13539
Test 100 100 31 231

Table 2   Datasets available for public-COVID-19 (C), Pneumonia (P), and Normal (N)

Reference Data distribution Available@

[158] 358-C 5538-N https://​github.​com/​linda​ wangg/​COVID-​Net
 [34] 4044-C 5500-N https://​data.​mende​ley.​com/​datas​ets/​8h65y​wd2jr/3
 [26] 3616-C 1345-P 10192-N https://​www.​kaggle.​com/​tawsi​furra​hman/​covid​19-​radio​graphy-​datab​ase
 [143] 11956-C 11,263-P 10701-N https://​www.​kaggle.​com/​anasm​ohamm​edtah​ir/​covid​qu/​versi​on/7
[96] 105-C 80-N https://​github.​com/​ieee8​023/​covid-​chest​xray-​datas​et.
[77] 4272-P 1583-N https://​www.​kaggle.​com/​pault​imoth​ymoon​ey/​chest-​xray-​pneum​onia
[101] 520 C 5000 N https://​github.​com/​sherv​inmin/​DeepC​ovid/​tree/​master/​data
[97] 305-C 305-P viral 305-P bacterial 305-N https://​data.​mende​ley.​com/​datas​ets/​rscbj​br9sj/2 COVID samples from 

Sylhet medical college, Bangladesh
Radiologist – https://​twitt​er.​com/​Chest​Imagi​ng

https://github.com/linda%20wangg/COVID-Net
https://data.mendeley.com/datasets/8h65ywd2jr/3
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
https://www.kaggle.com/anasmohammedtahir/covidqu/version/7
https://github.com/ieee8023/covid-chestxray-dataset.
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
https://github.com/shervinmin/DeepCovid/tree/master/data
https://data.mendeley.com/datasets/rscbjbr9sj/2
https://twitter.com/ChestImaging
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In addition, image normalization is to be done to brought 
the pixel values to the same range. Most of the literature has 
included the steps such as resizing, normalization, image 
enhancement [44, 52, 117, 126] and image augmentation 
as the preprocessing steps [5] to classify the images fur-
ther. In mean normalization or z score normalization, image 
enhancement includes histogram equalization methods. 
Importance of image processing methods is better explained 
in [125]. Various types of noise artifacts typically seen in 
radiographs include Poisson, Gaussian, salt, and pepper 
noise, especially when acquired in huge quantities from 
public domain sources such as the internet [74]. The need 
for such images is growing in part, because eliminating one 
form of noise can sometimes affect the other. General pre-
processing involves enhancement, and subtraction [151]. 
A brief description of the preprocessing stage is shown in 
Table 4.

Diseases, Materials, and Methods

It is known that nonmedical researchers’ knowledge will not 
match of radiologist experts; however, one doing algorithm 
analysis on CXR images should have a basic knowledge of 
Chest anatomy and various abnormalities. These can be 
studied from chapter-1 of [120]. The subsequent sections 
will discuss techniques used to detect COVID-19, Pneumo-
nia, and TB over the years. Disease detection is primarily 
defined as a classification problem that consists of various 
stages, as shown in Fig. 3: i. image acquisition; ii. image 
preprocessing and segmentation; iii. feature extraction; iv. 
training classifier.

COVID‑19

Since the first case of COVID-19 in 2019, so much research 
has taken place worldwide. We have selected heterogeneous 
articles published by Elsevier, Google Scholar, IEEE, and 
other leading publishers. Researchers used a variety of state-
of-the-art image processing approaches, ranging from hand-
crafted techniques to the most cutting-edge transfer learning, 
and adversarial networks used to create synthesized images.

COVID-Net [158] is presented as one of the first AI archi-
tectures for detecting COVID-19. Thereafter, a slew of stud-
ies has sprung up based on the COVIDx data set and diverse 
sampling methodologies. The COVID-Net architecture 
employs lightweight residual projection–expansion–projec-
tion–extension (PEPX) design patterns composed of many 
stages of projections with 1 * 1 convolutions and 3 * 3 
depth-wise convolutions. According to the authors’ under-
standing, such a tailored, lightweight, machine-driven design 
pattern has never been seen before. COVID-Net also has 
architectural diversity in terms of long-range connectivity, 
with kernel sizes ranging from 1 * 1 to 7 * 7. COVID-Net 
trained for 22 epochs with a batch size of 64, a learning rate 
of 0.0002, and a patience of five.

Several architectures were trained to detect COVID-
19. For example, [106] implemented Dark COVIDNet, a 
17-layer architecture inspired by DarkNet-19 [119] with a 
flattened and a dense layer, softmax to classify three classes 
COVID-19, Pneumonia, and healthy lungs. The network 
trained for 100 epochs to improve the results and observed 
higher loss at the start of training due to fewer samples in 
the COVID-19 class. Fivefold cross-validation was done 

Table 3   Datasets available for public for the detection of Tuberculosis (TB—Tuberculosis and Normal—N)

Author Data set name and distribution Available@

[10] Tuberculosis Chest X-ray database: 3,500-TB , 3,500-N https://​ieee-​datap​ort.​org/​docum​ents/​tuber​culos​is-​tb-​chest-X-​ray-​
datab​ase#​files

 [139] Montgomery County X-ray Set(MC):58-TB,80-N; Shenzhen Hospi-
tal X-ray Set:336-TB ,326-N

https://​lhncbc.​nlm.​nih.​gov/​LHC-​publi​catio​ns/​pubs/​Tuber​culos​
isChe​stXra​yImag​eData​Sets.​html

 [22] DA:78-TB, 78-N; DB: 75-TB,75-N https://​sourc​eforge.​net/​proje​cts/​tbxpr​edict/​files/​data/
 [133] The Japanese Society of Radiological Technology (JSRT): 

154-TB,78-N
http://​db.​jsrt.​or.​jp/​eng.​php

Table 4   Different techniques in image preprocessing phase

Preprocessing Methods to be used

Lung Filed segmentation Active shape modeling, Graph cut algorithm, Intensity-based threshold methods, Image Matching, Rule-based 
methods to detect Lung contours, Water shed method, Separation of background and foreground, Unet, 
UNet++ Architectures

Image enhancement Histogram based methods (AHE, CLAHE), Fuzzy color techniques, and Filtering with Morphological opera-
tors

Resizing, Normalization Min-Max, cropping
Extracting RoI from Lung Fields blob detection/ localization attention-based methods

https://ieee-dataport.org/documents/tuberculosis-tb-chest-X-ray-database#files
https://ieee-dataport.org/documents/tuberculosis-tb-chest-X-ray-database#files
https://lhncbc.nlm.nih.gov/LHC-publications/pubs/TuberculosisChestXrayImageDataSets.html
https://lhncbc.nlm.nih.gov/LHC-publications/pubs/TuberculosisChestXrayImageDataSets.html
https://sourceforge.net/projects/tbxpredict/files/data/%20
http://db.jsrt.or.jp/eng.php


	 SN Computer Science           (2024) 5:229   229   Page 6 of 20

SN Computer Science

to avoid the problem of overfitting. Similarly, [26] applied 
a variety of transfer learning networks and concluded that 
DenseNet201 [63] produced the best results.

VGG19 and MobileNet V2 were feature extractors with 
the Rectified linear unit as an activation function at hid-
den layers in [12]. Khan [78] experimented with Xcep-
tion network [24] to classify COVID-19, Pneumonia bac-
terial, Pneumonia viral, and Normal with a batch size of 
10, trained for 80 epochs generated an output vector of 
shape 5 * 5 * 2048 for each sample of CXR image and [39] 
leveraged the usage of ResNet-50 by introducing the net-
work in three different stages with input images of shapes 
128 * 128 * 3, 224 * 224 * 3, 229 * 229 * 3, where the 
first two stages divided into head and body trained for (3,5), 
(3,5) epochs, and last stage for 25 epochs, respectively, with 
discriminating learning rate [61]. The authors have aimed 
for a better generalization using progressive resizing with 
different input size images and reported a hundred percent of 
recall on the COVID-19 class. The authors have developed 
COVID-CX Net [52]. Its backbone is a DenseNet 121; it 
applied various image enhancement techniques, such as his-
togram equalization (HE), adaptive histogram equalization 
(AHE), and contrast-limited AHEs. It is inspired by ChexNet 

[117] and modified as per the requirement of binary clas-
sification with a fully connected layer of ten nodes followed 
by a drop out of 0.2 to prevent overfitting with sigmoid as an 
activation function in the last layer. [130] used an SVM clas-
sifier to classify the features acquired from multiple CNN 
models. The ResNet50 model provided discriminant features 
that helped COVID-19 detection as per their study.

The authors [147] have worked on three classes, namely 
coronavirus, Pneumonia, and normal X-ray imagery; 
enhanced the images through affine transformations, 
i.e., a Fuzzy Color technique [109]. After that, they have 
stacked the output image with the original image through 
Yotam’s code,1 extracted features through SqueezNet 
[67], MobileNetV2 and used linear SVM classifier. [95] 
make use of the Efficient Net family [145] to take care of 
depth, width, and resolution dimensions while training. 
The family of models takes the inputs from 224 * 224 * 3, 
240 * 240 * 3, 260 * 260 * 3, 300 * 300 * 3, 380 * 380 * 3, 
and 456 * 456 * 3 by adding a fully connected layer and 
an output layer with softmax. Perhaps, the authors utilized 

Fig. 3   Disease classification: 
various phases and methods

1  https://​github.​com/​yig/​image​stack/​blob/​master/​image​stack.​py.

https://github.com/yig/imagestack/blob/master/imagestack.py
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swish [40] as an activation function, resulting in a smooth 
curve throughout the minimization loss process using a gra-
dient descent technique.

FC Dense Net101 was employed to segment the lung 
regions from CXR images in [104] and proposed a patch-
based network, say 224 * 224 pixels cropped randomly 
from the image at various instances and fed to the network 
ResNet-18 with Adam optimizer [82], the initial learning 
rate of 0.0001, and trained for 100 epochs. Authors have 
investigated potential biomarkers in the CXR and found that 
the globally distributed localized intensity variation can be 
discriminatory for COVID-19. The two-dimensional curve-
let transformation used by [8] subdivides the input using 
a linear and weighted mixture of fundamental functions 
called curvelets. A curvelet is a set of radial and angular 
windows specified in the polar coordinate system in the fre-
quency domain. A Fast Digital Curvelet Transform (FDCT) 
is implemented via wrapping to synthesize data from RGB 
image to grayscale and then fed to Efficient Net-B0 [145]. 
[101] leverage the usage of different transfer learning tech-
niques, including ResNet18, ResNet50, SqueezNet, and 
DenseNet-121 on smaller datasets to identify COVID-19. 
Models were trained for 100 epochs, with a batch size of 20, 
ADAM optimizer with a learning rate of 0.0001, and image 
input of 224 * 224. [155] As per the author’s knowledge, 
CovidGAN is the first paper to generate synthesized CXR 
images using Generative Adversarial Networks. With Covid-
GAN, authors could generate normal CXR and COVID +ve 
images by training with a batch size of 64, a learning rate of 
0.0002, and a beta of 0.5 for 2000 epochs.

Chauhan [23] experimented with DenseNet-121 with 
various combinations of parameters, such as loss func-
tions, optimizers for several epochs with learning rates, 
and reported good metrics with the Ada max optimizer 
with Cross-Entropy loss function, Step LR scheduler. An 
ensemble of Inception [142], VGG19, and DenseNet121 
has been implemented by the authors of [32]. Further, the 
classifiers’ predictions are aggregated using Choquet Fuzzy 
integral method [154], which will give weight to individual 
classifiers based on the calculated fuzzy scores. Similarly, 
the authors of [76] proposed CoVNet-19, an ensemble of 
VGG19 and DenseNet-121 feature extractors, and SVM 
as a meta-learner. [38] employed various multikernel-size 
spatial channel attention(MKSC) modules to extract feature 
maps further to classify COVID-19. COVID-RENet-1 and 
COVID-RENet-2 [79] introduced averaging layer, ensur-
ing region and edge-based operations between convolution 
blocks. These two networks differ in their architecture; how-
ever, they achieved the same score.

A hybrid learning approach [85] consists of CNN and 
Recurrent Neural Nets (RNNs). Each step has a length 
of 64 in RNN, totaling 700. However, there needs to be 
more information on how RNNs have been used to extract 

features and fuse with CNN to call it a hybrid model. 
Interestingly, [62] authors have focused on real-time detec-
tion by leveraging LeNet-5, Extreme Learning Machines 
(ELMs) [64], and Chimp optimization Algorithm (ChoA) 
citeKhishe2020. LeNet-5 is used as a feature extractor 
after being trained on a large dataset and provided to 
ELM input, and ChoA will take care of the rest. ChoA s 
designed to overcome the problem of slow convergence 
speed and getting trapped in local minima. This makes the 
ELM network stable and reliable to operate in real-time 
operation.

A systematic and consistent approach for lung segmen-
tation and COVID-19 localization with infection quantifi-
cation [143]. Lung segmentation is done by training 3000 
annotated images through UNet [122], UNet++. Balaha [17] 
has segmented the images using the watershed approach, 
i.e., separating foreground from background and fed to a 
transfer learning algorithm to extract features and for further 
classification using the weighted sum metric of various mod-
els. The authors [153] have given importance to preprocess-
ing images before using several transfer learning techniques 
from VGG16 to SqueezNet. Image enhancement methods, 
such as Adaptive Histogram Equalization (AHE) and Lim-
ited Contrast Adaptive Histogram Equalization (CLAHE), 
made the image tidier.

A content-based image retrieval (CBIR) [164] model, 
which utilizes multi-similarity loss [156] with a sophisti-
cated mining sampling approach and an attention mecha-
nism to discover the optimal embedding space. Optimized 
embedding space is nothing, but the low-dimensional feature 
space learned through ResNet50 as a backbone and, in addi-
tion, a spatial attention module employed to extract local 
embeddings to provide additional guidance. A lightweight 
convolution model is trained on Gaussian blurred images 
proposed by [99]. The architecture consists of 4 convolu-
tional layers with 32, 32, 64, and 64 filters, respectively, 
each kernel size 3 * 3. A fully connected layer of 64 neurons 
with a dropout rate of 0.5 and a final layer with a softmax 
activation function.

In contrast to all the approaches proposed, [96] has shown 
similar accuracy by completely masking lungs from the 
CXR image, which poses questions on the deep learning 
approaches. However, it is worth mentioning that the authors 
have proposed new protocols to automate the detection pro-
cess of COVID-19. Some of the papers’ observations and 
feature extractors are shown in Table 5.

The authors [118] have employed the DarkCOVID Net 
model, formulated as binary and three class problem, trained 
on more than 10,000 CXR images, and achieved an average 
accuracy of 99.53 and 94.18 for binary and multi-classifi-
cation, respectively. DarkCOVID Net uses DarkNet-19 as a 
base model, constructed using a YOLO (you look only once) 
real-time object detection system. Images are of 256 * 256 
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pixels fed to the network and trained for 100 epochs for 
binary and 50 epochs for the multi-class problem;

A Concat CNN [126] was developed to detect COVID-
19, viral pneumonia and regular infections. The authors 
have used four CNN models as feature extractors and con-
catenated the feature maps for better network efficiency. 
Class imbalance is addressed by sampling an equal number 
(500) of images from three classes. The feature extractor is 

defined in terms of several filters in two convolution layers 
with 32,64 combinations with max pooling of 2 * 2, dropout 
of 0.5, and activation of Relu is used to bridge the layers. 
These results were compared with state-of-the-art models 
VGG16, Inceptionv3, ResNet50, and DenseNet121 with 
fivefold cross-validation.

The researchers [51] focused on three classes, COVID-
19, Viral pneumonia, and Health images. The authors have 

Table 5   Overview of papers using deep learning models from the selected studies

C COVID-19; P Pneumonia; Pv viral pneumonia; Pb bacterial pneumonia; N Normal

References Feature extractor Observation

 [39] COVID-ResNet ResNet-50 Progressive resizing(initially trained with 128 * 128 and 
then larger size images) with discriminative learning rate 
- 4(C,Pb,Pv,N)-

 [59] COVIDX-Net VGG-19,Dense Net Input images of size 224 * 224 without image augmentation 
trained with Stochastic gradient optimizer-two class (C,N)

 [150] ; COVID Diagnosis Net Squeeze Net Hyperparameter tuning through Bayesian optimization; 
Deep Squeeze Net - 3 class (76-C,4290-P,1583-N)

 [157] COVID Net DenseNet-121, ResNet-18, SqueezNet A machine-driven design exploration strategy to generate 
deep learning architecture - 3 class (C,P,N)

 [12] MobileNet V2, VGG-19 Parameters used ReLU,Dropout,Adam optimizer with batch 
size 64- 4 class (224-C,700-P,504-N)

 [147] MobileNetv2, SqueezeNet Fuzzy color technique applied to input image, Social Mimic 
optimization on output vector; Support Vector Machine 
with stochastic gradient descent optimization. 3 class ( 
295-C,97-P,65-N)

 [106] Dark COVID Net inspired from DarkNet Three Dark layers each consist of 1 convolution followed 
by Batch Norm and Leaky ReLU ; every Dark layer 
is separated with three convolutional layers. - 3 class 
(125-C,500-P,500-N)

 [104] FC DenseNet67,FC DenseNet103 Segmentation, random patch cropping; saliency maps for 
interpretability. - 5 class (180-C, 54-P(b), 20-P(v), 57-TB, 
191-N)

 [52] DenseNet-121 Image enhancement techniques(HE,AHE,AHEA)- 3 class 
(428-C,3200-N)

 [65] New architecture- 22 layer CNN Training from scratch leaky RELU - 50 epochs. 3 class 
(2843-C,1439-P,3108-N)

 [85] Hybrid approach (CNN+RNN) RNN designed input signal divided into 700 steps- 64 units 
per step. 3 class (2000-C,2000-P,2000-N)

 [113] Ensemble of VGG-16, VGG-19, and Inception-v3 Ensemble of transfer learning models with Majority voting 
Averaging weighted averaging on segmented CXRs(Unet). 
3 class (27-C,242-P,234-N)

 [97] Custom architecture based on residual units Two Convolutions followed by Residual and Shifter units 
and stacked for different resolution images. 4 class (305-C, 
2780 P(b),1493 P(v),1583 N)

 [164] New architecture CBIR(ResNet-50 as backbone) Multi similarity loss + Spatial attention module. 3 class 
(3746-C,5641-P,8064-N)

 [4] ResNet-152,DenseNet-169 Discriminative fine-tuning, cyclical learning rate, and 
momentum- accuracy achieved in 20 epochs.- 2 class 
(107-C,112-P)

 [95] Efficient Net Family Images of different resolutions to the family of models; 
activation function : swish [40] - 3 class (183-C, 5521-P, 
8066-N)

 [37] Context Based Image retrieval filter Differential Evolution based Rule Extractor(DEREx) clas-
sifier on the output of CBIR filter(64 features)- 2 class 
(3616-C,10192-N)
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trained four pre-trained deep neural networks to find the 
best Net. Since it is a transfer learning model, the dataset 
consists of 2905 images, with 219, 1341, and 1345 images 
in COVID-19, healthy and viral pneumonia, respectively. 
AlexNet gave good results among the other applied mod-
els, VGG16, MobileNetv2, and ResNet18. A deep convo-
lutional neural network-based architecture (Focus Covid) 
[6] is proposed for the COVID-19 detection using chest 
radiographs. It is a modified version of Focus Net where 
some layers were removed, reducing the number of param-
eters (16, 32, 64, 128, and 256). It has helped to reduce 
training time by reducing the no. of parameters.

A lightweight CNN architecture [14] is for detecting 
COVID-19 disease, which is robust-a comparison study 
performed between transfer learning and shallow CNN. 
A total of 2541 samples were considered from two pub-
lic databases consisting of Normal and COVID infected 
images. Other transfer learning models are Inception-v2, 
Xception, MobileNet, and DenseNet201. The shallow 
six-layer network trained for different batch sizes 16, 20, 
25, 32, 50, and 64 has a learning of 0.001 for 20 epochs. 
A trained output-based transfer learning (TOTL) [86] 
approach for COVID-19 detection from CXRs. Preproc-
essing methods, such as noising, contrasting, and seg-
mentation, were applied before feeding the image into 
pre-trained transfer learning models, such as Inception, 
Xception, MobileNet, ResNet, and VGG. Here, the fea-
tures extracted from pre-trained models are fed to a shal-
low model consisting of 64, 128, 256, 128, and 64 neurons 
with relu activation function and a dropout rate of 0.2.

A total of 18 models were implemented in [25], and 
their performance was evaluated. Major voting built on 
top of 18 models, including the top four models with 
above 93% accuracy. Two certified radiologist analyzed 
the image outputs generated by gradcam, their decision 
resemblance with Sqeeznet output. The performance of the 
CNN classifier can be improved using the nature-inspired 
optimization algorithm Hill Climbing(CNN-HCA) [110] 
by enhancing the CNN model’s parameters. After evaluat-
ing the present state, the hill climbing algorithm is a local 
search optimization technique exploring superior neigh-
borhood solutions. However, this algorithm works for two 
hyperparameters, such as kernel size and the number of 
neurons in the first dense layer, which certainly adds more 
parameters as it evolves.

A multi-level image segmentation method [111] is based 
on the swarm intelligence algorithm (SIA) to enhance the 
image segmentation of COVID-19 X-rays. Ant colony opti-
mization was introduced later; direction crossover was used 
to enhance the convergence speed of the algorithm. Direc-
tional mutation strategy helps to jump out of local optima. 
It helps determine the proper threshold value to segment the 
CXR image.

A deep two-step learning (DL) architecture Multi COV-
IDNet [48] to detect COVID-19. The uniqueness of this 
paper introduces an optimization algorithm called “Multi-
Objective Grasshopper Optimization Algorithm (MOGOA)” 
to optimize the DL network layers; the Grasshopper optimi-
zation Algorithm (GOA) can balance between exploration 
and exploitation. The nature-inspired swarming nature of 
GrossHooper inspires it. It has generated multiple solutions, 
picking the best one using Pareto Optimality (PO) operator.

Pneumonia

Unet Architecture was utilized to segment the lung field 
from CXR by [98] and employed ResNet-50, IncetpionV3, 
InceptionResNetV2 architectures using Adam, SGD opti-
mizers and a batch size of 16 and 32, respectively, to produce 
the best results to detect pneumonia. Ayan et al. [15] have 
experimented with an extreme version of inception (Xcep-
tion), VGG16 as feature extractors and concatenated a dense 
output layer with two neurons, softmax activation function, 
and trained for 50 epochs. A discriminative localization 
using Class Activation Maps solved the block-box nature of 
deep learning models to an extent using modified VGG16 
on pediatric CXR images [114]. It has employed an algo-
rithm based on Anatomical atlases for the auto-detection of 
lung borders. Parameters tuned using the grid search method 
stopped at a learning rate of 0.0004, momentum 0.99, and 
L2 regularization of 0.000001 in VGG16. An unsupervised 
fuzzy c-means classification learning algorithm was used 
to extract features in [108] and classify the pneumonia dis-
ease by grouping into five clusters. The region of interest 
is encoded into a vector of wavelet texture measures and 
derived statistical-based features to detect pneumonia 
from CXR images [103]. Other wavelet texture measures 
are used to extract features for the same task [105]. Tho-
rax disease classification [50] approach is a three-branch 
attention-guided CNN (AG-CNN). Pneumonia detection 
was achieved through ResNet-50 and DenseNet121. CheX-
LocNet [157] segmented CXR images using Mask R-CNN 
[57] and achieved better localization. Some of the papers’ 
observations and feature extractors are shown in Table 5.

Tuberculosis

The ResNet101, VGG19, and DenseNet201 were employed 
independently [112] to extract features from the given data 
set without further fine-tuning. These features were extracted 
from the last convolution block before the global average 
pooling layer. After the last convolution, the output shape of 
ResNet101, VGG19, and DenseNet201 for a sample image 
is (7, 7, 2048), (7, 7, 512), and (7, 7, 1920), respectively. 
These vectors further flattened and passed to the XGBoost 
classifier to classify the Tuberculosis disease.
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The authors of [113] put-forth ensemble of pre-
trained models Inception-V3, InceptionResNet-V2, and 
DenseNet-121 with average stacking and have shown 
better results. In addition, a three-layer custom CNN was 
built with 64, 128, 256 neurons in respective layers. It is 
trained for 100 epochs with a kernel size of 5 * 5 in each 
layer. [152] have designed a custom architecture of four 
CNN layers with 32, 32, 32, and 64 neurons, respectively. 
It is followed by a flattened and fully connected layer of 
128 neurons. The model was trained for 200 epochs with 
a kernel of 3 * 3, activation function ReLU and batch size 
of 32. A Convolutional Block Attention Module (CBAM) 
[163] has been proposed and placed at every bottleneck of 
the residual network. CBAM will give more weight to the 
essential features and extract complex, in-depth features as 
training progresses. CBAM aims to ensure nonlinear inter-
action with an emphasis on multiple channel features. For 
the first time, a mix of demographic data and deep learning 
characteristics is applied by [60]. A deep CNN architecture 
[66] consists of 1, 1, 3, 1 layers in each block of CNN-Max 
pooling, two fully connected layers, and a dropout layer 
toward the end. The authors stated that getting optimized 
weights with the said architecture is challenging, and 
they moved to transfer learning approaches, giving better 
results. On the other hand, [100] has combined the CAD 
score and clinical features of patients to detect TB through 
ML. The authors [87, 91, 94] have used AlexNet, Google 
Net, VGGNet, and ResNet as feature extractors with a 
meta-learner for classification. AlexNet and GoogleNet 

are trained with a learning rate of 0.01 and 0.001 using a 
stochastic gradient descent optimizer, a momentum of 0.9, 
and exponential decay of 0.002.

The Lung fields were segmented [71] from CXR images 
using a graph cut technique. Object detection-inspired fea-
tures such as shape and texture descriptors were extracted 
using various histogram methods, such as the Intensity 
Histogram (IH), Gradient Magnitude Histogram (GM), 
Shape Descriptor Histogram (SD), and Curvature Descrip-
tor Histogram (CD). Low-level features, such as intensity, 
edge, texture, and form moment, were extracted using 
Content-Based Image Retrieval (CBIR) algorithms, total-
ing 594 features. An SVM classifier is trained to classify 
feature sets into normal and abnormal.

A reliable automated CXR image-based screening 
system [11] for detecting pulmonary diseases with a sig-
nificant focus on TB. The approach mainly focused on 
localization to see lung boundaries from CXR. The fea-
ture sets were derived from segmented lung fields through 
object-detected methods, Content-based image retrieval, 
and standard MATLAB region proposals. Bandyopadhyay 
[54] has proposed an algorithm for CXR image enhance-
ment. It consists of segmentation and enhancement as 
sub-steps. Image segmentation is achieved by applying a 
sequence of membership and fuzzy distance-based opera-
tions on one-dimensional function and image enhancement 
through the fuzzy-based contrast enhancement technique. 
Table 6 overviews selected papers.

Table 6   Overview of selected studies for Tuberculosis detection (TB=Tuberculosis, N=Normal)

Reference Feature extractor(s) Observation

[10] ResNet101,VGG19, DenseNet201(Best) XGBoost classifier on extracted features. 2 classes (3500 
-TB,3000 - Normal)

 [113] Inception-V3,InceptionResNet-V2, DenseNet-121 Ensemble & Stacking on top of learned features, 2 classes (17833 
-TB,8851 - N)

 [87] Alexnet, GoogleNet Ensemble of probability scores by a different weighted average 
of the probability scores. 2 class (DS1:58-TB,80-Normal,DS2: 
336-TB,326-Normal)

 [94] GoogleNet,VGG,ResNet Three proposals; individual feature extractor+SVM classifier; 
Bag of CNN features and Ensemble of all predictions. DS1:58-
TB,80-Normal,DS2:336-TB,326-Normal

 [33] Structured data(chest pain, age, fever, loss of appetite, loss of 
weight, smoke addiction, bcg)

An Adaptive Neuro-fuzzy Inference System (ANFIS) is an 
Artificial Neural Network (ANN) approach that is functionally 
equivalent to a first-order Sugeno-style Fuzzy Inference System 
(FIS); a six-layer network

 [66] Custom Deep CNN inspired by AlexNet with fewer hidden 
nodes

AlexNet and custom CNN were used with a softmax at the end 
with two classes

 [22] Gabor, gist, Histogram of gradient, Pyramid histogram of gradi-
ent features(PHOG) features

Feature extraction with out segmentation; Localized features fre-
quency range, block, and an SVM classifier. 2 class (78-TB,78-
Normal)

 [121] Statistical features through image histograms: mean, standard 
deviation, skewness, kurtosis, and entropy

Principal component analysis on extracted features and Mini-
mal distance classifier to differentiate TB and Non-TB. 2 class 
(30-TB,30-Normal)
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Convolutional Neural Nets (CNN), Machine learning, 
and Segmentation

A CNN is employed to collect feature vectors during the fea-
ture extraction phase, as shown in Fig. 4. Deep CNNs com-
prise a convolutional, max pooling, dense layer with param-
eters, such as the number of kernels, kernel size, hidden and 
output activation functions, dropout rate, and the number of 
neurons. Different model architectures can be formed with 
various combinations. Finding the proper architecture is a 
laborious process that demands more data and optimiza-
tion of hyperparameters, such as batch size, learning rate, 
momentum, number of epochs, and batch normalization.

A CNN network is categorized as shallow or deep based 
on the number of layers. A customizable CNN is a deep 
network trained on a specific task. A Deep CNN constructed 
and trained on an extensive data set and achieved excellent 
results could be reused. The caveat is that the original net-
work may have been trained on different data. These net-
works extract feature vectors and then build a meta-learner. 
These networks are known as Transfer Learning techniques 
(TL). Since 2015, many transfer learning methods have been 
developed, including Alex Net, Dense Net, Efficient Net, 
Google Net, Inception, Mobile Net, ResNet, Squeeze Net, 
VGGNet, and Xception. AlexNet, ResNet, VGGNet, and 
GoogleNet are the most often used TL models in medical 
image analysis [83], while SVM is the most commonly used 

meta-learner. For example, feature vectors taken from the 
flattened layer (None, 25,088) or the fully connected layers 
(fc1 or fc2) (None, 4096) as illustrated in Fig. 5 might be fed 
into a softmax or SVM.

Machine learning models, such as logistic regression, k 
nearest neighbor, and SVM and ensembles such as bagging 
and boosting (Adaboost, XGboost) can be trained on struc-
tured data. Structured data could be clinical features such as 
age, patient habits, smoking (y/n), diabetes (y/n), or texture, 
shape, intensity, color, statistical, and other features of CXR 
images. Different geometrical, machine learning, and ensem-
ble methodologies utilized to classify CXRs were discussed 
in detail in [74]. Various CXR segmentation methods edge 
detection [21], active shape modeling [47] , and modern 
methods, such as UNet [122] and Unet++ [17, 43, 138, 165], 
could be used for segmentation.

 Comparison of Materials and Methods

In the previous sections, we introduced several techniques 
employed for the prediction of pulmonary ailments. Among 
these convolutional neural networks (CNNs), the more effi-
cient approach is to extract features from images, as com-
pared to using manually created features. Nevertheless, the 
process of extracting features from CXR images poses a 
challenge due to the inherent similarity of all lung images. 
Only a limited number of significant patterns are effective in 

Fig. 4   Image classification pipeline (ensemble method)
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differentiating lung illnesses. Transfer learning approaches 
proved to be highly beneficial in this context. However, these 
TL approaches are specifically tailored for a set of 1000 

broad categories. To customize these models according to 
the specific needs, it is necessary to adjust them by eliminat-
ing the topmost dense layers from their original structure. 
Also, it can be noted that the researchers have employed 
various Transfer Learning techniques and occasionally a 
combination of all these methods to predict lung disease. 
The majority of studies have looked into different image 
sizes, image enhancement techniques, and feature extrac-
tion methods. With the exception of [97, 157], all of these 
studies used a limited number of images. To accomplish 
generalization in a deep learning model, the network must 
be trained with a diversified set of sample images including 
a high number of examples. Furthermore, the model should 
be rigorously tested to confirm its applicability for real-time 
deployment.

Performance Evaluation

Evaluation Metrics

A disease detection problem can often be formulated as a 
classification problem using CXR images. Classification 
metrics, such as Accuracy, Sensitivity, Specificity, Precision, 
F1 score, and Area under the curve, will be used to evaluate 
these problems. It can be either binary or multi-class. In the 
case of multiple classes, the average of the metrics concern-
ing the classes will be computed.

Confusion Matrix

The confusion matrix as shown in Fig. 6 gives various met-
rics on how close the predictions are to actual values.

Recall/Sensitivity is correct predictions from all positive 
class samples. Specificity is defined as the total number of 
correct predictions out of all negative class samples. Preci-

sion is defined as the total number of correct predictions 
out of all predicted positives. It tells how precise the model 

Fig. 5   Transfer learning method: vgg16 model summary [135]

Fig. 6   Confusion matrix
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is. F1 score is the harmonic mean of precision and recall 
2*P*R/(P+R) with a minimum value of 0 and a max of 1. 
The area under the curve is calculated between True-positive 
rate and 1- Specificity, i.e., False-positive rate, which guides 
to calculate of the threshold value to classify the samples. 
The range of values is from 0 to 1. There are cases where 
precision–recall curves will be plotted depending on the 
requirement, as shown in Fig. 7.

Intersection over Union

Intersection over Union (IoU), also known as Jaccard index 
[70], is the most generally used metric for comparing the 
similarity between two arbitrary formations. It summarizes 
how well-ground truth overlaps with the object predicted 
by the model as illustrated in Fig. 8. An IoU threshold was 
0.5 set, which is commonly used [119]. The bounding boxes 
were filtered based on the confidence score before comput-
ing IoU. This score will be varied while calculating other 
metrics, such as Average Precision (AP), Average Recall, 
and IoU from 0.5 to 1 to calculate mean Average Precision 
(mAP), mean Average Recall, and mean Average Recall 
[127].

Model Validation

Model validation needs two data sets, one to train the model 
and the other to validate. Train and test metrics need to be 
considered to evaluate model performance. However, an 
algorithm that performs well on train data may not perform 
well on test data. There could be challenges with bias or 
variance, causing under-fitting or overfitting, which further 

needs to be addressed. Before bringing a model into produc-
tion, it is common to regularize the model.

Data Imbalance

A pervasive challenge in many classification problems is 
data imbalance. Consider a binary class problem, such as 
predicting a patient with COVID-19 disease. For a variety 
of reasons, COVID-19 positive will have fewer samples. 
Patients are reluctant to reveal personal information, gather 
all relevant data, and make it available to appropriate organ-
izations. As a result of these factors, the number of data 
points in one class will be lower. Assume that the number 
of COVID-19 -ve samples is 90 and the other class has 10. 
Getting an accuracy of 90 is deceptive, because 90 percent 
of the samples belong to one class. One more metric will be 
considered, along with accuracy. Since the positive class has 
a lower number, recall, and accuracy will be considered, i.e., 
how many +ve COVID-19 are predicted correctly out of all 
predicted positives?

Result Analysis

Ensemble of Transfer learning methods [7, 16, 29, 32] is 
consistently giving good results in identifying lung diseases, 
including COVID-19 and other diseases. For example, we 
observe some models built on less than 100 samples early 
in COVID-19 detection and can give reasonable metrics.

Maguolo [96] has shown similar results by masking the 
lung region completely, raising questions on deep learn-
ing methods or needing more explanations to support the 
accuracy of the models. Deep learning models applied to 
detect other diseases, Pneumonia, Tuberculosis, have shown 
promising results. For example, [134] have incorporated 
DCNN methods in software and can detect Lung nodules 

Fig. 7   ROC curve for three classifiers: A, B and random [19]

Fig. 8   A Intersection over the union; B examples of different values 
of IoU [128]



	 SN Computer Science           (2024) 5:229   229   Page 14 of 20

SN Computer Science

and cross the average sensitivity achieved by the radiologist 
group while reducing False positives. Some selected papers’ 
metrics are shown in Table 7. Some authors have used vari-
ous preprocessing methods to improve the disease accuracy. 
For example [147] has pre-processed through the fuzzy 
color technique and achieved 97.78% and [52, 153] have 
used Adaptive Histogram Equalization (AHE) and Limited 
Contrast Adaptive Histogram for image enhancement and 
achieved 99% and 98.68% accuracy, respectively. On the 
other hand, transfer learning methods produced promising 
results in finding TB [60, 87, 91, 94, 102, 162] and [112]. 
Among these, [112] produced 99% accuracy with ResNet 
and XGBoost and [87] able to get 98.8% with weighted 
ensemble of AlexNet,GoogleNet. Others have experimented 
by incorporating lung segmentation as preprocessing step, 
[98, 114] scored 93.06%,91.8% accuracy, respectively, while 
detecting pneumonia and [104, 115] produced 95.63% and 
88.90%, respectively, while detecting Pneumonia,COVID-19 
and TB. It is obvious that one can raise questions on seg-
mentation as we can observe that the models without lung 

segmentation are producing the higher results than with 
segmentation.

Discussion

Models were introduced in the early days of medical research 
leveraging structured data such as patient demographics and 
health records, such as blood, urine, and other lab tests to 
diagnose various disorders. Due to the complex nature of 
lung disorders, medical imaging plays a significant role in 
diagnosing them compared to other clinical data. As long 
as practitioners are accessible and proficient in evaluating 
CXR images using various computer-aided methods based 
on their experience, such an alternative should be explored. 
These conclusions are based on two factors: The results of 
computer-assisted procedures and the frequency of posi-
tive cases observed in their overall experience. The latter is 
based solely on expert information that cannot be disputed. 
Few of the researchers were build models on segmented 

Table 7   Classification metrics reported in various studies (C—COVID-19, P—Pneumonia, Pb—bacterial Pneumonia, Pv—Viral Pneumonia, 
and - used as place holder when data are not available)

Reference Data Accuracy Sensitivity Specificity Precision F1 score

 [147] 295-C 97-P 65-N 97.78 97.73 100.00 89.47 97.87 97.17 100.00 98.85 90.63 100.00 0.98 0.97 0.94
 [106] 125-C 500-P 500-N 98.08 95.13 95.30 98.03 0.96
 [12] 224-C 700-P 504-N 93.48 92.85 98.75 93.20 0.92
 [59]- COVIDx Net 25-C 25-N 90.00 100.00 83.00 83.00 0.91
 [78]- CoroNet 290-C 330-Pb 330-Pv 

310-N
89.80 89.92 96.40 90.00 0.89

 [104] 180-C 54-Pb 20-Pv 
57-TB 191-N

88.90 85.90 96.40 87.33 0.85

 [39]-COVID-ResNet 45-C 931-Pb 630-Pv 
1203-N

96.23 96.00 95.20 96.5 0.96

 [52] 428-C 3200-N 98.68 92.85 98.70 93.20 0.92
 [97] 305-C 1493-P-v 2780-

P-b 1583-N
90.20 89.90 89.10 90.80 0.90

 [95] 183-C 5521-P 8066-N 93.90 96.80 95.00 98.00 0.96
 [158]- COVID-Net 2688-C 5545-P 8072-N 93.30 91.00 90.50 93.50 0.95
 [8] 2263-C 1614-P 1609-N 95.24 93.61 96.05 92.20 0.92
 [150]- COVID-Diagno-

sis Net
76-C 4290-P 1583-N 98.30 99.10 99.13 97.85 0.98

 [26] 423- C 1485-Pv 1579-N 97.64 97.94 98.80 97.95 0.98
 [4] 107-C 112-P 96.83 94.39 96.26 93.75 95.54 95.37 0.96
 [32] 924-C 3875-P 1341-N 99.02 99.00 99.00 99.00 0.90
 [65] CoroDet 2843-C 1439-P 3108-N 94.20 92.5 92.76 94.04 0.91
 [85] 2000-C 2000-P 2000-N 98.20 97.10 – 97.31 0.97
 [153] – 99.0 98.10 96.80 99.40 99.60 – 0.95 0.96
 [164] 3746-C 5641-P 8064-N 83.90 85.0 89.3 74.3 – 95.20 64.50.3 79.40 –
 [115] 27-C, 242-P 234-N 97.42 97.42 95.63 – 97.46 95.88 0.97 0.95
 [99] 3914-C 5493-N 92.70 91.3 91.3 91.3 0.91
 [149] 135-C 150-P 150-N s97.01 99.30 94.00 –
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on CXRs and able to produced promising results, pointed 
out the importance of segmentation methods. For example, 
[71] to detect TB, [98, 114] to detect pneumonia, and [104, 
115] to detect COVID-19 have applied various segmenta-
tion methods, such as graphcut and Unet methods. Lung 
segmentation is one of the preprocessing to be included in 
the image classification pipeline. However segmentation of 
lungs is time-consuming and need a well-trained model that 
suits for all kinds of images.

Deep learning algorithms will provide the metric and 
outperform expert radiologist judgment on a measure in 
many instances; however, a black-box methodology cannot 
be relied on despite its 100% accuracy. Multiple combina-
tions of image processing, feature extractor, and classifica-
tion with ensembles will achieve better results.

For example, explainable AI (XAI) [136] techniques, 
such as Guided Grad CAM, Gradient Back Propagation, 
and Class activation maps (CAM), would be used to iden-
tify how features are selected based on expert knowledge. 
Because experts are restricted in their ability to analyze each 
image, the region of interest is selected using a blend of 
Explainable AI and a pre-trained Transfer learning model in 
a medical field similar to AlexNet trained on a massive set 
of images. However, radiologist expertise is vital to confirm 
the prediction performance and further localization to inves-
tigate ROIs detected by the models. It is a short time to get 
there. The prospect will see the combination of Deep learn-
ing procedures and older approaches to diagnose illnesses. 
XAI methods must produce precise areas of interest that an 
expert group must validate, which is ahead. If we look at the 
diseases from the 2000s, we will see that they are changing 
toward lung-related infections with more severe health reper-
cussions. Nobody predicted COVID-19 and its spread, even 
though pneumonia has been prevalent since 460 BC [72].

Conclusion and Future Research Perspective

Most CAD practitioners believed that CAD with hand-
crafted features would be the primary technique for auto-
mated image analysis until 2009 [46]. Determining which 
features are appropriate for solving a particular problem is a 
time-consuming and labor-intensive process requiring sig-
nificant human engagement and expertise. One may wonder 
why computers could not improve the process of translating 
images into features. Even though the first deep learning 
network was defined by [88], the success of deep learning 
methods began with [84], winner of the ImageNet challenge. 
Despite the black-box nature of the findings, researchers 
began experimenting with deep learning methodologies [18, 
31, 89]. ChexNet [117] impacted the medical community 
with a 121-layer Dense Network. Since then, Deep Learning 
techniques have been effectively employed in a wide range 

of applications, including diagnosing skin cancer [29, 36], 
arrhythmia detection [2, 53], Fudnus image segmentation 
[144], and Lung segmentation [138]. Since the epidemic 
of COVID-19, the utilization of deep learning methods has 
grown exponentially, compelling the community to thor-
oughly investigate all image processing methodologies, from 
Professor Dr.Ladwick’s research to contemporary image 
processing and analysis models with Explainable AI(XAI).

The success of deep learning has already been proven 
with number of publications and deploying the models into 
machinery; however, the traditional image preprocessing 
methods are to be reconsidered to preprocess the images 
while inputting the images into deep learning models. 
Authors’ point of view, upcoming research will be a hybrid 
technology with a mix of traditional preprocessing and state-
of-the-art deep learning models. Here, one should agree that 
deep learning is unable to explain why infection is getting 
classified as a disease. Experts’ knowledge is required to 
evaluate the heatmaps generated by XAI techniques. XAI 
methods provide local explanations, i.e., a part of the image 
can be studied further to get accurate results. Annotating the 
infections in any medical image is a big challenge; recently, 
one research group has conducted a deep study [81] on auto-
labeling CXR images through the XAI method and achieved 
promising results. It is the other future perspective generat-
ing local infections, validating the results back and forth 
until we get a reliable result.
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