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Abstract
Interstitial lung disease (ILD) encompasses a spectrum of more than 200 fatal lung disorders affecting the interstitium, 
contributing to substantial mortality rates. The intricate process of diagnosing ILDs is compounded by their diverse symp-
tomatology and resemblance to other pulmonary conditions. High-resolution computed tomography (HRCT) assumes the 
role of the primary diagnostic tool for ILD, playing a pivotal role in the medical landscape. In response, this study introduces 
a computational framework powered by artificial intelligence (AI) to support medical professionals in the identification and 
classification of ILD from HRCT images. Our dataset comprises 3045 HRCT images sourced from distinct patient cases. 
The proposed framework presents a novel approach to predicting ILD categories using a two-tier ensemble strategy that 
integrates outcomes from convolutional neural networks (CNNs), transfer learning, and machine learning (ML) models. 
This approach outperforms existing methods when evaluated on previously unseen data. Initially, ML models, including 
Logistic Regression, BayesNet, Stochastic Gradient Descent (SGD), RandomForest, and J48, are deployed to detect ILD 
based on statistical measures derived from HRCT images. Notably, the J48 model achieves a notable accuracy of 93.08%, 
with the diagnostic significance of diagonal-wise standard deviation emphasized through feature analysis. Further refine-
ment is achieved through the application of Marker-controlled Watershed Transformation Segmentation and Morphological 
Masking techniques to HRCT images, elevating accuracy to 95.73% with the J48 model. The computational framework also 
embraces deep learning techniques, introducing three innovative CNN models that achieve test accuracies of 94.08%, 92.04%, 
and 93.72%. Additionally, we evaluate five full-training and transfer learning models (InceptionV3, VGG16, MobileNetV2, 
VGG19, and ResNet50), with the InceptionV3 model achieving peak accuracy at 78.41% for full training and 92.48% for 
transfer learning. In the concluding phase, a soft-voting ensemble mechanism amplifies training outcomes, yielding ensemble 
test accuracies of 76.56% for full-training models and 92.81% for transfer learning models. Notably, the ensemble compris-
ing the three newly introduced CNN models attains the pinnacle of test accuracy at 97.42%. This research is poised to drive 
advancements in ILD diagnosis, presenting a resilient computational framework that enhances accuracy and ultimately 
betters patient outcomes within the medical domain.
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Introduction

A diverse group of acute and chronic bilateral parenchymal 
pulmonary disorders known as ILD contain some clinical 
characteristics, but their severity and prognosis vary sig-
nificantly [1]. Idiopathic pulmonary fibrosis is one of the 
most common and serious interstitial lung disorders. It is 

characterized by an increase in fibrosis, decreased lung func-
tion, and eventually death [2]. Patients with idiopathic pul-
monary fibrosis typically die 5 years after being diagnosed 
[3]. Due to the need to rule out a variety of ILD, connective 
tissue diseases, and workplace and environmental exposures, 
diagnosing idiopathic pulmonary fibrosis can be challeng-
ing. Patients who are suspected of having idiopathic pulmo-
nary fibrosis frequently undergo high-resolution CT scans, 
but only when the typical pattern of ILD is clearly visible 
can the condition be reliably identified. Between the onset 
of symptoms and a diagnosis of idiopathic pulmonary fibro-
sis, a period of 1–2 years typically passes [4]. However, in 
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order to clarify the histopathological characteristics of ILD, 
many patients require an invasive surgical lung biopsy. A 
conclusive diagnosis may still be difficult to make despite 
histological evaluation due to the fact that pathologists may 
differ regarding histopathological findings and that a good 
diagnosis may depend on individual experience. The diag-
nosis is more accurate when pulmonologists, radiologists, 
and pathologists work together; sadly, not all patients have 
access to information of this caliber. Patients are required to 
visit recognized competence-based regional centers for such 
in-depth assessments, which take time [5].

Performance on categorization tasks is crucial to the 
quality of medical diagnostics. Because diffuse lung disease 
(DLD) patterns can be seen in the lung at any cross-section, 
high-resolution computed tomography (HRCT) images are 
thought to be useful for diagnosing ILD-associated DLD pat-
terns. Unfortunately, DLDs on HRCT images display a wide 
range of texture pattern meanings, making it difficult to diag-
nose the location of ILDs. For the proper treatment of IIPs, 
objective diagnosis and its quality improvement are sought, 
because the physician's ability to diagnose has an impact on 
the quality of the diagnosis. A computer-aided diagnostic 
(CAD) system for objective diagnosis is being developed 
in these decades to alleviate clinician strain. Using machine 
learning techniques, CAD systems are designed to provide a 
categorization function for a second opinion [6, 7].

By employing a variety of distinct processing layers, 
a subset of machine learning known as “deep learning” 
enables computational models to learn representations of 
data with multiple levels of abstraction. The most obvious 
difference between deep learning and traditional machine 
learning is that deep learning can automatically extract 
fully automated features and generate models that are suit-
able for tasks from raw data on its own, whereas traditional 
machine learning requires feature extraction from humans 
[8]. In recent years, deep learning techniques have made 
progress in a number of fields, including information tech-
nology and image and speech recognition. However, deep 
learning applications in the medical field are still in their 
infancy. The analysis of medical images and the associated 
patient electronic medical data is a perfect application for 
deep learning [9, 10].

The significance of ILD detection through deep learn-
ing within the industrial context rests upon its capacity to 
significantly enhance diagnosis efficiency and accuracy. In 
light of the escalating integration of medical imaging in 
clinical settings, an escalating demand arises for automated 
systems that can collaboratively aid radiologists and health-
care professionals in comprehending these intricate images. 
By harnessing deep learning algorithms, the capability to 
swiftly and meticulously process vast volumes of medical 
imaging data emerges, thereby mitigating the burden on 
healthcare practitioners and augmenting patient outcomes. 

Moreover, the utilization of deep learning for ILD detec-
tion extends its influence into the realms of drug develop-
ment and clinical trials. Through early identification of ILD 
patients, drug developers can orchestrate more streamlined 
and effective assessments of potential treatments. This expe-
dites the drug development process, ultimately translating 
into superior treatment options for ILD patients. The AI-
driven ILD detection paradigm engenders an amalgamation 
of advantages: elevating diagnostic precision and efficiency, 
diminishing the operational load on healthcare professionals, 
and catalyzing the pace of drug development and clinical tri-
als. This confluence of benefits underscores the compelling 
potential of AI-based ILD detection to reshape the medical 
landscape.

Deep learning applied to the patient's medical imaging 
and data mining of the patient's electronic medical record 
(big data) should improve patient outcomes. Cloud-based 
applications allow the deep learning algorithm to train 
continuously on data sets that are not restricted to a sin-
gle institution. In order to address unmet clinical require-
ments, numerous organizations are currently investigating 
applications based on deep learning. In the field of chest 
imaging, the creation and implementation of computer-aided 
detection (CAD) systems for the detection of nodules on 
chest radiographs and chest computed tomography (CT) has 
received a lot of attention [11]. Despite the fact that numer-
ous CAD systems are in use in clinical practice, their sub-
par performance (frequent false-positive and false-negative 
cases) has prevented widespread adoption [12]. Deep learn-
ing methods have the potential to overcome the limitations 
of existing CAD systems, and a number of experiments have 
produced encouraging outcomes. In chest imaging, disease 
pattern identification, diagnosis, and survival prediction 
have all been carried out with success using deep learning. 
There are still some reservations regarding its therapeutic 
application potential [13, 14].

The remaining sections of the article are arranged as fol-
lows. Section “Literature Review” covers a brief review of 
similar existing works. Section “Methods” deals with the 
methods that have been used in this work. The results and 
analysis of the experiments are presented in section “Data-
sets”. And a brief discussion and conclusion of this work are 
demonstrated in sections “Data Preprocessing” and “Results 
and analysis”, respectively.

Literature Review

Classical feature extraction methods like first order grey 
level statistics, grey level co-occurrence matrices (GLCM), 
run-length matrices (RLM), and fractal analysis were pro-
vided by the earliest CAD systems for ILDs to represent 
2D texture [15]. The adaptive multiple feature method 
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(AMFM) was created when these features were eventually 
combined [16]. Certain attempts have recently been made 
to apply deep learning DL techniques, particularly CNNs, 
following their outstanding performance in large-scale color 
image categorization [17]. The CNN modes can learn fea-
tures simultaneously while training an Artificial Neural 
Networks (ANN) classifier by minimizing classification 
error, in contrast to other feature learning techniques that 
produce unsupervised data representation models. The ini-
tial experiments on lung CT scans utilized shallow architec-
tures, despite the fact that the term “deep learning” implies 
the utilization of numerous successive learning layers. In 
[18], a modified restricted Boltzmann machine (RBM) that 
included particular CNN features was utilized for the pur-
pose of feature extraction and categorization of lung tissue. 
Weight sharing was done among the hidden neurons that 
were tightly connected to label (output) neurons during the 
supervised training of the entire network using contrastive 
divergence and gradient descent. A CNN was constructed 
entirely from scratch by the authors of [19], consisting of 
one convolutional layer and three dense layers. The shallow 
architecture of the network, on the other hand, prevents it 
from utilizing deep CNNs' descriptive capabilities. The pre-
trained deep CNN (AlexNet) from [17] was used in [20] to 
classify complete lung slices after being fine-tuned using 
lung CT data. AlexNet was designed to identify natural color 
photos with an input size of 224 × 224 pixels; consequently, 
the authors were required to scale the images and artificially 
create three channels by employing various Hounsfield unit 
(HU) windows. In addition, there are concerns regarding 
knowledge transfer due to the significant differences between 
ordinary color images and medical images, and identifying 
complete slices may only provide a very rough estimation 
of the condition.

Anthimopoulos et al. [21] built and trained one of the first 
CNNs to categories the most prevalent ILD patterns, reach-
ing a classification performance of 85.5% and exhibiting 
the DL identification potential for lung tissue idiosyncrasy. 
An experienced radiology team annotated 120 HRCTs by 
eliminating ambiguous lung areas and the bronco-vascular 
tree, which were then utilized to train and test the CNN. 
Christodoulidis et al. [22] developed a CNN architecture that 
can extract the textural variability of ILD patterns. Using 
transfer learning from multiple different non-medical source 
databases, they only achieved a 2% increase in the CNN 
performance. One of the downsides of this study was that 
they used CT scans instead of HRCT scans. Kim et al. [23] 
related shallow learning (SL) to DL for pattern classifica-
tion. The authors made an effort to use relevant data from 
six texture benchmark databases for the current ILD pattern 
categorization task. According to these studies, they sug-
gested to select a training source dataset that is comparable 
to the target domain and allow the network to learn some 

characteristics before fine-tuning. In their investigation, they 
used a CNN architecture with four convolutional layers and 
two fully connected layers. Simply increasing the number 
of convolutional layers increased accuracy from 81.27 to 
95.12%. Gao et al. [20] attempted a novel method for ILD 
pattern categorization, because they were aware of the dif-
ficulty of manually identifying region of interest (ROI) for 
automated pulmonary computer-aided diagnosis (CAD) sys-
tems. They demonstrated a more autonomous, grayscale-
based holistic image identification system that was compa-
rable to emphysema quantification [24].

A new method for creating an infinite number of arbi-
trary distinct ILD patterns from 2D HRCT images, which 
improved CNN's ability to classify patterns in lung tissue, 
was proposed by Bae et al. [25]. By providing a wide range 
of ILD patterns and stabilizing accuracy loss for the valida-
tion set, the program prevented overfitting. The accuracy on 
a specific area of interest or the entire lung was 89.5%, which 
was higher than the conventional CNN data augmentation 
rate of 82.1% and comparable to human capability. A CAD 
that could be easily implemented on standard computing 
software was created by Walsh et al. [26]. The preprocessing 
of 1157 HRCT images produced up to 500 distinct 4-slice 
montages (concatenations) per CT scan. This resulted in a 
multiplied image dataset consisting of 420,096 distinct mon-
tages for the training algorithm and 40,490 for the validation 
set. In this study, the neural network architecture was the 
convolutional neural network Inception-ResNet V2.

The knowledge gathered from training samples is taken 
into account when calculating the weights for deep CNNs, 
which have recently demonstrated remarkable proficiency 
in a wide range of tasks. “Off-the-shelf” features that can 
be used for categorization may be obtained by reusing the 
network feature extraction capacity, according to some stud-
ies [27, 28]. Through weight transferring methods that either 
freeze or precisely adjust the network’s parameters, transfer 
learning has been achieved in other studies. In addition, the 
specificity of various layering weights was investigated in 
[29]. The network's first and last layers, which are closest to 
the input and are typically generic, are more task-specific. 
Consequently, the parameters of the first layer of the transfer 
learning process can be fixed, the parameters of subsequent 
layers can be fine-tuned, and the network's non-transferred 
weights are typically initialized at random.

Transfer learning can make up for the lack of training 
data and improve the outcome of target tasks by utilizing 
knowledge gained in the source domain. Because there are 
typically few medical images that can be used for instruc-
tion, the advantages of transfer learning make it a popular 
method in the medical field as well. Numerous research-
ers have attempted to employ well-known CNNs that have 
already been trained on ImageNet for medical image identifi-
cation and classification tasks involving ultrasound, CT, and 
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X-ray imaging [30–32]. The domain dissimilarity variables 
still have an impact on the transferability of knowledge, 
despite the fact that these studies demonstrate the possibility 
of knowledge transfer from the domain of natural images to 
the domain of medical imaging. Several strategies to miti-
gate this effect have recently been the subject of research. 
Lu et al. [33] introduced a restriction between the source 
and target classifier predictions describe a novel approach to 
transfer learning for acquiring useful knowledge from source 
data. In “multi-stage transfer learning,” authors use an inter-
mediary domain to connect the source and target domains, 
as described in [34, 35].

Methods

Datasets

In this proposed work, three different types of datasets to 
detect ILD were used. The primary dataset [36] was made up 
using the HRCT images. The dataset consists of 3045 HRCT 
images with three-dimensional annotations of diseased lung 
tissue areas and diagnostic criteria for pathologically veri-
fied ILD disorders. It includes 108 image series with almost 
41 L of annotated lung tissue patterns, 128 individuals with 
1 of 13 ILD histological disorders, and a thorough set of 99 
medical data. It offers a.txt file with annotations and DICOM 
images. A statistical dataset was used to train ML models 
which was created by extracting features from the HRCT 
images.

Data Preprocessing

The initial slice thickness of HRCT images were less than 
1.5 mm and MRI images varied from 5 to 10 mm. The spa-
tial resolution ranged from 1.34 to 1.68  mm2/pixel. During 
the initial stage of preprocessing, each image was reduced to 
299 × 299 × 3 dimensions. A dataset with 5600 images was 
created for the training set, 1200 images for the validation 
set, and 280 images for the testing in DICOM format for 
both HRCT and MRI images. These DICOM-format images 
are loaded in our work and afterwards transformed into a 
NumPy array for DL model training.

The DICOM images include information on the patient 
and the imaging methods employed. Such data from DICOM 
images makes it simpler for the model to simply extract 
additional features during training. Each DICOM image is 
a single file, and the header includes all of the necessary 
data to identify the file. These data are organised into four 
levels of hierarchy: patient, study, series, and instance. A 
patient is the person who is undergoing an examination. The 
study is an imaging procedure that is carried out at a prede-
termined time and day at the hospital. Each study contains 

numerous series. A series can represent a patient who was 
physically scanned multiple times throughout a study or it 
might represent a patient who was physically scanned just 
once and the data were then reconstructed in different ways. 
A three-dimensional image's instance is treated as each slice 
of the image. A DICOM instance is the actual DICOM file.

InceptionV3

The InceptionV3 model, created by Google, consists of 10 
blocks with a total of 312 layers. This model has 3 incep-
tion blocks, 13 convolutional layers, and 2 pooling layers. 
A number of 3 × 3 filters with a stride of 2 PX are present in 
each convolution layer. The final layer has the same number 
of output nodes as categories in the dataset. Each convo-
lution block uses ReLU as the activation function and the 
SoftMax layer as the classification layer. The inception 
module seeks to behave as a multi-level feature extractor by 
performing 1 × 1, 3 × 3, and 5 × 5 convolutions within the 
same network module. Inception vN, where N is the version 
number disclosed by Google, has replaced the moniker of 
this architecture's initial iteration, GoogLeNet [37, 38].

MobileNetV2

The 16-layer blocks in the MobileNetV2 model have 33 fil-
ters and 1 PX as a stride in each layer of convolution. Google 
has also been working on this idea. The usage of a full con-
volutional division, which separates the convolution into a 
33-depth and a 1 × 1-pointwise convolution, is the only dif-
ference between MobileNet and other CNNs. ReLU served 
as the activation function in MobileNetV2, while SoftMax 
was employed for categorization. Two distinct block types 
can be found in the MobileNetV2 model. Downsizing blocks 
have a stride of 2, whereas leftover blocks have a stride of 
1. For these two blocks, three different types of layers are 
built. The first layer with non-linearity in 1 × 1 convolution 
is the ReLU6. Convolution based on depth was designed for 
the second layer. A 1 × 1 convolution with no non-linearity 
makes up the third layer [39, 40].

VGG16

One of the most popular pre-trained image categoriza-
tion models is the VGG-16. The Visual Graphics Group 
at Oxford University created it. This VGG16, which has 
13 convolutional layers, 5 pooling layers, and 3 fully con-
nected layers, was developed using ImageNet weights. It 
has numerous 33 filters with 1 PX as a stride on each layer 
of convolution. A SoftMax layer is the final layer used for 
categorization. Each block's activation function utilised the 
ReLU approach. The most notable aspect of VGG16 is that 
it constantly used the same padding and maxpool layer of a 
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22 filter with stride 2 and prioritised convolution layers of a 
3 × 3 filter with stride 1 over several hyper-parameters. The 
first convolutional layer has 64 filters, the second has 128 
filters, the third has 256 filters, the fourth and fifth have 512 
filters [41, 42].

VGG19

A fixed size of (224 × 224) RGB image was given as input 
to this network which means that the matrix was of shape 
(224,224,3). The mean RGB value of each pixel, calculated 
throughout the whole training set, was the only preprocess-
ing that was carried out. They were able to cover the entirety 
of the image by using kernels that were (3 × 3) in size with a 
stride size of 1 pixel. To maintain the image's spatial resolu-
tion, spatial padding was applied. Stride 2 was used to con-
duct max pooling over a 2 × 2 pixel window. Rectified linear 
unit (ReLu) was used after this to add non-linearity to the 
model in order to enhance classification accuracy and com-
putation time. As opposed to earlier models that used tanh 
or sigmoid functions, this one performed far better [43, 44].

ResNet50

The ResNet-50 model is divided into five stages, each com-
prising a convolution and an identity block. Each convo-
lution block contains three convolution layers, as do the 
identity blocks. Over 23 million trainable parameters are 
available in the ResNet-50. A convolution with 64 distinct 
kernels, each with a stride of size 2, and a kernel size of 
7 × 7 gives us 1 layer. Following that, it use a max pooling 
with a stride size of 2. The following convolution consists of 
three layers: a 1 × 1,64 kernel, a 3 × 3,64 kernel, and finally 
a 1 × 1,256 kernel. These three levels are repeated a total 
of three times use nine layers in this phase. The kernel of 
1 × 1,128 is shown next, followed by the kernel of 3 × 3,128 
and, finally, the kernel of 1 × 1,512. It use this procedure 
four times for a total of 12 layers. Following that, it has 
a kernel of size 1 × 1,256, followed by two more kernels 
of size 3 × 3,256 and size 1 × 1,1024; this is repeated six 
times, giving a total of 18 layers. Finally, a 1 × 1,512 kernel 
was added, followed by two more kernels of 3 × 3,512 and 
1 × 1,2048. This process was done three times, giving a total 
of nine layers. Then, it do an average pool, finish it with a 
completely linked layer made up of 1000 nodes, and add a 
softmax function to produce one layer [45, 46].

Transfer Learning

Transfer learning is a sophisticated deep learning technique 
that entails training a CNN model on a problem that is 
comparable to the one being solved. It is possible to avoid 
having to create a new model from scratch by using this 

method for feature representation from a previously trained 
model. It facilitates the flow of knowledge about the issue 
from one source to another. A pre-trained model is often 
trained on a large dataset like ImageNet, and the weights 
gained from the trained model can be used with the custom 
neural network to solve any other similar problem [47, 48]. 
Through this method, weights are reused to train a model 
more quickly and produce results with less generalisation 
error. These recently developed models can be utilised to 
make predictions directly on relatively untested problems or 
to train algorithms for related applications. Since all of the 
pre-trained models have already been trained on a sizable 
dataset, the final layer contains numerous parameters regard-
ing the original dataset. Therefore, a new classification layer 
must be added in place of the pre-trained models' final layer. 
The degree of similarity between the source data and the 
target data affects how well the model performs [49, 50].

Full‑Training Approach

Here, five deep learning models termed VGG16, VGG19, 
ResNet50, MobileNetV2 and InceptionV3 were used 
for classification of ILD. All models were trained with 
RMSprop optimizer with learning rate as 0.00001 each for 
100 epochs. All layers in the models underwent full training 
using the ILD datasets. The image acquisition, preprocess-
ing, and data augmentation stages in this method were the 
same as those in the transfer learning method. Since every 
model was built from scratch, the training process took 
longer than transfer learning. The number of layers, blocks, 
and input image resolution of each model varied. However, 
since each model was a sequential model, the order of the 
layers was always sequential. The ImageDataGenerator from 
keras.preprocessing was used to import each image and its 
associated label into the models. To prevent sending nega-
tive values to the following layers, the ReLU activation func-
tion was implemented for each layer. Two units of dense 
layers with a softmax classifier were added at the end after 
making all the convolution blocks. The output values from 
the softmax layer were 0 and 13, with 0 being a healthy case 
and 1 to 13 for various categories of ILD. The evaluation of 
each full-training model followed the same procedures as the 
transfer learning evaluation. Similar to how transfer learning 
was evaluated, each full-training model was evaluated.

ImageNet

It is a vast collection of labeled images intended for com-
puter vision research. This dataset contains over 14 million 
photographs with over 21,000 classifications. The Ima-
geNet LargeScale Visual Recognition Challenge (ILS-
VRC) was created specifically for image classification 
issues with transfer learning in a deep learning framework. 
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This challenge serves as a standard in image classification 
challenges based on transfer learning.

Soft‑Voting Ensemble

Soft-voting ensemble is a technique used in ML and DL 
to combine the predictions of multiple models. In a soft-
voting ensemble, each model in the ensemble assigns a 
probability to each possible class label, rather than mak-
ing a hard prediction. The final prediction is then deter-
mined by taking the average or weighted average of the 
predicted probabilities from all the models. Once the 
models are trained, they are used to generate predictions 
on a new, unseen dataset (e.g., a validation or test set). 
Instead of making binary or categorical predictions, each 
model assigns probabilities to each possible class label. 
For example, if there are three classes (A, B, and C), a 
model might assign probabilities [0.2, 0.6, 0.2] for a given 
instance, indicating a higher likelihood for class B. To 
determine the final prediction, the predicted probabilities 
from all the models are combined. One common approach 
is to take the average of the predicted probabilities for each 
class across all models [51, 52]. Alternatively, if certain 
models are deemed more reliable or accurate, their pre-
dictions can be weighted more heavily in the ensemble. 
Weighted averaging involves assigning weights to each 
model’s predicted probabilities based on their perfor-
mance or confidence. Once the aggregated probabilities 
are obtained, the final prediction can be made by select-
ing the class label with the highest probability. In some 
cases, multiple class labels may have similar probabilities, 
leading to a tie. In such situations, further tie-breaking 
techniques can be applied, such as selecting the class 
label with the highest confidence from a specific model 
or applying a predetermined rule. The performance of the 
soft-voting ensemble is assessed using appropriate evalu-
ation metrics, such as accuracy, precision, recall, or F1 
score, on a separate evaluation dataset. These metrics help 
gauge the effectiveness of the ensemble in making accurate 
predictions compared to individual models or other ensem-
ble techniques [53, 54]. Prediction is almost identical to 
the preceding example, but since this is a binary classifica-
tion problem, utilise only class B:

Classifier 1 correctly predicts class B with a probability 
m.
Classifier 2 correctly predicts class A with a probability 
q.
Classifier 3 correctly predicts class B with a probability v.

Therefore, class B will be predicted by the ensemble 
model with probability p = (m + (100 − q) + v)/3.

Proposed Approach

The plan of our research is depicted in Fig. 1 which includes 
HRCT and MRI dataset acquisition, data extraction, preproc-
essing, data augmentation, selection of pre-trained models 
for transfer learning, feature extraction, classification using 
the VGG16, VGG19, ResNet50, InceptionV3, and Mobile-
NetV2 models, and ensemble using soft-voting and hard-
voting techniques are the steps that make up this process. 
The images from the converted ILD dataset were in RGB 
format with a pixel range of [0,255]. During the preprocess-
ing phase, all of those photos were rescaled into the [0,1] 
range to meet the requirements of the pre-trained model. 
The classification layer of pre-trained models may not be 
useful for the new classification problem in transfer learn-
ing. As a result, we replaced it with a completely connected 
layer at the top layer of each model. Because the pre-trained 
network was frozen, only the weights of the top four layers 
and one classifier layer were changed during training. As 
a classification layer, a SoftMax layer was utilised on top 
of all models in this suggested strategy. In several experi-
ments, Adam and RMSprop optimizers with various learn-
ing rates were used to train 100 epochs. For the process of 
fine-tuning all the models, we took into account a variety 
of factors, including the number of trainable layers, includ-
ing the original and additional added layers, epochs, learn-
ing rate, and optimizers. Then, utilising statistical data, ML 
models such as Logistic, BayesNet, SGD, RandomForest, 
and J48 were employed to detect ILD. The statistical dataset 
was constructed by extracting and storing eighteen different 
features from HRCT images in a CSV file.

The soft-voting ensemble was applied on the proposed 
models, transfer learning model and ML models sepa-
rately to achieve better accuracy. Later, we again applied 
second-tier soft-ensemble by utilizing the prediction value 
from each ensemble training which can ensure the predic-
tion more accurately. The primary advantage of a two-tier 
soft-voting ensemble is the potential for improved prediction 
accuracy. By combining predictions from multiple models 
in a hierarchical manner, the ensemble can leverage the 
strengths of each model to make more accurate predictions. 
The first tier of models can capture different aspects or pat-
terns of the data, while the second tier integrates their pre-
dictions for a final decision. This can help reduce bias and 
increase overall accuracy. A two-tier soft-voting ensemble 
can enhance the robustness of the prediction process. Since 
multiple models are involved, the ensemble can handle noisy 
or uncertain data more effectively. If one model produces 
erroneous predictions due to outliers or specific data biases, 
the influence of that model can be reduced or mitigated at 
the second-tier voting stage. This robustness makes the 
ensemble more reliable in real-world scenarios. Two-tier 
soft-voting ensembles encourage model diversity, which can 
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lead to better performance. The first-tier models are typically 
diverse in terms of their algorithmic choices, hyperparam-
eter settings, or input data variations. This diversity helps 
to capture different perspectives or representations of the 
underlying data, enhancing the ensemble's ability to gen-
eralize and make accurate predictions on unseen instances. 
Ensemble methods, including two-tier soft-voting ensem-
bles, tend to reduce overfitting. Overfitting occurs when a 
model becomes too specific to the training data and fails 
to generalize well to new data. By combining predictions 
from multiple models, the ensemble can mitigate the risk 
of overfitting by averaging out individual model biases or 
errors, resulting in improved generalization performance. 

Two-tier soft-voting ensembles offer flexibility and adapt-
ability in terms of incorporating new models or replacing 
existing ones. If a more accurate or efficient model becomes 
available, it can be introduced into the ensemble at either the 
first or second tier. This adaptability allows the ensemble 
to evolve and improve over time as new models or algo-
rithms emerge. Another advantage of two-tier soft-voting 
ensembles is their potential to provide more interpretable 
predictions. By using a hierarchical structure, the ensemble 
can provide insights into the decision-making process. For 
example, the first-tier models' predictions can be analyzed to 
understand which aspects or features of the data contribute 
more strongly to the final decision. This interpretability can 

Fig. 1  The architecture diagram of the proposed work
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be valuable in domains where explainability is crucial, such 
as healthcare or finance.

CNN

The fundamental building block of any model that works 
with picture data is a Convolutional Neural Network. Visu-
als were considered when developing convolutions. There 
is an n-dimensional weights or filter matrix, where n is typi-
cally smaller than the image size. The input's filter size patch 
is used to multiply or dot product this matrix. The filter is 
applied sequentially to each overlapping section or filter-
sized patch of the incoming data, working from left to right 
and then from top to bottom [55]. CNN architecture is based 
on convolutional layers. The convolution layers transform 
the image's data before passing it on to the next layer as 
input. The transformation is referred to as the convolutional 
operation. It is necessary to specify the number of filters for 
each convolution layer. Patterns in objects, textures, edges, 
forms, curves, and even colors are what these filters look 
for. It identifies things or patterns with deeper layers that are 
more intricate. An image kernel, which can be described as 
a tiny 3 × 3 or 4 × 4 matrix applied to the entire image, is the 
fundamental component of a filter.

The images' input shape are (299,299,3), because their 
height and width were previously specified. And the number 
3 stands for the colour channel, which is represented by the 
fact that the images are RGB. The output size is (299 − 3 + 1, 
299 − 3 + 1) = (298,298) when a First Conv2d layer Convolu-
tion operation is performed on an image of (299,299) with 
a kernel size of (3,3), strides and dilation are set to 1 by 
default, and padding is set to ‘valid.’ Since we defined 32 fil-
ters, the output shape is now (None,297,297,32). We obtain 
((297 − 2/2) + 1,(297 − 2/2) + 1) = (148,148) assuming that 
the input image size is (297,297), that the kernel size of 
the first Max Pooling layer is (2,2), and that strides are by 
default (2,2). The Flatten layer creates a one-dimensional 
vector from all of the pixels along all of the channels with-
out taking batch size into account. The input of (7, 7, 64) is 
flattened to (7 × 7 × 64) = 3136 values as a result. Piecewise 
linear function known as the rectified linear activation func-
tion, the short-term ReLU directly outputs the input if the 
input is positive; if not, it will return zero. The corrected 
linear activation function makes it possible for models to 
learn more quickly and perform better by addressing the 
issue of vanishing gradients.

Results and Analysis

We assessed the model's performance using various accu-
racy metrics. The training and validation accuracies were 
measured to ensure that the model obtained enough knowl-
edge during training and that overfitting was kept to a min-
imum. After training, the testing accuracy was estimated 
using 200 test images. We determined the average training 
and validation accuracies of the last 20 epochs for all of 
these metrics. Individual model outputs were subjected to 
soft-voting ensemble technique.

Evaluating Full‑Training Models

The outputs of full-training of individual models and 
soft-voting ensembles are presented in Table 1. In all of 
the experiments, the epoch accuracies grew over time. 
The InceptionV3 model, which underwent 30 training 
epochs, had the greatest test accuracy of 69.37%, while 
the VGG16, mobileNetV2, VGG19, and resNet50 models 
provided accuracy of 68.39%, 67.56%, 66.2%, and 67.42%, 
respectively. But at this point, the soft-voting ensemble 
accuracy had reached 76.56%, surpassing the test accu-
racy from InceptionV3. During this time, the Incep-
tionV3 model likewise had the highest training accuracy 
of 72.35% and validation accuracy of 71.63%. The differ-
ence between the training and validation scores of all five 
models was just about 2%, ensuring that no overfitting 
occurred during the models’ training. After 60 epochs of 
training, the MobileNetV2 model had the greatest training 
and test accuracies with 74.86% and 72.72%, respectively, 
whereas InceptionV3 had the highest validation accuracy 
with 73.44%. However, the ensemble score of 73.14% was 
somewhat higher than the test accuracy of the Mobile-
NetV2 model. Among all the different models, the Incep-
tionV3 had the best training accuracy with 87.59%, valida-
tion accuracy with 84.95%, and test accuracy with 76.11%, 
while VGG16 had the lowest test accuracy with 78.41% 
after completing training of 100 epochs. All individual 
models' gaps between training and validation scores were 
about 3% or less, ensuring that there were no overfitting 
issues. All three of these models were used in an ensemble 
with soft voting, and the accuracy was 76.56%.

The training graph of fully trained InceptionV3 model 
is given in Fig. 2. It includes the accuracy and loss meas-
urements needed to assess the model's performance on 
both training and validation datasets. The figures clearly 
illustrate that no overfitting occurred during the model's 
training. For each epoch, the training and validation accu-
racies gradually improved. There was considerable volatil-
ity in both accuracies at the start of the programme, but 
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this settled down as the training progressed. It is also seen 
that the loss measurements dropped steadily until the final 
epoch. Based on this research, we can infer that the model 
produced efficient outcomes with no overfitting.

Evaluating Transfer Learning Models

Table  2 lists the results of soft-voting ensembles and 
individual models for transfer learning. In all transfer 

learning experiments, the accuracy grew with the pass-
ing of each epoch. After 30 training epochs, the Incep-
tionV3 model had the highest test accuracy of 79.28%, 
while the test accuracies of the VGG16, MobileNetV2, 
VGG19, and ResNet50 were 76.36%, 78.52%, 76.68%, and 
78.26%, respectively. The soft-voting ensemble accuracy, 
which was higher than the InceptionV3 test accuracy at 
the time, was 79.48%. The InceptionV3 model likewise 
had the highest validation accuracy with 81.74%, whereas 

Table 1  The results from full-
training models

Model Trained layers Epochs Training Acc (%) Validation 
Acc (%)

Testing Acc (%)

InceptionV3 316 30 72.35 71.63 69.37
InceptionV3 316 60 74.21 73.44 72.26
InceptionV3 316 100 87.59 84.95 78.41
VGG16 23 30 70.48 68.54 66.39
VGG16 23 60 72.34 70.83 68.37
VGG16 23 100 76.26 74.14 73.52
MobileNetV2 158 30 72.63 71.47 67.56
MobileNetV2 158 60 74.86 73.21 72.72
MobileNetV2 158 100 77.06 76.19 75.32
VGG19 26 30 69.36 67.76 66.2
VGG19 26 60 72.03 70.62 68.18
VGG19 26 100 76.38 74.28 73.86
ResNet50 55 30 70.64 67.94 67.42
ResNet50 55 60 73.26 71.52 70.08
ResNet50 55 100 76.56 74.36 74.28
Ensemble 30 70.08
Ensemble 60 73.14
Ensemble 100 76.56

Fig. 2  The training graph of 
fully-trained InceptionV3 model
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ResNet50 had the highest training accuracy with 82.13%. 
There was no overfitting during model training as evi-
denced by the less than 2% variations in scores between 
training and validation for all five models. The Incep-
tionV3 model once more showed the best test accuracy of 
85.31% after 60 training epochs. However, the ensemble 
score of 85.62% was a little higher than the InceptionV3 
model. At that time, the InceptionV3 showed the highest 
training accuracy with 88.26% and validation accuracy 
with 87.32%. Among all the individual models, it also 

achieved the best test accuracy with 92.48%, training accu-
racy with 94.64%, and validation accuracy with 94.52%, 
whereas the least test accuracy of 89.22% for 100 epochs 
resulted from VGG16. The accuracy of the soft-voting 
ensemble of all five models was 92.81%, the highest so 
far. All individual model gaps between training and valida-
tion scores were less than 2%, ensuring that no overfitting 
concerns existed. The training graph of transfer learning 
MobileNetV2 model is given in Fig. 3.

Table 2  The results from 
transfer learning models

Model Layers trained Epochs Training Acc (%) Validation 
Acc (%)

Testing Acc (%)

InceptionV3 66 30 82.05 81.74 79.28
InceptionV3 66 60 88.26 87.32 85.31
InceptionV3 66 100 94.64 94.52 92.48
VGG16 13 30 79.67 78.31 76.36
VGG16 13 60 85.08 84.13 83.59
VGG16 13 100 91.08 90.29 89.22
MobileNetV2 15 30 81.37 79.06 78.52
MobileNetV2 15 60 88.16 85.34 84.94
MobileNetV2 15 100 93.22 91.19 90.56
VGG19 15 30 79.88 78.54 76.68
VGG19 15 60 85.14 84.32 83.72
VGG19 15 100 91.36 90.41 89.56
ResNet50 10 30 82.13 79.22 78.26
ResNet50 10 60 86.57 84.44 84.08
ResNet50 10 100 91.68 90.06 89.84
Ensemble 30 79.48
Ensemble 60 85.62
Ensemble 100 92.81

Fig. 3  The training graph of 
transfer learning MobileNetV2 
model
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Evaluating Newly Constructed CNN Models

We developed three CNN models for ILD prediction and 
results from those models are demonstrated in Table 3. 
ILDNetV1 achieved highest training accuracy of 96.37%, 
validation accuracy of 94.88% and test accuracy of 94.08% 
after completing 100 epochs of training. The accuracy trend 
was same at 30th and 60th epochs break. The ILDNetV2 
and ILDNetV3 also performed well and reached test accu-
racy of 92.04% and 93.72% after 100 epochs of training. 
We applied soft-voting ensemble to achieve better accuracy 
since all models were achieved good results without any 
over-fitting. The ensemble test accuracies were higher than 
all three developed CNNs with test accuracy of 84.12% for 
30 epochs, 88.17% for 60 epochs and 97.42% for 100 epochs. 
The training graph of developed CNN ILDNetV1 is given 
in Fig. 4.

In subsequent experiments, alternative optimizers, includ-
ing Adam, Adagrad, and Adadelta, were employed follow-
ing the same methodology as the previous employment of 
the RMSprop optimizer. Employing these optimizers, the 
newly devised trio of CNN models underwent training for a 
total of 100 epochs. The outcomes of these training experi-
ments are presented in Table 4. Despite the notable per-
formance of the Adam optimizer, achieving an ensemble 
accuracy of 94.86%, it fell short of matching the level set 
by the RMSprop optimizer. The utilization of the Adag-
rad optimizer led to discernible accuracy discrepancies 
between training and validation scores. The ensemble test 
accuracy attained using Adagrad reached a modest 92.76%. 
Although the disparity between training and validation 
accuracies observed with the Adadelta optimizer was less 
than with Adagrad, the resultant accuracy metrics remained 
below expectations. After a hundred epochs of training, the 

Table 3  Training results of all 
developed CNN models using 
RMSprop optimizer

Proposed model Layers trained Epochs Training Acc (%) Validation 
Acc (%)

Testing Acc (%)

ILDNetV1 36 30 84.28 83.47 82.36
ILDNetV1 36 60 90.12 88.54 86.82
ILDNetV1 36 100 96.37 94.88 94.08
ILDNetV2 32 30 82.62 80.19 80.86
ILDNetV2 32 60 87.94 85.18 85.64
ILDNetV2 32 100 94.37 91.94 92.04
ILDNetV3 55 30 83.39 81.73 81.14
ILDNetV3 55 60 89.22 86.27 86.38
ILDNetV3 55 100 95.26 94.14 93.72
Ensemble 30 84.12
Ensemble 60 88.17
Ensemble 100 97.42

Fig. 4  The training graph of 
developed CNN ILDNetV1 
using RMSprop optimizer
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Adadelta optimizer yielded an ensemble accuracy of merely 
91.84%. Through these conducted experiments, it is evident 
that the RMSprop optimizer exhibited superior performance 
compared to the Adam, Adagrad, and Adadelta optimizers. 
In our modeling process, we implemented the EarlyStopping 
method in Python, which consistently terminated training 
for all models upon reaching 100 epochs. This strategic uti-
lization of the EarlyStopping technique effectively mitigated 
issues related to overfitting. The rationale behind this deci-
sion lies in the observation that, following the 100th epoch, 
there was limited discernible improvement in the validation 
accuracy over the subsequent six epochs. Consequently, we 
adopted a standardized training protocol of limiting all mod-
els to a maximum of 100 epochs.

Evaluating ML Classifiers

Then we used ML classifiers such as Logistic, BayesNet, 
SGD, RandomForest and J48 for detecting ILD using sta-
tistical data. The statistical dataset was created by extracting 
eighteen different features from HRCT images and storing it 
in CSV file. We considered five ILD combinations to train 
the ML classifiers. The combinations were created using 
five ILD cases such as Consolidation, Fibrosis, Groundglass, 

Micronodules and Reticulation with Healthy cases. The J48 
showed highest accuracy with all combinations (Table 5). 
Among all the combinations, J48 achieved 93.08% accuracy 
with C1 combination which was the highest accuracy from 
ML models. The other accuracy measurements of this model 
is given in Fig. 5.

Our next target was to find out which features contrib-
ute more in accuracy. Therefore, we considered the high-
est accuracy providing J48 with each features separately for 
training. The training results of J48 with each feature are 
given in Table 6. It shows that all features are contribut-
ing almost equal level in accuracy even though diagonal:SD 
(standard deviation) was the highest. The highest accuracy 
of 85.20% was obtained from Healthy_Micronodules com-
bination for diagonal:SD feature.

In the next phase, the Gabor filter was applied on the 
HRCT and trained all ML models in the same manner. Gabor 
filters are used to analyze textures in images and are widely 
used in computer vision and image processing tasks. The 
image were converted into the binary format with pixel val-
ues either 0 or 1. The threshold value is set to 127. The J48 
showed highest accuracy this time too. It achieved 95.55% 
accuracy with C1 combination which was the highest accu-
racy from ML models (Table 7).

Table 4  Training results of all 
developed CNN models using 
other optimizers

Proposed model Layers trained Optimizer Training Acc (%) Validation 
Acc (%)

Testing Acc (%)

ILDNetV1 36 Adam 94.14 92.08 92.46
ILDNetV2 32 Adam 92.62 89.78 90.16
ILDNetV3 55 Adam 93.15 92.26 92.54
Ensemble Adam 94.86
ILDNetV1 36 Adagrad 95.44 91.24 91.72
ILDNetV2 32 Adagrad 94.67 88.78 89.16
ILDNetV3 55 Adagrad 95.46 92.32 91.96
Ensemble Adagrad 92.76
ILDNetV1 36 Adadelta 92.37 91.26 90.70
ILDNetV2 32 Adadelta 90.79 89.18 89.22
ILDNetV3 55 Adadelta 91.64 90.38 90.16
Ensemble Adadelta 91.84

Table 5  Training results of all 
used ML classifiers

C1: Healthy_Consolidation C2: Healthy_Fibrosis C3: Healthy_GroundGlass C4: Healthy_Micronodules 
C5: Healthy_Reticulation

ML Classifiers Accuracy from 
C1 (%)

Accuracy from 
C2 (%)

Accuracy from 
C3 (%)

Accuracy from 
C4 (%)

Accuracy 
from C5 
(%)

Logistic 84.46 50.79 52.50 63.61 78.39
BayesNet 81.46 81.56 83.76 86.69 76.68
SGD 87.60 75.09 70.57 85.35 78.75
RandomForest 84.99 81.20 82.66 87.30 81.69
J48 93.08 83.88 85.84 92.19 88.40
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In the next step, the highest accuracy providing J48 
was considered again with each features separately for 
training. The training results of J48 model with each 
feature are given in Table 8. It demonstrates that all fea-
tures contribute almost equally to accuracy: The highest 
diagonal:SD was found. The Healthy_Micronodules com-
bination achieved the highest diagonal accuracy of 86.43% 
diagonal:SD feature.

Evaluating ML Classifiers After Applying 
Segmentation and Masking

The marker-controlled watershed transformation segmenta-
tion technique was applied on the images to achieve better 
results (Table 9). Marker-controlled watershed transforma-
tion is a segmentation technique used in image process-
ing and computer vision. It is based on the concept of 

Fig. 5  Measurement scores 
from developed CNN ILD-
NetV1

Table 6  Training results of J48 
for each feature

Feature Accuracy from 
C1 (%)

Accuracy from 
C2 (%)

Accuracy from 
C3 (%)

Accuracy from 
C4 (%)

Accuracy 
from C5 
(%)

Sum of 1 81.20 80.83 83.52 84.86 73.38
Sum of 0 78.72 80.83 83.39 84.74 73.26
Mean 78.46 80.83 83.15 85.10 73.26
Column:SD 80.94 76.19 77.53 74.97 76.31
Row:SD 78.46 79.61 80.71 82.42 73.14
Diagonal:SD 84.20 81.05 83.92 85.20 78.51
FFT:SD 81.20 80.83 83.52 84.86 73.38
DCT:SD 78.46 80.83 83.27 84.86 73.26
MSER_Mean 78.20 79.49 81.81 81.81 74.85
MSER_SD 78.46 79.24 81.56 82.30 75.21
BRISK_Features 78.72 79.12 81.20 82.05 75.46
FAST_Features 78.46 79.12 81.20 81.56 74.48
Harris 79.50 79.61 81.81 82.78 72.28
Kaze_Mean 78.46 79.49 82.42 83.15 73.26
Kaze_Std 78.46 79.61 82.54 83.27 73.26
MinEigen 78.98 79.61 82.30 82.78 72.89
Surf_Mean 78.46 75.95 75.95 76.68 73.26
Surf_Std 78.46 77.05 76.80 77.66 73.26
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watersheds, which are regions in an image that are sepa-
rated by watershed boundaries. In marker-controlled water-
shed transformation, markers or seed points are manually 
or automatically placed in the image to guide the segmenta-
tion process. These markers indicate the regions of interest 
or objects that need to be segmented. The watershed trans-
formation algorithm then treats the image as a topographic 
surface, where the intensity values represent the elevation. 
The algorithm floods the image from the markers, and as the 
water level rises, it forms basins around the markers. The 
boundaries between these basins are the watershed bounda-
ries, which represent the segmentation result. The marker-
controlled watershed transformation is particularly useful 
when dealing with complex images that have overlapping or 
touching objects. By providing accurate markers, the algo-
rithm can accurately segment the objects of interest.

The morphological masking approach was utilized to 
create a mask for the images of the dataset as shown in 

Table 10. Morphological masking is a technique used in 
image processing and computer vision to extract or enhance 
specific regions or features in an image using morphologi-
cal operations. Morphological operations are mathematical 
operations that manipulate the shape and structure of objects 
in an image. The two most commonly used morphological 
operations are erosion and dilation. In morphological mask-
ing, a binary mask, also known as a structuring element, 
is defined to represent the desired region or feature to be 
extracted or enhanced. The structuring element is a small 
binary image that defines the shape and size of the neighbor-
hood around each pixel. To apply morphological masking, 
the structuring element is scanned over the image, pixel by 
pixel. At each pixel location, the corresponding pixels in 
the image and the structuring element are compared. If the 
pixels match according to a specific condition, the pixel at 
that location is preserved or modified based on the desired 
operation.

Table 7  Training results of 
all used ML classifiers after 
applying Gabor filter

ML classifiers Accuracy from 
C1 (%)

Accuracy from 
C2 (%)

Accuracy from 
C3 (%)

Accuracy from 
C4 (%)

Accuracy 
from C5 
(%)

Logistic 86.70 51.48 54.10 65.40 80.95
BayesNet 83.62 82.66 86.31 89.13 79.19
SGD 89.92 76.10 72.72 87.75 81.33
RandomForest 87.24 82.30 85.17 89.75 84.36
J48 95.55 85.01 88.45 94.78 91.29

Table 8  Training results of J48 
for each feature

Feature Accuracy from 
C1 (%)

Accuracy from 
C2 (%)

Accuracy from 
C3 (%)

Accuracy from 
C4 (%)

Accuracy 
from C5 
(%)

Sum of 1 83.35 81.92 86.06 87.24 75.78
Sum of 0 80.81 81.92 85.93 87.12 75.66
Mean 80.54 81.92 85.68 87.49 75.66
Column:SD 83.08 77.22 79.89 77.08 78.81
Row:SD 80.54 80.68 83.16 84.74 75.53
Diagonal:SD 86.43 82.14 86.47 87.59 81.08
FFT:SD 83.35 81.92 86.06 87.24 75.78
DCT:SD 80.54 81.92 85.80 87.24 75.66
MSER_Mean 80.27 80.56 84.30 84.11 77.30
MSER_SD 80.54 80.31 84.04 84.61 77.67
BRISK_Features 80.81 80.19 83.67 84.36 77.93
FAST_Features 80.54 80.19 83.67 83.85 76.92
Harris 81.61 80.68 84.30 85.11 74.64
Kaze_Mean 80.54 80.56 84.93 85.49 75.66
Kaze_Std 80.54 80.68 85.05 85.61 75.66
MinEigen 81.07 80.68 84.80 85.11 75.27
Surf_Mean 80.54 76.98 78.26 78.83 75.66
Surf_Std 80.54 78.09 79.13 79.84 75.77
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Table 9  Marker-controlled watershed transformation segmentation on HRCT images

Marker Sample image

Internal marker

External marker

Watershed marker

Table 10  Morphological masking on HRCT images

Image type Sample image Image type Sample image

Original Color labels

Threshold Final mask

After erosion and 
dilation

Apply mask on original
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The same five ML models were again used to assess the 
performance of these segmentation and masking techniques. 
The J48 model showed highest accuracy this time too. It 
achieved 95.73% accuracy with C1 combination which was 
the highest accuracy from ML models (Table 11).

In the following step, the ML model with the highest 
accuracy, the J48 model, was looked at once more, with 
each feature used separately for training. Table 12 displays 
the J48 model's training results for each feature. It exhib-
its that all highlights contribute similarly to precision: The 
most extreme diagonal: SD was found. With an accuracy 
of 86.60%, the Healthy_Micronodules combination had the 
best diagonal accuracy: SD include.

Assessing Performance of the Proposed Two‑Tier 
Ensemble Framework Using the Untrained Images

To check the efficiency of our proposed work for classifying 
and categorizing ILD diseases, we applied some untrained 
HRCT images of various ILD category into the trained 
model. The proposed approach was able to predict ILD cat-
egory accurately with high similarity score. The predictions 
were there happened by considering the majority voting 
ensemble mechanism with predictions from our own three 
newly developed CNN models, five pre-trained deep learn-
ing models and five ML models. The predictions and their 
merging from the various models ensure the sufficiency of 
prediction results and capacity and efficiency for our sys-
tem’s prediction ability. Some samples of such prediction 
results are demonstrated in Figs. 6 and 7.

The given results represent the performance of our 
proposed two-tier ensemble prediction approaches for 

Table 11  Training results of 
all used ML classifiers after 
applying segmentation and 
masking

ML classifiers Accuracy from 
C1 (%)

Accuracy from 
C2 (%)

Accuracy from 
C3 (%)

Accuracy from 
C4 (%)

Accuracy 
from C5 
(%)

Logistic 86.87 51.58 54.21 65.56 81.11
BayesNet 83.78 82.82 86.49 89.34 79.34
SGD 90.10 76.25 72.87 87.96 81.48
RandomForest 87.41 82.46 85.35 89.97 84.52
J48 95.73 85.18 88.64 95.01 91.47

Table 12  Training results of 
J48 model for each feature after 
applying segmentation and 
masking

Feature Accuracy from 
C1 (%)

Accuracy from 
C2 (%)

Accuracy from 
C3 (%)

Accuracy from 
C4 (%)

Accuracy 
from C5 
(%)

Sum of 1 83.51 82.08 86.23 87.48 75.93
Sum of 0 80.96 82.08 86.09 87.36 75.80
Mean 80.70 82.08 85.84 87.73 75.80
Column:SD 83.25 77.37 80.04 77.29 78.96
Row:SD 80.70 80.84 83.33 84.97 75.68
diagonal:SD 86.60 82.31 86.64 87.83 81.23
FFT:SD 83.51 82.08 86.23 87.48 75.93
DCT:SD 80.70 82.08 85.97 87.48 75.80
MSER_Mean 80.43 80.72 84.46 84.34 77.45
MSER_SD 80.70 80.47 84.20 84.84 77.82
BRISK_Features 80.96 80.35 83.83 84.59 78.08
FAST_Features 80.70 80.35 83.83 84.08 77.06
Harris 81.77 80.84 84.46 85.34 74.79
Kaze_Mean 80.70 80.72 85.09 85.72 75.80
Kaze_Std 80.70 80.84 85.21 85.84 75.80
MinEigen 81.23 80.84 84.97 85.34 75.42
Surf_Mean 80.70 77.13 78.41 79.05 75.80
Surf_Std 80.70 78.24 79.29 80.06 75.80
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classifying ILD using two different untrained HRCT Images. 
It combines the predictions of multiple base models or clas-
sifiers to make a final prediction. According to Fig. 5, the 
ensemble prediction from proposed CNN models achieves 
a test accuracy of 98.23% and predicts the ILD category as 
“reticulation”. In the transfer learning ensemble approach, 
the test accuracy is slightly lower than the proposed CNN 
ensemble, at 96.74%. It also predicts the ILD category as 
“reticulation”. The Ensemble Prediction from Machine 

Learning achieves a test accuracy of 97.12% and, like the 
previous two, predicts the ILD category as “reticulation”. 
This is the final ensemble prediction that combines the out-
puts of the previous three ensembles or models. It achieves 
a test accuracy of 97.36% and predicts the ILD category 
as “reticulation”. All three ensemble approaches (Proposed 
CNNs, Transfer Learning, and Machine Learning) perform 
well in classifying ILD categories, with high test accuracies 
ranging from 96.74 to 98.23%. The final 2nd Tier Ensem-
ble maintains a high accuracy of 97.36%. Since it is a soft-
voting ensemble approach, it predicts the ILD category as 
“reticulation” with all three votes, because all three first-tier 
ensemble approaches also predict the same ILD category.

According to Fig. 6, the result suggests that the proposed 
CNN models achieved an ensemble test accuracy of 99.06% 
when predicting the ILD category, and it classified the ILD 
as “consolidation”. The transfer learning ensemble approach 
achieved a test accuracy of 94.28%. The predicted ILD cat-
egory was “fibrosis”. The ensemble prediction approach 
which used machine learning techniques, achieved a test 
accuracy of 97.84%. It classified the ILD as “consolida-
tion”. The final prediction appears to be a combination of 
the predictions from the three previous ensemble methods 
in a second-tier ensemble approach. The resulting predicted 
ILD category is “consolidation”, and the test accuracy is 
98.45%. The reason for predicting the category as “con-
solidation” is that it achieved most votes (from proposed 
CNN and Machine learning ensemble), only ensemble of 
transfer learning predicted a different category. It seems that 
the ensemble prediction method using multiple techniques 
has achieved high test accuracy for ILD category prediction. 
This approach likely aims to increase prediction accuracy by 
leveraging the strengths of various models or techniques.

Conclusion

In this proposed work, a new deep learning approach was 
proposed to detect ILD using HRCT images. In the first 
stage, three CNN models were developed and also used five 
full trained and five pre-trained models on the ImageNet 
dataset such as VGG16, VGG19, ResNet50, MobileNetV2, 
and InceptionV3 to detect ILD from HRCT images. Our 
proposed first model achieved highest individual model test 
accuracy with 94.08% than all other deep learning models. 
In each experiment, the RMSprop optimizers were used to 
train the models for 100 epochs using 25,000 augmented 
images generated from 2000 original images. In the sec-
ond stage, a new algorithm was developed to extract vari-
ous features from HRCT images and applied those features 
into five ML algorithms such as Logistic, BayesNet, SGD, 
RandomForest and J48. The J48 model showed better accu-
racy among ML models which reached highest accuracy of 

Fig. 6  Model predication for first sample image 

Fig. 7  Model predication for second sample image
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93.08%. The diagonal-wise standard deviation feature was 
contributing more on models’ training by analyzing each 
features separately with J48 model. The ensemble of mod-
els helped to achieve better results. Therefore, the majority 
voting mechanism with each kind of models separately was 
applied in the third stage. We achieved highest ensemble test 
accuracy of 97.42% after ensemble of all our three newly 
built CNN models. In the final stage, the two-tier ensemble 
concept was applied. The outputs of these ensemble models 
were fed into majority voting ensemble once again which 
helped to ensure the reliability of the model’s prediction 
on unseen images. Our results suggest that the proposed 
approach can be used to improve ILD detection accuracy 
compared to other deep learning methods, which may assist 
the doctors. When compared with the previous state-of-the-
art methods, our approach achieved better results.
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