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Abstract
Antimicrobial resistance (AMR) is a serious threat to global public health, necessitating rapid and precise diagnostic tools. 
The prevalence of novel antibiotic resistance genes (ARGs) has increased due to microbial sequencing, resulting in the need 
to extract vital information from vast amounts of data. Although many AMR prediction tools exist, only a few are accurate 
and scalable. We examined 20 widely used AMR prediction tools and chose 4 web-based tools for antimicrobial resistance 
surveillance over standalone software due to their easy accessibility, portability, and centralized data management, eliminat-
ing the need for complex installation and maintenance. CGE (Center for Genomic Epidemiology) provides bioinformatics 
tools and promotes open data sharing. At the same time, CARD (Comprehensive Antibiotic Resistance Database) is a valu-
able resource for antibiotic resistance gene information, collectively contributing to our understanding and management of 
antibiotic resistance. We highlighted web-based AMR prediction tools and performed a case study using the Pseudomonas 
aeruginosa complete plasmid sequence (CPS) to identify strengths and weaknesses in the system. Our study explored 
four web-based antibiotic resistance gene prediction tools: ResFinder, KmerResistance, ResFinderFG, and RGI. ResFinder 
excelled at finding acquired antimicrobial resistance genes as well as maintaining a database up to date. KmerResistance 
identified resistance genes using k-mer analysis. esFinderFG offered a unique perspective, excelling in detecting a broad 
range of resistant phenotypes, due to its inclusion of sequences discovered through functional metagenomics. RGI was ver-
satile in detecting a wide range of resistance genes and provided extensive resistance mechanism information. Researchers 
must understand the capabilities and trade-offs of these tools to make well-informed choices for efficient resistance gene 
identification and surveillance as the antibiotic resistance landscape evolves.
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Introduction

The world's most severe public health concern is the rapid 
growth of resistant superbugs, as well as the ongoing 
battle between bactericidal drugs and extensively drug-
resistant bacteria. Antibiotic overuse in both medical 
and agricultural contexts has aided in the development 
of multidrug-resistant (MDR) bacteria [1]. Unfortunately, 
many antibiotics lack specificity, indiscriminately killing 
pathogenic and non-pathogenic bacteria and leading to 
antibiotic-associated illnesses [2]. The innovation of new 
antibiotics to treat resistant infections is a major goal in 
healthcare, yet no obvious answer to this problem has been 
identified. These antibiotic-resistant genes allow bacteria 
to resist antibiotics in a variety of ways, including the acti-
vation of efflux pumps, antibiotic molecule degradation 
by enzymes, and chemical alteration (ribosome and cell 
wall) to protect antibiotic-targeted cellular targets. These 
resistance mechanisms, when combined, represent a dan-
ger to the therapeutic effectiveness of antibiotics [3–5]. 
The World Health Organization (WHO) lists AMR as one 
of the top ten global public health threats to humanity [6, 
7]. Drug-resistant diseases are also expected to kill ten 
million people every year by 2050 [8]. This indicates that 
drug-resistant diseases will result in more fatalities than 
road accidents, diabetes, and cancer combined [9]. Antibi-
otic formulation, testing, and screening are resource-inten-
sive and expensive, limiting possible treatment choices for 
resistant bacterial species [2].

In addition to the challenges posed by antibiotic-
resistant bacteria, antibiotic resistance genes (ARGs) can 
threaten public health [10]. ARGs are commonly present 
in transposons or plasmids, and they can be transferred 
from one cell to another by transduction, transformation, 
or conjugation. Resistance spreads rapidly within a bacte-
rial population and among different types of bacteria due 
to gene transfer, a phenomenon known as horizontal gene 
transmission [11]. The detection of these genes is essential 
for identifying resistant strains, validating non-susceptible 
phenotypes, and better understanding resistance epidemi-
ology [12].

The spread of antibiotic resistance genes (ARGs) 
among bacterial populations is greatly aided by plasmids, 
which are tiny DNA molecules distinct from chromosomal 
DNA. These mobile genetic components can easily travel 
across bacteria, allowing for the fast spread of resistance 
traits. Plasmids are like little vehicles holding ARGs, and 
they can transport these genes from one bacteria to another 
using methods including conjugation, transformation, 
and transduction [13]. This means that even if a bacterial 
strain develops resistance through mutation or other meth-
ods, the existence of plasmids allows it to rapidly share 

these ARGs with unrelated bacteria [14]. Plasmids can 
carry many ARGs at the same time, potentially generat-
ing a “reservoir” of resistance genes that can easily travel 
between bacteria. Understanding the role of plasmids in 
the spread of ARGs is essential in our efforts to prevent 
antibiotic resistance. Strategies for limiting the spread of 
ARGs must consider the role of these mobile genetic com-
ponents, as targeting plasmids can be an effective strat-
egy for limiting the spread of antibiotic resistance within 
microbial communities [15].

Phenotypic assays have traditionally been used to detect 
AMR. The criterion for determining antibiotic sensitivity is 
diffusion-based or standardized dilution in vitro antibiotic 
susceptibility test (AST), and much research and testing has 
been done to link AST findings with treatment response. 
Resistance surveillance and in some cases clinical therapeu-
tic guidance are increasingly using molecular approaches. 
These approaches include everything from PCR-based resist-
ance element detection to mass spectrometry-based methods 
[16]. Sequencing has become a viable approach for routine 
bacterial characterization due to the enhanced accessibil-
ity and cheaper cost of NGS [17]. Over the past few years, 
it has significantly improved our ability to combat AMR. 
Although NGS-based technologies can detect practically any 
known AMR gene or mutation and explore new variations of 
known AMR determinants, they have largely replaced tradi-
tional genotypic approaches for AMR identification [18–20]. 
Furthermore, as new phenotypic AMR determinants are 
discovered, sequence data can be continuously stored and 
re-analyzed. The primary drawback of any genotypic AST 
approach is that it can detect only proven AMR mechanisms, 
while resistance induced by novel mechanisms and/or gene 
expression regulation (hetero-resistance, increased efflux 
pump expression, etc.) cannot be detected [21].

Antimicrobial surveillance is therefore extremely crucial 
for forecasting antibiotic resistance developments and track-
ing the outcomes of medical interventions. The prediction 
of AMR in NGS data using a simple and quick method is 
essential for source tracking, infectious disease detection, 
diagnostics, and epidemiological surveillance, and addi-
tional research is highly required [22]. The development of 
tools for continuously monitoring AMR globally has become 
more important because these tools may provide useful 
information to assist healthcare professionals in develop-
ing stewardship programs and implementing public health 
measures. It is also required to create an infrastructure and 
network to support this huge amount of data [23].

Pseudomonas aeruginosa is a well-known opportunis-
tic pathogen with inherent resistance to several antibiotics, 
making it a serious problem in clinical settings [24]. Due to 
its unique combination of features, Pseudomonas aerugi-
nosa is distinguished in the field of plasmid transmission and 
antibiotic resistance genes. It poses considerable difficulty in 
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healthcare settings due to its broad host range of plasmids, 
innate and acquired resistance mechanisms, biofilm-forming 
properties, and high clinical significance [25, 26]. The abil-
ity of this bacteria to rapidly transfer resistance genes via 
plasmids within clinical settings highlights its significance 
in the wider field of antibiotic resistance research and man-
agement efforts [27].

In this context, the significance of understanding the 
resistance profile of Pseudomonas aeruginosa cannot be 
overstated. Using several ARG identification methods on 
Pseudomonas plasmid sequences can provide useful infor-
mation into the specific resistance genes prevalent in this 
bacterium and their ability to spread to different strains or 
species. This understanding is essential for efficient treat-
ment and infection control measures in healthcare settings, 
making it an important component of the overall effort to 
battle antibiotic resistance [28–31].

AMR is detected computationally by querying input DNA 
or amino acid sequence data for the existence of a pre-deter-
mined set of AMR determinants provided in AMR reference 
databases using a search algorithm (Fig. 1) [22]. Numerous 
drug resistance prediction tools have been developed and 
made publicly available online over the last couple of years 
[32]. There is, however, a requirement for the standardiza-
tion of tools. In this study, we conducted a thorough evalu-
ation of several commonly available web-based drug resist-
ance prediction tools, including ResFinder, ResFinderFG, 
KmerResistance, and Resistance Gene Identifier (RGI). We 
chose these tools primarily because of their user-friendly 
interfaces, which make them accessible even to people with 
no background in bioinformatics. These tools have many 
advantages over standalone applications, including conveni-
ence and access from any location with an internet connec-
tion. Real-time updates and scalability are other advantages, 
as web-based systems can easily adapt to expanding data 
quantities. Data backup and security features offer peace 

of mind, while collaboration tools promote teamwork 
and information exchange. Furthermore, because of their 
cross-platform portability and low cost, they are perfect 
for research projects with various technology setups and 
restricted resources. Using these benefits, we improve the 
efficiency and dependability of our research, resulting in 
more meaningful outcomes and advancing our understand-
ing of drug resistance.

Materials and Methods

The framework employed in this study is described in the 
subsequent sections, and the comprehensive methodology is 
depicted in the figure below (Fig. 2).

Validation Dataset

Pseudomonas aeruginosa is a pathogenic Gram-negative 
bacterium that is becoming more common in infections 
caused by multidrug-resistant (MDR) and extensively drug-
resistant (XDR) strains, limiting available effective treat-
ments. Plasmids contribute significantly to antibiotic resist-
ance because they are the means by which resistance genes 
are captured and then disseminated. Pseudomonas aerugi-
nosa plasmid nucleotide sequences were acquired using the 
key phrase “Pseudomonas aeruginosa” from the nucleo-
tide database of the NCBI (https://​www.​ncbi.​nlm.​nih.​gov/​
nucco​re/). The organism was then chosen as Pseudomonas 
aeruginosa, the species as bacteria, the molecular type as 
genomic DNA/RNA, the sequence type as nucleotide, the 
genetic compartment as plasmid, and the length from 900 
to 1100 bps. We picked this range of plasmid lengths for 
our investigation to compare the effectiveness of various 
antibiotic resistance gene prediction methods on shorter 
sequences, which are more difficult to annotate than longer 

Fig. 1   Working principle of 
AMR prediction tools

https://www.ncbi.nlm.nih.gov/nuccore/
https://www.ncbi.nlm.nih.gov/nuccore/
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ones. This option was chosen to test the tools' versatility 
and robustness in detecting antibiotic resistance genes in 
plasmids of varied lengths, particularly in cases involving 
relatively short plasmids. A thorough evaluation of these 
prediction tools requires assessing their performance in chal-
lenging scenarios. To obtain a standard range, the length of 
the sequence was taken into account by the Romaniuk et al., 
2019 article [33]. We obtained 26 Pseudomonas aerugi-
nosa plasmid sequences from the aforementioned screen-
ing, which are further considered for the AMR prediction. 
Table 1 includes NCBI accession numbers, plasmid length, 
and species of the retrieved sequences.

Segregation of In Silico AMR Determination Tools

The development of online databases and bioinformatics 
tools has been required for drug-resistance gene prediction. 
After conducting a scientific literature search from 2012 to 
2022, 47 freely accessible bioinformatics tools for identify-
ing AMR determinants were discovered, including the most 
commonly used tools listed below (Table 2).

Center for Genomic Epidemiology (CGE) is fully non-
profit and provides a variety of free online bioinformatics 
services. The Technical University of Denmark (DTU) 
provides core funding, as well as funding from a variety 
of public and commercial sources [51]. The Center for 
Genomic Epidemiology offers 38 services, including nine 
phenotyping tools: ResFinder, ResFinderFG, LRE-finder, 
KmerResistance, PathogenFinder, VirulenceFinder, Restric-
tion-ModificationFinder, SPIFinder, and ToxFinder (Fig. 3). 
From the mentioned nine phenotypic tools, we selected four 

Fig. 2   An overview of the AMR prediction pipeline

Table 1   Length and accession numbers of the plasmid sequences 
used

Sl no Accession no. Plasmid 
length 
(bps)

1 NZ_WTXS01000233.1 929
2 NZ_WTXS01000231.1 988
3 NZ_WTXR01000281.1 1038
4 NG_070900.1 1001
5 NG_049735.1 995
6 NG_049605.1 1031
7 NG_049577.1 1001
8 X60321.1 919
9 D78374.1 1014
10 NZ_CP033773.1 1089
11 MN013162.1 1022
12 CP033773.1 1089
13 NG_065882.1 912
14 KU881625.1 912
15 AY027589.1 957
16 NG_049776.1 983
17 NG_049393.1 1001
18 NG_049343.1 928
19 NG_049267.1 983
20 NG_048742.1 1067
21 NG_048082.1 1040
22 NG_047483.1 1082
23 NG_047415.1 1004
24 NG_047360.1 969
25 NG_047329.1 1034
26 NG_049223.1 938
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tools with versions (ResFinder 4.1, KmerResistance 2.2, 
ResFinderFG 2.0, and RGI 6.0.2) based on similarities of 
their objective i.e., to find out the resistance factors. Here we 
did not include LRE-Finder in our study because the input 
data format is FASTQ sequence, it only predicts AMR for 
a single species i.e., Enterococcus faecalis, and only identi-
fies acquired linezolid resistance genes without considering 
other antibiotics.

The comprehensive antibiotic resistance database 
(CARD) contains a large collection of rigorously curated 
antibiotic resistance genes that serve as the foundation for 
our study into antibiotic resistance mechanisms. The resist-
ance gene identifier (RGI), one of the several tools offered by 
CARD, is especially significant for our research. RGI is an 
important part of our research because of its unique capacity 
to detect and identify resistance genes.

Steps and Parameters Setup for Segregated Tools

ResFinder 4.1 searched the database for all seventeen 
classes of antibiotic drugs, regardless of the target region. 
The sequences were entered into the database, and the 
acquired resistance gene testing parameters were adjusted 
to predict resistance genes for all seventeen drug classes 
provided by the server. The minimum percentage iden-
tity was set to 90%, with perfect alignment set to 100%. 
The percentage of identity was computed by counting the 
number of identical nucleotides between the best-matching 

resistance gene in the database and the equivalent sequence 
in the plasmid. The tool was run with the aforementioned 
parameters, and the results were recorded.

The scoring method in KmerResistance 2.2 was species 
identification on maximum query coverage. Similarly, all 
sequences were entered into the database. The host data-
base was set to the bacterial plasmid. The gene database 
was set to resistant genes, and the identity threshold was 
left at 70%, with a depth correction threshold of 10%. 
The AMR genes identified in the resulting output were 
recorded, and the host organism and template sequence 
were also noted.

The functional genomics database ResFinderFG 2.0 
uses functional metagenomic antibiotic resistance deter-
minants to identify resistance phenotypes. Here again, all 
sequences were entered into the database. The percent-
age identity setting was set to 98%, along with the mini-
mum query length was set to 60%. The read type used 
was 'assembled contigs/genomes,' and the sequences were 
screened for all the thirteen antibiotic resistance determi-
nant (ARD) families present in the database.

The RGI 6.0.2 tool was executed with the default 
parameters. These default settings were used by the 
tool to guarantee a thorough and consistent analysis. All 
sequences were uploaded into the tool, and the analysis 
was carried out using the default settings. The outcomes 
produced with these default settings were meticulously 
recorded and analyzed.

Fig. 3   Center for Genomic Epidemiology based phenotyping tools
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Results

This study provides better insights into the advantages and 
drawbacks of the tools, such as user-friendliness, to deter-
mine which tool has the best visualization and which tool 
offers the maximum information.

Results have been discussed with the following aspects:

•	 Comparison based on the output-resistant sequence IDs
•	 Comparison based on the output antibiotic resistance 

genes (ARGs)
•	 Comparison based on the amount of information pro-

vided and result visualization
•	 In detailed results of each tool

Comparison Based on the Output‑Resistant 
Sequence IDs

In this analysis, four distinct resistance prediction 
tools were used to find and evaluate the presence of anti-
biotic-resistance genes in 26 plasmid DNA sequences. The 
data from each tool showed diverse patterns of shared and 
unique elements. ResFinder and KmerResistance, interest-
ingly, shared 2 elements. In contrast, ResFinderFG fea-
tured a unique element that was absent in the other tools. 
In addition, all four tools uniformly identified 5 elements. 
ResFinder, KmerResistance, and RGI additionally shared 
11 elements in common (Fig. 4).

Comparison Based on the Output Antibiotic 
Resistance Genes (ARGs)

ResFinder, KmerResistance, and RGI were three different 
tools that were used in the analysis of antibiotic resistance 
gene predictions. Notably, these three techniques had 2 
resistance genes as common elements. 13 more common 
resistance gene sequences have been identified from Res-
Finder and KmerResistance. RGI, on the other hand, pro-
vided 12 distinct resistance gene sequences. Additionally, 
ResFinder only identified 1 distinct resistance gene, whereas 
KmerResistance identified 2 exclusive elements (Fig. 5). 
ResFinderFG uses gene names that are distinct from those 
used by the other two tools since they are based on func-
tional annotation of gene products, which is another impor-
tant point to take into consideration.

Comparison Based on the Amount of Information 
Provided and Result visualization

The results of all three CGE tools are made available through 
email, whereas the results of RGI can be downloaded 
directly from the webpage. The outcomes of the analysis 
were displayed in a tabular manner in ResFinder, with the 
first table containing Antimicrobial, Class, WGS-predicted 
phenotype, and Genetic background. Other tables in Res-
Finder are organized by drug class, with each table con-
taining various drug class information, such as Resistance 
gene, Identity, Alignment Length/Gene Length, Position in 
reference, Contig or Depth, Position in contig, Phenotype, 

Fig. 4   Venn diagram comparing the resistance sequence IDs results of ResFinder 4.1, KmerResistance 2.2, ResFinderFG 2.0 and RGI 6.0.2
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PMID, Accession no., and Notes. There is an extended 
output option at the bottom of the result page that displays 
the alignment result. The results for KmerResistance are 
provided in a single table, which contains the following 
columns: Template, Score, Expected, Template Length, Q 
Value, P Value, Template Id, Template Coverage, Query Id, 
Query Coverage, Depth, and Depth Corr. The ResFinderFG 
result is displayed as a tabular box with numerous columns 
containing Hit name, Identity, Query/HSP, Contig, Position 
in contig, Drug treatment, and Accession no. Each of the 
three CGE tools offers a variety of downloadable files con-
taining various types of information (Table 3). The results 
for RGI are provided in two tables: the 1st table contains the 
following columns: Filename, Date (UTC), RGI Criteria, 
Perfect Hits, Strict Hits, Loose Hits along with the download 
option, and the 2nd table consists of the following columns: 
RGI Criteria, ARO Term, SNP, Detection Criteria, AMR 
Gene Family, Drug Class, Resistance Mechanism, % Identity 
of Matching Region, % Length of Reference Sequence.

In Detailed Result of Each Tool

As a case study, we took 26 plasmid sequences and executed 
them through four different prediction tools to identify AMR 
factors.

ResFinder 4.1

ResFinder 4.1 predicted that plasmid X60321.1 contains 
the majority of AMR genes. It carries two AMR genes, 
aac(6')-Ib3 resistance to aminoglycosides and aac(6')-
Ib-cr resistance to fluoroquinolone classes of antibiotics. 
The presence of AMR genes was found in 18 of the 26 
plasmid sequences tested in this study, with no resist-
ance gene found for thirteen of the drug classes: Colistin, 
Disinfectant, Fosfomycin, Fusidic acid, Glycopeptide, 
Macrolide, Lincosamide, and Streptogramins (MLS), 
Nitroimidazole, Oxazolidinone, Phenicol, Pseudomonic 
acid, Rifampicin, Tetracycline, and Trimethoprim. A 

Fig. 5   Venn diagram comparing the genes results of ResFinder 4.1, KmerResistance 2.2 and RGI 6.0.2

Table 3   CGE AMR tools and provided downloadable files

Tools Output downloadable files

ResFinder Phenotype table, species-specific phenotype table, results as text (acquired AMR gene results), 
resistance gene sequences, hit in genome sequences, results as tab-separated file (acquired AMR 
gene results), results as tab separated file (Chromosomal point mutation results), and results as a 
text file (Chromosomal point mutation results)

ResFinderFG Hit in genome sequences, results as text, resistance gene sequences, and results as tab separated file
KmerResistance Resistance results, species results, full resistance results, resistance alignment results, resistance 

consensus results, not-sam file and log file
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fair number of AMR gene homologs were identified in 
the other four drug classes (Supplementary Table 1). The 
drug classes in which AMR genes were detected were 
beta-lactams (13 out of 19; 68.42%), followed by ami-
noglycosides (21.05%), fluoroquinolones (5.2%), and 
sulfonamides (5.2%). There were 16 number of different 
acquired AMR genes found to be resistant to the four drug 
classes, with aminoglycosides and beta-lactams showing 
the highest frequency (Table 4). The most common genes 
are aadA10 (2/19), blaNPS (2/19), and blaPAU-1 (2/19), 
each of which was found to be present in 10.52% of the 
outcomes observed (Fig. 6).

KmerResistance 2.2

The sequences were uploaded to the KmerResistance data-
base. 8 plasmid template genes were linked to other Gram-
negative bacteria, while one plasmid template gene was 
linked to a Gram-positive bacterium, indicating that they 
could be the source of acquisition (Supplementary Table 2). 
Two Escherichia coli, one each of Klebsiella pneumoniae, 
Comamonas testosteroni, Acinetobacter sp., Pseudomonas 
putida, Achromobacter xylosoxidans, and Providencia sp. 
linked with Gram-negative strain. Glutamicibacter nico-
tianae Gram-positive strain is associated with one of the 

Table 4   Resistance to specific 
antimicrobial drug classes was 
identified in the input plasmid 
sequences

The presence of various numbers of AMR genes in four drug classes was observed in the 18 plasmids listed
AG aminoglycoside, BL beta-lactam, FQ fluoroquinolone, SM sulfonamide

Sl. no. Accession no. AG BL FQ SM Total

1 NG_070900.1 ✓ 1
2 NG_049735.1 ✓ 1
3 NG_049605.1 ✓ 1
4 NG_049577.1 ✓ 1
5 X60321.1 ✓ ✓ 2
4 NG_065882.1 ✓ 1
7 KU881625.1 ✓ 1
8 AY027589.1 ✓ 1
9 NG_049776.1 ✓ 1
10 NG_049393.1 ✓ 1
11 NG_049343.1 ✓ 1
12 NG_049267.1 ✓ 1
13 NG_048742.1 ✓ 1
14 NG_048082.1 ✓ 1
15 NG_047415.1 ✓ 1
16 NG_047360.1 ✓ 1
17 NG_047329.1 ✓ 1
18 NG_049223.1 ✓ 1
Total (%) – 4 (21.05%) 13 (68.42%) 1 (5.2%) 1 (5.2%) 19

Fig. 6   ResFinder 4.1 revealed 
prevalence of 16 AMR genes 
found in 18 Pseudomonas aer-
uginosa plasmids
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plasmids. Out of 26 input plasmid sequences, it predicted 
19 ARGs in 13 plasmids.

ResFinderFG 2.0

In ResFinderFG 2.0, three distinct ARD families were iden-
tified in six input plasmid sequences. The most common 
was beta-lactamase, which was found in four different input 
plasmid sequences. Three of the four plasmids with beta-
lactamase ARDs conferred resistance to ampicillin and one 
conferred resistance to piperacillin. Others include one dihy-
dropteroate synthase (dpr) and one aminoglycoside acetyl-
transferase (AAC), as both are resistant to Sulfamethazine 
and Amikacin respectively (Supplementary Table 3).

RGI 6.0.2

The sequences were submitted to the RGI database, reveal-
ing the presence of AMR genes in 16 out of the 26 plasmid 
sequences examined in this study. The results show that the 
observed plasmids have a wide range of resistance profiles. 
Several plasmids were shown to be a perfect match to certain 
AMR gene families, including IMP beta-lactamase, ANT(3'') 
aminoglycoside resistance, sul1 sulfonamide resistance, and 
several beta-lactamase types, including CARB, LCR, NPS, 
OXA, and OXA-935. These plasmids had a high identity and 
closely matched the reference sequences. Some plasmids, on 
the other hand, showed a strict match to resistance genes, 
such as APH(3'')-Ib and AAC(6')-Ib10, showing their par-
ticipation in aminoglycoside resistance. Furthermore, some 
plasmids did not match any known resistance genes in the 
database (Supplementary Table 4).

Discussion

Currently, the use of sequencing technology is revolution-
izing practically every component of biological study. In the 
field of infectious diseases, scientific discoveries, as well 
as diagnostic and outbreak investigations, are developing 
at a rapid pace. The ability to interpret sequencing data and 
the benefit of quick development, on the other hand, is not 
evenly distributed between institutions and countries [52, 
53]. We choose CGE tools because its goal is to give access 
to bioinformatics tools to those with limited knowledge, 
allowing all countries, institutions, and individuals to benefit 
from new sequencing technology. It is believed that doing 
so, will encourage more open data sharing around the world 
and give equal advantages to all. CGE is fully non-profitable 
and provides a variety of free online bioinformatics services 
[51].

We next opted to explore the CARD and its RGI tool. 
CARD is well-known for its large collection of curated 

antibiotic-resistance genes, which makes it a useful tool for 
understanding antibiotic resistance in bacterial genomes 
[54]. The RGI tool, which is part of CARD, is specifically 
designed for identifying and characterizing antibiotic resist-
ance genes, providing detailed information about their dis-
tribution and processes.

The AMR prediction methods have been built using DNA 
or amino acid sequence data. The presence or absence of 
software for searching within an AMR determinant data-
base, which can be precise to a tool or replicated from other 
resources, the type of input data accepted, and the search 
approach used, which can be alignment or mapping, are 
all factors that distinguish bioinformatics resources. Each 
tool has its own set of capabilities and limitations when it 
comes to AMR prediction, which includes the identification 
of AMR sequences, ARGs, the volume of information pro-
duced, and visualization. The web-based application uses a 
website as its interface or front-end. It has the potential to 
provide competitive benefits over traditional software-based 
systems by allowing researchers to streamline data and infor-
mation at a lower cost, time, and maintenance [51]. Using 
a regular browser, users can quickly access the application 
across any computer with internet access. Functionality and 
features were the two main elements that were prioritized. 
From this study, a non-bioinformatician or a non-technician 
can gain subject-specific knowledge as well as determine 
which tool is appropriate for their specific work. The table 
below compares the three tools used for identifying drug 
resistance genes and resistance sequence IDs as well as the 
amount of information they provide and the way their results 
are displayed (Table 5).

Description and Significant Observations of Each 
Selected Web‑Based Tools Have Been Discussed 
Below

ResFinder is a web-based tool that finds chromosomal altera-
tions that promote antibiotic resistance in bacteria's whole or 
partial DNA sequence and identifies acquired antimicrobial 
resistance genes in the whole-genome data using BLAST. 
As input, this tool accepts pre-assembled, whole, or partial 
genomes, along with fragmented sequence reads from four 
distinct sequencing technologies. It is accessible at (https://​
cge.​food.​dtu.​dk/​servi​ces/​ResFi​nder/). It is also constantly 
being updated whenever different resistance genes are dis-
covered [55]. Here, we found that the database showed a 
restriction that stated it only looked for acquired genes and 
did not detect chromosomal mutations. Since new resist-
ance genes are continuously discovered, it may be neces-
sary to confirm the presence or absence of identified AMR 
genes phenotypically. According to a study [56], genotyping 
using aligned whole-genome sequences is a practical sub-
stitute for surveillance based on phenotypic antimicrobial 

https://cge.food.dtu.dk/services/ResFinder/
https://cge.food.dtu.dk/services/ResFinder/
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susceptibility due to the high concordance (99.74%) between 
phenotypic and predicted whole-genome sequence antimi-
crobial susceptibility. One of the three most common genes, 
the aadA10 gene, was found to be resistant to the drug class 
aminoglycoside, while the other two genes, blaNPS and bla-
PAU-1, were found to be resistant to the beta-lactam drug 
class. AadA10 is a class 1 integron containing gene cassette, 
which suggests that rather than transposition, the resistance 
determinants from one plasmid to another plasmid were 
moved by recombination between two class 1 integrons [57]. 
The ability of integrons in bacteria to acquire new cassettes 
and recombine cassette rows emphasizes the adaptability of 
integron diversity. It is necessary to be aware of what other 
integron-mediated traits, such as increased resistance to anti-
microbials, virulence, or pathogenicity, might affect human 
health in future given their capacity to quickly spread resist-
ance phenotypes. There is an urgent need for control inte-
grons and cassette formation [58]. Tauch et al., 2003 found 
that blaNPS can rapidly transfer from one species to another 
[59]. According to Subedi et al., 2018, environmental resist-
ance gene pools contain blaNPS, which can be acquired 
and maintained in clinical isolates [60]. In a prior study, 
it was discovered that a clinical isolate of Pseudomonas 
aeruginosa contained a transferable plasmid containing the 
gene known as blaPAU-1, which is connected to the mobile 
genetic element [61]. Considering the high ubiquity of beta-
lactam resistance genes, it is preferable to monitor the level 
of antibiotic resistance and resistance genes in patients with 
Pseudomonas aeruginosa infection [62]. In this study, we 
found that Pseudomonas aeruginosa plasmids contain many 
beta-lactam resistance genes, several of which are found in 
a single plasmid. This leads us to the conclusion that beta-
lactam resistance genes are rapidly spreading through plas-
mids, and the need of the hour is to control their spread.

KmerResistance (https://​cge.​food.​dtu.​dk/​servi​ces/​KmerR​
esist​ance/) is primarily based on KmerFinder, which has 
been developed for the typing of bacteria with raw WGS 
data. KmerResistance and KmerFinder search for co-occur-
ring k-mers between such a query genome and a resistance 
gene database. KmerResistance, like KmerFinder, biases 
the threshold based on the quality of the data, as shown by 

the coverage as well as the depth of the detected species 
genome. Since these k-mers in this scenario are dispersed 
across the total sample, we can estimate both depth and 
coverage. Unlike KmerFinder, KmerResistance may gener-
ate an outcome for species prediction in addition to getting 
acquired antimicrobial resistance genes [38]. This database 
improves on poor-quality assembly using k-mers to map raw 
whole-genome sequence data against reference databases 
and species. (Fragments of a DNA sequence of length k) 
[12]. Additionally, it can find host or template genes. The 
KmerResistance database displays the resistance genes but 
not the drug classes as an analysis output, even though it is 
claimed to be more precise than ResFinder. As a result, com-
parisons were restricted to resistance genes that were present 
in both databases rather than an overall assessment of their 
sensitivity. ResFinder, ResFinderFG, and RGI accept input 
sequences in a single input file and provide results based on 
each sequence, while KmerResistance requires us to provide 
the sequence file separately and perform separate executions. 
If we provide the input sequence to KmerResistance in a 
single file, the results are very perplexing and unrelated to 
the input sequence.

The ResFinderFG (https://​cge.​food.​dtu.​dk/​servi​ces/​
ResFi​nderFG/) approach is based on databases containing 
sequences detected by functional metagenomics but not 
represented in existing databases constructed mostly from 
antibiotic-resistant genes in clinical isolates. It identifies a 
resistant phenotype in general [63]. Here this tool provides 
valuable insights into the presence of these beta-lactamase 
genes. One of the main causes of beta-lactam resistance in 
Pseudomonas aeruginosa is the increased prevalence of 
beta-lactamase [62]. Beta-lactamase enzymes render beta-
lactam antibiotics ineffective by hydrolyzing the peptide 
bond of the characteristic four-membered beta-lactam ring. 
The bacterium gains resistance after the antibiotic is ren-
dered inactive. Over 300 beta-lactamase enzymes have been 
described so far, with numerous kinetic, structural, compu-
tational, and mutagenesis studies. The threat posed by more 
and more powerful beta-lactamases to antimicrobial therapy 
is only going to increase [64]. The scientific and medical 
communities are only one step ahead and must continue to 

Table 5   Empirical evaluation of 
four different AMR prediction 
tools

https://cge.food.dtu.dk/services/KmerResistance/
https://cge.food.dtu.dk/services/KmerResistance/
https://cge.food.dtu.dk/services/ResFinderFG/
https://cge.food.dtu.dk/services/ResFinderFG/
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put forth diligent effort to prevent being overcome by the 
difficult and rapidly rising nosocomial pathogen resistance.

The RGI is a powerful tool for identifying antibiotic 
resistance genes [65]. The results show that the plasmids 
analyzed by RGI contain a variety of antibiotic resistance 
genes (ARGs) that confer resistance to numerous antibiotic 
classes, including carbapenems, cephalosporins, penams, 
penem, aminoglycosides, and sulfonamides. The bulk 
of ARGs identified by RGI is based on protein homolog 
models, which means they have a high degree of sequence 
similarity to existing ARGs in the CARD database. RGI 
observed ARGs from several families and resistance mecha-
nisms, including beta-lactamases, aminoglycoside-modify-
ing enzymes, and sulfonamide-resistant sulfonamides. These 
ARGs can inactivate or alter the target antibiotics, as well as 
replace the target enzymes with resistant ones [54].

The results also show that RGI can detect both homology-
based and SNP-based ARGs, which is critical for under-
standing the diversity and evolution of resistance mecha-
nisms. RGI discovered IMP-9, a variation of IMP-1 with a 
single amino acid change (Glu140Gly) that gives enhanced 
imipenem resistance [66]. RGI additionally identified OXA-
5, OXA-28, OXA-31, OXA-45, and OXA-935, which are 
OXA-1 variations with distinct SNPs that give varying 
amounts of carbapenem resistance [67].

RGI can also handle complete and partial genes, which 
is useful for analyzing low-quality or low-coverage assem-
blies, metagenomic contigs, or small plasmids. For example, 
RGI identified OXA-5 with a reference sequence length of 
109.74%, indicating that the input sequence contains some 
additional nucleotides at the ends of the gene. RGI addition-
ally detected OXA-28 with a reference sequence length of 
103.76%, indicating that the input sequence contains some 
insertions inside the gene. RGI identified OXA-935 with a 
reference sequence length of 112.41%, indicating that the 
input sequence contains some duplications within the gene.

The results also reveal that RGI can offer thorough anno-
tations and classifications of the predicted ARGs, such as 
gene name, family, mechanism, drug class, and ontology. 
RGI, for example, identified APH(3'')-Ib as an APH(3'') fam-
ily aminoglycoside-modifying enzyme that confers resist-
ance to aminoglycosides via phosphorylation [54]. CARB-4 
was also identified by RGI as a beta-lactamase from the 
CARB family that imparts resistance to penams via hydroly-
sis [54]. RGI also identified sul1 as a sulfonamide-resistant 
sul that belongs to the sul family and confers sulfonamide 
resistance by replacing the target enzyme dihydropteroate 
synthase [54].

However, the findings highlight some of RGI's limitations 
and concerns. RGI, for example, cannot directly analyze raw 
metagenomic reads, it only accepts data in FASTA format. 
It requires an additional process of assembly or mapping 
before using RGI. Depending on the quality of the assembly 

or mapping techniques, this can result in errors or biases in 
the output. Some plasmids in the data, for example, had no 
ARGs discovered by RGI, which could be owing to poor 
assembly or mapping quality [21]. RGI also relies on CARD 
reference data, which is updated and curated regularly. This 
means that depending on the version of CARD used, the RGI 
information could vary over time. This also implies that RGI 
may overlook some novel or rare ARGs that are not yet listed 
in CARD. Some plasmids in the results, for example, have 
no ARGs detected by RGI, which could be the result of rare 
or novel ARGs not found in CARD [21]. RGI additionally 
employs a defined cut-off for homology-based ARG detec-
tion based on curated bit scores. This may not be optimal for 
a wide range of sequences or organisms, resulting in false 
positives or false negatives. For example, some plasmids in 
the data had ARGs discovered by RGI using strict criteria 
rather than perfect criteria, implying that their bit scores are 
lower than the cut-off. This could be due to a low identity 
or a short matching region between the input and reference 
sequences [21].

Conclusion

Finally, our study compared four different web-based anti-
biotic resistance gene prediction tools: ResFinder, Kmer-
Resistance, ResFinderFG, and RGI. ResFinder is a web-
based application that specializes in detecting chromosomal 
changes in bacterial DNA sequences that increase antibiotic 
resistance. It excelled at identifying acquired antimicrobial 
resistance genes in whole-genome data and kept its database 
up to date with newly found resistance genes. ResFinder, on 
the other hand, is confined to acquired genes and does not 
include chromosomal alterations. Based on the KmerFinder 
approach, KmerResistance presented an alternative solution. 
It searched for co-occurring k-mers in query genomes and 
resistance gene databases, revealing information on species 
predictions and acquired antimicrobial resistance genes. 
The ability of KmerResistance to overcome poor-quality 
assembly concerns using k-mers to map raw WGS data is an 
important feature. ResFinderFG brought a unique perspec-
tive to our study. It excelled in detecting resistant phenotypes 
in general, due to databases including sequences discovered 
by functional metagenomics. As already stated RGI proved 
to be a strong technique for discovering antibiotic resist-
ance genes. It excelled in detecting a wide range of resist-
ance genes, both homology-based and SNP-based, revealing 
important information about resistance mechanisms. Fur-
thermore, RGI's capacity to handle full and partial genes 
made it a versatile candidate for analyzing various types of 
sequences. RGI distinguishes itself by providing detailed 
information regarding gene name, family, mechanism, drug 
class, and ontology in its annotations and classifications of 
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predicted ARGs. The four tools were empirically evaluated 
in this study, with their features, limitations, and sensitivities 
examined. As sequencing technology advances the area of 
infectious disease research, enabling fair access to bioinfor-
matics tools is critical for global pathogen surveillance and 
effective tracking of antibiotic resistance based on genomic 
data. Researchers can make informed selections on which 
tool most effectively achieves their study goals by under-
standing the capabilities and trade-offs of different tools. 
The constantly evolving landscape of antibiotic resistance 
needs continuous attempts to improve tools and methods for 
more efficient resistance gene identification and surveillance.
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