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Abstract
Internet of Things (IoT) devices are challenging to manage information security due to some factors such as processing 
capability, exponential growth in homes, and their low energy consumption which raises the risk of cyberattacks. One way 
to avoid cyberattacks is using an intrusion detection system that is able to recognize assaults while warning users so that 
appropriate countermeasures can be taken. Several deep learning and machine learning techniques have been used in the 
past to try to detect new assaults; however, these attempts have not been successful. In order to optimize IoT devices, in this 
study, we make a classification of network assaults using the convolutional neural network models mCNN and CNN. This 
study aims to assess the application of deep learning intrusion detection systems for IoT devices. The NF-UNSW-NB15-
v2 dataset was used in this experiment to train the neural network. The network stream’s data were transformed into RGB 
images, which the neural network was trained on. The mCNN model outperformed the CNN model when compared to the 
proposed one for classifying network attacks. In addition, both networks perform better in most categories, with the excep-
tion of network attack detection, where the CNN performed worse than the suggested mCNN model.

Keywords Convolutional neural network (CNN) · Internet of Things (IoT) · Intrusion detection system (IDS) · Machine 
learning (ML) · Deep learning (DL)

Introduction

The Internet of Things (IoT), which is a topic of computer 
science and engineering, is a trend in industry and academic 
sectors that has grown in popularity in the last years [5]. The 
term Internet of Things refers to a new paradigm of com-
munication that describes devices with actuators and sensors 

that are able to perceive their environment, interact with 
another device, and exchange information over the Internet 
[14, 23]. The number of IoT devices currently linked to the 
Internet is estimated to be around 50 billion, and in the years 
to come, this number is likely to increase dramatically [9]. 
The enormous amount of data produced by linked devices 
can be used by many applications. A few examples of the 
many application scenarios for the IoT include those in the 
areas of food and agriculture, demography, and augmented 
learning. For instance, it is estimated that more than 15 bil-
lion devices with IoT technology will be used for agriculture 
by 2025 [11].

Anomaly combating this danger requires the use of intru-
sion detection systems (IDS), which are crucial elements of 
intrusion detection in IoT systems. The great majority of cur-
rently available IDSs create detection models using conven-
tional machine learning (ML) methods [8], which are further 
discussed below. The development of IDS models typically 
makes use of ML techniques because they are so powerful. 
Traditional ML techniques, which demand complex feature 
engineering, would require considerable research advances 
to extract required features from the information due to the 
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vast volume of unstructured data created by IoT devices. 
As a result, implementing standard ML-based solutions 
still presents a number of difficulties. Deep learning (DL) 
approaches have gained popularity in IDSs during the past 
few years, especially in the military industry.

Since it is simpler to extract information from DL than 
from conventional learning, it is often thought to be more 
reliable and accurate [6]. Deep learning is employed because 
it is simple to use and more accurate in extracting data. As 
a result, some research has focused on the use of DL tech-
niques in domains like malware and anomaly detection, with 
mixed results. Deep learning approaches have been used in 
anomaly and malware detection to solve issues from techni-
cal and regulatory viewpoints, respectively. The majority of 
IDS systems have been created by employing, among other 
things, self-organizing mobile networks, wireless sensor net-
works, and already-existing computer networks [4]. There 
has not been much research, especially looking at DL meth-
ods in the IoT arena [7]. Thus, the main objective of this 
study is to explore the best and most efficient ways to deploy 
decentralized approaches in IoT and DNN contexts. This 
study provides a thorough, concentrated, and high-quality 
analysis that uses DL approaches to find reliable anomaly-
based IDS.

The rest of the paper is structured as follows. The next 
section comprises the “Related Work”. “Materials and Meth-
ods” for IDS are followed in the third section. The fourth 
section of the study presents the “Results”, while the fifth 
section offers the “Discussion”. The last section contains the 
“Conclusion” as well as the future scope of the study area.

Related Work

Security is a vital and crucial part of the information busi-
ness that safeguards its hardware and software systems from 
external threats. Data security is becoming increasingly 
crucial to a company’s success as the volume of fresh data 
collected on the Internet rises. In this section, our review 
focuses on four topics: IoT security, intrusion detection fac-
tors, conventional techniques for detection, and techniques 
for sequential detection.

IoT Security

There is no centralized system core architecture for IoT sys-
tems [23]. In contrast to conventional centralized system 
core architectures, IoT systems produced an ecosystem of 
interconnected gadgets and smart cities [16]. It is currently 
a crucial component of the infrastructure for smart cities. 
In the future, anyone with an internet connection will be 
able to access vast volumes of private and sensitive data 
by leveraging embedded device networks or other wireless 

techniques [4]. Users, service providers, and enterprises can 
all benefit from the IoT, but there are also several disad-
vantages. Unlike a standard network system, an embedded 
system is able to communicate using a protocol that might 
vary depending on the application and device. There is not a 
centralized, standardized architecture in place yet for creat-
ing security measures. As the volume of data increases, this 
raises security issues related to IoT networks [3]. Malicious 
programs, trojan horses, hackers, and viruses are typically 
used in network attacks and odd behavior. These are the 
most pervasive and harmful objects. IoT networks are seri-
ously threatened by device manipulation, device and iden-
tity robbery, and eavesdropping [17, 25]. In summary, the 
following are the networking technologies to link hardware 
devices in the home automation system: direct cable con-
nection, phone line, Bluetooth, radio network, AC network, 
Wi-Fi online network, and Ethernet. An IoT-based network 
was established using wireless sensors as the infrastructure 
for the smart home system.

The integrity of data is impacted when the IoT is hacked, 
as well as people’s lives. IoT security systems can be com-
promised by hackers allowing them to get access to private 
workspaces like IT infrastructure. In addition, IoT weak-
nesses enable hackers to gain access to sensitive systems 
and data. Before transmission and exchange, an IoT device 
must authenticate and encrypt data to guard against illegal 
access. Even if data are stolen, encryption keeps hackers 
from accessing it. The autonomous control trap is avoided 
by a machine that cannot be controlled [2]. This tactic can be 
applied in a variety of circumstances. For instance, for traffic 
recognition, a variety of ML techniques have been proposed. 
Long-established traffic recognition and classification algo-
rithms include decision trees (DT) and Random Forests (RF) 
[1]. Restricted Boltzmann Machine (RBM) and Support 
Vector Machine (SVM) were employed to detect as well as 
to recognize the traffic of a network [27]. Nevertheless, ML 
has made it possible to create more complex techniques for 
analyzing security concerns. In addition, Intrusion Detec-
tion Factors (IDS) were developed using hybrid techniques, 
where the total procedure is broken down into three sections, 
and employs a variety of DL techniques [6]. The technique 
has been used to find a variety of malicious network traffic 
anomalies. The method processes network data calculations 
using a range of statistical techniques. This is accomplished 
by watching how the neutral points in the system interact. 
A number of network security factors must be analyzed in 
order to find network security anomalies.

Intrusion Detection Factors

An IDS must first discriminate between regular data and 
system abnormalities before it can attempt to detect a sys-
tem intrusion. As a result, the IDS should recognize the 
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features of malicious data. For both normal and abnormal 
data, classification systems need to separate the two informa-
tion sets. The technology automatically determines the dis-
tance between nodes using a network-specific code [12]. The 
application of this technique is based on the following key 
premise: data integrity and normalcy, which are estimated 
using the consistency distance between two nodes [10]. 
Consequently, a wide distance between nodes is a warning 
sign that the data may be unusual. The distance between two 
nodes in a network is determined using the Manhattan dis-
tance. In addition, in unsupervised deep learning, the output 
of the feature extraction algorithms is crucial since it deter-
mines the final product of the learning process. As a result, 
the technique ought to safeguard typical data while enabling 
ongoing defense. Adding traffic and carrying out information 
operations are examples of network manipulation [4].

Conventional Techniques for Detection

ML may be useful for identifying malicious anomalies in a 
network, so it is very helpful for identifying hackers. Fur-
thermore, Automatic Dimensionality Reduction (ADR) can 
be described as a video streaming approach that minimizes 
dimensionality by making use of both the encoder and the 
decoder. Input, output, and hidden layers make up the final 
three layers. In addition, autoencoders employ deployment, 
fine-tuning, and pre-training. Professionals work in a con-
trolled environment to complete all of this. Deep belief net-
works (DBNs) are also important since they are regarded 
as conventional DL techniques that integrate unsupervised 
RBM and supervised backpropagation network layers. DBNs 
integrate supervised and unsupervised backpropagation 
network layers [23]. Two DBN strategies are supervised 
RBM processing and unsupervised RBM processing. In 
order to construct a hybrid anomaly detection system, these 
two methodologies were integrated. By employing autoen-
coder techniques to separate vectors, this strategy reduces 
their dimensionality. The DL systems categorize the data 
that DBN systems collect. In conclusion, hybrid systems 
are more accurate at detecting and have lower time-related 
complexity. Despite the fact that approximately one-eighth 
of all network traffic cannot be identified.

Techniques for Sequential Detection

Network traffic and program code are examples of sequential 
data that predominate in the field of cyberspace security. 
System routine sequence data are the most accurate and use-
ful data to have since it shows how a program interacts with 
the system kernel. It is simple to get real-time traces of the 
system routine for data acquisition. In addition, the order 
of the system procedures matches the language of the sys-
tem. The system routine and its order are contrasted with the 

words and sentences of spoken language. If the system under 
study is out of synchronization using these data, the back-
end of the sequential model models the normal language 
sequence of the system in order to forecast anomalies using 
an ensemble of thresholding classifiers. The probability dis-
tribution of a system sequence might be calculated using the 
language model. A one-hot encoding form is used to feed 
the input into the model [21]. The Backpropagation Through 
Time (BPTT) algorithm delivers standard samples during 
the training phase. Neural networks (NN) and k-means mod-
els serve as the backend classifiers. Comparatively, a web 
shell is harder to find than a backdoor.

Materials and Methods

This section explains how the NF-UNSW-NB15-v2 data-
set,1 which was reported in the study, was utilized to create 
DL techniques that could detect, recognize, and categorize 
cyberattacks. We go into great detail about our categoriza-
tion research and the NN techniques we tested. We also go 
into greater detail on classification experiments.

Dataset

The NF-UNSW-NB15-v2 dataset was released in 2015 by 
the Cyber Range Lab at the Australian Centre for Cyber 
Security (ACCS). It is one of the most widely dataset used 
for Network Intrusion Detection System (NIDS) that is 
available according to experts at the ACCS. By compar-
ing the Argus and Bro-IDS datasets and extracting the 35 
most adequate characteristics from each, 12 additional 
features were produced [19]. In addition, we included 
network traffic produced by IXIA PerfectStorm tools and 
recorded it as pcap files. We constructed a dataset dubbed 
the NF-UNSW-NB15-v2 using 43 NetFlow characteristics 
that were obtained from the nProbe pcap file as criteria 
and comparing it to the UNSW-NB15 dataset.2 A recently 
developed dataset called NF-UNSW-NB15-v2 is based on 
the UNSW-NB15 dataset but contains additional data. The 
results showed that adopting this updated dataset led to con-
siderable gains in multi-class classification and decreased 
prediction times, which led to the selection of this data-
set [22]. Figure 1 shows the framework for developing an 
improved CNN approach for the intrusion detection system 
for IoT devices. The study accessed the dataset then preproc-
essed it. The CNN model was developed for an instruction 
detection experiment, the model was trained and evaluated.

1 https:// rdm. uq. edu. au/ files/ 8c6e2 a00- ef9c- 11ed- 827d- e762d e1868 
48.
2 https:// resea rch. unsw. edu. au/ proje cts/ unsw- nb15- datas et.

https://rdm.uq.edu.au/files/8c6e2a00-ef9c-11ed-827d-e762de186848
https://rdm.uq.edu.au/files/8c6e2a00-ef9c-11ed-827d-e762de186848
https://research.unsw.edu.au/projects/unsw-nb15-dataset
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Data Preprocessing

The next stage following data collection is preprocessing 
before using the preprocessed data to train our model. A four-
step approach involves cleaning the data, converting the data, 
dividing the data into training and testing sets, and produc-
ing visual representations. Then, we used a CSV file with 43 
NetFlow routines, each with a malicious label and an attack 
category. The values that cannot be converted to integers or 
floating points were removed. In order to lessen the bias in 
model training, we eliminated six attributes from each data-
set entry that are not helpful for classifying network attacks. 
Feature engineering was carried out to preprocess or extract 
particular attributes from the raw data before data was entered 
into a CNN. Resizing, cropping, color enhancement, and other 
domain-specific preprocessing methods fall under this cate-
gory. There are not any port numbers, IPv4 source or destina-
tion addresses, or minimum or maximum traffic TTLs. Follow-
ing cleansing, we have a dataset with 9 classes and 37 features. 
We just utilized 40% of the dataset for speed. The attacks were 
distributed equally thanks to the hierarchy split. We have to 
divide the dataset into training (70%), testing (15%), and vali-
dation (15%) groups after the image conversion. Each assault 
in every dataset has a hierarchical representation. There were 
560,927 samples utilized for training, validation, and testing. 
Since high variance is less of a problem for large datasets than 
for small datasets, a 3-way holdout is typically used for train-
ing. In this study, the proposed approach in Nguyen et al. [20] 
was followed because we use a non-image-based dataset. The 
min–max scaling method was used to normalize our data (see 
Eq. 1). The array is the proper size thanks to padding. The 
result of multiplying 255 by a color map is an 8-bit integer. 
Denial-of-Service (DoS) attacks and malware are improved 
by color maps in CNN graphics [23]:

(1)x
� =

x −Min(x)

Max(x) −Min(x)

Model Development

mCNN

In the CNN framework, there are three convolutional mod-
ules which are followed by two completely connected layers, 
two fully connected layers, and a softmax activation layer, 
which slightly alters the fundamental CNN structure [13, 15, 
23]. Similar smaller models can be used to classify different 
types of malware as well as IoT and Android malware [26]. 
This network will be utilized for comparison; however, it 
differs significantly from the fundamental CNN structure. 
This structure is made up of a 3 × 3 convolutional layer, a 
normalization layer, and a max-pooling layer (2 × 2). The 
entire structure of mCNN is presented in Fig. 2 where the 
first two convolutional modules tend to widen as the distance 
between them increases from 3 to 16 and then to 32.

CNN

The network topology is composed of convolutional mod-
ules (blocks) and groups rather than the conventional 3x3 
convolution. Each block in Fig. 3 corresponds to a hierarchi-
cal block organization that includes a batch normalization, 
an activator for the ReLU, and a jump link to the block above 
it [23]. This block organization provides a more thorough 
illustration of the network structure. To control the width of 
the network, we use the initial 33 convolutions and the initial 
block of every group of n convolution blocks. The width fac-
tor k is computed using the method suggested in Sergey et al. 
[24]. The hierarchy’s topmost fully linked layer performs the 
final categorization. The CNN network was trained using the 
parameters n = 3 and k = 0.2.

Model Training and Implementation Environment

We implemented a variety of distinct methods detailed in 
this section, for training classifiers on unbalanced datasets. 
We also cover the testing tools and procedures for choosing 

Fig. 1  Framework for develop-
ing an improved CNN approach 
for the intrusion detection 
system for IoT devices
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hyperparameters. In addition, we explain how we chose 
the hyperparameters that were tested. We used hardware 
rented by vast.ai,3 which is an online provider, which dis-
tributes instances based on peer-to-peer hardware. Based on 
this hardware, we trained four NN simultaneously without 
encountering any lag.

Detection Experiment

In our investigations, we trained and assessed two dif-
ferent CNN models to perform multiclass classifica-
tion. Each model has 4 possible configurations using the 
NF-UNSW-NB15-v2 dataset. After selecting the hyperpa-
rameters, we trained each model for 100 epochs and stored 
the parameters as the validation loss decreased. Later on, 
we made tests using the model applying the lowest valida-
tion loss. During the training phase, the Adam optimizer, 
which is one of the most popular NN training optimizers, 
was used. The iteration of 1000 was set for each epoch to 
achieve better model performance in the setting of the data-
set used. We also applied Loshchilov and Hutter’s decoupled 
weight decay regularization, which has been demonstrated 
to enhance Adam’s generalization performance with a factor 
of 0.0005 [18].

Results

Datasets for training and validation were pre-segmented over 
100 epochs. The loss of training and validation sets, the valida-
tion accuracy, and the average training time are the results of 
NN training and validation. The correlation between training 
and validation loss can be utilized to detect if the network is 
underfitted or overfitted. The network is overfitted when the 
validation loss is greater than the training loss; otherwise, the 
network is underfitted. A deeper look reveals that every trained 
model has a rapid reduction in loss after epoch number 20. 
CBLoss has a lower loss than the other models since it divides 

Fig. 2  mCNN structure

Fig. 3  CNN structure

Table 1  Model training with the best validation loss

Model Validation loss

mCNN 1.44
mCNN sampler 1.46
mCNN CELoss 1.44
mCNN CBLoss 0.57
CNN 0.023
CNN sampler 0.067
CNN CELoss 0.051
CNN CBLoss 0.019

Table 2  Model training with average time

Model Time (s)

mCNN (CELoss/CBLoss) 122
mCNN sampler 138
CNN (CELoss/CBLoss) 234
CNN sampler 243

3 https:// www. vast. ai/.

https://www.vast.ai/
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attacks into fewer categories. Table 1 presents the validation 
loss for CNN and mCNN models.

CNN uses more convolutional layers than mCNN, which 
increases the training time, as presented in Table 2.

Since we could only train four models at once and each 
training round required more than 10 h, it took approximately 
42 h to train all eight models.

Performance Evaluation Metrics for Detection

We chose those models that have the lowest validation loss. 
Then, those models were used to classify the test data in order 
to evaluate their classification capabilities. In order to select 
the best model for each NN, we also created generic metrics 
using the values in the matrix that evaluate the effectiveness 
of various anomaly detection techniques. In this context, accu-
racy corresponds to the percentage of predictions that are cor-
rect across all samples, while precision refers to the proportion 
of actual positives to all positives. The F1 Score presented in 
Eq. 5, which is a relation between the accuracy (see Eq. 2), 
precision (see Eq. 3), and recall (see Eq. 4), is used to deter-
mine the percentage of accurate predictions across all relevant 
samples:

(2)Accuracy =
TP + TN

TP + TN + FN + TN

(3)Precision =
TP

TP + FP

(4)Recall =
TP

TP + FN

(5)F1Score =
2 ∗ (Precision ∗ Recall)

Precision + Recall

Summary of the Results

As presented in Table 3, using a weighted random sampler 
produces different results for mCNN from those provided 
by mCNN [22]. Based on the analysis that obtained a max 
recall of 0.93, or 62% higher, all F 1Scores were lower with 
the exception of one class.

The outcomes of CNN resampling using a weighted ran-
dom sampler are presented in Table 4, which follows the for-
mat in Table 3 for each category. In addition to performing 
poorly on category generalizers and fuzzers, CNN demon-
strated higher precision and recall differences than mCNN.

According to Sarhan et al. [22], the worst-classified cat-
egories were analysis, backdoor, and DoS. Using mCNN 
and resampling, we increased recall in each of the aforemen-
tioned classes. When it comes to categorizing vulnerability 
exploits, shellcodes [23], and generalizations, our methodol-
ogy is inadequate.

Discussion

Network assaults can be categorized by small CNNs. In con-
trast, as demonstrated in Tables 3 and 4, our models have 
better F 1Scores. Our models were successful in classifying 
a variety of intrusion attempts. Since the suggested models 
are generalizable, they can effectively and accurately iden-
tify attacks. Instead of testing every conceivable parameter, 
we chose to concentrate on learning rates as well as batch 
sizes in order to overcome class imbalances. CNN should be 
modified to increase the number of groups and blocks and 
decrease the rate of dropout for each dropout layer. CNN’s 
model training time, including fine-tuning the model and 
hyperparameters, is less than 7 h. This period of time was 
set aside to make sure the model worked. Our findings have 
improved as a result of better parameters. A larger dataset 
could not be used to analyze the final dataset since it was 
too big and uneven.

Table 3  Average time per Epoch in model training

Class Accuracy (%) Precision Recall F
1
 score

Analysis 99.86 0.87 0.95 0.18
Backdoor 98.93 0.07 0.68 0.21
Benign 97.52 1.02 0.98 0.99
DoS 99.73 0.22 0.39 0.31
Exploits 97.57 0.32 0.70 0.44
Fuzzers 99.67 0.72 0.89 0.79
Generic 99.77 0.33 0.72 0.45
Reconnaissance 99.88 0.71 0.98 0.83
Shellcode 99.89 0.18 0.65 0.26
Worms 99.98 0.21 1.03 0.34

Table 4  CNN multi-class classification results

Class Accuracy (%) Precision Recall F
1
 score

Analysis 98.81 0.08 0.91 0.12
Backdoor 98.74 0.06 0.65 0.10
Benign 98.10 1.00 0.95 0.90
DoS 98.63 0.11 0.11 0.11
Exploits 98.26 0.76 0.52 0.64
Fuzzers 98.53 0.61 0.63 0.62
Generic 98.42 0.11 0.41 0.18
Reconnaissance 98.77 0.69 0.94 0.79
Shellcode 98.71 0.04 0.90 0.10
Worms 98.86 0.11 0.89 0.21
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Learning the class is impossible for one or two examples in 
the smallest subset. We required a sizable dataset to obtain a 
decent representation of each class due to the dataset’s imbal-
ance. This, in our opinion, is the finest course of action. Since 
our model is constrained, experimental findings demonstrate 
that trained models perform better than those in the reference 
papers.

Class precision remains higher, even when employing a 
random sampler. The worst-performing classes can be given 
greater weight and resampling; thus, cost-sensitive learning 
can yield positive results. Each IoT device should receive 
externally trained cloud models since internal device training 
takes too long. The IoT device can pick up some fresh assault 
examples. It is best to train the IDS overnight so that it can be 
immediately updated when fresh attacks are found.

Model training and validation for CNN took longer than 
for mCNN. It took an average of 51 s to categorize a test set. 
This speed can provide an indefinite backlog when used as an 
IDS. Only three seconds separated the two networks’ inference 
times. Although mCNN (3.79 MB) is smaller than CNN (3.05 
MB), it is critical to notice that the models’ trainable param-
eters vary widely. CNN and mCNN have trainable parameters 
apart from that.

Generalization is the primary objective of a classifier. Our 
models have greater generalizability and accuracy. Generaliza-
tion could benefit from an improved sampler or loss function. 
In addition, generalization can be enhanced using input photos 
with more excellent width factors.

Resampling and cost-sensitive learning are useless due to 
the unbalanced dataset. By randomly choosing among classes, 
we may avoid hierarchical splitting for training and valida-
tion. The limited sample size for the worm class with the 
lowest population was one of the reasons we decided against 
it. To conserve or gain space in the final image, it is best to 
perform more in-depth analyses of the characteristics during 
preprocessing. The convolutional layer input quality ought 
to be improved as a result of lessening category preference, 
adding noise, or using other image-enhancing methods. Pads’ 
modest size causes them to add too much information to the 
image. Testing padding is possible because it may impact the 
outcomes. It is important to consider the group count, block 
count, and expansion factor. It would be wonderful to include 
a few additional simple classification models. We would have 
wanted to utilize a scheduler for the learning rate instead of 
a set learning rate. Therefore, during training, we did not 
configure the learning rate scheduler. Finally, we can adjust 
the weights of the loss function and resample to improve 
performance.

Conclusions

To categorize cyberattacks, we developed two CNN using 
the NF-UNSW-NB15-v2 dataset. This study intends to 
investigate the performance of CNNs created for IoT 
devices during cyberattacks and determine whether they 
may be utilized as anomaly-based IDS. Some studies 
reveal that the model can accurately categorize cyberat-
tacks; in addition, the model might be used as IDS. In 
this research, we tested various approaches to enhance the 
accuracy of training different DL models on unbalanced 
datasets using resampling and cost-sensitive learning.

Further research is required to determine the ideal 
weights and the potential for integrating resampling with 
cost-sensitive learning using a hybrid strategy. In this 
method, unbalanced datasets would be handled. Unbal-
anced datasets could be addressed by utilizing various 
splitting techniques or additional oversampling techniques 
that add more variance to the data using a different pre-
processing technique without padding to avoid mistakes. 
The CNN uses filters that pass over the image allowing it 
the creation of larger images from fewer amounts of input. 
Depending on how the image is put together, this may lead 
to additional relationships between features.

Finally, there is another opportunity to research on 
fine-tuning the hyperparameters in CNN models. Since 
the Adam optimizer is the only one employed in this study, 
it is possible to investigate the usage of additional optimiz-
ers for training in order to increase the suggested models’ 
classification accuracy.

In the future, the development of more sophisticated 
CNN architectures designed specifically for IoT intru-
sion detection can be the subject of research. Designing 
networks that can effectively process heterogeneous data 
types from IoT devices, such as text, pictures, and sensor 
data, may be necessary to achieve this.
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