
Vol.:(0123456789)

SN Computer Science (2024) 5:49
https://doi.org/10.1007/s42979-023-02448-y

SN Computer Science

ORIGINAL RESEARCH

Ensuring Intrusion Detection for IoT Services Through an Improved
CNN

Sunday Adeola Ajagbe1 · Joseph Bamidele Awotunde2 · Hector Florez3

Received: 21 September 2023 / Accepted: 21 October 2023
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023

Abstract
Internet of Things (IoT) devices are challenging to manage information security due to some factors such as processing
capability, exponential growth in homes, and their low energy consumption which raises the risk of cyberattacks. One way
to avoid cyberattacks is using an intrusion detection system that is able to recognize assaults while warning users so that
appropriate countermeasures can be taken. Several deep learning and machine learning techniques have been used in the
past to try to detect new assaults; however, these attempts have not been successful. In order to optimize IoT devices, in this
study, we make a classification of network assaults using the convolutional neural network models mCNN and CNN. This
study aims to assess the application of deep learning intrusion detection systems for IoT devices. The NF-UNSW-NB15-
v2 dataset was used in this experiment to train the neural network. The network stream’s data were transformed into RGB
images, which the neural network was trained on. The mCNN model outperformed the CNN model when compared to the
proposed one for classifying network attacks. In addition, both networks perform better in most categories, with the excep-
tion of network attack detection, where the CNN performed worse than the suggested mCNN model.

Keywords Convolutional neural network (CNN) · Internet of Things (IoT) · Intrusion detection system (IDS) · Machine
learning (ML) · Deep learning (DL)

Introduction

The Internet of Things (IoT), which is a topic of computer
science and engineering, is a trend in industry and academic
sectors that has grown in popularity in the last years [5]. The
term Internet of Things refers to a new paradigm of com-
munication that describes devices with actuators and sensors

that are able to perceive their environment, interact with
another device, and exchange information over the Internet
[14, 23]. The number of IoT devices currently linked to the
Internet is estimated to be around 50 billion, and in the years
to come, this number is likely to increase dramatically [9].
The enormous amount of data produced by linked devices
can be used by many applications. A few examples of the
many application scenarios for the IoT include those in the
areas of food and agriculture, demography, and augmented
learning. For instance, it is estimated that more than 15 bil-
lion devices with IoT technology will be used for agriculture
by 2025 [11].

Anomaly combating this danger requires the use of intru-
sion detection systems (IDS), which are crucial elements of
intrusion detection in IoT systems. The great majority of cur-
rently available IDSs create detection models using conven-
tional machine learning (ML) methods [8], which are further
discussed below. The development of IDS models typically
makes use of ML techniques because they are so powerful.
Traditional ML techniques, which demand complex feature
engineering, would require considerable research advances
to extract required features from the information due to the

This article is part of the topical collection “Emerging Technologies
in Applied Informatics” guest edited by Hector Florez and Marcelo
Leon.

 * Sunday Adeola Ajagbe
 sunday.ajagbe@tech-u.edu.ng

 Joseph Bamidele Awotunde
 awotunde.jb@unilorin.edu.ng

 Hector Florez
 haflorezf@udistrital.edu.co

1 First Technical University Ibadan, Ibadan, Nigeria
2 University of Ilorin, Ilorin, Nigeria
3 Universidad Distrital Francisco Jose de Caldas, Bogotá,

Colombia

http://orcid.org/0000-0002-7010-5540
http://orcid.org/0000-0002-1020-4432
http://orcid.org/0000-0002-5339-4459
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-02448-y&domain=pdf

 SN Computer Science (2024) 5:49 49 Page 2 of 8

SN Computer Science

vast volume of unstructured data created by IoT devices.
As a result, implementing standard ML-based solutions
still presents a number of difficulties. Deep learning (DL)
approaches have gained popularity in IDSs during the past
few years, especially in the military industry.

Since it is simpler to extract information from DL than
from conventional learning, it is often thought to be more
reliable and accurate [6]. Deep learning is employed because
it is simple to use and more accurate in extracting data. As
a result, some research has focused on the use of DL tech-
niques in domains like malware and anomaly detection, with
mixed results. Deep learning approaches have been used in
anomaly and malware detection to solve issues from techni-
cal and regulatory viewpoints, respectively. The majority of
IDS systems have been created by employing, among other
things, self-organizing mobile networks, wireless sensor net-
works, and already-existing computer networks [4]. There
has not been much research, especially looking at DL meth-
ods in the IoT arena [7]. Thus, the main objective of this
study is to explore the best and most efficient ways to deploy
decentralized approaches in IoT and DNN contexts. This
study provides a thorough, concentrated, and high-quality
analysis that uses DL approaches to find reliable anomaly-
based IDS.

The rest of the paper is structured as follows. The next
section comprises the “Related Work”. “Materials and Meth-
ods” for IDS are followed in the third section. The fourth
section of the study presents the “Results”, while the fifth
section offers the “Discussion”. The last section contains the
“Conclusion” as well as the future scope of the study area.

Related Work

Security is a vital and crucial part of the information busi-
ness that safeguards its hardware and software systems from
external threats. Data security is becoming increasingly
crucial to a company’s success as the volume of fresh data
collected on the Internet rises. In this section, our review
focuses on four topics: IoT security, intrusion detection fac-
tors, conventional techniques for detection, and techniques
for sequential detection.

IoT Security

There is no centralized system core architecture for IoT sys-
tems [23]. In contrast to conventional centralized system
core architectures, IoT systems produced an ecosystem of
interconnected gadgets and smart cities [16]. It is currently
a crucial component of the infrastructure for smart cities.
In the future, anyone with an internet connection will be
able to access vast volumes of private and sensitive data
by leveraging embedded device networks or other wireless

techniques [4]. Users, service providers, and enterprises can
all benefit from the IoT, but there are also several disad-
vantages. Unlike a standard network system, an embedded
system is able to communicate using a protocol that might
vary depending on the application and device. There is not a
centralized, standardized architecture in place yet for creat-
ing security measures. As the volume of data increases, this
raises security issues related to IoT networks [3]. Malicious
programs, trojan horses, hackers, and viruses are typically
used in network attacks and odd behavior. These are the
most pervasive and harmful objects. IoT networks are seri-
ously threatened by device manipulation, device and iden-
tity robbery, and eavesdropping [17, 25]. In summary, the
following are the networking technologies to link hardware
devices in the home automation system: direct cable con-
nection, phone line, Bluetooth, radio network, AC network,
Wi-Fi online network, and Ethernet. An IoT-based network
was established using wireless sensors as the infrastructure
for the smart home system.

The integrity of data is impacted when the IoT is hacked,
as well as people’s lives. IoT security systems can be com-
promised by hackers allowing them to get access to private
workspaces like IT infrastructure. In addition, IoT weak-
nesses enable hackers to gain access to sensitive systems
and data. Before transmission and exchange, an IoT device
must authenticate and encrypt data to guard against illegal
access. Even if data are stolen, encryption keeps hackers
from accessing it. The autonomous control trap is avoided
by a machine that cannot be controlled [2]. This tactic can be
applied in a variety of circumstances. For instance, for traffic
recognition, a variety of ML techniques have been proposed.
Long-established traffic recognition and classification algo-
rithms include decision trees (DT) and Random Forests (RF)
[1]. Restricted Boltzmann Machine (RBM) and Support
Vector Machine (SVM) were employed to detect as well as
to recognize the traffic of a network [27]. Nevertheless, ML
has made it possible to create more complex techniques for
analyzing security concerns. In addition, Intrusion Detec-
tion Factors (IDS) were developed using hybrid techniques,
where the total procedure is broken down into three sections,
and employs a variety of DL techniques [6]. The technique
has been used to find a variety of malicious network traffic
anomalies. The method processes network data calculations
using a range of statistical techniques. This is accomplished
by watching how the neutral points in the system interact.
A number of network security factors must be analyzed in
order to find network security anomalies.

Intrusion Detection Factors

An IDS must first discriminate between regular data and
system abnormalities before it can attempt to detect a sys-
tem intrusion. As a result, the IDS should recognize the

SN Computer Science (2024) 5:49 Page 3 of 8 49

SN Computer Science

features of malicious data. For both normal and abnormal
data, classification systems need to separate the two informa-
tion sets. The technology automatically determines the dis-
tance between nodes using a network-specific code [12]. The
application of this technique is based on the following key
premise: data integrity and normalcy, which are estimated
using the consistency distance between two nodes [10].
Consequently, a wide distance between nodes is a warning
sign that the data may be unusual. The distance between two
nodes in a network is determined using the Manhattan dis-
tance. In addition, in unsupervised deep learning, the output
of the feature extraction algorithms is crucial since it deter-
mines the final product of the learning process. As a result,
the technique ought to safeguard typical data while enabling
ongoing defense. Adding traffic and carrying out information
operations are examples of network manipulation [4].

Conventional Techniques for Detection

ML may be useful for identifying malicious anomalies in a
network, so it is very helpful for identifying hackers. Fur-
thermore, Automatic Dimensionality Reduction (ADR) can
be described as a video streaming approach that minimizes
dimensionality by making use of both the encoder and the
decoder. Input, output, and hidden layers make up the final
three layers. In addition, autoencoders employ deployment,
fine-tuning, and pre-training. Professionals work in a con-
trolled environment to complete all of this. Deep belief net-
works (DBNs) are also important since they are regarded
as conventional DL techniques that integrate unsupervised
RBM and supervised backpropagation network layers. DBNs
integrate supervised and unsupervised backpropagation
network layers [23]. Two DBN strategies are supervised
RBM processing and unsupervised RBM processing. In
order to construct a hybrid anomaly detection system, these
two methodologies were integrated. By employing autoen-
coder techniques to separate vectors, this strategy reduces
their dimensionality. The DL systems categorize the data
that DBN systems collect. In conclusion, hybrid systems
are more accurate at detecting and have lower time-related
complexity. Despite the fact that approximately one-eighth
of all network traffic cannot be identified.

Techniques for Sequential Detection

Network traffic and program code are examples of sequential
data that predominate in the field of cyberspace security.
System routine sequence data are the most accurate and use-
ful data to have since it shows how a program interacts with
the system kernel. It is simple to get real-time traces of the
system routine for data acquisition. In addition, the order
of the system procedures matches the language of the sys-
tem. The system routine and its order are contrasted with the

words and sentences of spoken language. If the system under
study is out of synchronization using these data, the back-
end of the sequential model models the normal language
sequence of the system in order to forecast anomalies using
an ensemble of thresholding classifiers. The probability dis-
tribution of a system sequence might be calculated using the
language model. A one-hot encoding form is used to feed
the input into the model [21]. The Backpropagation Through
Time (BPTT) algorithm delivers standard samples during
the training phase. Neural networks (NN) and k-means mod-
els serve as the backend classifiers. Comparatively, a web
shell is harder to find than a backdoor.

Materials and Methods

This section explains how the NF-UNSW-NB15-v2 data-
set,1 which was reported in the study, was utilized to create
DL techniques that could detect, recognize, and categorize
cyberattacks. We go into great detail about our categoriza-
tion research and the NN techniques we tested. We also go
into greater detail on classification experiments.

Dataset

The NF-UNSW-NB15-v2 dataset was released in 2015 by
the Cyber Range Lab at the Australian Centre for Cyber
Security (ACCS). It is one of the most widely dataset used
for Network Intrusion Detection System (NIDS) that is
available according to experts at the ACCS. By compar-
ing the Argus and Bro-IDS datasets and extracting the 35
most adequate characteristics from each, 12 additional
features were produced [19]. In addition, we included
network traffic produced by IXIA PerfectStorm tools and
recorded it as pcap files. We constructed a dataset dubbed
the NF-UNSW-NB15-v2 using 43 NetFlow characteristics
that were obtained from the nProbe pcap file as criteria
and comparing it to the UNSW-NB15 dataset.2 A recently
developed dataset called NF-UNSW-NB15-v2 is based on
the UNSW-NB15 dataset but contains additional data. The
results showed that adopting this updated dataset led to con-
siderable gains in multi-class classification and decreased
prediction times, which led to the selection of this data-
set [22]. Figure 1 shows the framework for developing an
improved CNN approach for the intrusion detection system
for IoT devices. The study accessed the dataset then preproc-
essed it. The CNN model was developed for an instruction
detection experiment, the model was trained and evaluated.

1 https:// rdm. uq. edu. au/ files/ 8c6e2 a00- ef9c- 11ed- 827d- e762d e1868
48.
2 https:// resea rch. unsw. edu. au/ proje cts/ unsw- nb15- datas et.

https://rdm.uq.edu.au/files/8c6e2a00-ef9c-11ed-827d-e762de186848
https://rdm.uq.edu.au/files/8c6e2a00-ef9c-11ed-827d-e762de186848
https://research.unsw.edu.au/projects/unsw-nb15-dataset

 SN Computer Science (2024) 5:49 49 Page 4 of 8

SN Computer Science

Data Preprocessing

The next stage following data collection is preprocessing
before using the preprocessed data to train our model. A four-
step approach involves cleaning the data, converting the data,
dividing the data into training and testing sets, and produc-
ing visual representations. Then, we used a CSV file with 43
NetFlow routines, each with a malicious label and an attack
category. The values that cannot be converted to integers or
floating points were removed. In order to lessen the bias in
model training, we eliminated six attributes from each data-
set entry that are not helpful for classifying network attacks.
Feature engineering was carried out to preprocess or extract
particular attributes from the raw data before data was entered
into a CNN. Resizing, cropping, color enhancement, and other
domain-specific preprocessing methods fall under this cate-
gory. There are not any port numbers, IPv4 source or destina-
tion addresses, or minimum or maximum traffic TTLs. Follow-
ing cleansing, we have a dataset with 9 classes and 37 features.
We just utilized 40% of the dataset for speed. The attacks were
distributed equally thanks to the hierarchy split. We have to
divide the dataset into training (70%), testing (15%), and vali-
dation (15%) groups after the image conversion. Each assault
in every dataset has a hierarchical representation. There were
560,927 samples utilized for training, validation, and testing.
Since high variance is less of a problem for large datasets than
for small datasets, a 3-way holdout is typically used for train-
ing. In this study, the proposed approach in Nguyen et al. [20]
was followed because we use a non-image-based dataset. The
min–max scaling method was used to normalize our data (see
Eq. 1). The array is the proper size thanks to padding. The
result of multiplying 255 by a color map is an 8-bit integer.
Denial-of-Service (DoS) attacks and malware are improved
by color maps in CNN graphics [23]:

(1)x
� =

x −Min(x)

Max(x) −Min(x)

Model Development

mCNN

In the CNN framework, there are three convolutional mod-
ules which are followed by two completely connected layers,
two fully connected layers, and a softmax activation layer,
which slightly alters the fundamental CNN structure [13, 15,
23]. Similar smaller models can be used to classify different
types of malware as well as IoT and Android malware [26].
This network will be utilized for comparison; however, it
differs significantly from the fundamental CNN structure.
This structure is made up of a 3 × 3 convolutional layer, a
normalization layer, and a max-pooling layer (2 × 2). The
entire structure of mCNN is presented in Fig. 2 where the
first two convolutional modules tend to widen as the distance
between them increases from 3 to 16 and then to 32.

CNN

The network topology is composed of convolutional mod-
ules (blocks) and groups rather than the conventional 3x3
convolution. Each block in Fig. 3 corresponds to a hierarchi-
cal block organization that includes a batch normalization,
an activator for the ReLU, and a jump link to the block above
it [23]. This block organization provides a more thorough
illustration of the network structure. To control the width of
the network, we use the initial 33 convolutions and the initial
block of every group of n convolution blocks. The width fac-
tor k is computed using the method suggested in Sergey et al.
[24]. The hierarchy’s topmost fully linked layer performs the
final categorization. The CNN network was trained using the
parameters n = 3 and k = 0.2.

Model Training and Implementation Environment

We implemented a variety of distinct methods detailed in
this section, for training classifiers on unbalanced datasets.
We also cover the testing tools and procedures for choosing

Fig. 1 Framework for develop-
ing an improved CNN approach
for the intrusion detection
system for IoT devices

Start Dataset Data
Processing

Model
Development

Detection
Experiment

Model Training
and Implementation

End

SN Computer Science (2024) 5:49 Page 5 of 8 49

SN Computer Science

hyperparameters. In addition, we explain how we chose
the hyperparameters that were tested. We used hardware
rented by vast.ai,3 which is an online provider, which dis-
tributes instances based on peer-to-peer hardware. Based on
this hardware, we trained four NN simultaneously without
encountering any lag.

Detection Experiment

In our investigations, we trained and assessed two dif-
ferent CNN models to perform multiclass classifica-
tion. Each model has 4 possible configurations using the
NF-UNSW-NB15-v2 dataset. After selecting the hyperpa-
rameters, we trained each model for 100 epochs and stored
the parameters as the validation loss decreased. Later on,
we made tests using the model applying the lowest valida-
tion loss. During the training phase, the Adam optimizer,
which is one of the most popular NN training optimizers,
was used. The iteration of 1000 was set for each epoch to
achieve better model performance in the setting of the data-
set used. We also applied Loshchilov and Hutter’s decoupled
weight decay regularization, which has been demonstrated
to enhance Adam’s generalization performance with a factor
of 0.0005 [18].

Results

Datasets for training and validation were pre-segmented over
100 epochs. The loss of training and validation sets, the valida-
tion accuracy, and the average training time are the results of
NN training and validation. The correlation between training
and validation loss can be utilized to detect if the network is
underfitted or overfitted. The network is overfitted when the
validation loss is greater than the training loss; otherwise, the
network is underfitted. A deeper look reveals that every trained
model has a rapid reduction in loss after epoch number 20.
CBLoss has a lower loss than the other models since it divides

Fig. 2 mCNN structure

Fig. 3 CNN structure

Table 1 Model training with the best validation loss

Model Validation loss

mCNN 1.44
mCNN sampler 1.46
mCNN CELoss 1.44
mCNN CBLoss 0.57
CNN 0.023
CNN sampler 0.067
CNN CELoss 0.051
CNN CBLoss 0.019

Table 2 Model training with average time

Model Time (s)

mCNN (CELoss/CBLoss) 122
mCNN sampler 138
CNN (CELoss/CBLoss) 234
CNN sampler 243

3 https:// www. vast. ai/.

https://www.vast.ai/

 SN Computer Science (2024) 5:49 49 Page 6 of 8

SN Computer Science

attacks into fewer categories. Table 1 presents the validation
loss for CNN and mCNN models.

CNN uses more convolutional layers than mCNN, which
increases the training time, as presented in Table 2.

Since we could only train four models at once and each
training round required more than 10 h, it took approximately
42 h to train all eight models.

Performance Evaluation Metrics for Detection

We chose those models that have the lowest validation loss.
Then, those models were used to classify the test data in order
to evaluate their classification capabilities. In order to select
the best model for each NN, we also created generic metrics
using the values in the matrix that evaluate the effectiveness
of various anomaly detection techniques. In this context, accu-
racy corresponds to the percentage of predictions that are cor-
rect across all samples, while precision refers to the proportion
of actual positives to all positives. The F1 Score presented in
Eq. 5, which is a relation between the accuracy (see Eq. 2),
precision (see Eq. 3), and recall (see Eq. 4), is used to deter-
mine the percentage of accurate predictions across all relevant
samples:

(2)Accuracy =
TP + TN

TP + TN + FN + TN

(3)Precision =
TP

TP + FP

(4)Recall =
TP

TP + FN

(5)F1Score =
2 ∗ (Precision ∗ Recall)

Precision + Recall

Summary of the Results

As presented in Table 3, using a weighted random sampler
produces different results for mCNN from those provided
by mCNN [22]. Based on the analysis that obtained a max
recall of 0.93, or 62% higher, all F 1Scores were lower with
the exception of one class.

The outcomes of CNN resampling using a weighted ran-
dom sampler are presented in Table 4, which follows the for-
mat in Table 3 for each category. In addition to performing
poorly on category generalizers and fuzzers, CNN demon-
strated higher precision and recall differences than mCNN.

According to Sarhan et al. [22], the worst-classified cat-
egories were analysis, backdoor, and DoS. Using mCNN
and resampling, we increased recall in each of the aforemen-
tioned classes. When it comes to categorizing vulnerability
exploits, shellcodes [23], and generalizations, our methodol-
ogy is inadequate.

Discussion

Network assaults can be categorized by small CNNs. In con-
trast, as demonstrated in Tables 3 and 4, our models have
better F 1Scores. Our models were successful in classifying
a variety of intrusion attempts. Since the suggested models
are generalizable, they can effectively and accurately iden-
tify attacks. Instead of testing every conceivable parameter,
we chose to concentrate on learning rates as well as batch
sizes in order to overcome class imbalances. CNN should be
modified to increase the number of groups and blocks and
decrease the rate of dropout for each dropout layer. CNN’s
model training time, including fine-tuning the model and
hyperparameters, is less than 7 h. This period of time was
set aside to make sure the model worked. Our findings have
improved as a result of better parameters. A larger dataset
could not be used to analyze the final dataset since it was
too big and uneven.

Table 3 Average time per Epoch in model training

Class Accuracy (%) Precision Recall F
1
 score

Analysis 99.86 0.87 0.95 0.18
Backdoor 98.93 0.07 0.68 0.21
Benign 97.52 1.02 0.98 0.99
DoS 99.73 0.22 0.39 0.31
Exploits 97.57 0.32 0.70 0.44
Fuzzers 99.67 0.72 0.89 0.79
Generic 99.77 0.33 0.72 0.45
Reconnaissance 99.88 0.71 0.98 0.83
Shellcode 99.89 0.18 0.65 0.26
Worms 99.98 0.21 1.03 0.34

Table 4 CNN multi-class classification results

Class Accuracy (%) Precision Recall F
1
 score

Analysis 98.81 0.08 0.91 0.12
Backdoor 98.74 0.06 0.65 0.10
Benign 98.10 1.00 0.95 0.90
DoS 98.63 0.11 0.11 0.11
Exploits 98.26 0.76 0.52 0.64
Fuzzers 98.53 0.61 0.63 0.62
Generic 98.42 0.11 0.41 0.18
Reconnaissance 98.77 0.69 0.94 0.79
Shellcode 98.71 0.04 0.90 0.10
Worms 98.86 0.11 0.89 0.21

SN Computer Science (2024) 5:49 Page 7 of 8 49

SN Computer Science

Learning the class is impossible for one or two examples in
the smallest subset. We required a sizable dataset to obtain a
decent representation of each class due to the dataset’s imbal-
ance. This, in our opinion, is the finest course of action. Since
our model is constrained, experimental findings demonstrate
that trained models perform better than those in the reference
papers.

Class precision remains higher, even when employing a
random sampler. The worst-performing classes can be given
greater weight and resampling; thus, cost-sensitive learning
can yield positive results. Each IoT device should receive
externally trained cloud models since internal device training
takes too long. The IoT device can pick up some fresh assault
examples. It is best to train the IDS overnight so that it can be
immediately updated when fresh attacks are found.

Model training and validation for CNN took longer than
for mCNN. It took an average of 51 s to categorize a test set.
This speed can provide an indefinite backlog when used as an
IDS. Only three seconds separated the two networks’ inference
times. Although mCNN (3.79 MB) is smaller than CNN (3.05
MB), it is critical to notice that the models’ trainable param-
eters vary widely. CNN and mCNN have trainable parameters
apart from that.

Generalization is the primary objective of a classifier. Our
models have greater generalizability and accuracy. Generaliza-
tion could benefit from an improved sampler or loss function.
In addition, generalization can be enhanced using input photos
with more excellent width factors.

Resampling and cost-sensitive learning are useless due to
the unbalanced dataset. By randomly choosing among classes,
we may avoid hierarchical splitting for training and valida-
tion. The limited sample size for the worm class with the
lowest population was one of the reasons we decided against
it. To conserve or gain space in the final image, it is best to
perform more in-depth analyses of the characteristics during
preprocessing. The convolutional layer input quality ought
to be improved as a result of lessening category preference,
adding noise, or using other image-enhancing methods. Pads’
modest size causes them to add too much information to the
image. Testing padding is possible because it may impact the
outcomes. It is important to consider the group count, block
count, and expansion factor. It would be wonderful to include
a few additional simple classification models. We would have
wanted to utilize a scheduler for the learning rate instead of
a set learning rate. Therefore, during training, we did not
configure the learning rate scheduler. Finally, we can adjust
the weights of the loss function and resample to improve
performance.

Conclusions

To categorize cyberattacks, we developed two CNN using
the NF-UNSW-NB15-v2 dataset. This study intends to
investigate the performance of CNNs created for IoT
devices during cyberattacks and determine whether they
may be utilized as anomaly-based IDS. Some studies
reveal that the model can accurately categorize cyberat-
tacks; in addition, the model might be used as IDS. In
this research, we tested various approaches to enhance the
accuracy of training different DL models on unbalanced
datasets using resampling and cost-sensitive learning.

Further research is required to determine the ideal
weights and the potential for integrating resampling with
cost-sensitive learning using a hybrid strategy. In this
method, unbalanced datasets would be handled. Unbal-
anced datasets could be addressed by utilizing various
splitting techniques or additional oversampling techniques
that add more variance to the data using a different pre-
processing technique without padding to avoid mistakes.
The CNN uses filters that pass over the image allowing it
the creation of larger images from fewer amounts of input.
Depending on how the image is put together, this may lead
to additional relationships between features.

Finally, there is another opportunity to research on
fine-tuning the hyperparameters in CNN models. Since
the Adam optimizer is the only one employed in this study,
it is possible to investigate the usage of additional optimiz-
ers for training in order to increase the suggested models’
classification accuracy.

In the future, the development of more sophisticated
CNN architectures designed specifically for IoT intru-
sion detection can be the subject of research. Designing
networks that can effectively process heterogeneous data
types from IoT devices, such as text, pictures, and sensor
data, may be necessary to achieve this.

Author Contributions SAA: conceptualization, writhing of original
draft, validation, methodology, and coding. JBA: project administra-
tion, methodology, resource management, editing, and supervision. HF:
resource management, review, editing, and supervision.

Funding The authors declare that no fund was received for this study.

Data Availability Not applicable.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Ethics Approval Not applicable.

Informed Consent Not applicable.

 SN Computer Science (2024) 5:49 49 Page 8 of 8

SN Computer Science

References

 1. Adeniji OD, Adeyemi SO, Ajagbe SA. An improved bagging
ensemble in predicting mental disorder using hybridized random
forest - artificial neural network model. Int J Comput Inform.
2022;46(4):543–550. https:// doi. org/ 10. 31449/ inf. v46i4. 3916.

 2. Adhie RP, Hutama Y, Ahmar AS, Setiawan M, et al. Implemen-
tation cryptography data encryption standard (des) and triple
data encryption standard (3DES) method in communication
system based near field communication (NFC). J Phys Conf Ser.
2018;954: 012009.

 3. Adimoolam M, John A, Balamurugan N, Ananth Kumar T. Green
ICT communication, networking and data processing. In: Bal-
usamy B, Chilamkurti N, Kadry S, editors. Green computing in
smart cities: simulation and techniques. Berlin: Springer; 2021.
p. 95–124.

 4. Adly AS, Adly AS, Adly MS. Approaches based on artificial intel-
ligence and the internet of intelligent things to prevent the spread
of covid-19: scoping review. J Med Internet Res. 2020;22(8):
e19104.

 5. Ajagbe SA, Adesina AO, Ilupeju OA, Thanh DN et al. Challenges
and perceptions in the use of ICT in student assessments during
the covid-19 pandemic. In: 2021 8th international conference on
information technology, computer and electrical engineering (ICI-
TACEE). IEEE; 2021. pp. 89–94.

 6. Ajagbe SA, Adigun MO. Deep learning techniques for detec-
tion and prediction of pandemic diseases: a systematic literature
review. Multimed Tools Appl. 2023. https:// doi. org/ 10. 1007/
s11042- 023- 15805-z.

 7. Al-Emran M, Malik S.I, Al-Kabi MN. A survey of internet of
things (IOT) in education: opportunities and challenges. In:
Toward social internet of things (SIoT): enabling technolo-
gies, architectures and applications: emerging technologies for
connected and smart social objects. Springer, Berlin; 2020. pp.
197–209.

 8. Aljumah A. IOT-based intrusion detection system using convolu-
tion neural networks. PeerJ Comput Sci. 2021;7: e721.

 9. Awotunde JB, Ajagbe SA, Florez H. Internet of things with wear-
able devices and artificial intelligence for elderly uninterrupted
healthcare monitoring systems. In: International conference on
applied informatics. Springer, Berlin; 2022. pp. 278–291.

 10. Bansal SK. Towards a semantic extract-transform-load (ETL)
framework for big data integration. In: 2014 IEEE international
congress on big data. IEEE’ 2014. pp. 522–529.

 11. Farooq MS, Riaz S, Abid A, Abid K, Naeem MA. A survey on
the role of IOT in agriculture for the implementation of smart
farming. IEEE Access. 2019;7:156237–71.

 12. Gaber T, Awotunde JB, Folorunso SO, Ajagbe SA, Eldesouky E,
et al. Industrial internet of things intrusion detection method using
machine learning and optimization techniques. Wirel Commun
Mob Comput. 2023;2023:1–15.

 13. Hernandez J, Daza K, Florez H. Spiking neural network approach
based on Caenorhabditis elegans worm for classification. IAENG
Int J Comput Sci. 2022;49(4):1099–111.

 14. Hernandez J, Daza K, Florez H, Misra S. Dynamic interface and
access model by dead token for IOT systems. In: International
conference on applied informatics. Springer; 2019. pp. 485–498.

 15. Hernandez J, Florez H. An experimental comparison of algo-
rithms for nodes clustering in a neural network of Caenorhabditis
elegans. In: 21st international conference computational science
and its applications. Springer; 2021. pp. 327–339.

 16. Iyawa GE, Herselman M, Botha A. Digital health innovation eco-
systems: from systematic literature review to conceptual frame-
work. Proc Comput Sci. 2016;100:244–52.

 17. Kodali RK, Yerroju S. Energy efficient home automation using
IOT. In: 2018 international conference on communication, com-
puting and Internet of Things (IC3IoT). IEEE; 2018. pp. 151–154.

 18. Loshchilov I, Hutter F. Decoupled weight decay regularization. In:
7th international conference on learning representations; 2019.

 19. Moustafa N, Slay J. Unsw-nb15: a comprehensive data set for
network intrusion detection systems (UNSW-NB15 network data
set). In: 2015 military communications and information systems
conference (MilCIS). IEEE; 2015. pp. 1–6.

 20. Nguyen SN, Nguyen VQ, Choi J, Kim K. Design and implementa-
tion of intrusion detection system using convolutional neural net-
work for DOS detection. In: Proceedings of the 2nd international
conference on machine learning and soft computing. 2018. pp.
34–38.

 21. Rawat R, Oki OA, Sankaran S, Florez H, Ajagbe SA. Tech-
niques for predicting dark web events focused on the delivery
of illicit products and ordered crime. Int J Electr Comput Eng.
2023;13(5):5354–65.

 22. Sarhan M, Layeghy S, Portmann M. Towards a standard feature set
for network intrusion detection system datasets. Mob Netw Appl.
2022;27:357–70.

 23. Sayed N, Shoaib M, Ahmed W, Qasem S, Albarrak A, Saeed F.
Augmenting IOT intrusion detection system performance using
deep neural network. Comput Mater Contin. 2022;74(1):1351–74.

 24. Sergey Z, Komodakis N. Wide residual networks. In: British
Machine Vision Association. 2016.

 25. Vinod P, Jaipur R, Laxmi V, Gaur M. Survey on malware detec-
tion methods. In: Proceedings of the 3rd Hackers’ workshop on
computer and internet security (IITKHACK’09). 2009. pp. 74–79.

 26. Wang W, Zhao M, Wang J. Effective android malware detection
with a hybrid model based on deep autoencoder and convolutional
neural network. J Ambient Intell Hum Comput. 2019;10:3035–43.

 27. Yang J, Deng J, Li S, Hao Y. Improved traffic detection with sup-
port vector machine based on restricted Boltzmann machine. Soft
Comput. 2017;21:3101–12.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.31449/inf.v46i4.3916
https://doi.org/10.1007/s11042-023-15805-z
https://doi.org/10.1007/s11042-023-15805-z

	Ensuring Intrusion Detection for IoT Services Through an Improved CNN
	Abstract
	Introduction
	Related Work
	IoT Security
	Intrusion Detection Factors
	Conventional Techniques for Detection
	Techniques for Sequential Detection

	Materials and Methods
	Dataset
	Data Preprocessing
	Model Development
	mCNN
	CNN

	Model Training and Implementation Environment
	Detection Experiment

	Results
	Performance Evaluation Metrics for Detection
	Summary of the Results

	Discussion
	Conclusions
	References

