
Vol.:(0123456789)

SN Computer Science (2024) 5:111
https://doi.org/10.1007/s42979-023-02412-w

SN Computer Science

ORIGINAL RESEARCH

Dynamic Topics Management in Publish/Subscribe Systems
over Mobile Ad Hoc Networks

Martin Xavier Tchembé1 · Maurice Tchoupé Tchendji1

Received: 17 July 2022 / Accepted: 11 October 2023
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023

Abstract
Information dissemination by publish/subscribe in Mobile Ad hoc NETworks (MANETs) has been the subject of numerous
studies over the last few decades. There are generally two main classes in the taxonomy of publish/subscribe systems: the
content-based publish/subscribe and the topic-based publish/subscribe. The latter generally offers a predefined set of (possibly
hierarchical) topics to publishers and subscribers. This set of topics in the context of applications deployed on MANETs is
duplicated within each station of the network. It can be difficult when designing such applications to know in advance all
the topics that will be dealt with. The question of how to update this set of topics once the application is deployed is a major
concern. This paper proposes a distributed protocol which extends the SocialMANET protocol for information dissemination
in topic-based publish/subscribe systems for MANETs, to make it capable of dynamically updating the set of topics in such
a system. The proposed protocol guarantees the uniqueness of the topic identifiers as well as the coherence of the different
replicas (of the hierarchy) of the topics on the different stations in the network. Experimental studies carried out on this
protocol have shown that it effectively disseminates topic updates as long as the network stations communicate frequently.

Keywords Distributed updates · Dynamic topics · MANETs · Publish/subscribe · Logical clock

Introduction

Thanks to its asynchronous nature and the high level of
decoupling (spatial decoupling, temporal decoupling and
synchronisation decoupling) it offers [1], the publish/
subscribe communication paradigm appears to be a very
attractive candidate for the dissemination of information in
MANETs [2]. The main actors in a publish/subscribe system
are the publishers who supply information to the system,
and the subscribers who consume the information present
in the system. The different ways in which subscribers can
mark their interest in the information in the system by means
of subscriptions make it possible to distinguish between
two main variants of publish/subscribe: the content-based
variant where information is only delivered to a subscriber
if the attributes or content of the information match the

constraints defined by its subscription; and the topic-based
variant where the information is published in "topics" or
named logical channels. Subscribers to a topic-based pub-
lish/subscribe system will receive all messages published in
the topics to which they subscribe.

In topic-based publish/subscribe systems, the interacting
parties exchange information through a set of predefined top-
ics that represent many distinct (and fixed) logical channels
[3]. In the context of MANETs, the set of topics is defined
beforehand and then, a copy of it is made available at the
level of each station during the deployment: each station
in the network, therefore, has its own copy of the set of
topics. In case of an error in the preparation of the set of
topics or changing needs afterwards, it would be difficult
to update if the system is already deployed. If we take the
example of a publish/subscribe system for the dissemination
of information during a scientific conference where there
is a "cryptography" topic representing a discussion group
around this topic, we can imagine that new topics are created
(e.g.: symmetrical cryptography, asymmetrical cryptogra-
phy) to further refine the discussions in small groups. To our
knowledge, this issue has never been addressed in the case of
publish/subscribe systems for MANETs. Existing solutions

 * Martin Xavier Tchembé
 martinxaviertchembe@gmail.com

 Maurice Tchoupé Tchendji
 ttchoupe@yahoo.fr

1 Department of Mathematics and Computer Science,
University of Dschang, Dschang, Cameroon

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-02412-w&domain=pdf
http://orcid.org/0000-0003-1985-982X

 SN Computer Science (2024) 5:111 111 Page 2 of 17

SN Computer Science

[4–12] are designed to operate in infrastructure-based net-
works; they need to be revisited or even reinvented to meet
the requirements of MANETs: lack of centralised control,
mobility, dynamic topology, etc.

In this paper, we propose a distributed protocol for the
dynamic management of the set of (hierarchical) topics of a
publish/subscribe system deployed in a MANET. The pro-
posed protocol is an extension of the protocol for informa-
tion dissemination in MANETs named SocialMANET [13].
This extension can be observed at several levels:

Messages
The QUERY announcement message of the Social-

MANET protocol has been modified to add information on
operations that have occurred on certain topics (addition,
modification, deletion). New messages have been intro-
duced, such as the REFRESH_REQUEST, UPDATE_REPLY
and FORCE_DELETE messages detailed in ”A dynamic top-
ics management protocol for publish/subscribe systems in
MANETs”.

Data structures
Two new data structures have been introduced to repre-

sent the topics and their hierarchical organisation.
Primitives
Primitives have also been introduced, mainly for creating

a new topic, modifying or deleting an existing topic, and
updating the local set of topics when an UPDATE_REPLY
message has been received.

Parameters
New parameters have been introduced such

a s U P DAT E _ P RO PAGAT I O N _ T I M E O U T a n d
AWARENESS_THRESHOLD.

Topic identification
The identifiers of newly created topics are generated

using a different technique which consists of inserting the
identifier of the creating station into the topic identifier in
order to avoid possible identifier conflicts.

Apart from the dynamic topic management capability
this extension gives the SocialMANET protocol, it makes
it possible to ensure that the topics created in a distributed
manner have unique identifiers; it also ensures that the dif-
ferent replicas of the hierarchy of topics hosted by each sta-
tion are consistent. Indeed, once a station has carried out a
local update of the hierarchy of topics it hosts, the proposed
protocol disseminates it to all the other stations in the sys-
tem. Simulations carried out to test the performance of this
protocol show that it ensures that all the replicas of the topic
hierarchy are updated within a reasonable time. However,
it should be noted that the additional load on the network
in terms of the number of messages exchanged as a result
of these updating operations is not negligible compared to
the number of messages exchanged using the core Social-
MANET protocol; nevertheless, we have made few recom-
mendations to minimise it.

The rest of this paper is organised as follows: “Related
Works” presents a state of the art on dynamic topics manage-
ment in publish/subscribe systems, section “Overview of the
SocialMANET Protocol” presents a brief overview of the
SocialMANET protocol. Section “A dynamic topics manage-
ment protocol for publish/subscribe systems in MANETs”
is devoted to the presentation of the proposed approach. A
practical example of its use is presented in “Sample Case:
Illustration of the Protocol”. The results of the simulations
carried out and their discussions are presented in “Perfor-
mances”. “Conclusion” concludes this paper.

Related Works

Several works in the literature have dealt with the problem
of information dissemination following the topic-based
publish/subscribe communication model in MANETs [2,
13–15]. Very few, however, have dealt with the changes that
can take place on the topics at stake (dynamic topics). Some
authors have rather focused on the issue of dynamic sub-
scription allowing subscribers to dynamically modify their
subscriptions, or to automatically subscribe/unsubscribe to
certain topics under certain conditions (low battery level,
location, etc.) [16–18]. Among the work carried out on the
issue of dynamic topics management, are scientific papers
[10–12] and software systems [4–9].

Software Systems Offering Publish/Subscribe
with Dynamic Topics Management

Amazon SQS [4] is a reliable and highly scalable hosted
queue for storing messages as they flow between applica-
tions or micro services. It moves data between distributed
application components and helps decouple these compo-
nents. It can be viewed as a topic-based publish/subscribe
system where the topics are the queues. Amazon SQS pro-
vides various APIs for performing various operations on
queues (create, modify, delete, set permissions, etc.).

Google Pub/Sub [5] is a messaging and ingest service
for event-driven systems and streaming analytic. It allows
to send and receive messages among various applications.
It is a centralised, topic-based publish/subscribe system that
offers a set of APIs via various platforms to dynamically
manage topics (create, delete, view).

IBM MQ [6] is a system similar to Google Pub/Sub, pro-
viding an universal messaging infrastructure with robust
connectivity for flexible and reliable application messaging.
It also offers APIs via various platforms to create topics and
view the list of topics to which subscribers can subscribe.

There are many other similar tools on the market nowa-
days. These include Apache Kafka [7], Rabit MQ [8], Red
Hat AMQ [9], etc.

SN Computer Science (2024) 5:111 Page 3 of 17 111

SN Computer Science

Scientific Papers Dealing with Publish/Subscribe
with Dynamic Topics Management

A distinction is made between work on distributed systems
[10, 11] and work on centralised systems [12].

Antony Rowstron et al. in [10] present Scribe, a large-
scale distributed event-based notification platform for topic-
based publish/subscribe applications. Scribe is built on top
of Pastry [19], a generic peer-to-peer object search and rout-
ing system on the Internet. Scribe nodes have the ability
to create new topics which they can then subscribe to as
needed. The creation of a new topic uses an identifier to
be assigned to the topic and is done via an API offered by
Scribe, which then delegates this task to Pastry.

Similarly, it is presented in [11], a distributed framework
for creating and discovering topics in distributed publish/
subscribe systems. It allows a node wishing to create a new
topic to issue a topic creation request by providing the neces-
sary data (topic creator, lifetime of the topic, etc.), addressed
to special nodes called TDNs (Topic Discovery Nodes),
which are responsible for tracking the topics contained in
the system. These TDNs also allow the nodes to find the
topics in the system via topic discovery requests.

Early implementations of the SBML server [20] for
publish/subscribe statically predefined the topics to which
subscribers could subscribe. The work carried out in
[12] has enabled authors to extend this server to include
dynamic topics management. It offers two services to cli-
ents: getMsgSelectors() to retrieve the list of topics and
addMsgSelector(String search) to define new topics dynami-
cally (while the server is running), without having to go
through the manual steps of modifying certain configuration
files (topicDefinitions.xml, SBMLTopics-services.xml) and
then restarting the server as was the case in the past.

It should be remembered that as far as our knowledge
is concerned, not much work has been done on the topic
of dynamic topics management in publish/subscribe sys-
tems. The few that we have found and presented above have
designed solutions operating only on infrastructure-based
networks, where the stations are perfectly addressable and
relatively stable (immobile and almost always connected to
the network). These solutions are unfortunately unsuitable
for MANETs where the network is built spontaneously and
has unstable nodes that can leave and enter the network as
they constantly move.

It should also be noted that in the above-mentioned work,
only certain aspects of the dynamic nature of the topics are
addressed. In fact, although all of them dealt with the issue
of adding new topics, the issue of deleting topics (resp. mod-
ifying existing topics) was only dealt with by software prod-
ucts such as Apache Kafka [7], Amazon SQS [4] and Google
Pub/Sub [5]. It is easy to see that these concerns need to be
addressed differently for distributed applications deployed

in MANETs. In fact, as the set of topics can no longer be
centralised on server(s), each station in the network must
have its own copy (replica) of this set and the consistency
of these copies must be ensured.

Overview of the SocialMANET Protocol

The protocol we propose in this paper is an extension of
the information dissemination protocol in MANETs called
SocialMANET [13]. This extension aims to give the Social-
MANET protocol the ability to provide dynamic topic man-
agement, allowing network stations to add, delete and mod-
ify topics while the application implementing the protocol
is deployed. In order to set the basis for the presentation of
the protocol for dynamic updates of the topics dealt with in
this paper, we give below a brief presentation of the Social-
MANET protocol. The interested reader can consult [13] for
a more complete presentation.

SocialMANET is a topic-based publish/subscribe infor-
mation dissemination protocol for MANETs. Since Social-
MANET runs on a network that can be discontinuous,1 each
station running SocialMANET has a local copy of all topics
in the system to ensure their availability in real time dur-
ing subscription and publication operations. In fact, given
the discontinuity of the network, it is not possible to have a
central element in charge of hosting and managing the top-
ics, because it may be off the network at given times or out
of reach of certain stations.

SocialMANET implements the hierarchical topic sub-
scription model [1] which, in addition to allowing the formu-
lation of refined subscription requests close to the content-
based subscription model [1], also minimises the number
of subscriptions required to receive publications in several
topics; this gives a tree-like structure to the set of topics (we
will simply call it later the "topics tree"). SocialMANET
consists of three sub-protocols: the subscription sub-pro-
tocol, the publication sub-protocol and the dissemination
sub-protocol. The latter is carried out in two phases, one of
detection of needs and another of transfer of publications.
During the phase of detection of the needs, and in a periodic
way, a station broadcasts in the network, by a QUERY mes-
sage whose format is illustrated by Fig. 1, an announcement
revealing the list of the identifiers of the topics to which it is
subscribed as well as those of the publications stored locally
on these topics. In this message, ID represents the identifier
of the transmitting station, topic-i the identifier of the i-th
topic to which it subscribes and key-i-j the identifier of the
j-th publication it has on the i-th topic.

1 Network discontinuity can keep stations off the network for long
periods of time.

 SN Computer Science (2024) 5:111 111 Page 4 of 17

SN Computer Science

These topic identifiers are generated using the Dewey
identification technique [21] from the topic tree; each topic
in the tree is represented by a path from the root. Figure 2
illustrates this mechanism of generating topic identifiers
with a tree consisting of the topics p, q, t, u and v. It is thus
easy to recognise, given two topics, whether one is an ances-
tor of the other. Indeed, a topic with identifier x is ancestor
of a topic with identifier y if x is a prefix of y.

In the remainder of this document, the use of the Dewey
identification technique to generate topic identifiers does not
imply that there are no holes2 in the set of topic identifiers

A Dynamic Topics Management Protocol
for Publish/Subscribe Systems in MANETs

Assumptions
The proposed protocol is based on the following

assumptions:

 A1. The network we consider is a network with discontinu-
ous connectivity, defined in [15] as a network made up
of a set of clusters,3

 A2. Only the station that created a topic can edit or delete
it. However, during this operation, if the topic to be
deleted has child topics, they will also be deleted even

if they have been created by other stations. We made
this choice because the semantic of a topic is very
much linked to that of its hierarchical ancestors (as it
is only a refinement of them). It is, therefore, logical
that if we consider a topic to be no longer relevant,
its hierarchical descendants should also no longer be
relevant.

The proposed protocol addresses all cases of updating that
may occur on the hierarchy of topics, namely (1) the addition
of a new topic, (2) the modification of an existing topic and
(3) the deletion of an existing topic. Each of these operations
is carried out in two stages: firstly, updating the hierarchy
of topics stored locally at the station initiating the operation
(stage 1), then disseminating this update to the other stations
in the network (stage 2).

Data Structures and Notations

Two main data structures are used in the protocol: The Topic
data structure (modelling one topic from the set of topics in
the system) and the TopicTree data structure (modelling the
tree—the hierarchy—of topics). An illustration of these data
structures is shown in Fig. 3.

Each data structure has a set of properties. Thus, a topic
is characterised by an identifier (ID), a name (string type),
a dimension4, three flags (New/Modified/Deleted) which

]

TOPIC-1 (KEY-1-1, KEY-1-2, ..., KEY-1-N1)
TOPIC-2 (KEY-2-1, KEY-2-2, ..., KEY-2-N2)

TOPIC-M (KEY-M-1, KEY-M-2, ..., KEY-M-NM)
...

ID [

Fig. 1 Format of the QUERY announcement message

Fig. 2 Topic identifiers genera-
tion .

p t

q u v

.

p t

q u v

1

1.1 1.2

1.1.1 1.2.1 1.2.2

TOPIC IDENTIFIER

.
p

q

t

u

v

1
1.1

1.1.1

1.2
1.2.1

1.2.2

Fig. 3 A representation of the Topic and TopicTree data structures
used in the protocol

2 We say that there is a hole in the set of topic identifiers if there are
two topics with identifiers x.i-1 and x.i+1. respectively, while there is
no topic with identifier x.i.
3 The clusters are made up of stations whose radio proximity allows
them to communicate directly with each other or by multiple hops;
however, the stations on two different clusters are sufficiently far
apart so that they cannot communicate with each other.

4 Dimension property designates a king of counter which is initial-
ized to 0, and is incremented each time a direct sub-topic of the cur-

SN Computer Science (2024) 5:111 Page 5 of 17 111

SN Computer Science

indicate whether the topic has been newly created/modi-
fied/deleted and finally, a last update date in case the topic
has been modified; this date is a logical date. It is set to 0
when the topic is created, and is updated following a prin-
ciple similar to the Lamport Clock [22] principle: in case
of a local modification of a topic t, the LastUpdateDate of
t is incremented; when a station receives a modified topic
from an other station (lets call Dr the LastUpdateDate of
the received topic and Dl the LastUpdateDate of the local
replica of that topic), then the LastUpdateDate of the local
replica of the considered topic is calculated using formula 1.

Similarly, a TopicTree is characterised by a property node,
representing a root topic, and a property children which is
a possibly empty list of sub-trees representing the direct
descendants of the current topic.

Access to the property P of an instance I of one of these
data structures is done via the pointed notation I.P. Thus, for
a topic T, T.ID designates its identifier.

Updating of the Initiating Station’s Topic Tree

As retained in the assumptions, only a station that has cre-
ated a topic can proceed to its modification and/or deletion.

Adding a New Topic

Adding a new topic involves inserting a new node in the
topic tree. To do this, the name of the topic is provided and
all other properties are filled in automatically. In order to
avoid possible conflicts between topic identifiers created
in parallel on different stations, the identifier of the station

(1)Dl = max(Dr,Dl)

wishing to create a new topic is used to generate the topic
identifier. More details on how to generate new Topic IDs
are given in Sect. New Topic Identifiers Generation. The
algorithm 1 is executed by the creating station to add a
topic to its topic tree. The FIND, CONCAT , ADD_NODE
and NEW_NODE primitives, respectively, allow to retrieve
a node of the tree from its identifier, concatenate a set of
values taken in parameters into a resulting string, add a
node to a tree as a child of another node all taken in param-
eters, build a new node from its respective characteristics
(ID, Name, Dimension, New, Modified, Deleted, LastUp-
dateDate). In addition, the GENERATE_NEW_TOPIC_ID
primitive corresponds to the algorithm for generating the
identifier of a new topic from its parent topic and the iden-
tifier of the creating station described in Sect. New Topic
Identifiers Generation. If a topic is being deleted, i.e., it is
still present in the tree with its flag "Deleted" or that of one
of its hierarchical ancestors set to "True", then the primitive
IS_BEING_DELETED which takes as input the node of the
tree corresponding to this topic returns "True".

Deleting a Topic

When a topic is deleted, the "Deleted" flag for that topic
is set to "True" and the "New" and "Modified" flags are set
to "False". However, all its hierarchical descendant top-
ics remain unchanged although they too are intended to be
deleted. Each station maintains a DeletedTopics list contain-
ing the identifiers of the last k permanently deleted topics.
This list is nothing more than a buffer useful to recognize
these topics (see Sect. Continuous Update of the Stations).
The permanent deletion of a topic consists in removing it
from the topic tree with its hierarchical descendants and
inserting its identifier in the DeletedTopics list. It takes place
after a latency time set by a parameter named UPDATE_
PROPAGATION_TIMEOUT. The identifiers of the hier-
archical descendants are not added to this list because to
recognize a topic which has been permanently deleted, it is
enough (thanks to the particular form of the identifiers) to

rent topic is created. It is useful when creating direct descendants of a
topic (see Sect. New Topic Identifiers Generation).

Footnote 4 (continued)

Input: ID Station (the identifier of the station that is creating the new topic), S Name (the name of
the new topic), ID Topic P (the identifier of the parent topic of the new topic), A (the topic tree)

Output: The topic tree after adding the new topic
1: Node P ← FIND(ID Topic P,A) retrieve the parent node from the parent topic identifier
2: if IS BEING DELETED(Node P.Node) then
3: Throw Error cannot extend a deleted topic
4: end if
5: S ID ← GENERATE NEW TOPIC ID(Node P.Node, ID Station) generate the identifier of

the new topic
6: Node ← NEW NODE(S ID, S Name, 0, T rue, False, False, 0) build the new node
7: A ← ADD NODE(Node,Node P,A) add the new node to the tree and update the parent node
8: Node P.Node.Dimension ← Node P.Node.Dimension+ 1
9: Node P.Node.Updated ← True

10: Node P.Node.New ← False
11: Node P.Node.LastUpdateDate ← Node P.Node.LastUpdateDate+ 1
12: return A

Algorithm 1 CREATE_
TOPIC Creates and adds a new
topic to the topic tree

 SN Computer Science (2024) 5:111 111 Page 6 of 17

SN Computer Science

check if its identifier is present in the DeletedTopics list or if
it is a descendant of a topic whose identifier is there.

Modifying a Topic

Modifying a topic consists of changing its name. When a
topic is modified, the new name replaces the old one and
the "Modified" flag for that topic is set to "True", while the
"New" flag is set to "False". In addition, the LastUpdateDate
property of the modified topic is simply incremented. Topics
that are currently being deleted cannot be modified.

Disseminating Updates to Other Stations
in the Network

The ordinary QUERY message structure defined in [13] is
extended (see Fig. 4) by adding a set of identifiers contained
between the ’⌃’ and ’$’ delimiters and separated by commas.
Between these delimiters, the identifiers of new topics are
preceded by the ’+’ symbol, those of topics being deleted
that have their "Deleted" flags set to "True" are preceded by
the ’-’ symbol, and finally, the identifiers of modified topics
are preceded by the ’*’ symbol. The identifiers of topics
being deleted that do not have their "Deleted" flags set to
"True" are not added to the QUERY message, although they
are intended to be deleted. This helps to limit the size of this
message by avoiding adding redundant information. In fact,
since the deletion of a topic leads to the deletion of all its
hierarchical descendants, only the knowledge of the ances-
tor topic with its flag "Deleted" set to "True" is necessary.

After a network station updates its topic tree (adds, modi-
fies or deletes a topic), all its future announcement messages
contain, for a certain time given by the value of the param-
eter UPDATE_PROPAGATION_TIMEOUT, the informa-
tion on the updated topics. When the UPDATE_PROPA-
GATION_TIMEOUT runs out, all the ’Modified’ and ’New’
flags of all topics in the tree are reset to ’False’; the identi-
fiers of topics with the ’Deleted’ flag set to ’True’ are added
to the DeletedTopics list of the local station, and these and
all their hierarchical descendants are removed from the topic
tree.

When a station in the network receives the QUERY mes-
sage, it updates its topic tree by setting the "Deleted" flags
of all topics in the tree that are not being deleted and whose
identifiers are included among the identifiers framed by
the ’⌃’, and ’$’ symbols and preceded by the ’-’ symbol, to

"True". Then it sends in unicast, an UPDATE_REQUEST
request to the station sending the QUERY message previ-
ously received, with the identifiers framed in this QUERY
message by the symbols ’⌃’, and ’$’ and preceded by the
symbols ’+’ and ’*’.

If we note N (respectively M) the set of identifiers con-
tained in the QUERY message and preceded by the sym-
bol ’+’ (respectively ’*’); if we note S the set of topics in
the topic tree of the station receiving the QUERY message
and Hs the set of hierarchical ancestor topics of a topic s
(s ∈ Hs ⊂ S) then, the identifiers of the topics sent in the
UPDATE_REQUEST are those given by formula (2); they
are in fact the identifiers preceded by the symbol ’+’ in the
announcement message and which are not identifiers of
topics in the topic tree of the station receiving the QUERY
message.

Similarly, the identifiers preceded by the symbol ’*’ are sent
in the UPDATE_REQUEST if they are not those of the top-
ics being deleted in the topic tree of the station receiving the
QUERY message; they, therefore, belong to the set given by
formula (3).

Topic identifiers that fall between the ’[’ and ’]’ symbols
and are not present in the topic tree are also added to the
UPDATE_REQUEST message.

When the station that sent the QUERY message receives
the UPDATE_REQUEST request, it constructs an UPDATE_
REPLY message (see Fig. 5) with a complete description of
each topic whose identifier is contained in the UPDATE_
REQUEST request. This message is then broadcast in the
network after an UPDATE_REPLY_BACK_OFF delay. By
analogy with the back-off delay preceding the broadcast of
publications in SocialMANET, this allows to satisfy several
additional UPDATE_REQUEST requests at once and thus to
save resources.

The algorithm 2 allows a station to update its topic tree
after receiving an UPDATE_REPLY message. Arranging
the topics in lexicographical order on the identifiers makes
it possible to walk through the tree level by level (Breadth
First), from the root to the leaves, thus ensuring that the
creation of a new topic implies that its parent topic exists.
To do this, only the ID-INFO part (see Sect. New Topic

(2)N − {s.ID, s ∈ S}

(3)M − {s.ID, s ∈ S∕∃a ∈ Hs, a.Deleted = True}

Fig. 4 Format of the modified
QUERY message

]

TOPIC-1 (KEY-1-1, KEY-1-2, ..., KEY-1-N1)
TOPIC-2 (KEY-2-1, KEY-2-2, ..., KEY-2-N2)

TOPIC-M (KEY-M-1, KEY-M-2, ..., KEY-M-NM)
...

ID [

^+NEW-1, ..., +NEW-P, -DELETED-1, ..., -DELETED-Q, *UPDATED-1, ..., *UPDATED-R$

SN Computer Science (2024) 5:111 Page 7 of 17 111

SN Computer Science

Identifiers Generation) of the topic identifier is taken into
account to perform the ordering. The FIND, ADD_NODE
and NEW_NODE primitives are as defined in Sect. “Updat-
ing of the Initiating Station’s Topic Tree”.

If a topic is deleted, its identifier or that of one of its
hierarchical ancestors is in the DeletedTopics list; then the
IS_DELETED primitive that takes a topic as input returns
"True" and the corresponding iteration for that topic is
skipped (Algorithm 2, lines 4–6).

It may happen that a station receives a topic that has
undergone a modification on a different date than the modi-
fication it knows of the same topic; the algorithm 2 allows to
keep the most recent modification by using the logical date
(see Algorithm 2, lines 10-17).

If the UPDATE_REPLY message is a reply to a previous
REFRESH_REQUEST message received (see Sect. “Con-
tinuous Update of the Stations”), it may contain a topic that
is being deleted (Deleted = True) according to the message
UPDATE_REPLY, but not from the point of view of the
current station’s topic tree. The algorithm 2 (lines 18-22)

[
 {
 ID_Parent: String,
 ID: String,
 Name: String,
 Dimension: Number,
 New: Boolean,
 Modified: Boolean,
 Deleted: Boolean,
 LastUpdateDate: Number
 },
 ...,
 {
 ID_Parent,
 ID: String,
 Name: String,
 Dimension: Number,
 New: Boolean,
 Modified: Boolean,
 Deleted: Boolean,
 LastUpdateDate: Number
 }
]

Fig. 5 Format of the UPDATE_REPLY message

Input: TLIST (the list of topics contained in the UPDATE REPLY message), A (the topic tree)
Output: The updated topic tree
1: A ← A
2: Arrange TLIST topics in the lexicographical order on the identifiers
3: for all s ∈ TLIST do
4: if IS DELETED(s) then
5: Continue
6: end if
7: NodeEx ← FIND(s.ID,A)
8: if NodeEx = Null then
9: if s.Modified = True then modified topic

10: if NodeEx.Node.LastUpdateDate < s.LastUpdateDate then
11: NodeEx.Node.Name ← s.Name
12: NodeEx.Node.Dimension ← s.Dimension
13: NodeEx.Node.New ← False
14: NodeEx.Node.Modified ← True
15: NodeEx.Node.Deleted ← False
16: NodeEx.Node.LastUpdateDate ← s.LastUpdateDate
17: end if
18: else
19: NodeEx.Node.New ← False
20: NodeEx.Node.Modified ← False
21: NodeEx.Node.Deleted ← True
22: end if
23: else new topic for the current station
24: Node P ← FIND(s.ID Parent,A)
25: NNode ← NEW NODE(s.ID, s.Name, s.Dimension, s.New,
26: s.Modified, s.Deleted, s.LastUpdateDate)
27: A ← ADD NODE(NNode,Node P,A)
28: end if
29: end for
30: return A

Algorithm 2 HANDLE_UPDATE_REPLY

 SN Computer Science (2024) 5:111 111 Page 8 of 17

SN Computer Science

handles this situation by allowing the current station to
update its topic tree properly.

New Topic Identifiers Generation

As mentioned in Sect. “Overview of the SocialMANET
Protocol”, topic identifiers are generated using the Dewey
identification technique. However, this technique shows its
limitations when network stations can create new topics con-
currently, as there is a risk that the topic identifiers created
concurrently clash with each other. If this were to happen,
it would be impossible to distinguish between each of the
conflicting topics.

For example, consider a publish/subscribe system for dis-
seminating information during university games, and two
stations A and B each adding a topic to their respective trees,
which were previously identical. Let us assume that each of
the new topics (e.g., Football and Table tennis) is inserted
in the respective trees of stations A and B as a child of the
topic of identifier 1.2 (e.g., Sport); these new topics will
therefore, following Dewey’s identification technique, have
identifier 1.2.1 in their respective topic trees (see Fig. 6).

During a contact between stations A and B, station A will
receive identifier 1.2.1 from B as a new topic, but it will do
nothing because it will assume that it already has this topic
in its local tree (see Fig. 6).

To avoid errors of this type when updating the topic trees
of the network stations after a topic has been added, we
have proposed a new way of assigning identifiers to the new
topics.

We have introduced a new data in the topics identifiers;
it contains information about the creator of the topic. The
resulting format for a topic identifier is then as follows:
<CREATOR-INFO>::<ID-INFO>. The part CREATOR-
INFO is a sequence of identifiers containing, from left to
right, the identifier of the station that created the current
topic, as well as those of the stations that created the ances-
tor topics of the current topic from the closest to the furthest
hierarchical distance, respectively, separated by the sym-
bol ’ ∼ ’. The ID-INFO part represents the topic identifier
obtained by applying the Dewey identification technique.
The algorithm 3 shows how the identifier of a new topic is
generated from the identifier of the parent topic and the one

Fig. 6 Conflict of identifiers
when creating new topics

1

1.1 1.2

1.2.1

B

1

1.1 1.2

1.2.1

A

1

1.1 1.2

1.2.1

A

After a contact
between
A and B

New Topic
ID: 1.2.1
Name: Football
Dimension: 0
New: True
Modified: False
Deleted: False
LastUpdateDate: 0

New Topic
ID: 1.2.1
Name: Table tennis
Dimension: 0
New: True
Modified: False
Deleted: False
LastUpdateDate: 0

Input: P TOPIC (the parent topic of the new topic), ID STATION (the identifier of the station that
is creating the new topic)

Output: The identifier of the new topic
1: CREATORS ← Null
2: IDS ← Null
3: if P TOPIC.ID contains ”::” then
4: CREATORS ← CONCAT (ID STATION, ” ∼ ”, CREATOR INFO(P TOPIC.ID))
5: IDS ← CONCAT (ID INFO(P TOPIC.ID), . , P TOPIC.Dimension+ 1)
6: else
7: CREATORS ← ID STATION
8: IDS ← CONCAT (P TOPIC.ID, . , P TOPIC.Dimension+ 1)
9: end if

10: ID ← CONCAT (CREATORS, ” :: ”, IDS)
11: return ID

Algorithm 3 GENERATE_
NEW_TOPIC_ID Generates
an ID for a new topic

SN Computer Science (2024) 5:111 Page 9 of 17 111

SN Computer Science

of the creating station. Examples of identifiers are given in
Fig. 7.

The CREATOR_INFO and ID_INFO primitives are used
to extract the CREATOR-INFO and ID-INFO parts of a topic
identifier, respectively. Figure 7 illustrates this technique.

Figure 8 is an illustration of the use of algorithm 3 to
solve the conflict of identifiers problem illustrated in Fig. 6.
Since each of the stations A and B has added its identifier to
the topic it has created, station A will recognise the topic of
identifier B::1.2.1 created by station B as a new topic.

Continuous Update of the Stations

When the UPDATE_PROPAGATION_TIMEOUT delay of
a station expires, the propagation of updates stops for all
relevant topics. This can happen when some stations out of
range have not been updated yet. This sub-section aims to
propose a solution to allow such stations to be informed of
changes in the topic tree during their "unavailability" (while
out of range).

The proposed solution once again exploits the periodic
QUERY announcement messages that the network stations
broadcast to signal their presence and the topics to which
they have subscribed (see Fig. 1). In fact, from a QUERY
message sent by a station, the receiving station can deduce
certain topics of which it is not aware and request them later
via an UPDATE_REQUEST.

Indeed, as mentioned in Sect. “Disseminating Updates
to Other Stations in the Network”, if a station receives a
QUERY message and realizes that some topic identifiers
between the ’[’ and ’]’ symbols are not present in its topic
tree, it adds these identifiers to the contents of its UPDATE_
REQUEST message. This allows stations that have not been
updated until the UPDATE_PROPAGATION_TIMEOUT
delay from other stations has expired to receive updates on
topics that were created while they were out of range.

The question could be asked what happens then to modi-
fied and deleted topics; how can stations be updated against
these cases after the propagation time of the updates has
expired? For this purpose, we introduce a new parameter
in the protocol called AWARENESS_THRESHOLD which
represents at a given moment the maximum acceptable
value of the time elapsed between the last update of a station
and the current moment. When this threshold is exceeded,
at the next contact with the other stations in the network,
the stations concerned broadcast a REFRESH_REQUEST
message in the network, containing all the topics they have
in their topic trees. In this case, the stations will have to
store the date of last update of their topic trees. This allows
all stations receiving this query to broadcast, using the
UPDATE_REPLY message, a full description of all the top-
ics contained in their topic trees, which are not included
in the REFRESH_REQUEST message. In addition, the
UPDATE_REPLY message also includes all topics in the
REFRESH_REQUEST message for which at least one of the
following conditions is met: (1) the topic’s "Deleted" flag in
the local topic tree is set to ’True’, but not in the REFRESH_
REQUEST message; (2) the date the topic was last modified
in the local topic tree is greater than the date the topic was
last modified in the REFRESH_REQUEST message. This
will result in an update of the stations that have broadcast
such a REFRESH_REQUEST message. For topics contained
in the REFRESH_REQUEST message whose identifiers are
present in the local DeletedTopics list, a FORCE_DELETE
broadcast message is sent with these identifiers. Any station
receiving the FORCE_DELETE message copies the identi-
fiers it contains in its DeletedTopics list and systematically
removes from their topic tree the topics whose identifiers are
contained within this message, as well as their hierarchical
descendants.

The REFRESH_REQUEST message can also inform the
receiving station that some topics of which it is not aware

1

1.1 1.2

B::1.1.2

B

1

1.1 1.2

B::1.1.1

A

1

1.1 1.2

B::1.1.2

C

Initial configuration
of the topic tree

B::1.1.1

C~B::1.1.2.1

Adding topics B::1.1.1 and
B::1.1.2 by station B

Adding topic C~B::1.1.2.1
by station C

Fig. 7 Illustration of the algorithm for generating identifiers of new
topics

1

1.1 1.2

B::1.2.1

B

1

1.1 1.2

A::1.2.1

A

1

1.1 1.2

B::1.2.1

A

After a contact
between
A and B

New Topic
ID: A::1.2.1
Name: Football
Dimension: 0
New: True
Modified: False
Deleted: False
LastUpdateDate: 0

New Topic
ID: B::1.2.1
Name: Table tennis
Dimension: 0
New: True
Modified: False
Deleted: False
LastUpdateDate: 0

A::1.2.1

Fig. 8 Resolution of the conflict of topics identifiers illustrated in
Fig. 6

 SN Computer Science (2024) 5:111 111 Page 10 of 17

SN Computer Science

exist. These are the topics absent in its topic tree and pre-
sent in the REFRESH_REQUEST message. In this case, the
receiving station will systematically update its topic tree,
if their identifiers are not present in its local DeletedTopics
list. The receiving station can also exploit this message for
modified topics by updating topics in its topic tree whose last
modification date in the REFRESH_REQUEST message is
greater than the last modification date in the local topic tree.

Sample Case: Illustration of the Protocol

We present in this section an illustration of the proposed pro-
tocol. One can imagine being in a natural disaster area (e.g.
a earthquake) with teams of rescue workers going here and
there and having a mobile application to disseminate infor-
mation by publish/subscribe among them. The topics in such
an application could be Fire (so that the interested parties
are fire-fighters), Injured (so that the interested parties are
emergency workers), etc. We will consider five stations A, B,
C, D and E respectively to run our example. These stations
will represent rescue workers, or more precisely instances
of the mobile application (installed in their smartphones for
example) that they use to communicate. We will show the

evolution of the network topology over time as the stations
move, as well as the evolution of the topic trees structure for
each node in the network.

Figure 9 shows the initial status (after the deployment)
of the stations in the network. The topic tree at all stations
is the initial tree (no modifications, deletions or additions
have been made). For the sake of simplicity, only the IDs
of topics have been displayed. A solid line connecting two
stations means that they can communicate with each other.
The arrows symbolize the movements of the stations.

Continuing the illustration, it is assumed that stations
A and C add topics A::1.2.1 and C::1.1.1 respectively
(Fig. 10). For the sake of simplicity, the QUERY mes-
sages shown in Table 1 following these additions are
only partial representations of the actual QUERY mes-
sages. It can be noticed that station B learned from A
the creation of topic A::1.2.1; similarly stations D and
E learned from C the creation of topic C::1.1. After

Fig. 9 Initial state of the sta-
tions: identical topic tree and
two clusters

1

1.1 1.2

A

1

1.1 1.2

B

1

1.1 1.2

C

1

1.1 1.2

D

1

1.1 1.2

E

A

D

E

B

C

Fig. 10 Addition of two new
topics by stations A and C

1

1.1 1.2

A

1

1.1 1.2

B

1

1.1 1.2

C

1

1.1 1.2

D

1

1.1 1.2

E

A

D

E

B

C

A::1.2.1 C::1.1.1

Table 1 QUERY messages
broadcast by network stations
(1)

Source Content Targets

A ⌃+A::1.2.1$ B
C ⌃+C::1.1.1$ D, E

SN Computer Science (2024) 5:111 Page 11 of 17 111

SN Computer Science

a few exchanges between these stations to obtain the
details of the created topics (for instance, exchanges of
UPDATE_REQUEST and UPDATE_REPLY messages),
stations B, D and E will update their respective topic
trees (see Fig. 11).

Continuing the illustration, it is assumed that station
D has created a new topic with identifier D::1.2.1 and
that station C has joined the cluster containing A and B
(Fig. 12).

Table 2 gives an overview of the contents of the QUERY
messages sent by the different stations. After exchanges

of UPDATE_REQUEST and UPDATE_REPLY messages
between stations in the network, the updates of the respec-
tive topic trees of different stations are shown in Fig. 13. Let
us observe in that figure that, stations A, B and C now have
the new topics A::1.2.1 and C::1.1.1 in their topic trees;
similarly, stations D and E have the new topics C::1.1.1 and
D::1.2.1 in their topic trees.

In order to continue the illustration, let us consider the
new network topology shown in Fig. 13, in which new
connections are created; this give rise to new exchanges
(see Table 3) between the stations of the network. These
exchanges allow them to update their topic trees, as can be
seen in Fig. 14.

In the same figure (Fig. 14), it can once again be seen
that the moving of the stations has once again resulted in
a new network configuration. The modification of topic
A::1.2.1 by station A and the deletion of topic C::1.1.1
by station C can also be noted. All these changes also
lead to a change in the contents of the QUERY messages
broadcast by the stations in the network (Table 4). These
different contents inform that station E will be aware of

Fig. 11 Updating stations B, D
and E

1

1.1 1.2

A

1

1.1 1.2

B

1

1.1 1.2

C

1

1.1 1.2

D

1

1.1 1.2

E

A

D

E

B

C

A::1.2.1 C::1.1.1 C::1.1.1C::1.1.1A::1.2.1

Fig. 12 Creating a new topic
with identifier D::1.2.1

1

1.1 1.2

A

1

1.1 1.2

B

1

1.1 1.2

C

1

1.1 1.2

D

1

1.1 1.2

E

A

D

E

B

C

A::1.2.1 C::1.1.1 C::1.1.1C::1.1.1A::1.2.1 D::1.2.1

Table 2 QUERY messages broadcast by network stations (2)

Source Content Targets

A ⌃+A::1.2.1$ B, C
B ⌃+A::1.2.1$ A, C
C ⌃+C::1.1.1$ A, B
D ⌃+C::1.1.1, +D::1.2.1$ E
E ⌃+C::1.1.1$ D

 SN Computer Science (2024) 5:111 111 Page 12 of 17

SN Computer Science

the modification of the topic A::1.2.1 that it does not have
in its topic tree, which will allow it to update itself. Simi-
larly, stations A and B will be aware of the creation of
topic D::1.2.1; station B will also be aware of the deletion
of topic C::1.1.1. They will then be able to update their
topic trees and continue the propagation of the different
information collected on the changes in the topic tree.

Fig. 13 New update of the
network stations

1

1.1 1.2

A

1

1.1 1.2

B

1

1.1 1.2

C

1

1.1 1.2

D

1

1.1 1.2

E

A

D

E

B
C

C::1.1.1C::1.1.1A::1.2.1 D::1.2.1A::1.2.1A::1.2.1C::1.1.1 C::1.1.1C::1.1.1 D::1.2.1

Table 3 QUERY messages broadcast by network stations (3)

Source Content Targets

A ⌃+C::1.1.1$ -
B ⌃+A::1.2.1, +C::1.1.1$ C
C ⌃+A::1.2.1$ B, D
D ⌃+C::1.1.1, +D::1.2.1$ C, E
E ⌃+C::1.1.1, +D::1.2.1$ D

Fig. 14 New status of topic
trees, modification of topic
A::1.1.1 and deletion of topic
C::1.1.1.1

1

1.1 1.2

A

1

1.1 1.2

B

1

1.1 1.2

C

1

1.1 1.2

D

1

1.1 1.2

E

A

D

E

B

C

C::1.1.1A::1.2.1A::1.2.1C::1.1.1 C::1.1.1 D::1.2.1C::1.1.1C::1.1.1 A::1.2.1 D::1.2.1 D::1.2.1 A::1.2.1

SN Computer Science (2024) 5:111 Page 13 of 17 111

SN Computer Science

Performances

We performed simulations to evaluate the performances of
the proposed protocol in terms of the propagation speed of
the topic tree updates, and the effective update rate of the
different stations in the network. The simulations were car-
ried out using the NS2 simulator ("NS-2 Network Simula-
tor" http:// www. isi. edu/ nsnam/ ns/).

Simulation Parameters

Simulations were made with a set of 100 nodes deployed
over an area of 950 m x 800 m, moving according to the
Random Waypoint Mobility model (RWM). The overall
parameters of the simulation are summarised in Table 5.

The RWM mobility model makes it possible to make the
movement of nodes in the network random. Throughout the
simulation, each node randomly selects a destination, moves
there at a random speed below a preconfigured value, remains
stationary for a so-called pause time, then selects a new des-
tination and the cycle starts again. We have set the maximum
speed of the nodes at 4 m/s and the pause time at 2 s.

We realized an implementation of the SocialMANET
protocol within the NS2 simulator and we grafted to it an
implementation of the dynamic topics management pro-
tocol presented in this paper. Unless otherwise stated, all

simulations were performed under normal operating condi-
tions of SocialMANET; i.e., stations subscribed and pub-
lished information during the simulations and the differ-
ent publications were disseminated among stations in the
network.

Results

Update Propagation Speed

During this simulation, which lasted 1000 s, we set the
value of the seed5 of the random number generator to 0.
Each station is activated at the beginning of the simulation;
the activation here consists of launching the first iteration
of the SocialMANET protocol’s Need Detection phase (the
other iterations follow). We have also set the value of the
UPDATE_PROPAGATION_TIMEOUT parameter to 50 s,
that of the AWARENESS_THRESHOLD parameter to 200 s
and the number of altruistic stations6 to 0.

Initially, the topic trees for all stations in the network
contain five topics. At the very beginning of the simulation,
a new topic is created by one station in the network. We
have identified the number of stations that have updated their
topic trees with the new topic created for different values of
the RESEARCH_DELAY7 parameter (50, 75, 150 and 175)
over time. The results are shown in Fig. 15.

It can be noticed that for small values of the RESEARCH_
DELAY (HBD) parameter, the propagation speed of the
updates is high: more than half of the stations in the network
had been updated in the middle of the simulation. It can also be

Table 4 QUERY messages broadcast by network stations (4)

Source Content Targets

A ⌃+C::1.1.1, *A::1.2.1$ E
B ⌃+C::1.1.1$ C
C ⌃+A::1.2.1, +D::1.2.1, -C::1.1.1$ B
D ⌃+A::1.2.1$ –
E ⌃+D::1.2.1$ A

Table 5 Simulation parameters

Parameter Value

MAC layer 802_11b
Routing protocol None
Bandwidth 1Mb/s
Detection range 50 m
Transmission range 50 m
Number of stations 100
Simulation area 950 m * 800 m
Mobility model RWM
Maximum speed 4 m/s
Pause time 2 s
Duration of simulation 900 s

Fig. 15 Update propagation speed

5 This is a number which is used by the simulator to generate the ran-
dom numbers generally obtained using the rand() function.
6 Altruistic stations participate in the dissemination of publications
belonging to topic they have not subscribed to [13].
7 The RESEARCH_DELAY parameter represents for the Social-
MANET [13] protocol the time out between two consecutive broad-
casts of the QUERY announcement message.

http://www.isi.edu/nsnam/ns/

 SN Computer Science (2024) 5:111 111 Page 14 of 17

SN Computer Science

seen that, whatever the case, all or almost all the stations in the
network are actually updated before the end of the simulation.

Network Stations Update Rate

For this second 1000-s simulation, we have also set the value
of the seed of the random number generator to 0, with each
station being activated at the beginning of the simulation.
We have set the value of the RESEARCH_DELAY parameter
to 50 s and the number of altruistic nodes to 0.

Initially, the topic trees for all stations in the network
contain five topics. Six more topics are created at the 50th,
150th, 175th, 225th, 250th and 400th second of the simula-
tion, respectively. We have played this simulation several
times by varying the parameters UPDATE_PROPAGA-
TION_TIMEOUT and AWARENESS_THRESHOLD from
50 to 450 in steps of 50. Figure 16(a) shows for each value
of the parameter UPDATE_PROPAGATION_TIMEOUT, the
mean value and the error of the network stations update rate

for the different values of the AWARENESS_THRESHOLD
parameter.

It can be noticed that the update rate of the stations in
the network is quite high (mostly above 0.9 (90%)) and
tends towards a rate of 1.0 (100%) when the value of the
UPDATE_PROPAGATION_TIMEOUT parameter reaches
400 s (Fig. 16(a)). Note the impact of the AWARENESS_
THRESHOLD (AT) parameter which, as its value increases
(Fig. 16(b)), has a degrading effect on this rate (although not
away from 90%).

Number of Exchanged Messages

We carried out a simulation to evaluate the number of mes-
sages exchanged in the network related to the updating of the
stations’ topic trees. We compared the results obtained to the
ones of the core SocialMANET protocol (when the dynamic
topics’ management is disabled). We ran this simulation
three times for different values of the seed of the random
number generator, namely -1, 0 and 1. At each run, the dura-
tion of the simulation was 1000 s. We then used the average
of the results obtained to get the representation in Fig. 17.

Each station is activated at a random time during the first
450 s of the simulation. We have also set the value of the
RESEARCH_DELAY parameter to 150 s and the number of
altruistic nodes to 0. Initially, the topic trees of all stations in
the network contain five topics. Six more topics are created
at the 50th, 150th, 175th, 225th, 250th and 400th second of
the simulation, respectively.

Fig. 16 Network stations update rate

Fig. 17 Network load in terms of number of exchanged messages

Table 6 Ratio of the number
messages exchanged Update propagation time-out 150 250 350 450 550 650 750 850

Ratio 1.32 1.44 1.57 1.59 1.66 1.65 1.66 1.65

SN Computer Science (2024) 5:111 Page 15 of 17 111

SN Computer Science

By varying the value of the parameter called UPDATE_
PROPAGATION_TIMEOUT, we measured the number
of messages exchanged in the network. The results are
shown in Fig. 17. On the x-axis, we have the variation of
the UPDATE_PROPAGATION_TIMEOUT parameter and
on the y-axis the number of messages exchanged in the
network. When the dynamic topics’ management is not
active (Core SocialMANET protocol), the number of mes-
sages exchanged is constant. This number increases when
dynamic topic management is enabled, as the value of the
UPDATE_PROPAGATION_TIMEOUT parameter increases.
This increase is due to exchanges to propagate the updates
of station topic trees.

Table 6 presents the ratio of the number of messages
exchanged with the dynamic topics’ management enabled
(#MSG_DTM) over the number of messages exchanged in
the case of the core SocialMANET protocol (#MSG_CSM).
This ratio is obtained by the formula 4.

Viewing the results from this angle, we can see that
the introduction of dynamic topic management within the
SocialMANET protocol increases the number of messages
exchanged in the network from 1.32 to 1.66 times, depend-
ing on the value of the UPDATE_PROPAGATION_TIME-
OUT parameter.

Discussion

When network stations communicate with a high frequency
(low values of the RESEARCH_DELAY parameter), the
propagation speed of topic updates is also high. This is due
to the relatively high frequency of QUERY announcement
messages due to the low value of the RESEARCH_DELAY
parameter.

(4)Ratio =
#MSG_DTM

#MSG_CSM

We noticed a degrading effect on the station update rate
due to the AWARENESS_THRESHOLD parameter. The
higher the value of the AWARENESS_THRESHOLD param-
eter, the more the stations tolerate not receiving any updates,
resulting in a lower update rate for the stations in the net-
work. Nevertheless, this rate is high overall (mostly above
90%). This is in line with what we expected; it proves that
our strategy is effective not only in terms of local changes,
but also in terms of global changes in MANETs. Indeed,
the techniques we use ensure that almost all stations are
updated, as even stations that have been out of range for a
long time can receive updates even though the propagations
have been completed at the other stations in the network.
Also, the target and source stations of a refresh request can
both be updated using the same refresh request (REFRESH_
REQUEST message). Finally, changes to the set of topics
can be detected even during normal SocialMANET protocol
communications using the classic QUERY announcement
message in which a station can detect an identifier of a topic
it is not aware of.

Updating the set of system’s topics is costly in terms of
the number of messages exchanged in the network, as shown
by the results of the simulations presented in Sect. “Results”.
This could consequently lead to over-consumption of energy
by the stations. Therefore, when designing a topic-based
publish/subscribe system for MANETs, the set of topics
should be well defined in order to minimise the possible
changes that could occur to it. In addition, the values of
the parameters RESEARCH_DELAY, UPDATE_PROPAGA-
TION_TIMEOUT and AWARENESS_THRESHOLD must be
chosen in such a way as to minimise the number of messages
exchanged in the network without significantly altering the
propagation speed and the effective update rate of the sta-
tions in the network.

The problem of dynamic topics management in topic-
based publish/subscribe systems is an interesting one.
However, not much work addresses it in the literature. To
our knowledge, it has no solution capable of running in a

Table 7 Comparison of the solutions

Features Our solution Kafka [7] SQS [4] Pub/Sub [5] MQ [6] Rowstron et al.
[10]

Shrideep et al.
[11]

Nicklas et al.
[12]

Distributed? Yes No No No No Yes Yes No
Suitable for

MANETs?
Yes No No No No No No No

Supported
update
operations

Add, Modify,
Delete

Add, Modify,
Delete

Add, Modify,
Delete

Add, Delete Add, Delete Add Add Add

Where are
the topics
stored?

All the sta-
tions

The server(s) The server(s) The server(s) The server(s) The Station
whose Id is
close to that
of the topic

TDNs track
and provide
data related
to topics

The server

 SN Computer Science (2024) 5:111 111 Page 16 of 17

SN Computer Science

MANET. Our solution is designed to cope with the con-
straints imposed by this type of network. Table 7 presents
a summary of the characteristics of our solution and those
found in the literature [4–7, 10–12].

The update operations that can be performed on the set
of topics in a topic-based publish/subscribe system are the
addition, modification and deletion of topics. All of the solu-
tions presented in Table 7 addressed the addition of new top-
ics, but it should be noted that only the solutions presented
in [4–7] addressed the deletion of topics in addition, and
those presented in [4, 7] addressed the modification of top-
ics. Our solution manages all possible updating operations.
In addition, our protocol suggests that each station on the
network has a copy of all topics, which is not the case for
the other distributed solutions presented in Table 7. This
has the advantage that no topic search operation (which can
be costly in distributed systems) is necessary as in [11] to
subscribe to a topic or perform a publication on a topic.
Indeed, since each station stores all the topics in the system,
a simple reading of the local set of topics is necessary. How-
ever, for this to be possible, stations need to communicate
regularly to ensure consistency of local copies. But this is a
worthwhile effort for systems operating in MANETs where
it is impossible to envisage a resource being stored only by a
subset of the stations that can access it, thus running the risk
of making the resource inaccessible if the stations storing it
are kept out of reach for long time.

Conclusion

In this paper, by extending the SocialMANET protocol
for information dissemination using publish/subscribe in
MANETs, we have proposed an approach to dynamically
manage the topics in a topic-based publish/subscribe sys-
tem for MANETs. Our approach allows to track any local
changes that may occur across the topics in such a system
and to disseminate these changes to all the other stations in
the network, including those kept out of reach for long peri-
ods of time due to network discontinuity. Thanks to the use
of an ingenious topic identification technique based on the
Dewey identification technique, our approach makes it pos-
sible to avoid possible conflicts among the identifiers of top-
ics created by different stations concurrently. The results of
the simulations we have conducted show that our approach
allows fast propagation of the changes occurring on the set
of topics if there is frequent communication among stations,
with a high update rate of the stations in the network.

Although we have obtained satisfactory results from the
simulations we have conducted, we plan to proceed in a near
future with real life experiments on our protocol. To this end,
we have initiated the implementation of our protocol within
a publish/subscribe system for information dissemination

during a scientific conference, over Android smartphones.
This experimentation will allow us to further validate our
approach.

The number of messages exchanged in the network for the
update operations of the topics is not negligible and conse-
quently leads to an over consumption of energy. However,
we have given recommendations to limit this effect. Future
work could consist of carrying out simulations in order to
find the right values for the parameters RESEARCH_DELAY,
UPDATE_PROPAGATION_TIMEOUT and AWARENESS_
THRESHOLD to be chosen to limit the number of messages
exchanged in the network.

Funding No funds, grants, or other support was received.

Code Availability Not applicable.

Availability of Data and Materials The datasets generated during the
current study are available from the corresponding author on reason-
able request.

Declarations

Conflict of Interest The authors have no competing interests to declare
that are relevant to the content of this article.

References

 1. Patrick TE, Pascal F, Rachid G, Anne-Marie K. The many faces
of publish/subscribe. ACM Comput Surv. 2003;35(2):114–31.
https:// doi. org/ 10. 1145/ 857076. 857078.

 2. Baehni S, Chhabra CS, Guerraoui R. Frugal event dissemination
in a mobile environment. In: Alonso G, editor. Middleware 2005.
Berlin: Springer; 2005. p. 205–24. https:// doi. org/ 10. 1007/ 11587
552_ 11.

 3. Baldoni R, Contenti M, Virgillito A. In: Schiper, A., Shvartsman,
A.A., Weatherspoon, H., Zhao, B.Y. (eds.) The Evolution of Pub-
lish/Subscribe Communication Systems, pp. 137–141. Springer,
Berlin (2003). https:// doi. org/ 10. 1007/3- 540- 37795-6_ 25

 4. SQS A. Amazon Simple Queue Service. https:// aws. amazon. com/
sqs. Accessed 15 Mar 2022.(2022)

 5. Pub/Sub: Cloud Pub/Sub (Google Cloud) (2022). https:// cloud.
google. com/ pubsub. Accessed 21 Feb 2022.

 6. MQ: MQ - Overview (IBM) (2022). https:// www. ibm. com/ produ
cts/ mq. Accessed 21 Feb 2022 (2022)

 7. Foundation A. Apache Kafka (2023). https:// kafka. apache. org/.
Accessed 09 Feb 2023.

 8. MQ R. RabbitMQ: easy to use, flexible messaging and stream-
ing—RabbitMQ (2023). https:// www. rabbi tmq. com/. Accessed
09 Feb 2023.

 9. Hat R. Red Hat AMQ (2023). https:// www. redhat. com/ en/ techn
ologi es/ jboss- middl eware/ amq. Accessed 09 Feb 2023.

 10. Rowstron A, Kermarrec A-M, Castro M, Druschel P. Scribe:
The design of a large-scale event notification infrastructure. In:
Crowcroft J, Hofmann M, editors. Networked Group Commu-
nication. Berlin: Springer; 2001. p. 30–43. https:// doi. org/ 10.
1007/3- 540- 45546-9_3.

 11. Shrideep P, Geoffrey F, Harshawardhan G. On the secure
creation, organisation and discovery of topics in distributed

https://doi.org/10.1145/857076.857078
https://doi.org/10.1007/11587552_11
https://doi.org/10.1007/11587552_11
https://doi.org/10.1007/3-540-37795-6_25
https://aws.amazon.com/sqs
https://aws.amazon.com/sqs
https://cloud.google.com/pubsub
https://cloud.google.com/pubsub
https://www.ibm.com/products/mq
https://www.ibm.com/products/mq
https://kafka.apache.org/
https://www.rabbitmq.com/
https://www.redhat.com/en/technologies/jboss-middleware/amq
https://www.redhat.com/en/technologies/jboss-middleware/amq
https://doi.org/10.1007/3-540-45546-9_3
https://doi.org/10.1007/3-540-45546-9_3

SN Computer Science (2024) 5:111 Page 17 of 17 111

SN Computer Science

publish/subscribe systems. Int J High Perform Comput Netw.
2008;5(3):156–67. https:// doi. org/ 10. 1504/ IJHPCN. 2008. 020860.

 12. Lisa N, Pullen JM, Corner D. Dynamic publish / subscribe topics
in the scripted bml server. In: Spring Simulation Interoperability
Workshop 2011, Boston, Massachusetts, USA, April 4–8, 2011,
Proceedings, pp. 268–273 (2011)

 13. Tchendji MT, Tchembé MX, Necheu IT. Socialmanet: a publish/
subscribe events dissemination protocol for mobile ad-hoc net-
works. J Comput Sci. 2019;15(9):137–41. https:// doi. org/ 10. 3844/
jcssp. 2019. 1237. 1255.

 14. Baldoni R, Beraldi R, Quema V, Querzoni L, Tucci-Piergiovanni
S. TERA: topic-based event routing for peer-to-peer architectures.
In: Proceedings of the 2007 Inaugural International Conference
on Distributed Event-based Systems. DEBS ’07, pp. 2–13. ACM,
New York, NY, USA (2007). https:// doi. org/ 10. 1145/ 12668 94.
12668 98

 15. Julien H, Frédéric G. A protocol for content-based communi-
cation in disconnected mobile ad hoc networks. Mob Inf Syst.
2010;6(2):123–54. https:// doi. org/ 10. 3233/ MIS- 2010- 0096.

 16. Zhao Y, Kim K, Venkatasubramanian N. Dynatops: A dynamic
topic-based publish/subscribe architecture. In: Proceedings of
the 7th ACM International Conference on Distributed Event-
Based Systems. DEBS ’13, pp. 75–86. Association for Comput-
ing Machinery, New York, NY, USA (2013). https:// doi. org/ 10.
1145/ 24882 22. 24892 73

 17. Bainomugisha E, Paridel K, Vallejos J, Berbers Y, De Meuter W.
Flexub: dynamic subscriptions for publish/subscribe systems in
magnets. In: Göschka KM, Haridi S, editors. Distributed applica-
tions and interoperable systems. Berlin: Springer; 2012. p. 132–9.
https:// doi. org/ 10. 1007/ 978-3- 642- 30823-9_ 11.

 18. Canas C, Zhang K, Kemme B, Kienzle J, Jacobsen H-A. Evolv-
ing pub/sub subscriptions for multiplayer online games: Demo.
In: Proceedings of the 10th ACM International Conference on
Distributed and Event-Based Systems. DEBS ’16, pp. 344–347.
Association for Computing Machinery, New York, NY, USA
(2016). https:// doi. org/ 10. 1145/ 29332 67. 29332 97

 19. Rowstron A, Druschel P. Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems. In:
Guerraoui R, editor. Middleware 2001. Lecture Notes in Com-
puter Science. Berlin: Springer; 2001. p. 329–50. https:// doi. org/
10. 1007/3- 540- 45518-3_ 18.

 20. Pullen M, Corner D, Singapogu S. Scripted battle manage-
ment language web service version 1.0: Operation and mapping
description language. In: Proceedings of a Meeting Held 23-27
March 2009, San Diego, California, pp. 327–336 (2009)

 21. Mitra P. Dewey decimal system. In: Liu L, Özsu MT, editors.
Encyclopedia of database systems. Boston: Springer; 2009. p.
808–9. https:// doi. org/ 10. 1007/ 978-0- 387- 39940-9_ 877.

 22. Lamport L. Time, clocks, and the ordering of events in a distrib-
uted system. Commun ACM. 1978;21(7):558–65. https:// doi. org/
10. 1145/ 359545. 359563.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1504/IJHPCN.2008.020860
https://doi.org/10.3844/jcssp.2019.1237.1255
https://doi.org/10.3844/jcssp.2019.1237.1255
https://doi.org/10.1145/1266894.1266898
https://doi.org/10.1145/1266894.1266898
https://doi.org/10.3233/MIS-2010-0096
https://doi.org/10.1145/2488222.2489273
https://doi.org/10.1145/2488222.2489273
https://doi.org/10.1007/978-3-642-30823-9_11
https://doi.org/10.1145/2933267.2933297
https://doi.org/10.1007/3-540-45518-3_18
https://doi.org/10.1007/3-540-45518-3_18
https://doi.org/10.1007/978-0-387-39940-9_877
https://doi.org/10.1145/359545.359563
https://doi.org/10.1145/359545.359563

	Dynamic Topics Management in PublishSubscribe Systems over Mobile Ad Hoc Networks
	Abstract
	Introduction
	Related Works
	Software Systems Offering PublishSubscribe with Dynamic Topics Management
	Scientific Papers Dealing with PublishSubscribe with Dynamic Topics Management

	Overview of the SocialMANET Protocol
	A Dynamic Topics Management Protocol for PublishSubscribe Systems in MANETs
	Data Structures and Notations
	Updating of the Initiating Station’s Topic Tree
	Adding a New Topic
	Deleting a Topic
	Modifying a Topic

	Disseminating Updates to Other Stations in the Network
	New Topic Identifiers Generation
	Continuous Update of the Stations

	Sample Case: Illustration of the Protocol
	Performances
	Simulation Parameters
	Results
	Update Propagation Speed
	Network Stations Update Rate
	Number of Exchanged Messages

	Discussion

	Conclusion
	References

