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Abstract
This paper presents an approach to take into account semantic information for autonomous robot tasks which require planning 
capabilities, e.g., to determine a path or a next-best-view configuration. A semantic map can be constructed from labeled 
pointclouds acquired at successive sensor poses. This map then serves as input for generating a multi-layered structure, which 
can be exploited by multiple planners to address various navigation goals and constraints. Semantic-aware adaptations of 
A ∗ , Transition-based RRT and a shortcut algorithm are derived in this framework, and evaluated numerically on an explo-
ration and observation task using a reference dataset with multiple semantic classes as an illustrative test environment. The 
performance of real-time construction of the corresponding semantic map is also evaluated on the same dataset.

Keywords  Autonomous robot navigation · Planning algorithms · Semantic mapping · Semantic scene understanding · 
Exploration and observation

List of symbols
q	� Configuration of the robot in a given bounded space 

�

�	� Position state components of q in 2D or 3D
P	� Path as an ordered list of configurations
Ω	� Set of semantic labels l

i

V	� Subset of Ω to be observed during exploration
M	� Multi-layer map, with n

m
 aligned layers

S	� Semantic grid aligned with the map
M

i
	� Map layer

c	� Cost function

u	� Utility function
v
max

i
	� Maximum velocity in a cell with traversable label l

i

Introduction

The combined recent progress in learning algorithms and 
computational power have led to the development of effi-
cient semantic segmentation capabilities based on data from 
embedded LiDAR and/or RGB-D sensors, processed by 
(deep) neural networks to produce 2D annotated images [1] 
or 3D pointclouds [2–5]. The fully-embedded processing of 
this key perception asset is now also reported for Unmanned 
Aerial Vehicles (UAV) [6, 7]. This has paved the way for 
the development of semantic mapping algorithms, where 
the 3D representation of a surrounding environment also 
includes the categorization of the perceived 3D points or 
even 3D object segmentation at a higher level [8–11]. Com-
pared to classical mapping structures which provide binary 
occupancy information, e.g., Octomap [12] or TSDF-based 
mapping [13], this opens new possibilities for autonomous 
robot navigation to directly take into account multiple mis-
sion objectives and constraints in interaction with the envi-
ronment. Ground robots are incrementally used for explo-
ration and various missions in unstructured and hazardous 
environments, where safety is a primary concern. While 
most actual methods for robot mapping and navigation rely 
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solely on geometric information, the recent development of 
efficient semantic segmentation neural networks allows the 
inclusion of semantic information in robot mapping [14, 15]. 
This new capability can help the robots to identify and avoid 
problematic terrains during navigation as well as perform 
semantically assisted tasks such as identifying the position 
of specific instances. Since the nature of a terrain cannot 
always be estimated from its geometry alone, image seman-
tic segmentation would represent a necessary addition to 
standard 3D mapping.

In this context, we propose a systematic approach to 
incorporate semantic mapping information in planning 
algorithms, in particular with the derivation of semantized 
versions of the A ∗ and Transition-based Rapidly explor-
ing Random Tree (T-RRT) algorithms as well as a post-
processing shortcut procedure. The semantic classes are 
ranked by a user-defined cost representing traversability or 
observability constraints, and some classes are also identi-
fied as of particular interest for observation. The semantic 
map and the corresponding task objectives and constraints 
are then included in a multi-layered structure which can be 
exploited online by the planning algorithms. The proposed 
algorithms are evaluated and compared on typical autono-
mous robot navigation missions, namely waypoint rallying in 
the presence of obstacles and different types of terrain, and 
the exploration of an uncharted environment with observa-
tion of detected points of interest.1 This work is an extended 
version of the ICINCO 20222 conference paper [16], with 
a consolidated system architecture including a method for 
semantic map construction and its numerical evaluation 
on the same reference 3DRMS dataset [17], as well as the 
description of the navigation graph interface between the 
map and the planners. More precisely, the newly presented 
mapping process relies on the semantic Octomap method 
[18] which takes in input a semantic pointcloud generated 
from the combination of depth and semantically annotated 
images available in pre-recorded sequences of the dataset. 
The obtained map has then been evaluated at several reso-
lutions in terms of geometric and classification precision 
compared to the ground-truth semantic pointcloud, and the 
corresponding computational cost has also been recorded. 
Another contribution of this paper is the transformation of 
the semantic map into a navigation grid for the aforemen-
tioned semantic-aware path planners. The combination of 
all these building blocks are thus evaluated on a single case 
study to demonstrate the feasibility of a full semantic-aware 
mapping-and-planning process for an autonomous robot.

Related Work

A limited number of previous works have studied the exploi-
tation of semantic maps for planning the motion of autono-
mous robots dealing with complex tasks. As described in 
the survey papers [14, 15], a lot of effort has been put on 
defining several semantic map representations for various 
tasks, but there are still few complete semantic naviga-
tors linking the proposed maps with planning algorithms, 
and more extensive simulation and real-world experiments 
should be conducted. In the early work by [19], a 2D cost-
map associated with the traversability of an off-road terrain 
was obtained by an aerial vehicle to allow the navigation 
of a ground robot in a natural environment. This map was 
combined with a local one derived from the on-board sen-
sors of the ground robot, and a path was then computed with 
a D ∗ algorithm exploiting the local and global traversability 
data. However, the top view can bias the real traversability 
of the terrain, for example in the case of dense foliage trees 
on a flat and passable terrain.

In the context of inspection tasks carried out by an auton-
omous ground vehicle in a nuclear storage environment, the 
authors of [20] proposed to exploit a 2D binary custom map 
of obstacles containing the locations and orientations of 
objects of interest so as to build an enriched map that can be 
exploited for inspection-oriented path planning. In [21], a 
Geographic Information System (GIS) with geometrical and 
semantic layers is used to build costmaps that are exploited 
by the ROS move_base package to carry out a simplified 
fetch-and-deliver task with a ground platform. This was a 
first successful attempt demonstrating that a semantic map 
can be used within navigation modules and not only for data 
visualization. In [22], an active-vision approach has been 
proposed for an indoor exploration mission by a mobile 
robot so as to generate successive next best views based on 
the detected segmented objects and associated geometrical 
priors on their respective sizes.

The navigation of a rover in the framework of a Martian 
mission has been addressed in [23] and in a similar way in 
[24]. The on-board sensors provide raw images and a Digital 
Elevation Map to plan the rover’s path over rocky terrain, 
where each recognized rock is classified. An RRG algorithm 
derived from RRT allows to define waypoints depending on 
the rock types to be avoided by taking into account the posi-
tioning of the wheels, and these waypoints are included in a 
graph to obtain optimal paths with an A ∗ algorithm. These 
considerations on the rover model and the associated path 
planning architecture remain, however, very specific and 
present a high computational cost for real-time exploration-
and-observation tasks.

A semantic 2D grid has also been exploited in [25] for 
traversability evaluation, along with a D ∗ path planning 1  Video at https://​tinyu​rl.​com/​Seman​ticPl​anning.

2  https://​icinco.​scite​vents.​org/?y=​2022.

https://tinyurl.com/SemanticPlanning
https://icinco.scitevents.org/?y=2022
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algorithm to reach a destination designated by a human oper-
ator in the context of a rescue mission. An active perception 
approach has been derived in [26] for the autonomous navi-
gation of a UAV using on-board visual odometry. The idea is 
to use semantic classes available in a 3D voxel map to evalu-
ate perceptually informative scenes and therefore maintain 
a reliable localization. A hierarchical structure is proposed, 
combining an A ∗ path planner and B-Spline trajectory opti-
mization with a penalty term to keep the most informative 
landmarks in the field of view. A similar problem has also 
been tackled in [27] using model predictive control as an 
online planning strategy.

A semantic planner for a UAV equipped with an RGB 
camera navigating in an unknown urban environment has 
been proposed and evaluated experimentally in [28]. The 
acquired images are first segmented by a convolutional net-
work, and then used to build a projected probabilistic map 
giving preference to roads, which are assumed to be safer to 
fly over. A high-level long-distance traversability graph is 
finally inferred by a deep neural network as a combination 
of pre-defined geometrical primitives and the UAV path is 
extracted by direct graph search. In [29], a neural network 
architecture aims at providing probabilistic semantic occu-
pancy layers including current and predicted locations of 
vehicles and obstacles for a self-driving vehicle in an urban 
environment, using voxelized LiDAR data and a prior map-
ping. The vehicle trajectory is then selected among a set of 
motion primitives by optimizing a cost function including 
penalty terms related to safety (computed using the predicted 
semantic segmentation), and other terms related to driving 
comfort and traffic rules which are independent from the 
semantic information. In [30], a hybrid version of A ∗ rely-
ing on a distance map (instead of occupancy) and a vehicle 
collision model has been proposed for path planning in an 
urban environment. This allows safe navigation for this spe-
cific self-driving car application but cannot generalize to the 
navigation of any robotic system in any environment that 
seeks to optimize the nature of the areas to be traversed. In 
[31], a 2.5D semantic map is built by combining semanti-
cally segmented images and LiDAR depth information. This 
grid is centered on the position of an autonomous vehicle 
as it evolves in an outdoor unstructured environment, and 
allows to select a feasible instantaneous path from a set of 
primitives based on the evaluation of traversability costs 
associated with the different classes.

These previous works mainly focused on a single spe-
cific objective or constraint related to the exploitation or 
data acquisition of semantic information. We propose to 
incorporate data from the semantic map into a multi-lay-
ered structure that can be readily adapted to multiple plan-
ners, such that different autonomous navigation tasks can be 
addressed in a multi-class environment. This makes it pos-
sible to derive variations of standard planning algorithms in 

a more systematic way than in the above-referenced related 
work, so as to efficiently carry out missions with multiple 
objectives and constraints. A numerical evaluation of the 
construction of the semantic map and its exploitation by 
a high-level Next-Best-View planner and a low-level path 
planner is also demonstrated on the same reference dataset.

Proposed Approach

Problem Formulation

A large majority of robotic tasks carried out by autonomous 
robots can be split into the definition of a high-level goal, 
followed by the generation of a path that the robot should 
follow to reach this goal while respecting a set of constraints. 
Examples of such tasks are the rallying of an arbitrary way-
point with obstacle avoidance or taking into account percep-
tion constraints, next-best-view exploration where succes-
sive goals are generated on the currently known frontier, and 
fetch-and-deliver tasks where detected objects are defined as 
targets. Such systems are usually implemented using a set of 
planners organized in a hierarchical structure. The informa-
tion used in this kind of process is classically included in 
discretized 2D or 3D maps, such as binary occupancy grids 
encoding the presence of obstacles, exploration grids stor-
ing the explored locations, or more generally costmaps that 
can encode arbitrary potential functions depending on the 
state of the vehicle [32]. Multi-layered structures [33] can 
then be defined to combine different types of data that can 
be accessed simultaneously to evaluate the quality of the 
high-level goals or the generated paths. High-level semantic 
maps have also been defined, e.g. in [34], where the labels 
correspond to different areas or rooms in a simplified navi-
gation graph.

We define a configuration q in an associated bounded 
space � where the tasks are executed, and the position state 
components of q are denoted by � ∈ ℝ

n , with n = 2 for 
mobile robots and n = 3 for UAVs. The other components 
of q, left unspecified, could represent orientation and addi-
tional multi-body coordinates depending on the task.

A multi-layer map structure M is defined as a set of 
nm layers Mi , which can be used to evaluate an arbitrary 
cost function cj(q,Mi) at any configuration q. Each plan-
ner can, therefore, use this multi-layered map to either 
compute an optimal path or to select an optimal goal 
by evaluating a utility function u(C(qgoal,M)) , where 
C(q,M) = [cj(q,Mi)]

T  contains all the relevant cost 
evaluations cj (j = 1, ..., nc) from appropriate layers Mi 
for this given task. The focus is put on how the informa-
tion stored in a semantic pointcloud or map can be further 
included into this process and how the definition of goals 
and paths can be adapted from classical algorithms. It is 
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assumed that the semantic information on the environ-
ment can be represented by a closed frame of discern-
ment Ω = {l1, l2, ..., ln} containing all the labels consid-
ered li . This makes it possible to create a semantic grid S 
of the environment (as detailed in “Semantic mapping”), 
where each cell of index j of the map contains a label 
value Sj ∈ Ω . This semantic grid will be used as a proxy 
to define semantic-aware map layers.

This global approach has been applied, in this work, to 
a system using a two-level planning architecture applied 
to a double-objective task: environment exploration and 
inspection of objects of interest. A Next-Best-View algo-
rithm will be used at the top level to manage the two 
objectives, whereas a lower level planner will generate a 
path considering traversability constraints. For the latter, 
both weighted A ∗ and T-RRT will be evaluated.

The perception information is aggregated into a map 
structure containing three layers depicted on the left of 
Fig. 1. The semantic grid S is projected in the first layer 
M1 , where a label is assigned to each cell that could be 
updated using sensor inputs. The second layer M2 is a 
binary exploration grid, where the observed cells are set 
to 1 and the unknown cells are set to 0. The last layer M3 
is dedicated to monitor the observation of objects of inter-
est, represented, as follows, by a three-valued cell state:

Other types of map layers could be considered for alterna-
tive tasks.

The low-level planner has to compute a path P, defined as 
the ordered list of m successive configurations qk ∈ � , from 
the start q0 to the goal qm−1 = qgoal . This problem can be for-
mulated as finding an optimal path for some criteria (short-
est path, no-collision, granting a sufficient safety level, ...) 
evaluated from the appropriate set of nc functions C(q,M) . 
For instance, a standard formulation to evaluate the quality 
of a path can be derived as

where each segment of the path is weighted by the sum of 
appropriate costs extracted from the data layers. A constraint 
depending on a semantic label can therefore be introduced 
by defining a cost value c(qj,M1) for each cell as a function 
of the corresponding semantic label li at the location qj cor-
responding to the cell j of M1 . A specific label unknown, 

(1)M3(j) =

⎧
⎪⎨⎪⎩

0 not an object of interest

1 object of interest not observed

2 object of interest already observed.

(2)J(P,) =
m−2
∑

k=0

nc
∑

j=1
cj(qk+1,) ⋅ ‖�k+1 − �k‖,

Fig. 1   Example of a three-layer map structure (left): (i) a semantic 
grid M

1
 derived from semantic pointcloud inputs to incorporate tra-

versability or observation constraints. (ii) a classical exploration grid 
M

2
 with binary states {unknown; explored}. (iii) a ternary grid M

3
 

to monitor the observation of specific semantic classes. This structure 

is exploited by two planners: an NBV planner (bottom right) com-
putes costs from M

2
 and M

3
 to determine the best goal location for 

an exploration-and-observation task, toward which a path is generated 
by a low-level planner (upper right) by taking into account travers-
ability from M

1
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which is not traversable, has been added to represent the 
state of the unseen cells. As an application example, we con-
sider traversability constraints defined in the following way:

where vmax
i

 is the maximum allowed velocity for a robot 
located in a cell with a traversable label li , and 
vref = max

i
(vmax

i
) . This incorporates constraints related to the 

motion of a ground robot on a specific soil type or the pres-
ence of sufficient textures in the scene for vision-based 
localization, as in [26, 27] for the latter. For a simple naviga-
tion task toward an arbitrary waypoint considering only the 
information from this map layer M1 (as depicted in Fig. 1), 
the proposed cost function (2) simplifies into a sum along 
the path of the single cost c(�k,M1) defined in (3). Thus, for 
a path section within an area labeled li such that vref = vmax

i
 , 

the cost associated with this label would be equal to 1, so the 
cost for this path section would be equivalent to its Euclid-
ean distance. It should then be minimized by a candidate 
planning algorithm to incorporate this semantic information 
in relation with the mission carried out. As a byproduct, it 
can be directly used to evaluate the paths obtained and thus 
compare the efficiency of different planners for such a task 
(see “Numerical experiments”). Note that the infeasibility 
character of a path is directly obtained from the definition of 
non-traversable infinite costs in (3).

The second layer M2 is used to monitor a standard explo-
ration mission, where the views are evaluated by considering 
the current frontier between explored and known cells (see 
“Next-best-view exploration-and-observation”). An inde-
pendent subset V ⊂ Ω contains a list of labels that should be 
observed during exploration, with a visit status updated in 
the corresponding layer M3 as defined in (1). The resulting 
NBV is computed by a high-level planner based on these two 
layers to fulfill the objectives of this simultaneous explora-
tion-and-observation task. The lower level planner is then 
called upon to generate the path to reach this NBV using 
the process defined above, which takes into account travers-
ability via layer M1.

Semantic Mapping

The construction of a discretized metric-semantic map is a 
mandatory requirement for the presented planning approach. 
Several recent works in this area have given promising 
results. The mapping approaches proposed by [10, 18, 35] 
fuse directly image semantic segmentation produced by deep 
learning algorithms, such as [1, 36] to build 3D semantic 
maps. Others works as [37, 38] on pointcloud semantic 

(3)c(qj,M1) = c(�j,M1) =

⎧
⎪⎨⎪⎩

vref

vmax
i

if li is traversable

+∞ if li is not traversable,

segmentation reach a high level of accuracy and could also 
be used to produce such a map.

Semantic Dataset

The 3DRMS challenge dataset [17] has been selected as a 
case study. This dataset contains pre-recorded sequences 
of camera images and poses related to the navigation of a 
robot in a simulated garden-like outdoor environment. Depth 
images and ground-truth semantically segmented images 
are available along with a semantic pointcloud representing 
the ground truth for the 3D geometry and labeling of the 
environment. The inputs for the semantic mapping process 
have been generated from the fusion of the segmentation 
and depth images of the four cameras linked to the simulated 
mobile robot to produce a set of labeled pointclouds, each 
one associated with a robot pose and containing an average 
of 770K points. To evaluate the performances of the seman-
tic mapping process, we have used the ground-truth semantic 
pointcloud of the complete environment to evaluate the qual-
ity of the mapping output and as a basis for the numerical 
experiments reported in “Numerical experiments”. To obtain 
a ground-truth semantic map, the ground-truth labeled point-
cloud has been voxelized following a transformation similar 
to the one proposed in [39]. For each voxel, its label l ∈ Ω is 
assigned following a majority vote including all the points 
belonging to this voxel. If no point belongs to a voxel, then 
its label is assigned to free. A point {x, y, z} belongs to a 
voxel {i, j, k} of resolution h if it satisfies

Real‑Time Construction of the Semantic Map

In this section, we present the implementation and evalu-
ation of the semantic Octomap [18] online 3D mapping 
algorithm. This method takes labeled pointclouds associ-
ated with sensor poses as input. The received pointclouds 
are filtered, and then, 3D mapping is performed using Octo-
map [12] which provides a volumetric representation of the 
scene as a hierarchical structure of voxels with assigned 
semantic labels. This data structure allows fast and efficient 
update and access to the 3D cells. The output of the map-
ping process is used to build online a dense 2.5D navigation 
graph (see “Navigation graph”) in which the robot can plan 
paths and make exploration decisions. Figure 2 shows the 
complete semantic volumic reconstruction obtained with 

(4)

⎧⎪⎨⎪⎩

x s.t. ih ≤ x < (i + 1)h

y s.t. jh ≤ y < (j + 1)h

z s.t. kh ≤ z < (k + 1)h.
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Octomap on Sequence 1 of the 3DRMS challenge dataset, 
along with the corresponding navigation graph.

To evaluate the real-time capacities of the proposed 
mapping method, its average CPU usage, maximum RAM 
usage, and pointcloud integration time have been measured 
while processing the 3DRMS challenge dataset. This evalu-
ation was performed using an Intel Xeon(R) W-2123 8-core 
3.60GHz CPU with 16 GB of RAM. Pointclouds and poses 
from the dataset sequence are produced at a fixed rate of 
2 Hz with a total sequence duration is of 51.2 s. Figure 3 
reports the computational cost of the mapping process with 
different voxel resolutions and Fig. 4 displays the average 
integration time of a single pointcloud. This shows that the 
mapping process could be updated at a rate greater than 2 Hz 
for resolutions equal or greater than 2 cm. The real-time 
performances of the approach can then be guaranteed with 
resolutions that turn out to be sufficiently small for typical 
navigation tasks.

The mapping precision of the semantic Octomap 
method has also been evaluated with respect to the ground-
truth labeled pointcloud, both in terms of geometry and 

labeling. The average distance between the center of each 
voxel of the produced Octomap and its closest point in the 
ground-truth pointcloud has been computed for various 
voxel resolutions from 1 cm to 50 cm. The classification 
ratio has been calculated for each resolution as the total 
number of voxels of the Octomap whose closest point on 
the ground-truth pointcloud is of same label over the total 
number of Octomap voxels. Figure 5 shows the mapping 
geometric precision and classification ratio for different 
voxel resolutions. The 3D mapping geometric precision 
and classification evaluation shows satisfying results, with 
an average geometric error always inferior to the voxel 
resolution and more than 85% of voxels associated with 
the correct labels for all evaluated resolutions smaller than 
50 cm. In particular for the 5-cm resolution, the average 
mapping error is equal to 2.93 cm, with a classification 
ratio of 96 %. Since the precision evaluation of the seman-
tic mapping method demonstrates satisfying performances 
and to isolate errors that could be induced by the map-
ping process, the semantic voxel map obtained from the 
ground-truth labeled pointcloud with a 5-cm resolution 
has been used instead of the semantic Octomap output in 

Fig. 2   Output of the 3D seman-
tic Octomap (left) and of the 
navigation graph builder (right) 
on Sequence 1 of the 3DRMS 
dataset with voxel and node 
resolutions of 5 cm. Displayed 
colors correspond to the RGB 
values from the segmentation 
input images

Fig. 3   Average CPU usage and maximum RAM usage by the map-
ping process on the 3DRMS dataset, for voxel resolutions of 1  cm, 
2 cm, 5 cm, 10 cm, 20 cm, and 50 cm

Fig. 4   Average time taken by the mapping process to integrate a 
single pointcloud from the 3DRMS dataset, for voxel resolutions of 
1 cm, 2 cm, 5 cm, 10 cm, 20 cm, and 50 cm
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the numerical evaluations of navigation and exploration 
methods (“Numerical experiments”).

Navigation Graph

Two steps of pre-processing are applied on the semantic 
map, such that it could be used by the planning algorithms. 
First, in the case of a ground robot, a 2.5D representation 
is usually sufficient and also more suitable for traversabil-
ity representation, since it implicitly models the ground 
surface. This grid is computed by projecting the 3D map 
along the z axis and taking the label of the higher non-free 
voxel as the label of the 2D cell that does not exceed a 
threshold zth . This threshold, above which the voxels are 
not taken into account, should be set to about the height 
of the robot. Taking the zth threshold into account makes 
it possible to avoid, for example, the robot bypassing the 
projection of the branches of a tree if this class is consid-
ered non-traversable. Figure 6 illustrates the result of this 
pre-processing, where the left view shows the 3D vox-
elized map and the right view shows the projected navi-
gation grid; each color representing a distinct label (see 

Table 1). The navigation grid is generated with the same 
resolution as the map voxels.

The second map pre-processing consists in the con-
struction and the update of a graph during map integration. 
Because path planners usually rely on the construction 
of a graph (or a tree), we propose a method that builds it 
incrementally by updating only the cells that have been 
modified in the mapping process and their neighbors. This 
method projects the received points in 2D and allocates 
their labels, heights, and (x, y) coordinates to nodes of 

Fig. 5   Average geometric reconstruction error and classification ratio 
of the 3D semantic mapping process while running Sequence 1 of 
the 3DRMS dataset, calculated with voxel resolutions of 1 cm, 2 cm, 
5 cm, 10 cm, 20 cm, and 50 cm

Fig. 6   Ground-truth voxelized 
3D semantic map (left) and 2D 
projection for mobile robot path 
planning (right) for the 3DRMS 
dataset [17]. Colors represent 
semantic classes according to 
Table 1

* * * *

* * * *

* * * *

* * * *
Node

● (x,y)
● height
● label
● neighbors :

* * * *

* * * *

Node
● (x,y)
● height
● label
● neighbors :

* * * *

* * * *

*

*
*

*

*

2D pointer grid

Fig. 7   Schematic representation of the navigation graph structure. 
Node pointers are stored in a 2D grid and each node contains its posi-
tion (x, y), its height, its label, and a set of pointers to neighbor nodes, 
for example its 8-neighborhood with an A ∗ planner

Table 1   Semantic labels, display colors, and costs for the 3DRMS 
challenge dataset

Label l
i

Label Name Color Cost c
i

Visit interest
(from M

1
) (for M

3
)

l
1

Grass Dark blue 1.0 0
l
2

Ground Pale blue 2.0 0
l
3

Paving Dark green 3.0 0
l
4

Hedge Bright green ∞ 0
l
5

Topiary Light green ∞ 0
l
6

Flower Yellow ∞ 1
l
7

Stone Orange ∞ 0
l
8

Tree Red ∞ 0
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corresponding positions into a 2D grid. These nodes are 
connected by storing pointers to their neighbor node(s), 
forming a navigable graph. The neighborhood considered 
depends on the kind of planner; for instance, a weighted 
A ∗ can use a 8-cell neighborhood, whereas an RRT will 
extend the tree with one new sampled node. Figure 7 illus-
trates the described data structure. When nodes labeled 
as obstacle classes are integrated in the navigation graph, 
an extrusion step is performed for safe robot navigation. 
A square of size depending on a robot radius parameter 
is drawn around the obstacle and all nodes of that square 
are granted a corresponding safety-zone label, which is 
considered as an obstacle in the class table. Figure 8 sum-
marizes this integration process.

Each node of the graph holds a label that can be mapped 
to a traversability coefficient and an interest coefficient. 
Therefore, we can compute the traversability cost from M1 
and update the observation grid M3 from the node labels 
and positions in the 2D grid. The exploration grid M2 can 
be computed by extracting the graph frontier composed of 
the nodes for which at least one neighbor is unexplored. 
Overall, this navigation graph structure built online is one 
possible implementation of the multi-layered structure 
proposed in “Problem formulation”, and can be exploited 
by navigation and exploration planners as described in 
“Semantic-aware path planning algorithms” and “Next-
best-view exploration-and-observation”.

Semantic‑Aware Path Planning Algorithms

Modified versions of A ∗ , T-RRT and a shortcut proce-
dure taking into account the proposed mapping structure 
are provided. Note that other graph-based or sampling-
based path planning algorithms can be adapted in a similar 
fashion.

Weighted A ∗

A weighted A ∗ algorithm [40] is used to take into account 
the semantic-aware traversability layer M1 defined in 

“Problem formulation” to compute a path P from a start-
ing node q0 to a destination qgoal , with an initially unknown 
path length (i.e., the number of intermediate points m), 
minimizing the cost function (2).

In the A ∗ process, the transition function g from the 
current node qcur (defined at the start as q0 with value 
g(q0,M1) = 0 ) to a candidate node qnei among the eight 
neighbors is taken as the sum of the cumulated cost at qcur 
and the distance between the corresponding positions �nei 
and �cur weighted by a cost corresponding to the semantic 
label of the node qnei , as

The classical Euclidean distance heuristic for attraction to 
the goal qgoal is then applied without weight

Note that the cost c(qnei,M1) as defined in (3) is never less 
than 1, so the Euclidean distance ‖�goal − �nei‖ is always 
lower than or equal to the actual optimal path cost, which 
guarantees the admissibility of the chosen heuristic [41].

T‑RRT​

Transition-based RRT (T-RRT) [32] is an extension of the 
Rapidly Exploring Random Tree path finding algorithm 
which probabilizes the conservation of the new nodes of 
a tree, and thus the transitions of this tree, according to a 
costmap so as to favor the valleys and saddle points. The 
proposed semantic-aware version of this algorithm proba-
bilizes the tree transitions depending on the cost func-
tion derived from the semantic map layer M1 . The transi-
tion probability p from a new sampled node qnew to the 
nearest node included in the tree qnear of respective costs 
cnew = c(qnew,M1) and cnear = c(qnear,M1) is then taken as

where T is a temperature parameter. It can be noted that 
if qnew is not a traversable node (i.e. cnew = +∞ ), then the 
transition probability p from qnear to qnew is equal to 0. In 
the implemented version, the minExpandControl function 
introduced in the classical formulation of the algorithm to 
maintain a minimal rate of expansion toward unexplored 
regions has been deactivated and replaced by a bias toward 
the target with uniform probability 5%, in which case the 

(5)
g(qnei,M1) = g(qcur,M1)

+ c(qnei,M1) ⋅ ‖�nei − �cur‖.

(6)f (qnei, qgoal,M1) = g(qnei,M1) + ‖�goal − �nei‖.

(7)p(qnew, qnear) =

⎧
⎪⎨⎪⎩

1 if cnew < cnear

exp

�
cnear − cnew

T ⋅ ‖𝜉near − 𝜉new‖
�

otherwise,

2D Navigation Graph ROS Node

Semantic
Octomap

Updated 
Voxels

Project on 
Grid

Update 
Nodes

Extrude 
Obstacles

Graph
Nodes

“Safety-zone”
NodesRobot PoseLabeled 

Point-Cloud

Fig. 8   Block diagram representing the 3D semantic mapping process 
from input data and the integration of mapping updates in the naviga-
tion graph
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tree is not expanded toward a random node qrand of the con-
figuration space, but toward the target node qgoal.

Shortcutting

Paths generated by sampling-based algorithms usually 
require to be post-processed by a shortcut strategy [42] to 
remove intermediate nodes that were useful to explore the 
space but result in an increase of the overall length, which 
usually does not take into account the terrain traversability 
or any other related characteristic that could be obtained 
from semantic information. In the present context, nodes can 
be removed from a generated path P obtained either with the 
A∗ or the T-RRT strategy if two successive nodes of the path 
correspond to the same class label in the semantic layer 
(which also contains obstacle classes in our case). The paths 
are stored, such that each node points to the next in the path, 
a node thus corresponds to a waypoint, and the last node of 
the path qm−1 points to NULL. The proposed semantic-aware 
shortcut algorithm iterates on the path with three node point-
ers i, jprev and j which initially point, respectively, to q0 , q1 
and q2 . Then, as long as there is no obstacle or label change 
between the nodes qi and qj (which is verified by a line itera-
tor traversing [qi, qj] in the semantic layer M1 , then the 
pointers j and jprev are moved forward to the next nodes of 
the path. When a label change is detected between i and j, 
then a shortcut is made between the nodes pointed by i and 
jprev , such that qi points to qjprev in the shortcutted path Ps . 
The procedure is then iterated until j points to the target node 
qm−1.

Next‑Best‑View Exploration‑and‑Observation

An exploration task consisting in the observation of the 
entire bounded space by an autonomous robot using a sen-
sor with a field of view (FOV) limited in detection angle 
and range (90 deg and 3 m in our experiments) has been 
studied as a case study including the computation of high-
level goals and path planning from semantic information. 
The multi-layered map M defined in “Problem formula-
tion” is initially unknown and discovered during the task. A 
standard Next-Best-View (NBV) strategy [43, 44] has been 
defined, where the map layer M2 monitors the binary status 
(observed or not) of the cells of the environment. This layer 
is eroded with a circular structuring element larger than the 
radius of the robot to take into account its dimensions for 
obstacle avoidance. A complementary sub-task has been 
considered to observe objects belonging to a class of inter-
est when they are detected during exploration (similar to 
the exploration-and-observation problem addressed in [45]), 
whose observation is monitored using the map layer M3 to 
store the ternary observation status defined in (1) based on 

this specific class (positions of the objects are updated when 
the corresponding cell has been observed). The NBV is pri-
marily selected to observe the closest points of interest of the 
latter layer at a close distance in the robot FOV. When there 
is no remaining point of interest in M3 at a given instant, a 
random number of NBV candidates are sampled, such that 
their position is on the border cells of the exploration layer 
M2 with a yaw reference given by the normal to the border 
(computed using a Sobel filter). The NBV is then chosen 
as the candidate with the maximum number of unobserved 
cells that could be seen in the FOV. After the NBV has been 
calculated, a path P between the current robot position and 
this NBV is computed using either the previously presented 
semantic-aware A ∗ or the T-RRT algorithms followed by 
the semantic shortcut post-processing strategy, all relying 
on the map layer M1 from which the traversability costs are 
computed and with the additional constraint that unobserved 
areas (in map layer M2 ) are not traversable either.

Numerical Experiments

Repeated simulations have been carried out to evaluate the 
strategies proposed in the previous section, based on the 
2D projection of the ground-truth semantic grid defined in 
“Semantic mapping” from the 3DRMS reference seman-
tized pointcloud, which contains 243×256 cells with a 5 ×
5 cm2 resolution. Table 1 summarizes the semantic classes, 
with the user-defined cost they have been assigned from 
the map layer M1 corresponding to traversability (3 classes 
with different allowed speeds, the other ones being non-tra-
versable) and the observation interest which is used to fill 
the map layer M3 , here on the single flower class. It could 
be noted that this class is non-traversable but is of interest 
for observation, which further motivates the use of the pro-
posed multi-layered structure. Table 1 also lists the colors 
associated to the classes, which are used in all the figures 
displaying 2D or 3D views. The developed algorithms have 
been implemented in C++ and run within a Ubuntu 18.04 
Virtual Machine with 4096MB RAM on a Intel Core i5 8th 
generation CPU.

Path Planning Unitary Tests

A first evaluation campaign was carried out to evaluate path 
planning performance with respect to the semantic-weighted 
cost function (2) and computation time. The weighted A ∗ 
and T-RRT algorithms with shortcutting have been com-
pared, along with a standard A ∗ procedure (which does not 
use the semantic weight derived from M1 ) as a baseline. 
For this purpose, 100 pairs of sufficiently distant start and 
goal positions have been sampled in the free space of the 
map. As the distances between each pair of start and goal 
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positions vary, the weighted path length has been normalized 
by the distance between the two positions of each pair (see 
Table 2). A first consistent result is that the semantic-aware 
weighted A ∗ always obtains shorter weighted path lengths 
compared to the standard A ∗ algorithm.

On the other hand, the weighted version takes on average 
more than twice as long to execute, and is faster in only 5% 
of cases. This is due to the fact that the paths obtained with 

a classical A ∗ are shorter in terms of Euclidean distance, and 
thus, fewer nodes of the navigation graph need to be evalu-
ated before the algorithm reaches the target. Two respective 
paths generated by both algorithms are displayed in Fig. 9. 
It can be seen that the less costly semantic class (dark blue) 
is favored by the weighted version. The T-RRT algorithm 
is on average faster to execute than the A ∗ ones (in 82% 
of the runs); however, the A ∗ procedures provide shorter 
paths. This is a well-known trade-off when graph-based 
and sampling-based algorithms are compared on the same 
task, and this is also related to the relative simplicity of the 
test environment which presents many traversable areas. In 
larger 3D environments, the complexity of the graph-based 
A ∗ strategies would induce more computational challenges 
and the T-RRT algorithm will probably be more robust to 
dimension increase.

Exploration‑and‑Observation Task

The NBV exploration-and-observation planner has then been 
evaluated in association with the above weighted A ∗ and 
T-RRT procedures (Fig. 10). Note that, in the simulation, 
the robot speed depends on the traversability class label 
at its current position, according to the cost values listed 
in Table 1 and the inversely proportional rule defined by (3). 
The following two missions have been investigated: the case 
of a pure exploration of the map and the case of an explora-
tion with observation of objects of interest (using layer M3 ), 
in this case those labeled l6 . One hundred simulations with 
random initialization have been performed for each path 
planning algorithm, half of which aimed at visiting the flow-
ers in the semantic map as soon as they were detected. The 
exploration performance indicators correspond to the num-
ber of observed cells as a function of the number of algo-
rithm iterations for both missions, and the additional number 
of iterations to visit all objects of interest for the observation 
task. Table 3 summarizes the performance indices obtained, 
while the cumulated performance indices during the mis-
sions are displayed in Figs. 11 and 12. All the tasks have 

Fig. 9   Paths generated with classical (left) and semantic-aware (right) 
A

∗ . Initial paths are displayed in pink and semantic-based shortcuts 
in red

Table 2   Path planners with semantic information. 100 runs, average 
(± std )

Planning method Path weighted 
length (normal-
ized)

Computation Time (ms/pix)

Standard A∗ 1.70 (± 0.259) 0.0687 (± 3.31e-02)
Weighted A∗ 1.40 (± 0.140) 0.153 (± 5.91e-02)
T-RRT 2.02 (± 0.407) 0.0968 (± 0.191)

Fig. 10   Example of semantic-
aware exploration and observa-
tion. Left: real-time update of 
coverage layer (robot position 
in pink and frontier nodes in 
white). Right: ground-truth 
visualization of the semantic 
3D voxel map from which 
information is extracted. Colors 
of semantic classes according 
to Table 1. Video available at 
https://​tinyu​rl.​com/​Seman​ticPl​
anning

https://tinyurl.com/SemanticPlanning
https://tinyurl.com/SemanticPlanning
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been successfully completed (with a stopping coverage crite-
rion set to 90% of the free space) and the convergence curves 
are globally consistent. As a consequence of the unitary path 
planning tests, it follows that although the T-RRT planner 
is faster in calculating paths, exploration is more efficient 
in terms of number of iterations with the weighted A ∗ algo-
rithm, because the computation time is compensated by the 
optimality of the path lengths. Indeed, the robot takes less 
time to reach the targets and this largely compensates for the 
slight additional path calculation time in this 2D evaluation 
case. The same trend is observed in the convergence rates to 
the maximum number of visited objects of interest.

Conclusions

An approach has been proposed in this paper to incorpo-
rate information available from semantic pointclouds and 
their registered poses into maps, which can be exploited 

for autonomous robot navigation tasks involving multiple 
planners with, e.g., the definition of high-level goals fol-
lowed by path planning. An example of construction of 
a multi-layered map structure has been proposed, where 
semantic information can be used to derive cost func-
tions or observation targets. It has then been shown how 
the classical A∗ and T-RRT planning algorithms can be 
adapted to handle semantic inputs.

A mapping process relying on semantic Octomap, the 
construction of a navigation graph, and the evaluation of 
waypoint rallying and exploration-and-observation plan-
ning tasks have been carried out on the 3DRMS challenge 
dataset [17], which offered ground-truth semantic infor-
mation as a reference. The promising results of this case 
study show that it is possible to run a full semantic-aware 
mapping-and-planning process for an autonomous robot.

The design and testing of such a process on board of 
mobile robots still require more investigation, including 
the training and integration of a semantic segmentation 

Table 3   Performance indices 
for Exploration–Observation 
tasks

50 runs, average (± std)

NBV and Path planners Weighted A∗
T-RRT

Nb of iterations for 90% coverage, without visiting a class of interest 1381 (± 223) 1520 (± 438)
Nb of iterations for 90% coverage, while visiting a class of interest 1581 (± 321) 1682 (± 357)
Nb of iterations to visit all objects of interest 854 (± 361) 944 (± 401)

Fig. 11   Cumulated coverage and visit of classes of interest during the Exploration-and-Observation task with semantic-aware A∗ planner to 
reach NBVs (50 runs). The yellow curves correspond to the mean values
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network to produce the labeled input pointclouds. The 
complete end-to-end pipeline allowing online robot navi-
gation and exploration from embedded sensor data has yet 
to be implemented and thoroughly evaluated in increas-
ingly challenging contexts. Studies concerning the best 
way to represent and store the map information and associ-
ated uncertainty should also be pursued to provide light, 
informative, and reliable support for autonomous navi-
gation. While the Octomap technique was employed for 
this purpose here, alternative environment representation 
methods have been developed and used in the recent years. 
The integration and comparative study of such methods 
in the context of the described architecture could lead to 
significant improvements for the task of semantic-aware 
robot navigation. The extension to multiple robots or het-
erogeneous teams with the fusion of viewpoints to inte-
grate semantic data into distributed 3D maps and their use 
by appropriate planning algorithms will also be considered 
in future work.
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