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Abstract
In the forthcoming decades, real-time image processing will play a crucial role in computer vision. The rise in population 
has resulted in a higher usage of smart devices in various industries, including the automobile, medical, and consumer elec-
tronics sectors. Therefore, it is imperative for researchers to play a significant role in enhancing the performance, processing 
speed, and optimizing the model quantity. In this particular study, a modified channelwise feature pyramid (M-CFPNet) 
model is developed for real-time semantic edge segmentation to balance the aforementioned factors. The proposed system 
is implemented to extract valuable features of the edges in the image. Using the CFPNet module, M-CFPNet is constructed 
and evaluated on various BSD, CamVid, and Cityspace databases. The Cityscapes database achieves a classwise mIoU of 
73.3% with 0.55 million parameters. The execution speed has reached 30 FPS on RTX GPU for 1024 × 2048 dimension 
images. When compared to CFPNet the M-CFPNet algorithm improves 3.2% of mIoU and 0.04% parameter.
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Introduction

Real-time semantic edge segmentation is the most crucial 
topic in image processing and computer vision. There are 
several applications for this system or model, such as bio-
medical image processing, autonomous self-driving system, 
and many more. All these applications have critical use cases 
and need more accuracy. Increasing the network quantity has 
reduced the inference, which may lag in real-time operating 
conditions. To mention some examples, such as DeepLab 
and PSPNet's are best in performance with semantic edge 
segmentation; however, they consist of millions of limiting 
factors and a minimal processing speed of one frame per 
second (FPS). In general, 30FPS speed is maintained typi-
cally for real-time processing.

To conclude, the larger the network lesser the process-
ing speed. Along with processing speed memory, consump-
tion is also considered the primary parameter. Building an 
optimistic and efficient semantic edge segmentation network 
with less memory and more processing speed is achieved in 
this study.

Current semantic segmentation models are high speed, 
mainly ESPNET [5] and ENET [4], which require high costs 
for execution with high inference speeds. Slightly modified 
models such as ICNET [6] and ContexNet [5] have achieved 
good results, but their models do not achieve with best size 
and speed. Hence, this study concentrated on maintaining 
or obtaining better inference, accuracy, and model size. 
The very old manuscripts [7, 8] had delivered the process 
of achieving the multi-scale convolution with various sizes 
and various fields. This phenomenon allows the models to 
process with multilevel feature extraction and contains mul-
tiple data scales. The dilated convolution was one of the best 
processing models to extract the large scale features within 
the maximum available number of features [10, 11]. Both the 
networks have certain limitations, whereas a channel wise 
model and the inception models contain more parameters, 
though they contain factorizations. The dilation convolution 
may miss local features but achieves the best global infor-
mation with a single dilation rate. Fixed dilation makes the 
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model extract the large class of features in the cityscapes 
data set but avoids identification of minute ones.

The proposed methodology is a tiny and new CNN mod-
ule that achieves the pros of dialed and inception convolu-
tion. This prone module is applied to construct superficial 
and practical encoder- and decoder-based models to pull out 
the dense features.

The modified channel wise feature pyramid network 
design (M-CFPNet) depends on the CFPNet model. Many 
new parameters have better results than the current semantic 
segmentation models. The proposed module can efficiently 
incorporate dilated and inception convolutions. Hence, they 
are called channelwise feature pyramid (CFP) networks. 
This framework can pull out numerous contingent informa-
tion jointly and size feature maps and significantly reduce 
the size and number of parameters.

Literature Survey

Recent works mainly specify semantic edge segmentation 
process that demonstrates either factorization, dilated convo-
lution or low bit networks, or a mixture of these techniques 
to optimize the model size and speed of the CNN. The pri-
mary step is briefly describing the technique opted for and 
overviewing the decoder–encoder-based edge semantic 
segmentation.

The dilated convolution [17] develops a 3 × 3 convolution, 
which is a standard and unique form by filling gaps between 
enhanced effective receptive field and convolution param-
eters without producing more elements. The rate of dilation r 
is denoted as [r(n − 1) + 1]^2 for an n × n dilated convolution 
in the kernel, where r represents pixel gap numbers between 
adjacent convolution element and n2 elements participate in 
module training. Several research have already experimented 
on dilated convolution to pick off multi scale features, which 
is demonstrated and developing a spatial feature pyramid, 
to name a few DenseASAPP [18, 19] and DeepLab [10, 12, 
13]. The application patterns shows the stamina in pixel-
level tasks. This study tried to implement dilated convolu-
tion for each CFP network channel.

The naïve Inspection architecture [7] demonstrated a 
jointing model which consists 1 × 1, 3 × 3 and 5 × 5 convo-
lutions which achieves multi scale feature maps of kernel. 
The large convoluted kernels, leads to more processing cost.

Hence, current versions of inception architecture initiate 
factorization convolutions to decrease the number of ele-
ments. This factorization has two parts: asymmetric convo-
lution and smaller convolution by factorization. To state an 
example, where 34% of elements are saved with the same 
filter size is achieved, i.e., for 5 × 5 convolution operator, 
it is replaced with 3 × 3 convolutions and then factorized a 
convolution into 3 × 1 convolution from 1 × 3 convolutions. 

The TesNext [18], MobileNets [14] and inception [16] are 
the two factorization modules that had been applied success-
fully for great stamina in decreasing the processing of the 
CNN models. The factorization module inspired in develop-
ment of CFPNet. Each CNN channel is used with a small 
convolution approach to reduce the inception-like model in 
CFPNet. The asymmetric convolution technique reduced 
channel parameters. Factorization decreases the execution 
substantially, where the module is allowed to learn from the 
features of respective fields with a series of sizes [33–35] 
segmented image using watershed and particle swarm opti-
mization techniques to obtain good results.

The encoder and decoder are two different parts of the 
encoder–decoder network. The encoder consists of down-
sampled operators for extracting the high dimension features 
and sequence of convolution. The exact process is reverted 
for a decoder, like instead of down sampling, the upsampling 
are convoluted to create masks. Few of encoder–decoder-
based designs available are, U_Net [19], FCN [16], and Seg-
Net [21] that demonstrated great results with pixel-level edge 
segmentation. The entire process in the study discusses, the 
architecture of MCFPNet, which is derived from CFPNet.

Methodology

Channelwise Feature Pyramid Channel

CFPNet derived from CFP module, which traces convolution 
network operation that decays a larger kernel into several 
minimal convolutions in Fig. 1a, b. The modified CFPNet 
has better performance in results than CFPNet. The tradi-
tional Inception model uses directly 5 × 5 size kernel, and 
Inception-V2 as shown in Fig. 1c is deployed with dual 3 × 3 
convolution operators instead. Depending on the thought of 
factorization and multi-scale feature maps, the current sys-
tem is designed with a 7 × 7 kernel. Same way, Inception-V2 
introduced three 3 × 3 convolution kernels instead of 5 × 5 
and 7 × 7 size kernels. Due to this functioning, 45% and 28% 
of parameter elements are saved, respectively. It is hard to 
achieve a real-time goals hence, combined both convoluted 
kernels into single channels with only 3 × 3 sized kernels. 
Then, perish the convention convolution to unsymmetrical 
conventions to construct the feature pyramid channels. To 
generate a multi scale feature map the connection is skipped 
to concentrate parameters that are pulled out from an unsym-
metrical convolution set. The feature pyramid is reduced to 
69% of parameters when compared with CFPNet and Incep-
tion-v2. In addition, FP channel saves 69% of elements but 
has the capability to understand the attribute data and retains 
the original dimension.

Because of uniting features from asymmetric or skewed 
convolution blocks, it maintains the equal dimensions of 
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output and inputs by reshuffling filter numbering per unsym-
metrical set. If the input size is ‘N’, then N/4 is assigned as 
primary and secondary sets, which point to 5 × 5 and 3 × 3 
convolution. To the tertiary set, the 7 × 7 kernel is allocated 
with N/2 filter, which pulls out a substantial symmetrical 
size feature.

Channelwise Feature Pyramid Module

CFP module has L FP channels with multiple dilation rates 
{r1, r2,…,L}. Conventional CFP is primarily applied with 
1 × 1 complication to decrease the input facet from m to m/L. 

Later the dimension of the primary and tertiary irregular set 
are m/4L, m/4L, and m/2L, respectively.

Figure 2 represents detailed information about the CFP 
module. There, 1 × 1 convolution achieves high dimension 
feature maps with lesser measurement. Later, set multi 
FP channels to parallel arrangement along with multiple 
dimension values. Then, all feature maps are united into 
single dimension input and apply convolution of 1 × 1 to 
trigger the output. This is the fundamental architecture 
of any conventional CFP module which is demonstrated 
in Fig. 2a. The enhancement in the depth of the module 
network is done using unsymmetrical convolution, which 

Fig. 1   a Naïve inception mod-
ule. b Feature pyramid module. 
c Inception V2-module
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leads to harder for learning or training. In addition, an 
ordinary combination method initiated some griddling dis-
turbance or unwanted checkboard that has more impact on 
accuracy and excellence in edge identification masks. To 
improve the struggle in the training, the remaining connec-
tion is made as the primary step as the deep network mod-
ule is trainable and gives additional feature data [21]. To 
avoid the impact of griddling disturbance, need to apply 
HFF (hierarchical feature fusion) [5] to de-griddling.

From initiating the secondary channel, apply the addi-
tion operation to sum the feature maps stage by stage, later 
uniting the constructed final hierarchical feature map. The 
griddling disturbances are finally reduced. The final CFP 
module with less griddle disturbance is represented in 
Fig. 2b.

MCFPNet Module

Primarily, mentioning the CFP module details which are 
used to construct MCFPNet. Selecting FP channels to 
C = 4. The dimension of input is D = 32, filter number 
with 8 as the channel size. opting filter number of pri-
mary and tertiary asymmetric convolution sets are 3,3, 
and 4, respectively, but in CFPNet [29] it is represented 
as 2,2 and 4, respectively. Later, the various dilation 
rates is set to individual FP channel. Perform the dila-
tion rate equal to rC, set the 1st and 4th channel dilation 
rate to r1 = 1 and rC, and want the MCFP module can 
pull global and local features. The secondary and tertiary 
channels are set with rates of dilation equal to r2 = rC/4 
and r3 = rC/2. Hence, the CFPNet module could train for 

Fig. 2   a Conventional CFP net-
work. b CFP network module
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midsized features. If rC/4 is lesser than 1 and if rC = 2, 
then unswervingly setting the channel to amplify rate 
equal to 1.

MCFPNet architecture: Though Agenda of the manu-
script is to develop a lightweight module with the best 
performance. Hence, a shallow network is proposed in the 
manuscript, as shown in Fig. 3. The detailed architecture 
is represented in Table 1. Initially, three 3 × 3 convolu-
tion is performed on the feature extractor and apply the 
down-sampled method as in ENet [4], which fuses a 3 × 3 
convolution with a stride two and     2 ×  2 maximum poll-
ings. These down-sampling operation process outputs by 
three times, and output dimensions are 18th of the original 
input size. Skip the connection to insert and resize the 
input images before the first and second max polling final 
1 × 1 convolution, providing additional data for the seg-
mentation network. In the CFP-2 and CFP-1 clusters, the 
CFP module is repeated with n = 2 and m = 6 times with 
rate of dilation rKCFP − 1 = [3, 3] and rKCFP − 2 = [4, 4, 
8, 8, 16, 16]. As a last step, a 1 × 1 convolution is applied 
to trigger the output feature map to obtain final edge 
segmentation masks using bilinear interpolation. Each 
convolution is performed by triggering PteLU [23] batch 
normalization. The study proved to attain better results in 
performance than TeLU in shallow networks. The CFP-
2, m output if fed to up sampling with 1 × 3 conv instead 
of 3 × 3 conv has improved the results in MCPF net. As 
CFP-2, m and CFP-2,n has max co-ordinate values which 
may not need of 3 × 3 conv [32].

The proposed neural network has been tested on 
BSDS500 and also on CamVid and cityscape data sets. 
These data sets are widely used in semantic edge seg-
mentation. The whole work was validated on CamVid 
and cityscape data sets, with some selected images from 
BSDS500. The parameters such as repeat times, the num-
ber of channels, and dilations have been experimented. 
Finally, the networks are compared between the data sets.

Results and Discussion

Data Set

Cityscapes The cityscapes consist of 5000 fine annotations 
and 20,000 coarser annotation images. In addition, the data 
set has data from 50 different cities. The original input image 
resolution is 1024 × 2048. The data set consists of seven cat-
egories: cars, trucks, buses, and other vehicles.

CamVid This data set includes an urban scene data set 
which can be used in automotive applications, such as self-
driving. It has 701 images, with each image resolution of 
720 × 790. 234 for training and 101 for validation are used. 
In the proposed work, the images are resized to 360 × 480 
before training the data set.

Analysing MCFPNet Architecture

The proposed multiple CFPNet consist of repeat times, 
different channel numbers, and rate of dilation, to analyze 
their performance of CamVid test data set. MCFPNet is 
represented in Table 2. The multiple features of the edge 

Fig. 3   Proposed MCFPNet 
architecture

Table 1   Design details of MCFPNet

No Layer Mode Dimension

1 3 × 3 Conv Stride 2 32
2 3 × 3 Conv Stride 1 32
3 3 × 3 Conv Stride 1 32
4 Downsampling – 32
5–6 2 × CFP rC = 2 32
7 Downsampling – 128
8–9 2 × CFP rC = 4 128
10–11 2 × CFP rC = 8 128
12–13 2 × CFP rC = 16 128
14 1 × 1 Conv Stride 1 18
15 Bilinear interpolation  × 8 18
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segmented images is extracted using region of interest 
(ROI) and classifiers.

As the study do not use the pre-trained models, the 
maximum epochs used is 1024. The ADAM [24] is used to 
train the network with a momentum 0.9 and weight decay 
4.5e−4. Applying the “poly” learning rate policy [25] and 
the initial learning rate is set with power 0.9. Later opt-
ing a multiple batch number for two data sets, eight for 
Cityscapes and sixteen for CamVid represented in Table 3. 
Data augmentation is also performed to create diversity 
in training. The measurement rates are as {0.5, 0.75, 1.0, 
1.25, 1.5, 1.75}.

CFPNet-V1 This is the superficial version, because it 
repeats n times, and m are 1 and 2. For primary MCFP-
Net, the dilation rates are set to rCCFP − 1 = [4] and 
rCCFP − 2 = [8, 16].

CFPNet-V2 When Compared to MCFPNet-V1, the net-
work can be able to extract more local features. Hence, mod-
ified the repeat time from {n,m} = {1,2} to {n,m} = {1,3}, 
and their corresponding distend rates are changed to 
rCCFP − 1 = [2] and rCCFP − 2 = [4, 8, 16].

MCFPNet The operation of the network has increased and 
controlled the model size. The continuity of the CPFNet-V2 

is doubled. The distend rates are modified per cluster to 
rCFP − 1 = [2, 2] and rCCFP − 2 = [4, 4, 8, 8, 16, 16].

Table 4 represents the evaluation results of MCFPNet on 
Cityscapes which improves the results with 3.2% more accu-
rate with same size of CFPNet-V3.

Although the dimensions of MCFPNet are diminu-
tive, its mIoU accuracy is impressively competitive, as 
demonstrated in Table 5, both in terms of classwise and 

Table 2   Edge segmented 
examples from cityscapes

ORIGINAL IMAGE CFPNet-V1 CFPNet-V2 MCFPNet

Table 3   Evaluation of MCFPNet on CamVid

Network Parameter Size mIoU (%)

CFPNet-V1 0.31 M 1.34 MB 61.6
CFPNet-V2 0.37 M 1.6 MB 62.9
CFPNet-V3 0.55 M 2.5 MB 64.3
MCFPNet 0.55 M 2.5 MB 65.94

Table 4   Evaluation of MCFPNet on Cityscapes

Network Parameter Size mIoU (%)

CFPNet-V1 0.31 M 1.34 MB 60.6
CFPNet-V2 0.37 M 1.6 MB 66.9
CFPNet-V3 0.55 M 2.5 MB 70.1
MCFPNet 0.55 M 2.5 MB 73.30

Table 5   Cityscapes data set results

Network Class Category

ENet [4] 58.3 80.4
ESPNet [5] 60.3 82.2
ETFNet [26] 68.0 86.5
SQNet [28] 59.8 84.3
SegNet [19] 57.0 79.1
FCN-8 s [20] 65.3 85.7
DeepLab-v2 [3] 70.4 86.4
PSPNet [2] 78.4 86.4
CFPNet [32] 70.1 87.4
MCFPNet 73.3 87.9
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categorywise evaluations. A closer examination of the 
results reveals that MCFPNet exhibits a higher level of 
sensitivity and precision, particularly in the detection of 
small and low-frequency classes, such as traffic lights.

Comparisons

The CamVid and Cityscapes, test data set results are com-
pared with the proposed system to existing convention sys-
tems. Figure 4 represents the relationship between classwise 
mIoU accuracy and network size.

In Fig. 4, the blue circle represents the size of the model, 
i.e., the smaller circle, the smaller the model size. The size 
of the MCFPNet is small, as mIoU has very competitive 
accuracy, as represented in Table 5. CFPNet-V3 reported 
more sensitivity and accuracy for tiny and less frequency 
classes.

Figure 5 represents the test results plotted accuracy versus 
parameters for Cityscapes. The proposed MCFPNet has an 
excellent accuracy which achieves 71.0% and the best accu-
racy compared to LEDNet [29], ESPNet, and CGNet [27]. 
It also throws better performance than the existing CFPNet 
[32] and gives better training and segmentation results.

The different existing protocols are executed in various 
GPUs and their comparative results are placed in Table 6. 
The MCFPNet has a very similar processing speed as 
CFPNet [32], DABNet, and ICNet for the same input of 
1024 × 2048. As CFPNet [32] saved 28.6%, but MCFPNet 
saved 28.9%, which is closer but improved in network per-
formance. As the CamVid data set is tested, state-of-the-
art is placed in Table 7. MCPFNet achieves slightly better 
results with a small network. When compared to CPFNet the 
M-CFPNet improves 3.2% of mIoU and 0.04% parameter.

Given the variability in input size and GPU specifica-
tions across networks, both of these factors are reported 
in Table 6. In terms of computational ability, the hierar-
chy of GPUs is as follows: Titan Maxwell < Titan X Pas-
cal ≈ GT 1080Ti < Titan p < TT 2080Ti < V100. Despite 

Fig. 4   Network size and classwise mIoU accuracy

Fig. 5   Classwise mIoU and parameters

Table 6   Evaluation results for 
Cityscapes data set for testing

Network Pretrain I/P size FPS MIoU% GPU Parameters

DeepLab-v2 [3] ImageNet 512 × 1024  < 1 70.4 44 Titan
PSPNet [2] ImageNet 713 × 713  < 1 78.4 65.7 Titan
SegNet [19] ImageNet 360 × 640 14.6 56.1 29.5 Titan
ENet [4] None 512 × 1024 76.9 58.3 0.4 Titan
SQ [28] ImageNet 1024 × 2048 16.7 59.8 – Titan
ESPNet [5] None 512 × 1024 112 60.3 0.4 Titan-P
ContextNet [5] None 1024 × 2048 18.3 66.1 0.85 Titan
ETFNet [26] None 512 × 1024 41.7 68.0 2.1 Titan
BiSeNet [30] ImageNet 768 × 1536 105.8 68.4 5.8 Titan p
ICNet [6] ImageNet 1024 × 2048 30.3 69.5 7.8 Titan
CGNet [27] None 360 × 640 50 64.8 0.5 2 × V100
LEDNet [29] None 512 × 1024 71 70.6 0.94 1080Ti
DABNet [28] None 1024 × 2048 27.7 70.1 0.76 1080Ti
CFPNet [32] None 1024 × 2048 30 70.1 0.55 208Ti
MCFPNet None 1024 × 2048 30 73.4 0.59 AMD
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the differences in input size and GPU devices, Fig. 7 is 
included to facilitate comparison of the results presented 
in Table 6.

In addition, we conduct performance assessments on the 
CamVid test data set and undertake comparisons with sev-
eral other current techniques. Our findings, as outlined in 
Table 7, indicate that MCFPNet also delivers exceptional 
results despite its compact size. For instance, when compar-
ing with ENet and ESPNet, it is evident that their minimal 
parameter count has a significant impact on their overall per-
formance, as they rank the lowest in Table 7. In comparison 
with other methods boasting high performance, MCFPNet 
demonstrates a competitive level of accuracy despite having 
fewer than 3.4% of their parameters.

Conclusion

In this paper, a small real-time semantic edge segmenta-
tion network is developed. MCFPNet or modified CFPNet 
is mainly deployed on the basis of the Feature Pyramid 
channel and modified version of CFPNet. The analysis and 
results of CamVid and cityscapes data sets are running on 
MCFPNet module. The MCFPNet is overall deployed to 
enhance the accuracy to 71% with the best in inference 
speed, parameters, and model size. To conclude, the over-
all module efficiently finds semantic edge segmentation. 
When compared to CFPNet the M-CFPNet improves 3.2% 
of mIoU and 0.04% parameter.
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