
Vol.:(0123456789)

SN Computer Science (2024) 5:140
https://doi.org/10.1007/s42979-023-02323-w

SN Computer Science

ORIGINAL RESEARCH

Verifying the Reliability of Quantum Random Number Generator:
A Comprehensive Testing Approach

Rounak Biswas1  · Dhruv Roy Talukdar1 · Utpal Roy1

Received: 26 April 2023 / Accepted: 12 September 2023
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023

Abstract
Computers typically use pseudo-random numbers generated by algorithms that produce a deterministic sequence of numbers
that appear random but are predictable if the entropy of the seed is disclosed. On the other hand advantage of quantum ran-
dom numbers is that they are generated based on the inherent uncertainty of quantum mechanics, which means they are truly
random and unpredictable. This makes them ideal for cryptographic purposes, as attackers cannot easily guess or reproduce
them. We proposed a test verifying the randomness of classical and quantum random number generators by running the
National Institute of Science and Technology (NIST) test suite. Tests intend to draw attention to whether quantum random
numbers match or surpass today’s classical random numbers.

Keywords  Random numbers · Superposition · Hadamard gate · Quantum random numbers · Randomness test suite ·
Classical versus Quantum Random Number Generator (RNG)

Introduction

Random numbers are widely used in computer science algo-
rithms. However, current random number generation meth-
ods rely on deterministic processes and generate pseudoran-
dom numbers. The effectiveness of these algorithms depends
on the randomness of the given entropy and seed value
[4]. This dependence on randomness is particularly criti-
cal in fields such as cryptography since the entire system’s
security can be compromised if the random numbers are
predictable or easily guessed. Quantum computers possess

inherent properties of quantum mechanics, such as uncer-
tainty, which can be utilized to generate random sequences
[1]. These sequences can provide better results compared to
classical deterministic sequences. Studies have been con-
ducted on quantum random number generators (QRNG), but
no standardised QRNG can generate random numbers for
use in other algorithms. Different research groups have pro-
posed various techniques, such as using single photon-based
QRNGs as a prominent example [25]. This article presents
a study comparing classical and quantum random numbers
to evaluate the randomness of quantum random numbers,
which is still in progress. The National Institute of Science
and Technology (NIST) test suite is used to verify the ran-
domness of the given sequence. The study aims to determine
if quantum random numbers can exceed or at least match the
quality of today’s pseudorandom numbers.

Related Work

Classical random or pseudo-random numbers have found
widespread use owing to their simplicity and efficiency.
The necessity for pseudo-random numbers arises in vari-
ous domains, each with unique requirements. One such
area is cryptography, where the security of cryptographic
schemes heavily relies on the random nature of the keys,
thus for security mandating the use of either random or

Dhruv Roy Talukdar and Utpal Roy contributed equally to this
work.

This article is part of the topical collection “SWOT to AI-embraced
Communication Systems (SWOT-AI)” guest edited bySomnath
Mukhopadhyay, Debashis De, Sunita Sarkar and Celia Shahnaz.

 *	 Rounak Biswas
	 03333342104@visva-bharati.ac.in

	 Dhruv Roy Talukdar
	 03313051909@visva-bharati.ac.in

	 Utpal Roy
	 utpal.roy@visva-bharati.ac.in

1	 Computer and System Sciences, Visva-Bharati University,
Santiniketan, Bolpur 731235, West Bengal, India

http://orcid.org/0009-0004-2056-4847
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-02323-w&domain=pdf

	 SN Computer Science (2024) 5:140 140   Page 2 of 12

SN Computer Science

pseudo-random numbers mentioned in this paper [32].
Random numbers must satisfy three fundamental criteria:
unpredictability, good statistical properties, and non-repro-
ducibility of their number streams. Pseudo-random number
generators (PRNGs) are commonly employed to produce
numbers that appear random to users without knowledge of
the generator function [29]. These generators utilize math-
ematical functions and a seed value to generate numbers
that successfully pass specific tests for randomness [28].
The research found that pseudo-random numbers still face
security concerns due to their deterministic nature and reli-
ance on mathematical functions [21]. Attackers may predict
these numbers, potentially leading to vulnerabilities in cryp-
tographic protocols [9].

Various works claim the measurement outcomes of a
quantum state hold randomness and unpredictability [5,
33]. The Heisenberg–Robertson uncertainty relation pro-
vides theoretical limits for the accuracy of measuring two
non-commuting observables. Also, a recent discovery
has unveiled a quantum uncertainty relation of coherence
between two measurement bases that do not commute [26].
All of these define the quantum mechanic’s inherent proba-
bilistic nature. We are taking these properties as the key
element of generating random numbers.

Quantum random number generators (QRNGs) have
emerged as promising tools for generating high-quality ran-
dom sources. Some works claim that in most cases QRNGs
rely on the intrinsic randomness of quantum mechanics [24].
Various researchers have proposed various implementations
of QRNGs, such as those based on correlated photon pairs
created through spontaneous four-wave mixing in opti-
cal fibres [11], the utilization of quantum computers [14],
uncharacterized light sources [34], and the orbital angular
momentum of light [12]. Experimental results have show-
cased the generation of true random numbers at high rates.
These quantum random number generation advancements
hold significant implications for fields that demand robust
and secure random sources.

Lastly, the research paper delves into generating true ran-
dom numbers using quantum computers [10]. It sheds light
on the underlying principles of quantum computing, such
as superposition, qubits, and quantum gates, which serve as
the foundation for achieving true randomness. By employing
these quantum phenomena, quantum computers can gener-
ate numbers that exhibit genuine randomness, essential in
various applications.

Organization of the Article

This section presents an overview of the remaining parts of
the article, highlighting the key topics covered.

“Random Numbers”, “Requirement of Randomness”
section is a concise introduction to random numbers.

Emphasizing their significance in various fields, particularly
computer science. It outlines the diverse requirements for
randomness in these domains.

Next, in “Classical Deterministic Random Number Gen-
erator (DRNG)” to “Quantum Hadamard Gate (H‑gate)” sec-
tion the article delves into the two distinct approaches for
generating random numbers: classical and quantum. Further
commences by elucidating classical deterministic random
number generators and exploring quantum random number
generators. The focus then shifts to an in-depth examination
of quantum random number generation and the utilization of
Hadamard gates to achieve quantum superposition.

“Randomness Test” section introduces the statistical
test employed to compare the effectiveness of the random
number generation process. For this analysis, we rely on the
guidelines suggested by the NIST.

In “Discussion of Test Methods” section the core part
of the article commences, which involves a comprehensive
description of the three methods for generating quantum
random numbers. The article provides detailed insights into
the algorithms utilized in the generation process, which are
separately outlined in an algorithmic format.

Finally, in “Analysis of the Result” section, the article
discusses the analysis of the generated quantum random
number values, thoroughly examining their properties and
implications. The article concludes with a conclusion sec-
tion and a list of references.

Contributions of the Study

Our research pursued two primary objectives: firstly, to
assess the quality and statistical characteristics of classical
and quantum methods for generating random numbers, and
secondly, to present a comparative analysis of the findings
through tabular and graphical representations.

Through an extensive performance analysis and rigor-
ous statistical tests, our study reveals that quantum random
number generation matches traditional classical methods.
Furthermore, as quantum technologies advance, the dispar-
ity between the two approaches widens significantly, paving
the way for a potential future where quantum random num-
ber generators become the preferred choice.

Random Numbers

Random numbers refer to numbers generated unpredictably,
without any discernible pattern, leading to a sequence of
numbers that appear to be random. They find wide-ranging
applications in computer science, cryptography, statistics,
and other domains where unpredictability and random-
ness are crucial [7, 22]. Random numbers follow these
properties...

SN Computer Science (2024) 5:140 	 Page 3 of 12  140

SN Computer Science

•	 Unpredictability The numbers generated should be
unpredictable and free from any persistent pattern or
structure.

•	 Independence The generated numbers should be inde-
pendent. Numbers generated in time Tx do not contain
any information on numbers generated in both Tx−1 and
Tx+1.

•	 Uniform distribution The numbers generated should be
evenly distributed across possible values.

Requirement of Randomness

Random numbers have a wide range of use cases in various
fields. Here are some examples:

•	 Cryptography Random numbers are crucial in generating
secret keys for encryption and decryption. Predictable
secret keys can be easily deciphered, leading to compro-
mised system security. Generation of One Time Pass-
word (OTP) and Captcha code also required randomness.

•	 Simulation Utilized to generate input parameters for
simulating real-world scenarios. For instance, random
numbers are used in weather simulations to generate tem-
perature and humidity values for various locations.

•	 Genetic algorithm Random numbers are used to initialise
the population, where a set of potential solutions are ran-
domly generated to start the optimization process. They
are also used in the selection process, where individuals
with higher fitness scores are more likely to be selected
for the next generation. However, there is still some ran-
dom chance involved in introducing diversity.

•	 Machine learning Play a significant role in initializing
the model’s weights. This random initialization helps
avoid the risk of the model getting stuck at a local mini-
mum. Random numbers are also used to select a random
data subset for training and validation.

•	 Quality control Random numbers are utilized in man-
ufacturing to choose a random sample of products for
quality control purposes. This method of random selec-
tion guarantees that the selected sample accurately rep-
resents the entire population of products.

•	 Gaming Random numbers are used in gaming applica-
tions to add an element of unpredictability to the game.
For example, a good source of randomness is needed to
shuffle the cards in a card-based game.

Classical Deterministic Random Number Generator
(DRNG)

A classical random number generator is a system that pro-
duces a sequence of random numbers using a deterministic
algorithm, either in software or hardware [3]. The algo-
rithm takes an input seed value as entropy to determine the
sequence of random numbers. Although the output appears
spontaneous, it is not truly random because it is based on
a deterministic process. The randomness of the output
depends on the seed value’s unpredictability and the core
deterministic algorithm’s complexity. The core process of
general DRNG is given in Fig. 1. The given image contains
all the components and parameters used in DRNG.

Some important parts of the classical deterministic ran-
dom bit generator are as follows-

Fig. 1   DRBG Functional Model

	 SN Computer Science (2024) 5:140 140   Page 4 of 12

SN Computer Science

•	 Entropy Input Entropy input is a confidential part that
needs to be kept secret. Any disclosure of that makes
random numbers predictable. The whole security and
randomness of the mechanism depend on the entropy
value.

•	 Instantiating Function It take Entropy value, nonce
(number use only ones), and some additional optional
input. Its purpose is to provide the starting internal state
value that can provide random bits.

•	 Reseed Function Every generator has some time limit;
after that needs to recalculate and create a new seed and
internal state. The same starting entropy could not pro-
vide any randomness after a specific point and gives a
predictable string.

•	 Generate Function The purpose is to generate random
bits using the current internal state of the Deterministic
Random Bit Generator (DRBG) mechanism.

•	 Un-instantiate Function The role of this function is to
clear the whole internal state to all 0 ̀s upon the specific
requirements.

Quantum Random Number Generator (RNG)

A quantum random number generator utilizes the inherent
properties of quantum mechanics to produce unpredictable
and truly random numbers. This distinguishes it from classi-
cal random number generators that use a deterministic algo-
rithm. Quantum mechanics provides uncertainty that can
help to generate more accurate and random numbers. Vari-
ous methods are available for developing a quantum random
number mechanism, among which photon-based QRNG is
widespread and easily accessible [30]. It generates random
numbers by measuring the inherent randomness of quan-
tum processes involving photons. The fundamental concept
behind this type of Quantum Random Number Generator
(QRNG) is to utilize a photon source (e.g., a laser) to pro-
duce a sequence of photons and then measure the unpredict-
able arrival times of these photons at a detector. A model of
photon-based QRNG is depicted in Fig. 2.

Quantum Superposition and Inherent
Randomness

Quantum superposition is a fundamental and captivating prop-
erty in quantum mechanics, setting it apart distinctly from
the classical world. It characterizes a state where a quantum
system can exist in multiple states simultaneously. A linear
combination of several basis states, each corresponding to the
possible outcomes of a specific measurement or observation,
represents the state of a quantum system. These basis states’
coefficients, known as probability amplitudes, dictate the like-
lihood of the system being observed in each basis state. The

inherent randomness of quantum superposition stems from
the system’s uncertainty until a measurement is made. Before
observation, the system exists simultaneously in all possible
states, defying predictability with certainty.

A remarkable example highlighting this phenomenon is the
renowned double-slit experiment, where a particle simultane-
ously passing through two slits exhibits interference patterns,
showcasing the essence of superposition. The experiment uses
an optical system with liquid crystal spatial light modulators
[8].

Quantum superposition carries profound implications for
both quantum computing and random number generation. In
quantum computing, quantum bits (qubits) can exist in super-
positions of 0 and 1. Still, upon measurement, the superposi-
tion collapses, yielding a definite state with an outcome deter-
mined by the squared magnitude of the probability amplitude.

Quantum processes, like photon polarization or quantum
tunnelling, generate random outcomes that inherently elude
predictability due to the superposition of quantum states.
These outcomes can then be harnessed to obtain genuinely
random numbers. In summary, quantum superposition is a
foundational principle of quantum mechanics, giving rise to
intrinsic randomness in quantum systems, an aspect of utmost
importance in quantum computing and random number
generation.

Quantum Hadamard Gate (H‑gate)

The quantum Hadamard gate is often called “H" in quantum
computing. The Hadamard Gate is named after the French
mathematician Jacques Hadamard. The Hadamard gate acts on
a qubit and transforms its state according to a specific matrix
operation [2]. Mathematically, the Hadamard gate can be rep-
resented as follows:

H
⊗n �x⟩ = 1√

2n

�

y∈{0,1}n

(−1)x⋅y�y⟩

Fig. 2   Single photon based QRNG model

SN Computer Science (2024) 5:140 	 Page 5 of 12  140

SN Computer Science

In a computational basis, where �0⟩&�1⟩ represent the basis
states of a qubit, the Hadamard gate can be represented as
a 2x2 matrix:

When applied to a qubit in the �0⟩ state, the Hadamard gate
transforms the form as follows:

Similarly, when applied to a qubit in the �1⟩ state, the Had-
amard gate transforms the form as follows:

The Hadamard gate is crucial in creating superposition
states, essential for generating quantum random numbers
using quantum measurements. In the following way, super-
position is achieved using H-gate:

•	 Initialization Start with a single qubit in the �0⟩ state,
representing the initial state of the quantum system.

•	 Apply Hadamard Gate Apply the Hadamard gate (H) to
the qubit. This transforms the qubit into a �0⟩&�1⟩ states
superposition.

•	 Quantum Measurement Perform a quantum measurement
on the qubit. This measurement will yield either �0⟩or�1⟩
as the outcome. The measurement outcome will be prob-
abilistic since the qubit is superposed after the Hadamard
gate. The probability of measuring �0⟩or�1⟩ will equal,
meaning the quantum measurement will produce random
outcomes.

•	 Repeat for More Bits To generate multiple quantum ran-
dom bits, repeat the process by applying the Hadamard
gate to additional qubits and performing quantum meas-
urements on each.

This article capitalizes on two distinct sources of quantum
randomness, one of them being the H-gate QRNG. The
rationale behind selecting the H-gate is grounded in two
primary considerations. Firstly, adopting the quantum Had-
amard gate within the Qiskit environment facilitates the cre-
ation of quantum superposition—a pivotal characteristic of
quantum randomness [23, 31]. Secondly, the H-gate exhibits
a remarkable overall fidelity exceeding 98%, signifying its
efficacy in generating quantum superposition states [18].
The concept of fidelity assumes significance as it gauges the
proximity of the actual quantum state of real-world qubits
to the ideal scenario. It quantifies the accuracy of the output
qubit resulting from the gate’s operation.

H =
1√
2

⋅

�
1 1

1 − 1

�

H�0⟩ = 1√
2

⋅

�
1 1

1 − 1

�
⋅

�
1

0

�
=

1√
2

⋅

�
1

1

�
=

1√
2

⋅ (�0⟩ + �1⟩) = �+⟩

H�1⟩ = 1√
2

⋅

�
1 1

1 − 1

�
⋅

�
0

1

�
=

1√
2

⋅

�
1

−1

�
=

1√
2

⋅ (�0⟩ − �1⟩) = �−⟩

Randomness Test

Various statistical tests can be used to evaluate the ran-
domness of a given sequence [16]. These tests examine the
series’s distribution and patterns by measuring bias or cor-
relations to determine its randomness. Statistical tests ver-
ify that a given sequence of random numbers is genuinely
random. However, it is impossible to provide definitive
proof of the randomness of a sequence. Passing statistical
tests is not a guarantee of randomness, but failing them
can be a strong indication of non-randomness, which can
help improve the quality of the random number generator.
Several test suites are available to test the randomness of a
given sequence [15], including NIST Statistical Test Suite,
Diehard Test Suite [20], TestU01 [13], and PractRand. We
have used the NIST test suite to evaluate the randomness
of classical and quantum random numbers [19].

The National Institute of Standards and Technology
(NIST) Test Suite

The NIST provides a statistical test suite for random and
pseudo-random number generators to evaluate the quality
of a given sequence [6]. The NIST suite includes random-
ness, distribution, uniformity, independence, and more
tests. The NIST tests are widely used in the cryptography
community to validate the random number generators used
in cryptographic systems and ensure they meet the neces-
sary security standards. There are sixteen statistical tests
on which a random sequence is taken as input; the gener-
ated result gives information about whether the sequence
is random. Some of the most commonly used tests in the
NIST suite are:

•	 Frequency (Mono-bit) Test Evaluates the distribution
of 0 s and 1 s in a binary sequence.

•	 Block Frequency Test Evaluates the distribution of
blocks of consecutive bits in a binary sequence.

•	 Run Test Evaluates the distribution of runs of consecu-
tive 0’s or 1’s of the same value in a binary sequence.

•	 Longest Run of Ones in a Block Test Evaluates the long-
est run of 1 s in a block of binary digits.

•	 Rank Test Evaluate the distribution of the number of
0 s and 1 s in a binary sequence.

•	 Discrete Fourier Transform (DFT) Test Evaluates the
non-randomness of a binary sequence using the Dis-
crete Fourier Transform.

•	 Non-overlapping Template Matching Test Evaluates the
non-randomness of a binary sequence using a sliding
window of fixed length.

	 SN Computer Science (2024) 5:140 140   Page 6 of 12

SN Computer Science

NIST P‑value

The p-value also called the probability value, is a crucial sta-
tistical tool in hypothesis testing. In assessing randomness,
this measure is pivotal in evaluating the quality of a random
number sequence generated by a random number generator
(RNG). Emphasized by the National Institute of Standards
and Technology (NIST), the significance of the p-value
lies in its ability to act as a decisive criterion for evaluat-
ing the quality of random number sequences. A p-value is
computed for each test when conducting the NIST random-
ness tests. This computed p-value is then compared against
a predefined significance level denoted by � , commonly set
at 0.01 or 0.05 [17]. If the calculated p-value exceeds � , the
sequence successfully passes the test, indicating satisfactory
levels of randomness. Conversely, if the p-value is less than
or equal to � , the sequence fails the test, signifying a lack of
the desired randomness properties.

Discussion of Test Methods

We have conducted tests on classical and quantum random
numbers using the same statistical tests provided by the
NIST test suite. We used two sources for quantum random
numbers: a local 512-qubit Hadamard gate-based RNG
and a stored database containing quantum random num-
bers. “Local H-gate Based RNG” section is for the 512-
qubit RNG sequence test. “Australian National University
(ANU) Random Number Database”, “Multi-thread Random
Numbers Access” and “Continuous Single Process Random
Number Access” sections shows test procedure using quan-
tum random number database.

Local H‑gate Based RNG

We ran our local quantum random generator based on a
512-qubit Hadamard gate for 10, 100, and 1000 iterations
and saved the resulting values in files. The P-values of
the generated numbers are obtained and analyzed using
the NIST test suite function. Although the quantum cir-
cuit used for generating these numbers requires signifi-
cant time, the simple circuit can still produce consider-
able randomness. The results of the tests indicate that the
uncertainty inherent in quantum mechanics can contribute
to producing high-quality random sequences. The results
suggest that the 512-qubit Hadamard gate-based QRNG
can produce high-quality random sequences. The algo-
rithm for H-gate QRNG is presented in a pseudo-code
format as algorithm [1] and the Fig. 4 represents the result
of this test.

Australian National University (ANU) Random
Number Database

The Australian National University offers two distinct meth-
ods to access their quantum random numbers [27]. One
option for accessing quantum random numbers is using
their API to access live random sequences, while another
is accessing their stored random database. We chose to use
the stored database as live access has limitations in access-
ing qubits per session. We modelled our test in two different
sections. One involved multiple threads accessing random
numbers at a specific time, while the other involved a single
process accessing random numbers continuously in a pre-
defined manner.

Algorithm 1: H-gate QRNG
(Using IBM qiskit package)

Require: Packages−QuantumCircuit,QuantumRegister, etc . . .
q ← QuantumRegister(n qbits) � Create specified qubit circuit
c ← ClassicalRegister(n bits)
circuit ← QuantumCircuit(q, c)
circuit.h(q) � Apply Hadamard gate
circuit.measure(q, c)
backend ← provider.get backend(‘simulator stabilizer′)
nth ← runs
measure values ← []
for i ← 1 to nth do � Run circuit multiple times

job ← execute(circuit, backend, shots=1024)
counts ← job.result().get counts()
measure values ← measure values+ (counts.keys())

end for
f ← open() � Create a file for storing values
for i ← 1 to nth do

f .write(measure values[i])
end for

SN Computer Science (2024) 5:140 	 Page 7 of 12  140

SN Computer Science

Multi‑thread Random Numbers Access

We have created a multi-threaded test where 50 threads gen-
erate concurrent random numbers for a specified period. The
equivalent algorithm in pseudo-code format is presented in
the algorithm [3]. We then run the NIST test suite on each
sequence of random numbers for both classical and quan-
tum. Finally, we use the Python matplotlib package to plot
p-values. The results are presented in Fig. 5.

Continuous Single Process Random Number Access

This test done for a single process generate 512-bit random
numbers 1000 times over a given time limit continuously.
The equivalent algorithm in pseudo-code format is pre-
sented in the algorithm [4]. The NIST test suite is used to
obtain p-values for each sequence, and these p-values are
plotted using a Python matplotlib package. The results are

Algorithm 2: Common Algo-
rithm for Random number
generation

Require: (M,X)
Ensure: List of M random strings

RandomStrings ← []
for i from 1 . . .M do

Initialize RandomStr as an empty string
for j from 1 . . . X do

ch ← randomly assign either 0 or 1
Append ch with RandomStr

end for
Add RandomStr with RandomStrings

end for
return RandomStrings

Algorithm 3: Algorithm for
Multi-thread Access

Require: (N,M,X)
Ensure: List of M random strings each having X bits generated by N processes

P ← []
RandomStrings ← []
for i from 1 . . . N do

processi ← spawn a new process that will run GenerateRandomStrings(M,X)
and store the result in RandomStrings[i]

Add processi to P
end for
for i from 1 . . . N do

P [i].wait() // wait for ith process to finish
end for
Run NIST test-suite for each of the M strings for N processes

Require: (M,X, T)
Ensure: p − values associated with M random numbers (each having X bits)
generated over time interval of T .
P values ← []
for i from 1 . . .M do

R ← GenerateRandomStrings(1,X)
P val ← p− value for R calculated using NIST test suite
Add P val to P values
SLEEP(T) � to pause the execution for T time

end for
return P values

Algorithm 4: Algorithm for continuous single process access

	 SN Computer Science (2024) 5:140 140   Page 8 of 12

SN Computer Science

presented in Fig. 6 and equivalent pseudo-code displayed
using algorithm [4].

Analysis of the Result

The analysis section of this study is bifurcated into two dis-
tinct segments. Initially, p-values are visualized through a
tabular representation and a time/p-value chart, offering a
comprehensive perspective on their distribution and vari-
ation. Subsequently, the subsequent section delves into a
thorough exposition of the insights gleaned from the pre-
sented p-value tables and charts. This section enhances the
understanding of the analytical outcomes and underscores
the pivotal aspects that arise from the p-value analysis.

P‑value Table and Time/P‑value Chart

Figure [3] provided compiles the p-values resulting from 15
distinct statistical tests outlined in the NIST documentation.
It is important to note that the table selectively presents data

from extensive test datasets. Precisely, the focus is placed on
a designated subset of random number values corresponding
to the time interval spanning from t96 to t100 . In this context,
t1 signifies the instance at which the initial execution of the
mentioned random number generation method, as detailed
in the algorithm [2], concludes. As per the documentation’s
standards, values falling within ranges between 0.0 and 1.0
are deemed to possess a non-random.

Figure 4, illustrates the outcomes in X–Y plots (time
vs. p-value), where the x-axis depicts time in an increasing
sequence, while the y-axis represents the p-value. Specifi-
cally, Fig. 4 focuses on the H-gate QRNG. The observations
indicate that there is no prominent decline in p-values over
time. This finding establishes that a simple quantum cir-
cuit integrating quantum superposition constitutes a robust
source of high-quality randomness.

Moving on to Fig. 5, we delve into multi-thread access.
This chart features X–Y plots where the x and y-axis
correspond to time. Both classical and quantum random
numbers are integrated here. At each time instance ti , 50
threads are concurrently generated, producing random

Exe.
No.

Freq
Mono

Freq
Block

Runs
Test

Longest
Run

Binary
Mat

DFT Non-
overlap

Overlap Maurer Linear
Com

Serial Appr
Entro

Cusums Random
Excur

Random
Var

Hadamard gate QRNG

t96 0.79088 0.87500 0.59799 0.23776 -1.00000 0.74560 0.99925 nan -1.00000 -1.00000 0.49896 1.00000 0.81877 0.81358 0.28884

t97 0.07710 0.05658 0.88949 0.04110 -1.00000 0.08851 0.50922 nan -1.00000 -1.00000 0.49896 1.00000 0.09346 0.50906 0.70546

t98 0.07710 0.42319 0.09878 0.14417 -1.00000 0.37228 0.99925 nan -1.00000 -1.00000 0.49896 1.00000 0.15420 0.50249 0.91605

t99 0.47950 0.72426 0.46544 0.23495 -1.00000 0.74560 0.99925 nan -1.00000 -1.00000 0.69077 1.00000 0.77869 0.46662 0.31187

t100 0.59588 0.65586 0.84985 0.21493 -1.00000 0.25614 0.50922 nan -1.00000 -1.00000 0.69077 1.00000 0.61423 0.04880 0.36131

Multi-thread Access (Classical)

t96 0.01701 0.00562 0.00313 0.00824 -1.00000 0.00088 0.00001 nan -1.00000 -1.00000 0.00000 1.00000 0.02209 0.00000 0.00000

t97 0.01701 0.04428 0.01964 0.00919 -1.00000 0.01866 0.00019 nan -1.00000 -1.00000 0.06722 1.00000 0.01914 0.00000 0.00000

t98 0.00468 0.00511 0.03418 0.00198 -1.00000 0.01192 0.00000 nan -1.00000 -1.00000 0.00000 1.00000 0.00499 0.00000 0.00000

t99 0.03389 0.02206 0.09129 0.00083 -1.00000 0.01866 0.00019 nan -1.00000 -1.00000 0.00004 1.00000 0.02957 0.00000 0.00000

t100 0.01701 0.02838 0.03101 0.03289 -1.00000 0.03496 0.00001 nan -1.00000 -1.00000 0.00000 1.00000 0.02684 0.00000 0.00000

Multi-thread Access (Quantum)

t96 0.03389 0.00945 0.00777 0.01247 -1.00000 0.00582 0.08933 nan -1.00000 -1.00000 0.00000 1.00000 0.03857 0.00000 0.00175

t97 0.02156 0.00740 0.01007 0.03892 -1.00000 0.00156 0.00966 nan -1.00000 -1.00000 0.00645 1.00000 0.03857 0.00000 0.00000

t98 0.00468 0.01880 0.04965 0.00302 -1.00000 0.00582 0.00000 nan -1.00000 -1.00000 0.00004 1.00000 0.00636 0.00000 0.00000

t99 0.03389 0.04663 0.02220 0.00244 -1.00000 0.03496 0.00000 nan -1.00000 -1.00000 0.00000 1.00000 0.04414 0.00000 0.00000

t100 0.00614 0.00883 0.02244 0.02235 -1.00000 0.03496 0.00001 nan -1.00000 -1.00000 0.00000 1.00000 0.00683 0.00000 0.00004

Continuous Single Process (Classical)

t96 0.83660 0.50925 0.61717 0.86033 0.17811 0.75242 0.13720 0.18851 -1.00000 0.14979 0.93087 0.78636 0.70183 0.89864 0.96440

t97 0.01612 0.35453 0.07703 0.01054 0.88822 0.93144 0.34108 0.08269 -1.00000 0.77130 0.82822 0.08914 0.01523 0.28265 0.05183

t98 0.74046 0.60939 0.63009 0.70053 0.30983 0.68807 0.46075 0.65762 -1.00000 0.45250 0.02729 0.06513 0.78070 0.52387 0.39542

t99 0.13200 0.19568 0.44999 0.88376 0.15681 0.19689 0.31617 0.89020 -1.00000 0.93009 0.41738 0.77670 0.19282 0.73868 0.14896

t100 0.02693 0.03496 0.71955 0.04618 0.77662 0.60572 0.65731 0.03327 -1.00000 0.73465 0.44863 0.58533 0.02596 0.03187 0.41228

Continuous Single Process (Quantum)

t96 0.83660 0.55473 0.47607 0.71015 0.29097 0.52811 0.32398 0.83999 -1.00000 0.92838 0.47036 0.62238 0.71651 0.25255 0.78286

t97 0.18517 0.87979 0.62202 0.41903 0.44627 0.66708 0.11467 0.02232 -1.00000 0.83791 0.51122 0.48527 0.25922 0.27675 0.25228

t98 0.86599 0.98222 0.77845 0.90918 0.66760 0.28867 0.72057 0.44140 -1.00000 0.05569 0.09795 0.09017 0.77494 0.46693 0.35513

t99 0.67997 0.07919 0.00500 0.26025 0.04054 0.81855 0.17892 0.03844 -1.00000 0.72711 0.70052 0.14665 0.79502 0.83594 0.78353

t100 0.43099 0.16637 0.08760 0.71842 0.65623 0.95426 0.16818 0.71443 -1.00000 0.43750 0.44793 0.48389 0.77204 0.76225 1.00000

Fig. 3   P-values of a specific time period of all NIST test

SN Computer Science (2024) 5:140 	 Page 9 of 12  140

SN Computer Science

Fig. 4   Hadamard gates based QRNG

Fig. 5   Multi-thread test using ANU test database

	 SN Computer Science (2024) 5:140 140   Page 10 of 12

SN Computer Science

Fig. 6   Consecutive test using ANU test database

SN Computer Science (2024) 5:140 	 Page 11 of 12  140

SN Computer Science

numbers. After the NIST tests, each of the 50 threads
yields 15 distinct p-values. The plotted data showcases the
minimum p-value among the 50 threads for each statisti-
cal test at time instance ti . It is worth noting that selecting
the minimum p-value is crucial for assessing randomness.

Figure 6, introduces the results from the single process
continuous access test. Similar to the previous figures, this
chart comprises X-Y plots where the x and y-axes convey
analogous meanings. Both classical and quantum random
numbers are considered once again. This time, the chart
focuses on the continuous access scenario, demonstrating
the behaviour of both types of random numbers.

Discussion of Obtained Result

All three tests aim to show that quantum random num-
bers are on par with the current pseudo-random numbers.
By examining the p-value table and equivalent plots,
some crucial observations have been made regarding the
changes in p-values over time.

•	 General observation The fact that the p-values of quan-
tum random numbers do not decrease over time implies
that their performance remains consistent even after
generating a large number of random numbers. This
suggests that prolonged use does not affect the quality
of quantum random numbers.

•	 H-gate QRNG Figure 4 illustrates that the H-gate
QRNG yields favourable outcomes when executed on
a simulator. However, if the same circuit is run on a
physical machine, the results are expected to exhibit
greater randomness.

•	 Stored Database Regarding the tests conducted with
stored data values shown in Figs. 5 and 6, it is observed
that some of the results obtained from quantum random
numbers exhibit an upward trend over time.

This study contributes to our comprehension of quantum
random numbers by demonstrating that they can compete
with contemporary classical pseudo-random numbers.
This indicates that quantum random numbers have the
potential to be a viable alternative in various applications
that require secure and unpredictable random numbers.
Also worth noting is that the results would be more sig-
nificant if further testing is conducted using a more accu-
rate and live quantum generator. Ignoring the limitations
of quantum hardware, the results displayed in the plotted
diagrams indicate that quantum random numbers are a
promising area of research. With further advancements in
the future, quantum random number generators will likely
outperform deterministic random number generators.

Conclusion

In the article’s concluding section, we discuss the poten-
tial of using quantum random numbers to replace classi-
cal DRNGs. Additionally, we highlight how the inherent
uncertainty of quantum computing can be leveraged to
produce a reliable source of randomness

•	 Summary of main results Two quantum data sources
were subject to three tests to determine their random-
ness. The p-value plot obtained from classical and
quantum sources showed that quantum random num-
bers provide a reliable source of randomness.

•	 Implications With the quantum computer, we can
include the uncertainty principle in the generation pro-
cess of random sequences. Now that quantum mechan-
ics is random and probabilistic, we hope it helps create
accurate or near-true random sequences.

•	 Limitations The limitations of quantum computers
include limited hardware resources, high cost, lack
of skilled technicians etc. Additionally, the 512-qubit
Hadamard circuit used in this study can capture even
more probabilistic outcomes if executed on physical
hardware.

•	 Recommendations Despite the hardware limitations,
quantum computers can provide better random number
generation than available deterministic random number
generators. Therefore, it is recommended to conduct
stress tests on classical versus quantum random num-
ber generators using different methods, such as running
the test algorithm for a long time and measuring the
points where either fails. To further advance the study
of quantum random numbers, it is recommended to test
classical versus quantum random number generators
using other parameters. This article only tests two types
of quantum random number generator methods, and in
the future, exploring other sources of quantum random
numbers would be interesting.

Funding  Doesn’t use any funding sources for the study.

Data and Materials Availability  Our used QRNG data is from a stored
database by the ANU organization. Publicly accessible at https://​cloud​
stor.​aarnet.​edu.​au/​plus/s/​9Ik6r​oa7AC​FyWL4.

Declarations 

Conflict of Interest  All Author declares that he or she has no conflict
of interest.

Informed Consent and Animal Welfare  This article contains no studies
with human participants or animals performed by any of the authors.

https://cloudstor.aarnet.edu.au/plus/s/9Ik6roa7ACFyWL4
https://cloudstor.aarnet.edu.au/plus/s/9Ik6roa7ACFyWL4

	 SN Computer Science (2024) 5:140 140   Page 12 of 12

SN Computer Science

References

	 1.	 Abdelgaber N, Nikolopoulos C. Overview on quantum computing
and its applications in artificial intelligence. In: 2020 IEEE Third
International Conference on Artificial Intelligence and Knowledge
Engineering (AIKE), IEEE. 2020; pp 198–199.

	 2.	 Aharonov D. A simple proof that toffoli and hadamard are quan-
tum universal. arXiv preprint quant-ph/0301040. 2003.

	 3.	 Barker E, Kelsey J. Recommendation for random number genera-
tion using deterministic random bit generators. 2015. https://​doi.​
org/​10.​6028/​NIST.​SP.​800-​90Ar1.

	 4.	 Barker EB, Kelsey JM. Sp 800-90a. recommendation for random
number generation using deterministic random bit generators.
2012.

	 5.	 Barrett JA, Huttegger SM. Quantum randomness and underdeter-
mination. Philos Sci. 2020;87 (3):391–408.

	 6.	 Bassham L, Rukhin A, Soto J, et al. A statistical test suite for
random and pseudorandom number generators for cryptographic
applications. 2010. https://​tsapps.​nist.​gov/​publi​cation/​get_​pdf.​
cfm?​pub_​id=​906762.

	 7.	 Chlumeckỳ M, Buchtele J, Richta K. Application of random num-
ber generators in genetic algorithms to improve rainfall-runoff
modelling. J Hydrol. 2017;553:350–5.

	 8.	 Cofré A, Vargas A, Torres-Ruiz FA, et al. Dual polarization split
lenses. Optics Expr. 2017;25 (20):23773–83.

	 9.	 Cremers C, Garratt L, Smyshlyaev S, et al. Randomness improve-
ments for security protocols. Internet Requests for Comments,
RFC Editor, RFC 8937. 2020.

	10.	 Deepak Chahal PK. Analysis of quantum computers and random-
ness. Int J Innov Res Technol. 2020;6 (11):531–4.

	11.	 Huo M. Deterministic quantum teleportation through fiber chan-
nels. Sci Advan. 2018. https://​doi.​org/​10.​1126/​sciadv.​aas94​01.

	12.	 Hurley-Smith D, Hernandez-Castro J. Quantum leap and crash:
Searching and finding bias in quantum random number generators.
ACM Trans Privacy Security (TOPS). 2020;23 (3):1–25.

	13.	 L’ecuyer P, Simard R. Testu01: Ac library for empirical testing of
random number generators. ACM Transactions on Mathematical
Software (TOMS). 2007;33 (4):1–40.

	14.	 Li YH, Han X, Cao Y, et al. Quantum random number generation
with uncharacterized laser and sunlight. Quantum Inform. 2019;5
(1):97.

	15.	 Mannalath V, Mishra S, Pathak A. A comprehensive review of
quantum random number generators: Concepts, classification and
the origin of randomness. arXiv preprint arXiv:​2203.​00261. 2022.

	16.	 Martin-Löf P. The definition of random sequences. Inform Con-
trol. 1966;9 (6):602–19.

	17.	 Marton K, Suciu A. On the interpretation of results from the nist
statistical test suite. Sci Technol. 2015;18 (1):18–32.

	18.	 Muhonen JT, Laucht A, Simmons S, et al. Quantifying the quan-
tum gate fidelity of single-atom spin qubits in silicon by rand-
omized benchmarking. J Phys Condensed Matter. 2015;27 (15):
154205.

	19.	 Paul R, Dey H, Chakrabarti A, et al. Accelerating more secure rc4
: Implementation of seven fpga designs in stages upto 8 byte per
clock. arXiv:​1609.​01389. 2016.

	20.	 Rütti M, Troyer M, Petersen WP. A generic random number gen-
erator test suite. arXiv preprint math/0410385. 2004.

	21.	 Sathya K, Premalatha J, Rajasekar V. Investigation of strength and
security of pseudo random number generators. In: IOP Confer-
ence Series: materials Science and Engineering, IOP Publishing,
p 012076. 2021.

	22.	 Schindler W. Random number generators for cryptographic appli-
cations. Cryptographic Engineering pp 5–23. 2009.

	23.	 haq Shaik E, Rangaswamy N. Implementation of quantum gates
based logic circuits using ibm qiskit. In: 2020 5th International
conference on computing, communication and security (ICCCS),
IEEE, pp 1–6. 2020.

	24.	 Smirnov M, Petrovnin K, Fedotov I, et al. Quantum random
numbers from a fiber-optic photon-pair source. Laser Phys Lett.
2019;16 (11): 115402.

	25.	 Stefanov A, Gisin N, Guinnard O, et al. Optical quantum random
number generator. J Modern Optics. 2000;47 (4):595–8.

	26.	 Svozil K. Quantum randomness is chimeric. Entropy. 2021;23
(5):519.

	27.	 Symul T, Assad SM, Lam PK. Real time demonstration of high
bitrate quantum random number generation with coherent laser
light. Appl Phys Lett. 2011;98 (23): 231103. https://​doi.​org/​10.​
1063/1.​35977​93.

	28.	 Thottempudi P, Thottempudi N, Bhushan K, et al. Generation of
cryptographically secured pseudo random numbers using fpga.
Int J Electr Commun Eng Technol. 2014;5:2.

	29.	 Tuncer T, Avaroğlu E. Random number generation with lfsr based
stream cipher algorithms. In: 2017 40th International Convention
on Information and Communication Technology. IEEE: Electron-
ics and Microelectronics (MIPRO); 2017. p. 171–5.

	30.	 White SJ, Klauck F, Tran TT, et al. Quantum random number
generation using a hexagonal boron nitride single photon emitter.
J Optics. 2020;23 (1):01TL01.

	31.	 Wille R, Van Meter R, Naveh Y. Ibm’s qiskit tool chain: Working
with and developing for real quantum computers. In: 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE),
IEEE, pp 1234–1240. 2019.

	32.	 Xw Yang, Xq Zhan, Hj Kang, et al. Fast software implementation
of serial test and approximate entropy test of binary sequence.
Secur Commun Netw. 2021;2021:1–10.

	33.	 Yuan X, Bai G, Peng T, et al. Quantum uncertainty relation using
coherence. Phys Rev A. 2017;96 (3): 032313.

	34.	 Zahidy M, Tebyanian H, Cozzolino D, et al. Quantum randomness
generation via orbital angular momentum modes crosstalk in a
ring-core fiber. AVS Quant Sci. 2022;4 (1):89.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906762
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906762
https://doi.org/10.1126/sciadv.aas9401
http://arxiv.org/abs/2203.00261
http://arxiv.org/abs/1609.01389
https://doi.org/10.1063/1.3597793
https://doi.org/10.1063/1.3597793

	Verifying the Reliability of Quantum Random Number Generator: A Comprehensive Testing Approach
	Abstract
	Introduction
	Related Work
	Organization of the Article
	Contributions of the Study

	Random Numbers
	Requirement of Randomness
	Classical Deterministic Random Number Generator (DRNG)
	Quantum Random Number Generator (RNG)

	Quantum Superposition and Inherent Randomness
	Quantum Hadamard Gate (H-gate)

	Randomness Test
	The National Institute of Standards and Technology (NIST) Test Suite
	NIST P-value

	Discussion of Test Methods
	Local H-gate Based RNG
	Australian National University (ANU) Random Number Database
	Multi-thread Random Numbers Access
	Continuous Single Process Random Number Access

	Analysis of the Result
	P-value Table and TimeP-value Chart
	Discussion of Obtained Result

	Conclusion
	References

