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Abstract
Computers typically use pseudo-random numbers generated by algorithms that produce a deterministic sequence of numbers 
that appear random but are predictable if the entropy of the seed is disclosed. On the other hand advantage of quantum ran-
dom numbers is that they are generated based on the inherent uncertainty of quantum mechanics, which means they are truly 
random and unpredictable. This makes them ideal for cryptographic purposes, as attackers cannot easily guess or reproduce 
them. We proposed a test verifying the randomness of classical and quantum random number generators by running the 
National Institute of Science and Technology (NIST) test suite. Tests intend to draw attention to whether quantum random 
numbers match or surpass today’s classical random numbers.

Keywords  Random numbers · Superposition · Hadamard gate · Quantum random numbers · Randomness test suite · 
Classical versus Quantum Random Number Generator (RNG)

Introduction

Random numbers are widely used in computer science algo-
rithms. However, current random number generation meth-
ods rely on deterministic processes and generate pseudoran-
dom numbers. The effectiveness of these algorithms depends 
on the randomness of the given entropy and seed value 
[4]. This dependence on randomness is particularly criti-
cal in fields such as cryptography since the entire system’s 
security can be compromised if the random numbers are 
predictable or easily guessed. Quantum computers possess 

inherent properties of quantum mechanics, such as uncer-
tainty, which can be utilized to generate random sequences 
[1]. These sequences can provide better results compared to 
classical deterministic sequences. Studies have been con-
ducted on quantum random number generators (QRNG), but 
no standardised QRNG can generate random numbers for 
use in other algorithms. Different research groups have pro-
posed various techniques, such as using single photon-based 
QRNGs as a prominent example [25]. This article presents 
a study comparing classical and quantum random numbers 
to evaluate the randomness of quantum random numbers, 
which is still in progress. The National Institute of Science 
and Technology (NIST) test suite is used to verify the ran-
domness of the given sequence. The study aims to determine 
if quantum random numbers can exceed or at least match the 
quality of today’s pseudorandom numbers.

Related Work

Classical random or pseudo-random numbers have found 
widespread use owing to their simplicity and efficiency. 
The necessity for pseudo-random numbers arises in vari-
ous domains, each with unique requirements. One such 
area is cryptography, where the security of cryptographic 
schemes heavily relies on the random nature of the keys, 
thus for security mandating the use of either random or 
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pseudo-random numbers mentioned in this paper [32]. 
Random numbers must satisfy three fundamental criteria: 
unpredictability, good statistical properties, and non-repro-
ducibility of their number streams. Pseudo-random number 
generators (PRNGs) are commonly employed to produce 
numbers that appear random to users without knowledge of 
the generator function [29]. These generators utilize math-
ematical functions and a seed value to generate numbers 
that successfully pass specific tests for randomness [28]. 
The research found that pseudo-random numbers still face 
security concerns due to their deterministic nature and reli-
ance on mathematical functions [21]. Attackers may predict 
these numbers, potentially leading to vulnerabilities in cryp-
tographic protocols [9].

Various works claim the measurement outcomes of a 
quantum state hold randomness and unpredictability [5, 
33]. The Heisenberg–Robertson uncertainty relation pro-
vides theoretical limits for the accuracy of measuring two 
non-commuting observables. Also, a recent discovery 
has unveiled a quantum uncertainty relation of coherence 
between two measurement bases that do not commute [26]. 
All of these define the quantum mechanic’s inherent proba-
bilistic nature. We are taking these properties as the key 
element of generating random numbers.

Quantum random number generators (QRNGs) have 
emerged as promising tools for generating high-quality ran-
dom sources. Some works claim that in most cases QRNGs 
rely on the intrinsic randomness of quantum mechanics [24]. 
Various researchers have proposed various implementations 
of QRNGs, such as those based on correlated photon pairs 
created through spontaneous four-wave mixing in opti-
cal fibres [11], the utilization of quantum computers [14], 
uncharacterized light sources [34], and the orbital angular 
momentum of light [12]. Experimental results have show-
cased the generation of true random numbers at high rates. 
These quantum random number generation advancements 
hold significant implications for fields that demand robust 
and secure random sources.

Lastly, the research paper delves into generating true ran-
dom numbers using quantum computers [10]. It sheds light 
on the underlying principles of quantum computing, such 
as superposition, qubits, and quantum gates, which serve as 
the foundation for achieving true randomness. By employing 
these quantum phenomena, quantum computers can gener-
ate numbers that exhibit genuine randomness, essential in 
various applications.

Organization of the Article

This section presents an overview of the remaining parts of 
the article, highlighting the key topics covered.

“Random Numbers”, “Requirement of Randomness” 
section is a concise introduction to random numbers. 

Emphasizing their significance in various fields, particularly 
computer science. It outlines the diverse requirements for 
randomness in these domains.

Next, in “Classical Deterministic Random Number Gen-
erator (DRNG)” to “Quantum Hadamard Gate (H‑gate)” sec-
tion the article delves into the two distinct approaches for 
generating random numbers: classical and quantum. Further 
commences by elucidating classical deterministic random 
number generators and exploring quantum random number 
generators. The focus then shifts to an in-depth examination 
of quantum random number generation and the utilization of 
Hadamard gates to achieve quantum superposition.

“Randomness Test” section introduces the statistical 
test employed to compare the effectiveness of the random 
number generation process. For this analysis, we rely on the 
guidelines suggested by the NIST.

In “Discussion of Test Methods” section the core part 
of the article commences, which involves a comprehensive 
description of the three methods for generating quantum 
random numbers. The article provides detailed insights into 
the algorithms utilized in the generation process, which are 
separately outlined in an algorithmic format.

Finally, in “Analysis of the Result” section, the article 
discusses the analysis of the generated quantum random 
number values, thoroughly examining their properties and 
implications. The article concludes with a conclusion sec-
tion and a list of references.

Contributions of the Study

Our research pursued two primary objectives: firstly, to 
assess the quality and statistical characteristics of classical 
and quantum methods for generating random numbers, and 
secondly, to present a comparative analysis of the findings 
through tabular and graphical representations.

Through an extensive performance analysis and rigor-
ous statistical tests, our study reveals that quantum random 
number generation matches traditional classical methods. 
Furthermore, as quantum technologies advance, the dispar-
ity between the two approaches widens significantly, paving 
the way for a potential future where quantum random num-
ber generators become the preferred choice.

Random Numbers

Random numbers refer to numbers generated unpredictably, 
without any discernible pattern, leading to a sequence of 
numbers that appear to be random. They find wide-ranging 
applications in computer science, cryptography, statistics, 
and other domains where unpredictability and random-
ness are crucial [7, 22]. Random numbers follow these 
properties...
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•	 Unpredictability The numbers generated should be 
unpredictable and free from any persistent pattern or 
structure.

•	 Independence The generated numbers should be inde-
pendent. Numbers generated in time Tx do not contain 
any information on numbers generated in both Tx−1 and 
Tx+1.

•	 Uniform distribution The numbers generated should be 
evenly distributed across possible values.

Requirement of Randomness

Random numbers have a wide range of use cases in various 
fields. Here are some examples:

•	 Cryptography Random numbers are crucial in generating 
secret keys for encryption and decryption. Predictable 
secret keys can be easily deciphered, leading to compro-
mised system security. Generation of One Time Pass-
word (OTP) and Captcha code also required randomness.

•	 Simulation Utilized to generate input parameters for 
simulating real-world scenarios. For instance, random 
numbers are used in weather simulations to generate tem-
perature and humidity values for various locations.

•	 Genetic algorithm Random numbers are used to initialise 
the population, where a set of potential solutions are ran-
domly generated to start the optimization process. They 
are also used in the selection process, where individuals 
with higher fitness scores are more likely to be selected 
for the next generation. However, there is still some ran-
dom chance involved in introducing diversity.

•	 Machine learning Play a significant role in initializing 
the model’s weights. This random initialization helps 
avoid the risk of the model getting stuck at a local mini-
mum. Random numbers are also used to select a random 
data subset for training and validation.

•	 Quality control Random numbers are utilized in man-
ufacturing to choose a random sample of products for 
quality control purposes. This method of random selec-
tion guarantees that the selected sample accurately rep-
resents the entire population of products.

•	 Gaming Random numbers are used in gaming applica-
tions to add an element of unpredictability to the game. 
For example, a good source of randomness is needed to 
shuffle the cards in a card-based game.

Classical Deterministic Random Number Generator 
(DRNG)

A classical random number generator is a system that pro-
duces a sequence of random numbers using a deterministic 
algorithm, either in software or hardware [3]. The algo-
rithm takes an input seed value as entropy to determine the 
sequence of random numbers. Although the output appears 
spontaneous, it is not truly random because it is based on 
a deterministic process. The randomness of the output 
depends on the seed value’s unpredictability and the core 
deterministic algorithm’s complexity. The core process of 
general DRNG is given in Fig. 1. The given image contains 
all the components and parameters used in DRNG. 

Some important parts of the classical deterministic ran-
dom bit generator are as follows-

Fig. 1   DRBG Functional Model
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•	 Entropy Input Entropy input is a confidential part that 
needs to be kept secret. Any disclosure of that makes 
random numbers predictable. The whole security and 
randomness of the mechanism depend on the entropy 
value.

•	 Instantiating Function It take Entropy value, nonce 
(number use only ones), and some additional optional 
input. Its purpose is to provide the starting internal state 
value that can provide random bits.

•	 Reseed Function Every generator has some time limit; 
after that needs to recalculate and create a new seed and 
internal state. The same starting entropy could not pro-
vide any randomness after a specific point and gives a 
predictable string.

•	 Generate Function The purpose is to generate random 
bits using the current internal state of the Deterministic 
Random Bit Generator (DRBG) mechanism.

•	 Un-instantiate Function The role of this function is to 
clear the whole internal state to all 0 ̀s upon the specific 
requirements.

Quantum Random Number Generator (RNG)

A quantum random number generator utilizes the inherent 
properties of quantum mechanics to produce unpredictable 
and truly random numbers. This distinguishes it from classi-
cal random number generators that use a deterministic algo-
rithm. Quantum mechanics provides uncertainty that can 
help to generate more accurate and random numbers. Vari-
ous methods are available for developing a quantum random 
number mechanism, among which photon-based QRNG is 
widespread and easily accessible [30]. It generates random 
numbers by measuring the inherent randomness of quan-
tum processes involving photons. The fundamental concept 
behind this type of Quantum Random Number Generator 
(QRNG) is to utilize a photon source (e.g., a laser) to pro-
duce a sequence of photons and then measure the unpredict-
able arrival times of these photons at a detector. A model of 
photon-based QRNG is depicted in Fig. 2.

Quantum Superposition and Inherent 
Randomness

Quantum superposition is a fundamental and captivating prop-
erty in quantum mechanics, setting it apart distinctly from 
the classical world. It characterizes a state where a quantum 
system can exist in multiple states simultaneously. A linear 
combination of several basis states, each corresponding to the 
possible outcomes of a specific measurement or observation, 
represents the state of a quantum system. These basis states’ 
coefficients, known as probability amplitudes, dictate the like-
lihood of the system being observed in each basis state. The 

inherent randomness of quantum superposition stems from 
the system’s uncertainty until a measurement is made. Before 
observation, the system exists simultaneously in all possible 
states, defying predictability with certainty.

A remarkable example highlighting this phenomenon is the 
renowned double-slit experiment, where a particle simultane-
ously passing through two slits exhibits interference patterns, 
showcasing the essence of superposition. The experiment uses 
an optical system with liquid crystal spatial light modulators 
[8].

Quantum superposition carries profound implications for 
both quantum computing and random number generation. In 
quantum computing, quantum bits (qubits) can exist in super-
positions of 0 and 1. Still, upon measurement, the superposi-
tion collapses, yielding a definite state with an outcome deter-
mined by the squared magnitude of the probability amplitude.

Quantum processes, like photon polarization or quantum 
tunnelling, generate random outcomes that inherently elude 
predictability due to the superposition of quantum states. 
These outcomes can then be harnessed to obtain genuinely 
random numbers. In summary, quantum superposition is a 
foundational principle of quantum mechanics, giving rise to 
intrinsic randomness in quantum systems, an aspect of utmost 
importance in quantum computing and random number 
generation.

Quantum Hadamard Gate (H‑gate)

The quantum Hadamard gate is often called “H" in quantum 
computing. The Hadamard Gate is named after the French 
mathematician Jacques Hadamard. The Hadamard gate acts on 
a qubit and transforms its state according to a specific matrix 
operation [2]. Mathematically, the Hadamard gate can be rep-
resented as follows:

H
⊗n �x⟩ = 1√

2n

�

y∈{0,1}n

(−1)x⋅y�y⟩

Fig. 2   Single photon based QRNG model
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In a computational basis, where �0⟩&�1⟩ represent the basis 
states of a qubit, the Hadamard gate can be represented as 
a 2x2 matrix:

When applied to a qubit in the �0⟩ state, the Hadamard gate 
transforms the form as follows:

Similarly, when applied to a qubit in the �1⟩ state, the Had-
amard gate transforms the form as follows:

The Hadamard gate is crucial in creating superposition 
states, essential for generating quantum random numbers 
using quantum measurements. In the following way, super-
position is achieved using H-gate:

•	 Initialization Start with a single qubit in the �0⟩ state, 
representing the initial state of the quantum system.

•	 Apply Hadamard Gate Apply the Hadamard gate (H) to 
the qubit. This transforms the qubit into a �0⟩&�1⟩ states 
superposition.

•	 Quantum Measurement Perform a quantum measurement 
on the qubit. This measurement will yield either �0⟩or�1⟩ 
as the outcome. The measurement outcome will be prob-
abilistic since the qubit is superposed after the Hadamard 
gate. The probability of measuring �0⟩or�1⟩ will equal, 
meaning the quantum measurement will produce random 
outcomes.

•	 Repeat for More Bits To generate multiple quantum ran-
dom bits, repeat the process by applying the Hadamard 
gate to additional qubits and performing quantum meas-
urements on each.

This article capitalizes on two distinct sources of quantum 
randomness, one of them being the H-gate QRNG. The 
rationale behind selecting the H-gate is grounded in two 
primary considerations. Firstly, adopting the quantum Had-
amard gate within the Qiskit environment facilitates the cre-
ation of quantum superposition—a pivotal characteristic of 
quantum randomness [23, 31]. Secondly, the H-gate exhibits 
a remarkable overall fidelity exceeding 98%, signifying its 
efficacy in generating quantum superposition states [18]. 
The concept of fidelity assumes significance as it gauges the 
proximity of the actual quantum state of real-world qubits 
to the ideal scenario. It quantifies the accuracy of the output 
qubit resulting from the gate’s operation.
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Randomness Test

Various statistical tests can be used to evaluate the ran-
domness of a given sequence [16]. These tests examine the 
series’s distribution and patterns by measuring bias or cor-
relations to determine its randomness. Statistical tests ver-
ify that a given sequence of random numbers is genuinely 
random. However, it is impossible to provide definitive 
proof of the randomness of a sequence. Passing statistical 
tests is not a guarantee of randomness, but failing them 
can be a strong indication of non-randomness, which can 
help improve the quality of the random number generator. 
Several test suites are available to test the randomness of a 
given sequence [15], including NIST Statistical Test Suite, 
Diehard Test Suite [20], TestU01 [13], and PractRand. We 
have used the NIST test suite to evaluate the randomness 
of classical and quantum random numbers [19].

The National Institute of Standards and Technology 
(NIST) Test Suite

The NIST provides a statistical test suite for random and 
pseudo-random number generators to evaluate the quality 
of a given sequence [6]. The NIST suite includes random-
ness, distribution, uniformity, independence, and more 
tests. The NIST tests are widely used in the cryptography 
community to validate the random number generators used 
in cryptographic systems and ensure they meet the neces-
sary security standards. There are sixteen statistical tests 
on which a random sequence is taken as input; the gener-
ated result gives information about whether the sequence 
is random. Some of the most commonly used tests in the 
NIST suite are:

•	 Frequency (Mono-bit) Test Evaluates the distribution 
of 0 s and 1 s in a binary sequence.

•	 Block Frequency Test Evaluates the distribution of 
blocks of consecutive bits in a binary sequence.

•	 Run Test Evaluates the distribution of runs of consecu-
tive 0’s or 1’s of the same value in a binary sequence.

•	 Longest Run of Ones in a Block Test Evaluates the long-
est run of 1 s in a block of binary digits.

•	 Rank Test Evaluate the distribution of the number of 
0 s and 1 s in a binary sequence.

•	 Discrete Fourier Transform (DFT) Test Evaluates the 
non-randomness of a binary sequence using the Dis-
crete Fourier Transform.

•	 Non-overlapping Template Matching Test Evaluates the 
non-randomness of a binary sequence using a sliding 
window of fixed length.
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NIST P‑value

The p-value also called the probability value, is a crucial sta-
tistical tool in hypothesis testing. In assessing randomness, 
this measure is pivotal in evaluating the quality of a random 
number sequence generated by a random number generator 
(RNG). Emphasized by the National Institute of Standards 
and Technology (NIST), the significance of the p-value 
lies in its ability to act as a decisive criterion for evaluat-
ing the quality of random number sequences. A p-value is 
computed for each test when conducting the NIST random-
ness tests. This computed p-value is then compared against 
a predefined significance level denoted by � , commonly set 
at 0.01 or 0.05 [17]. If the calculated p-value exceeds � , the 
sequence successfully passes the test, indicating satisfactory 
levels of randomness. Conversely, if the p-value is less than 
or equal to � , the sequence fails the test, signifying a lack of 
the desired randomness properties.

Discussion of Test Methods

We have conducted tests on classical and quantum random 
numbers using the same statistical tests provided by the 
NIST test suite. We used two sources for quantum random 
numbers: a local 512-qubit Hadamard gate-based RNG 
and a stored database containing quantum random num-
bers. “Local H-gate Based RNG” section is for the 512-
qubit RNG sequence test. “Australian National University 
(ANU) Random Number Database”, “Multi-thread Random 
Numbers Access” and “Continuous Single Process Random 
Number Access” sections shows test procedure using quan-
tum random number database.

Local H‑gate Based RNG

We ran our local quantum random generator based on a 
512-qubit Hadamard gate for 10, 100, and 1000 iterations 
and saved the resulting values in files. The P-values of 
the generated numbers are obtained and analyzed using 
the NIST test suite function. Although the quantum cir-
cuit used for generating these numbers requires signifi-
cant time, the simple circuit can still produce consider-
able randomness. The results of the tests indicate that the 
uncertainty inherent in quantum mechanics can contribute 
to producing high-quality random sequences. The results 
suggest that the 512-qubit Hadamard gate-based QRNG 
can produce high-quality random sequences. The algo-
rithm for H-gate QRNG is presented in a pseudo-code 
format as algorithm [1] and the Fig. 4 represents the result 
of this test.

Australian National University (ANU) Random 
Number Database

The Australian National University offers two distinct meth-
ods to access their quantum random numbers [27]. One 
option for accessing quantum random numbers is using 
their API to access live random sequences, while another 
is accessing their stored random database. We chose to use 
the stored database as live access has limitations in access-
ing qubits per session. We modelled our test in two different 
sections. One involved multiple threads accessing random 
numbers at a specific time, while the other involved a single 
process accessing random numbers continuously in a pre-
defined manner.

Algorithm 1: H-gate QRNG 
(Using IBM qiskit package)

Require: Packages−QuantumCircuit,QuantumRegister, etc . . .
q ← QuantumRegister(n qbits) � Create specified qubit circuit
c ← ClassicalRegister(n bits)
circuit ← QuantumCircuit(q, c)
circuit.h(q) � Apply Hadamard gate
circuit.measure(q, c)
backend ← provider.get backend(‘simulator stabilizer′)
nth ← runs
measure values ← []
for i ← 1 to nth do � Run circuit multiple times

job ← execute(circuit, backend, shots=1024)
counts ← job.result().get counts()
measure values ← measure values+ (counts.keys())

end for
f ← open( ) � Create a file for storing values
for i ← 1 to nth do

f .write(measure values[i])
end for
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Multi‑thread Random Numbers Access

We have created a multi-threaded test where 50 threads gen-
erate concurrent random numbers for a specified period. The 
equivalent algorithm in pseudo-code format is presented in 
the algorithm [3]. We then run the NIST test suite on each 
sequence of random numbers for both classical and quan-
tum. Finally, we use the Python matplotlib package to plot 
p-values. The results are presented in Fig. 5.

Continuous Single Process Random Number Access

This test done for a single process generate 512-bit random 
numbers 1000 times over a given time limit continuously. 
The equivalent algorithm in pseudo-code format is pre-
sented in the algorithm [4]. The NIST test suite is used to 
obtain p-values for each sequence, and these p-values are 
plotted using a Python matplotlib package. The results are 

Algorithm 2: Common Algo-
rithm for Random number 
generation

Require: (M,X)
Ensure: List of M random strings

RandomStrings ← [ ]
for i from 1 . . .M do

Initialize RandomStr as an empty string
for j from 1 . . . X do

ch ← randomly assign either 0 or 1
Append ch with RandomStr

end for
Add RandomStr with RandomStrings

end for
return RandomStrings

Algorithm 3: Algorithm for 
Multi-thread Access

Require: (N,M,X)
Ensure: List of M random strings each having X bits generated by N processes

P ← [ ]
RandomStrings ← []
for i from 1 . . . N do

processi ← spawn a new process that will run GenerateRandomStrings(M,X)
and store the result in RandomStrings[i]

Add processi to P
end for
for i from 1 . . . N do

P [i].wait() // wait for ith process to finish
end for
Run NIST test-suite for each of the M strings for N processes

Require: (M,X, T )
Ensure: p − values associated with M random numbers (each having X bits)
generated over time interval of T .
P values ← [ ]
for i from 1 . . .M do

R ← GenerateRandomStrings(1,X)
P val ← p− value for R calculated using NIST test suite
Add P val to P values
SLEEP(T) � to pause the execution for T time

end for
return P values

Algorithm 4: Algorithm for continuous single process access
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presented in Fig. 6 and equivalent pseudo-code displayed 
using algorithm [4].

Analysis of the Result

The analysis section of this study is bifurcated into two dis-
tinct segments. Initially, p-values are visualized through a 
tabular representation and a time/p-value chart, offering a 
comprehensive perspective on their distribution and vari-
ation. Subsequently, the subsequent section delves into a 
thorough exposition of the insights gleaned from the pre-
sented p-value tables and charts. This section enhances the 
understanding of the analytical outcomes and underscores 
the pivotal aspects that arise from the p-value analysis.

P‑value Table and Time/P‑value Chart

Figure [3] provided compiles the p-values resulting from 15 
distinct statistical tests outlined in the NIST documentation. 
It is important to note that the table selectively presents data 

from extensive test datasets. Precisely, the focus is placed on 
a designated subset of random number values corresponding 
to the time interval spanning from t96 to t100 . In this context, 
t1 signifies the instance at which the initial execution of the 
mentioned random number generation method, as detailed 
in the algorithm [2], concludes. As per the documentation’s 
standards, values falling within ranges between 0.0 and 1.0 
are deemed to possess a non-random.

Figure 4, illustrates the outcomes in X–Y plots (time 
vs. p-value), where the x-axis depicts time in an increasing 
sequence, while the y-axis represents the p-value. Specifi-
cally, Fig. 4 focuses on the H-gate QRNG. The observations 
indicate that there is no prominent decline in p-values over 
time. This finding establishes that a simple quantum cir-
cuit integrating quantum superposition constitutes a robust 
source of high-quality randomness.

Moving on to Fig. 5, we delve into multi-thread access. 
This chart features X–Y plots where the x and y-axis 
correspond to time. Both classical and quantum random 
numbers are integrated here. At each time instance ti , 50 
threads are concurrently generated, producing random 

Exe.
No.

Freq
Mono

Freq
Block

Runs
Test

Longest
Run

Binary
Mat

DFT Non-
overlap

Overlap Maurer Linear
Com

Serial Appr
Entro

Cusums Random
Excur

Random
Var

Hadamard gate QRNG

t96 0.79088 0.87500 0.59799 0.23776 -1.00000 0.74560 0.99925 nan -1.00000 -1.00000 0.49896 1.00000 0.81877 0.81358 0.28884

t97 0.07710 0.05658 0.88949 0.04110 -1.00000 0.08851 0.50922 nan -1.00000 -1.00000 0.49896 1.00000 0.09346 0.50906 0.70546

t98 0.07710 0.42319 0.09878 0.14417 -1.00000 0.37228 0.99925 nan -1.00000 -1.00000 0.49896 1.00000 0.15420 0.50249 0.91605

t99 0.47950 0.72426 0.46544 0.23495 -1.00000 0.74560 0.99925 nan -1.00000 -1.00000 0.69077 1.00000 0.77869 0.46662 0.31187

t100 0.59588 0.65586 0.84985 0.21493 -1.00000 0.25614 0.50922 nan -1.00000 -1.00000 0.69077 1.00000 0.61423 0.04880 0.36131

Multi-thread Access (Classical)

t96 0.01701 0.00562 0.00313 0.00824 -1.00000 0.00088 0.00001 nan -1.00000 -1.00000 0.00000 1.00000 0.02209 0.00000 0.00000

t97 0.01701 0.04428 0.01964 0.00919 -1.00000 0.01866 0.00019 nan -1.00000 -1.00000 0.06722 1.00000 0.01914 0.00000 0.00000

t98 0.00468 0.00511 0.03418 0.00198 -1.00000 0.01192 0.00000 nan -1.00000 -1.00000 0.00000 1.00000 0.00499 0.00000 0.00000

t99 0.03389 0.02206 0.09129 0.00083 -1.00000 0.01866 0.00019 nan -1.00000 -1.00000 0.00004 1.00000 0.02957 0.00000 0.00000

t100 0.01701 0.02838 0.03101 0.03289 -1.00000 0.03496 0.00001 nan -1.00000 -1.00000 0.00000 1.00000 0.02684 0.00000 0.00000

Multi-thread Access (Quantum)

t96 0.03389 0.00945 0.00777 0.01247 -1.00000 0.00582 0.08933 nan -1.00000 -1.00000 0.00000 1.00000 0.03857 0.00000 0.00175

t97 0.02156 0.00740 0.01007 0.03892 -1.00000 0.00156 0.00966 nan -1.00000 -1.00000 0.00645 1.00000 0.03857 0.00000 0.00000

t98 0.00468 0.01880 0.04965 0.00302 -1.00000 0.00582 0.00000 nan -1.00000 -1.00000 0.00004 1.00000 0.00636 0.00000 0.00000

t99 0.03389 0.04663 0.02220 0.00244 -1.00000 0.03496 0.00000 nan -1.00000 -1.00000 0.00000 1.00000 0.04414 0.00000 0.00000

t100 0.00614 0.00883 0.02244 0.02235 -1.00000 0.03496 0.00001 nan -1.00000 -1.00000 0.00000 1.00000 0.00683 0.00000 0.00004

Continuous Single Process (Classical)

t96 0.83660 0.50925 0.61717 0.86033 0.17811 0.75242 0.13720 0.18851 -1.00000 0.14979 0.93087 0.78636 0.70183 0.89864 0.96440

t97 0.01612 0.35453 0.07703 0.01054 0.88822 0.93144 0.34108 0.08269 -1.00000 0.77130 0.82822 0.08914 0.01523 0.28265 0.05183

t98 0.74046 0.60939 0.63009 0.70053 0.30983 0.68807 0.46075 0.65762 -1.00000 0.45250 0.02729 0.06513 0.78070 0.52387 0.39542

t99 0.13200 0.19568 0.44999 0.88376 0.15681 0.19689 0.31617 0.89020 -1.00000 0.93009 0.41738 0.77670 0.19282 0.73868 0.14896

t100 0.02693 0.03496 0.71955 0.04618 0.77662 0.60572 0.65731 0.03327 -1.00000 0.73465 0.44863 0.58533 0.02596 0.03187 0.41228

Continuous Single Process (Quantum)

t96 0.83660 0.55473 0.47607 0.71015 0.29097 0.52811 0.32398 0.83999 -1.00000 0.92838 0.47036 0.62238 0.71651 0.25255 0.78286

t97 0.18517 0.87979 0.62202 0.41903 0.44627 0.66708 0.11467 0.02232 -1.00000 0.83791 0.51122 0.48527 0.25922 0.27675 0.25228

t98 0.86599 0.98222 0.77845 0.90918 0.66760 0.28867 0.72057 0.44140 -1.00000 0.05569 0.09795 0.09017 0.77494 0.46693 0.35513

t99 0.67997 0.07919 0.00500 0.26025 0.04054 0.81855 0.17892 0.03844 -1.00000 0.72711 0.70052 0.14665 0.79502 0.83594 0.78353

t100 0.43099 0.16637 0.08760 0.71842 0.65623 0.95426 0.16818 0.71443 -1.00000 0.43750 0.44793 0.48389 0.77204 0.76225 1.00000

Fig. 3   P-values of a specific time period of all NIST test
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Fig. 4   Hadamard gates based QRNG

Fig. 5   Multi-thread test using ANU test database
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Fig. 6   Consecutive test using ANU test database
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numbers. After the NIST tests, each of the 50 threads 
yields 15 distinct p-values. The plotted data showcases the 
minimum p-value among the 50 threads for each statisti-
cal test at time instance ti . It is worth noting that selecting 
the minimum p-value is crucial for assessing randomness.

Figure 6, introduces the results from the single process 
continuous access test. Similar to the previous figures, this 
chart comprises X-Y plots where the x and y-axes convey 
analogous meanings. Both classical and quantum random 
numbers are considered once again. This time, the chart 
focuses on the continuous access scenario, demonstrating 
the behaviour of both types of random numbers.

Discussion of Obtained Result

All three tests aim to show that quantum random num-
bers are on par with the current pseudo-random numbers. 
By examining the p-value table and equivalent plots, 
some crucial observations have been made regarding the 
changes in p-values over time.

•	 General observation The fact that the p-values of quan-
tum random numbers do not decrease over time implies 
that their performance remains consistent even after 
generating a large number of random numbers. This 
suggests that prolonged use does not affect the quality 
of quantum random numbers.

•	 H-gate QRNG Figure  4 illustrates that the H-gate 
QRNG yields favourable outcomes when executed on 
a simulator. However, if the same circuit is run on a 
physical machine, the results are expected to exhibit 
greater randomness.

•	 Stored Database Regarding the tests conducted with 
stored data values shown in Figs. 5 and 6, it is observed 
that some of the results obtained from quantum random 
numbers exhibit an upward trend over time.

This study contributes to our comprehension of quantum 
random numbers by demonstrating that they can compete 
with contemporary classical pseudo-random numbers. 
This indicates that quantum random numbers have the 
potential to be a viable alternative in various applications 
that require secure and unpredictable random numbers. 
Also worth noting is that the results would be more sig-
nificant if further testing is conducted using a more accu-
rate and live quantum generator. Ignoring the limitations 
of quantum hardware, the results displayed in the plotted 
diagrams indicate that quantum random numbers are a 
promising area of research. With further advancements in 
the future, quantum random number generators will likely 
outperform deterministic random number generators.

Conclusion

In the article’s concluding section, we discuss the poten-
tial of using quantum random numbers to replace classi-
cal DRNGs. Additionally, we highlight how the inherent 
uncertainty of quantum computing can be leveraged to 
produce a reliable source of randomness

•	 Summary of main results Two quantum data sources 
were subject to three tests to determine their random-
ness. The p-value plot obtained from classical and 
quantum sources showed that quantum random num-
bers provide a reliable source of randomness.

•	 Implications With the quantum computer, we can 
include the uncertainty principle in the generation pro-
cess of random sequences. Now that quantum mechan-
ics is random and probabilistic, we hope it helps create 
accurate or near-true random sequences.

•	 Limitations The limitations of quantum computers 
include limited hardware resources, high cost, lack 
of skilled technicians etc. Additionally, the 512-qubit 
Hadamard circuit used in this study can capture even 
more probabilistic outcomes if executed on physical 
hardware.

•	 Recommendations Despite the hardware limitations, 
quantum computers can provide better random number 
generation than available deterministic random number 
generators. Therefore, it is recommended to conduct 
stress tests on classical versus quantum random num-
ber generators using different methods, such as running 
the test algorithm for a long time and measuring the 
points where either fails. To further advance the study 
of quantum random numbers, it is recommended to test 
classical versus quantum random number generators 
using other parameters. This article only tests two types 
of quantum random number generator methods, and in 
the future, exploring other sources of quantum random 
numbers would be interesting.
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