
Vol.:(0123456789)

SN Computer Science (2024) 5:24
https://doi.org/10.1007/s42979-023-02316-9

SN Computer Science

REVIEW ARTICLE

Homomorphic Encryption Library, Framework, Toolkit and Accelerator:
A Review

Shalini Dhiman1 · Ganesh Kumar Mahato1 · Swarnendu Kumar Chakraborty1

Received: 10 February 2023 / Accepted: 9 September 2023
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023

Abstract
Homomorphic encryption ensures secure computation on encrypted data without the need for decryption beforehand. It
enables the secure offloading of computations to untrusted servers. This paper provides a comprehensive description of
multiple methods for conducting secure computations, along with the appropriate approaches and tools needed for success-
ful implementation. Various strategies are outlined for selecting a suitable homomorphic encryption (HE) library, assisting
developers and researchers in determining the most suitable library for their projects. To begin with, the paper presents a
comparison of homomorphic encryption libraries based on different parameters. Additionally, it outlines the steps involved
in choosing the right framework for effective implementation, comparing them based on various parameters. The Framework
discussed in the paper supports a range of homomorphic encryption libraries and provides detailed information about them.
Furthermore, the paper surveys three different homomorphic encryption accelerators and compares them to determine which
one would maximize bootstrapping throughput when implemented. Lastly, the Fully Homomorphic Encryption-IBM toolkit
is discussed. This toolkit supports the development of resources, primarily involved in the flow of messages. The paper
concludes that secure computation is achievable by implementing the appropriate tools, considering their performance and
implementation limitations. Moreover, the selection of the appropriate library, framework, and accelerator depends on the
specific demands and requirements of the implementation chosen by the developer.

Keywords Homomorphic encryption · MS SEAL · Pallisade · IBM toolkit · Evervault encryption engine · HEaaN

Introduction

Our personal information is being shared more extensively
than ever before, and often, we are the ones who will-
ingly share it. As long as our personal information remains
uncompromised, we don’t typically mind. However, in this
new era of the digital world, sharing personal data is essen-
tial for interacting with others and accessing everyday ser-
vices. Consequently, it is crucial to be cautious and certain
about the data we share, ensuring its security. But how can
we be sure that our data is safe? The answer is relatively
simple: most of the personal data we share is encrypted.
Encrypted data is useless to attackers or hackers because it
is concealed behind complex codes that are beyond human
comprehension.

The problem arises when the encrypted data is transferred
or stored, requiring decryption, which provides attackers
with an opportunity to target our shared data. To address
this issue, homomorphic encryption (HE) schemes [1] have
been introduced, revolutionizing the concept of security.

Ganesh Kumar Mahato and Swarnendu Kumar Chakraborty authors
contributed equally to this work.

This article is part of the topical collection “Research Trends in
Communication and Network Technologies” guest edited by Anshul
Verma, Pradeepika Verma and Kiran Kumar Pattanaik.

 * Swarnendu Kumar Chakraborty
 swarnendu@nitap.ac.in

 Shalini Dhiman
 shalini1695@gmail.com

 Ganesh Kumar Mahato
 mahato.ganesh88@gmail.com

1 Department of Computer Science and Engineering, National
Institute of Technology, Jote 791113, Arunachal Pradesh,
India

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-02316-9&domain=pdf
http://orcid.org/0000-0002-6223-9362

 SN Computer Science (2024) 5:24 24 Page 2 of 24

SN Computer Science

Homomorphic encryption enables computations to be per-
formed on encrypted data without the need for decryption.
This technique instills confidence when sharing sensitive
information. Its development dates back to 2009 [2], and it
has since played a crucial role as a game changer in digital
security measures.

Homomorphic encryption will find extensive applications
across various industries, including finance [3], hotels, air-
lines, education systems, and restaurants. It offers access to
personal data without compromising user privacy or account
holder confidentiality [4].

Now that we understand that HE is an ideal solution
to our concerns, let’s briefly discuss the different types of
HE [5]. Firstly, Partially Homomorphic Encryption (PHE)
allows a single operation to be performed on the ciphertext
an infinite number of times. This operation can be either
addition or multiplication and is particularly useful in appli-
cations that involve only one arithmetic operation. PHE is
relatively simple to implement. The second method is Some-
what Homomorphic Encryption (SHE), which permits both
addition and multiplication, but only up to a certain limit.
The circuit logic imposes a specific depth of evaluation on
this restriction. Lastly, Fully Homomorphic Encryption
(FHE) enables arbitrary computations on encrypted data,
allowing unlimited additions and multiplications to be per-
formed on the ciphertext indefinitely.

As we now have an understanding of various schemes in
homomorphic encryption (HE) that can safeguard our data,
the focus shifts to implementing these plans effectively. Our
research primarily revolves around the implementation of
HE schemes using libraries, frameworks, toolkits, and accel-
erators. We aim to address common questions that users or
developers may have, such as selecting the appropriate HE
library for their specific implementation needs. Addition-
ally, we explore the ideal framework capable of support-
ing all necessary operations. Furthermore, we delve into
the role of the HE toolkit in facilitating implementation.
Lastly, we examine accelerators to identify the most per-
formant option for user algorithms. Extensive reviews and
studies have been conducted on HE libraries, frameworks,
toolkits, and accelerators, all of which are covered compre-
hensively in our paper. Each topic is briefly discussed in
terms of functionality, operations, procedures, limitations,
and advantages, and a comparative analysis is conducted
using various parameters.

The key contributions of this paper can be summarized
as follows:

1. We provide a brief overview of homomorphic encryp-
tion libraries, guiding users and developers on how to
choose the most suitable library based on their imple-
mentation preferences. We compare different libraries

using tabulated parameters to aid readers in making
informed decisions for their own implementations.

2. The paper discusses various homomorphic encryp-
tion frameworks, focusing on selecting an appropriate
framework based on the desired operations. We outline
important criteria for framework selection and compare
them based on different parameters, enabling readers to
choose the ideal HE framework for their work.

3. The importance of accelerators in HE schemes is empha-
sized, with the paper presenting different accelerators
and their architectures. We explain why accelerators are
necessary and provide guidance on selecting the most
appropriate option. The accelerators are compared based
on multiple parameters, facilitating quicker decision-
making for users.

4. The paper concludes with a discussion on the HE toolkit,
which supports the development of resources involved
in message flow. It outlines the integration of the toolkit
with integrated nodes for seamless deployment of mes-
sage flow.

The paper’s organization is as follows: The introduction
section provides an overview of the paper and its contribu-
tions. The second section focuses on homomorphic encryp-
tion libraries, comprising three parts: library selection, an
overview of multiple libraries, and a comparison of librar-
ies based on various parameters. Section “Framework”
discusses frameworks used to conceal the FHE library API
from programmers. This section is divided into three parts:
a general framework concept, various frameworks avail-
able for implementation, and a tabulated comparison of
frameworks based on different parameters. Section “FHE-
IBM encryption toolkit” explores the FHE-IBM encryption
toolkit, covering installation requirements, getting started
with IBM, perspectives on the FHE-IBM encryption toolkit,
and maximizing the use of the IBM Integration Toolkit. Sec-
tion “Cingulata” delves into HE accelerators, explaining
their purpose and examining different options. A compari-
son of accelerators based on various parameters is provided.
Finally, Sect. “Accelerator” concludes the paper.

Homomorphic Encryption Library

Selecting a suitable homomorphic encryption library is a
relatively straightforward process as long as you have a clear
understanding of your motivations and the nature of your
work. Here are some criteria that users should always con-
sider when choosing an appropriate homomorphic encryp-
tion library [6].

• Availability of Information

SN Computer Science (2024) 5:24 Page 3 of 24 24

SN Computer Science

 It is essential for users to gather information about
the functioning, characteristics, accessibility, and com-
patibility of a homomorphic encryption library before
making a selection.

• Community Size The size of the community refers to the
number of individuals actively engaged with the library.
A larger community can be beneficial as it provides a
greater pool of expertise to assist in addressing encoun-
tered bugs and resolving users’ queries.

• Community Engagement Another important factor to
consider is the level of community engagement. This
includes the extent to which the library interacts with
its users, such as organizing webinars or workshops to
enhance user understanding. It is crucial for users to stay
informed about upcoming features of the library that may
be relevant for their future work. Being aware of these
developments ensures users can make informed decisions
and leverage the latest capabilities of the library.

• Ease of Use This criterion can be considered the most
ambiguous among all. Users must have a clear under-
standing of the library’s design and architecture. Addi-
tionally, users should take note of their proficiency in
the programming language used by the library and thor-
oughly familiarize themselves with the working pro-
cedures of the library. Having a strong grasp of these
aspects is crucial for effective utilization of the library.

• Open-Source The next criterion to consider is whether
the library is open-source software. Open-source libraries
provide transparency by making their source code acces-
sible to users. It is generally recommended that users
prefer an open-source library as it allows for greater vis-
ibility and understanding of the library’s inner workings.

• Standards Compliant This final criterion focuses on the
security properties and parameters of the library. It is
important to ensure that the library’s security schemes
are clearly explained by standardization organizations.
Compliance with relevant security standards is crucial to
ensure the algorithm employed by the library is secure.
Users should prioritize libraries that adhere to recognized
security standards to safeguard their sensitive data and
ensure the overall security of their system.

Let us go over some of the homomorphic encryption librar-
ies and discuss them briefly.

Microsoft Simple Encrypted Arithmetic Library
(SEAL)

Microsoft SEAL is a well-known open-source software
library developed by Microsoft for implementing various
forms of homomorphic encryption. It supports both asym-
metric and symmetric encryption algorithms and enables
specific parts of programs to be executed on encrypted

data in cloud computations. However, this technology is
limited to operations such as addition and subtraction on
encrypted real numbers and integers, and it may not be
suitable for complex operations like regular expressions,
encrypted comparison, or sorting. The Microsoft SEAL
library offers two homomorphic encryption schemes: the
Brakerski-Gentry-Vaikuntanathan (BGV) scheme and the
Brakerski/Fan-Vercauteren (BFV) scheme. These schemes
are commonly used when precise values are required for
computations on encrypted integers or real numbers using
exact modular arithmetic [7]. In homomorphic encryption,
data compression can be necessary to reduce the size of
the ciphertext object, which typically consists of a large
number of integer modulo values. This compression helps
in reducing storage costs, improving storage capacity, and
speeding up data transfer rates. Microsoft SEAL utilizes
compression libraries like ZLIB and Zstandard as options
to compress serialized data. Among the two, Zstandard
is used by default due to its superior performance. Since
ciphertext objects are composed of integers, real numbers,
and prime numbers modulo, compression plays a sig-
nificant role in optimizing their storage [8]. When using
schemes like CKKS, the numbers involved may be rela-
tively small, such as 30 bits or less. In such cases, the data
is not serialized into 64-bit integers, resulting in wasted
space where half of the ciphertext bytes are zero. This
issue can be addressed by employing compression algo-
rithms, eliminating the unused space. Compressed seri-
alization can be applied to both ciphertext and keys [9].
Additionally, Microsoft SEAL makes use of the Microsoft
GSL (Guidelines Support Library), which is a header-
only library. It implements gsl::span, allowing for bound-
checked array access to memory. This integration helps
in enhancing performance and enables the Batch Encoder
and CKKS Encoder to efficiently encode and decode data.

Overall, Microsoft SEAL provides a comprehensive set
of tools and functionalities for implementing homomorphic
encryption, making it a popular choice for various applica-
tions and scenarios [10].

Microsoft SEAL is indeed a complex library, and there
are certain aspects that users should focus on to effectively
utilize its capabilities. Firstly, it is crucial for users to have
a strong understanding of the concepts related to homomor-
phic encryption. This technology has a steep learning curve,
but acquiring proficiency in its specific concepts will greatly
assist users in working with Microsoft SEAL and leveraging
its functionality.

Secondly, users should grasp the concept of efficient
and inefficient implementations when it comes to running
or programming specific computations using Microsoft
SEAL. Since homomorphic encryption involves perform-
ing computations on encrypted data, the efficiency of these
computations is essential. Users should strive to optimize

 SN Computer Science (2024) 5:24 24 Page 4 of 24

SN Computer Science

their implementations to ensure efficient execution of com-
putations, as inefficient implementations can result in slower
processing times and increased resource consumption.

By having a solid grasp of homomorphic encryption
concepts and paying attention to efficient implementation
strategies, users can make the most of Microsoft SEAL and
effectively utilize its capabilities in their applications and
computations.

Homomorphic Encryption for Arithmetic
of Approximate Numbers (Pi‑HEaaN)

Pi-HEaaN is primarily a Python library that serves as a sim-
ulation of Pi-HEaaN, offering approximate computations on
homomorphic encryption. This technology allows for the
implementation of various operations, including homomor-
phic addition, homomorphic subtraction, and homomorphic
multiplication. Additionally, it provides essential function-
alities like key generation, encryption, and decryption.

The operations performed by Pi-HEaaN are conducted on
block units, enabling practical solutions for scenarios involv-
ing significant amounts of data and data handling, typically
encountered in cloud computing environments. This scheme
facilitates the encryption of substantial data volumes within
a single ciphertext, enabling parallelization in both compu-
tation and storage. By utilizing Pi-HEaaN, users can effec-
tively handle large-scale data encryption while maintaining
computational efficiency and optimal resource utilization
[11].

Homomorphic encryption using Pi-HEaaN is widely rec-
ognized and preferred by homomorphic encryption (HE)
engineers due to its effectiveness in achieving smooth eval-
uation. This evaluation method allows engineers to assess
the complexity and effectiveness of algorithms, which is a
crucial step in evaluating and implementing HE algorithms.

During the evaluation process, it is common to encounter
a small number of errors that arise from the approximation
operations employed. These errors are acceptable and even
beneficial in certain cases as they contribute to reducing
time complexity and improving overall efficiency. There-
fore, Pi-HEaaN is particularly well-suited for scenarios
where approximation operations are preferred over exact
operations.

By leveraging Pi-HEaaN for homomorphic encryption,
engineers can conduct evaluations that strike a balance
between accuracy and efficiency, ultimately leading to more
practical and effective implementations of HE algorithms.

In Pi-HEaaN, as it supports approximate results, a rescal-
ing procedure is employed to handle the increasing magni-
tude of plaintext. This procedure becomes necessary when
dealing with problems where the bit size of a message rap-
idly grows with the depth of a circuit.

The rescaling procedure involves compressing a cipher-
text into a smaller modulus, resulting in an approximation
of the plaintext value. This compression introduces noise,
which acts as an error but actually contains important
information. The purpose of adding this noise is to deceive
potential attackers. While the attacker may perceive it as an
error, the noise is actually incorporated into the plaintext
for security reasons. The rescaling procedure is then used
to reduce this noise and arrive at an approximation of the
original plaintext value, leading to decryption with approxi-
mated values.

By employing the rescaling procedure, Pi-HEaaN ensures
a balance between security and efficiency by introducing
noise that serves as a security measure, while still enabling
meaningful decryption of approximated values. There are
several techniques that can be employed to enhance the
homomorphic evaluation of logistic functions. Some of
these techniques include [12]:

1. Use of Some Batching Techniques
 These techniques are commonly utilized in predic-

tion analysis to reduce the evaluation time of logistic
functions without the need for parallelization. By apply-
ing these optimization methods, the evaluation time has
been significantly improved to a total of 0.54 s. This
reduction in evaluation time allows for more efficient
and faster processing of logistic functions, making them
suitable for real-time prediction and analysis tasks.

2. Use a Fast Fourier Transform (FFT) Algorithm
 This technique utilizes the encoding method of unity

in the polynomial ring to minimize the consumption
of ciphertext levels during evaluation. Simultaneously,
a rescaling procedure is applied to operations using a
batching technique and Hadamard space. These optimi-
zations lead to a smaller parameter size and improved
evaluation time.

 In standard processing using the FFT-Hadamard
method, the evaluated results are obtained in 0.34 s per
slot on a machine with four cores and six processors,
when no batching technique is employed. This evalua-
tion process involves precise multiplication of integral
polynomials and eliminates fractional parts that are
close but not exact. By leveraging these techniques,
more efficient and accurate evaluations can be achieved
in prediction analysis tasks.

3. Use Of Homomorphic Encryption
 This can be applied to get an exact computations when

the result has a specific kind of format or property for
approximate arithmetic computations.

This is a kind of open-source implementation of the homo-
morphic encryption library (HEaaN), and this algorithm

SN Computer Science (2024) 5:24 Page 5 of 24 24

SN Computer Science

mostly copes with the C++ language. Use of this can give
an approximate result and it supports huge data handling.

Fast Fully Homomorphic Encryption Over the Torus
(TFHE)

The TFHE scheme was introduced to address some of the
limitations encountered in the simpler fully homomorphic
encryption (FHE) schemes [13]. The original FHE schemes,
such as GSW (Craig Gentry, Amit Sahai, and Brent Waters)
and its ring variants, exhibited slower noise growth but faced
challenges with bootstrapping time during evaluation. TFHE
was designed to overcome these issues by proposing a mech-
anism that reduces bootstrapping time [14]. TFHE achieves
this by refreshing the ciphertexts after each individual opera-
tion. This approach helps maintain efficient evaluation while
preserving the security parameters. The implementation of
TFHE involves utilizing a high-speed gate-by-gate boot-
strapping technique through a C/C++ library. This library
enables the evaluation of arbitrary boolean circuits consist-
ing of binary gates while ensuring the confidentiality of
the processed data, thereby keeping the information secret.
There are a few advantages to using this library [15], such as

1. TFHE stands out among other libraries as it does not
impose any restrictions on the number of gates or com-
putations that can be performed. It supports the use of
any number of gates and their compositions, allowing
for versatile and unrestricted evaluations.

2. The implementation of circuits using TFHE can be
done manually or through automated generation, and
the library is capable of executing any type of evalu-
ation flawlessly in both cases. It does not require prior
knowledge of the specific computation or function being
performed, making it flexible for a wide range of com-
putations over encrypted data [16].

3. The TFHE library enables the generation of a secret key,
which provides encryption and decryption capabilities.
Additionally, a cloud keyset is generated, which can be
exported for performing homomorphic computations in
the cloud.

4. When it comes to evaluation speed, the TFHE library
can achieve a high rate of approximately 76 gates per
second per core. This efficiency contributes to faster
computations and enhances the overall performance of
homomorphic evaluations using TFHE.

This library is capable of keeping any information authenti-
cated and can be implemented in a fast way.

Homomorphic Encryption Library (HElib)

HElib is an open-source C++ library that utilizes ciphertext
packing techniques. It is implemented using C++ 17 and
relies on the NTL mathematical library for high-performance
mathematical computations. NTL is a portable library that
complements the functionality of the C++ library in HElib.

HElib supports various operations, including addition/
subtraction, multiplication, set operations, and shifts. It pro-
vides a convenient interface for programmers to work with
high-level languages and compile their code using the opera-
tions offered by HElib.

HElib offers flexibility in its configuration by providing
different schemes and parameters. These parameters can
impact the runtime and security of the scheme. To assist
programmers in making informed decisions, HElib pro-
vides timing and memory metrics for each test. This enables
programmers to evaluate and compare different parameter
settings, ensuring optimal performance and maintaining
consistency in their applications [16]. By analyzing these
metrics and experimenting with different parameters, pro-
grammers can arrive at the most suitable configuration for
their specific use cases, balancing runtime efficiency and
security requirements.

The HElib uses the following schemes [17]:

1. HElib supports various schemes for homomorphic
encryption, including the Brakerski-Gentry-Vaikun-
tanathan (BGV) scheme and the CKKS (Cheon-Kim-
Kim-Song) scheme, among others. The BGV scheme is
based on the concept of Learning with Errors over Rings
(RLWE). It is a commonly used scheme in HElib. In this
scheme, each homomorphic operation introduces a small
error to the ciphertext, and these errors accumulate over
multiple operations.

2. The CKKS scheme, on the other hand, is designed for
approximate computation with real numbers. It provides
an approximate result rather than an exact result. The
CKKS scheme involves the generation of secret keys for
decryption and public keys for encryption.

3. HElib also incorporates optimizations and techniques
for better performance, such as the Gentry-Halevi-Smart
optimizations and Smart-Vercauteren ciphertext packing
techniques. These techniques aim to enhance the effi-
ciency and functionality of the library, allowing for more
efficient homomorphic computations. Overall, HElib
provides a range of schemes and techniques that users
can choose from based on their specific requirements
and use cases, enabling them to achieve better perfor-
mance and security in their homomorphic encryption
applications.

 SN Computer Science (2024) 5:24 24 Page 6 of 24

SN Computer Science

HElib has improved a lot in recent years in terms of follow-
ing performances [18]:

• Reliability HElib offers an analytical solution to address
any challenges faced by programmers, thereby ensur-
ing the reliability of the library. It is designed to work
effectively according to the preferences of the program-
mer. Reliability is further maintained through the imple-
mentation of a key management scheme and two-factor
authentication, which contribute to the overall security
and trustworthiness of the system.

• Robustness HElib ensures reliability by implementing
measures to prevent the leakage of ciphertext shared
between two users. It maintains the robustness of the sys-
tem by restricting third parties from accessing the shared
keys and thereby ensuring that the confidentiality of the
encryption is maintained.

• Serviceability HElib offers periodic serviceability to
its users, including preventive maintenance and ease of
programming. Whenever updates are implemented, it
ensures that the system maintains optimal speed. This
allows programmers to address and resolve any issues
that arise by utilizing the updated features and improve-
ments.

• Performance HElib focuses on optimizing the perfor-
mance of addition, subtraction, and multiplication opera-
tions. It ensures that these operations run efficiently and
smoothly for programmers, maintaining a good level of
performance.

FV‑NFLlib

FV-NFLlib is a software library for homomorphic encryp-
tion (HE) that operates using an asymmetric encryption
method. It specifically supports homomorphic addition and
homomorphic subtraction operations. The library is primar-
ily implemented in the C++ programming language. The
output of computations using FV-NFLlib is approximate
rather than exact, and it includes functionality to verify the
correctness of the results [19]. FV-NFLlib is based on the
principles of ideal lattice cryptography. It undergoes several
test conditions to ensure its functionality and reliability. The
implementation of FV-NFLlib utilizes the Fan-Vercauteren
scheme. The library is tested using the Test_binary_tree,
Test_ec_additions, and Test_encrypt_poly procedures,
which evaluate different aspects of its performance and
functionality [20].

1. Test_binary_tree
 Test_binary_tree is a kind of program which keeps

the reference of the key generation and the procedures
which it executes, such as homomorphic addition and
homomorphic multiplication procedures. The test binary

tree multiplication is executed and devaluated to ensure
about how much the program is correct and to set the
final bound.

2. Test_ec_additions
 Test_ec_additions is basically a code of elliptical

curve addition which is templated, and it is majorly
called twice, i.e., first with FV::mess_t and secondly
with FV::ciphertext_t. This program computes homo-
morphically and clearly upon elliptic curve addition.
This is performed over the NIST P-256 curve.

3. Tests/Test_encrypt_poly
 This test is performed to check the correctness of the

program. The evaluations are performed as a small sage
program. Its computation is done over a product homo-
morphically. The evaluation contains two polynomials,
which are encrypted.

 One distinguishing characteristic of FV-NFLlib is
its larger noise distribution compared to other libraries.
It incorporates an asymptotic multiplicative factor by
multiplying two asymptotic factors term by term. FV-
NFLlib modifies the existing codes and continuously
monitors the security parameters to minimize the impact
of noise. In terms of implementation, FV-NFLlib utilizes
optimized Number Theoretic Transform (NTT) trans-
forms. These transforms specifically require power-of-
two cyclotomic polynomials, which play a crucial role
in the underlying mathematical operations performed by
the library.

Palisade

Palisade was developed to provide implementations based on
lattice cryptography building blocks, incorporating various
state-of-the-art homomorphic encryption schemes. It offers
modularity through simple APIs, allowing for easy integra-
tion with hardware accelerators. Palisade aims to meet the
security standards for homomorphic encryption while ena-
bling the use of this encryption technique.

One of the key features of Palisade is its support for mul-
tiple homomorphic encryption schemes, including BGV,
BFV, CKKS, and FHEW. These schemes offer different
levels of security, with TFHE being particularly notable for
its inclusion of bootstrapping. Palisade also provides post-
quantum public-key encryption, ensuring security against
attacks from quantum computers.

Proxy re-encryption is another capability offered by Pali-
sade, allowing for the transformation of ciphertext from one
public key to another without revealing any private infor-
mation about the original message. The library supports
identity-based encryption, where users generate a public key
and a trusted server derives the corresponding private key
based on a unique identifier. Attribute-based encryption is

SN Computer Science (2024) 5:24 Page 7 of 24 24

SN Computer Science

also supported, where the ciphertext and secret key depend
on specified attributes.

Additionally, Palisade includes support for digital signa-
tures, enabling the generation of a unique hash or encryption
of messages and documents using the sender’s private key.
These features provide a comprehensive set of cryptographic
functionalities within the Palisade library [21].

There are several git repositories which a user or a pro-
grammer can explore, such as Encrypted Circuit Emulator,
Integer Examples, Python Demos, Python Demos Serializa-
tion Examples, Graphene-PALISADE-SGX [22]:

• The Encrypted Circuit Emulator exemplifies how the
Palisade can be utilized to execute circuits described in
different formats to implement FHEW (achieving boot-
strapping in under a second) and TFHE.

• Integer Example:This showcases how the Palisade is
utilized in the implementation of the BFV encryption
scheme to encrypt searches for substrings.

• Python Demos: Palisade comes with a Python wrapper
and explains how to write Python 3 to make the most of
it.

• Serialization Examples: This shows how Palisade seri-
alize the cryptography applications and cooperating
processes and shows their correlation. This shows the
cooperation between heavy-weight processes and other
cryptographic applications.

• Graphene-PALISADE-SGX: This works best when it
runs on Ubuntu because it provides all the tools through
which it becomes very compatible. The SGX port
becomes necessary with Graphene, but it is not neces-
sary for the Graphene/Gramine portion to be combined
with SGX.

This library supports many operations and fulfils most of
the users’ choices. This library is known to be the most used
library because of its various functionality support and its
git repositories.

Concrete

The concrete library is a well-known open-source library
that is widely recognized for its functionality. It serves as a
user-friendly interface for integrating Fully Homomorphic
Encryption (FHE) into applications. One of the main advan-
tages of this library is its ease of integration, particularly due
to its user-friendly interface.

The library offers an extensive range of operations, mak-
ing it highly versatile when working with arbitrary input for-
mats. Developed in Rust, it naturally implements the TFHE
cryptosystem and provides convenient addition and multi-
plication operations that can be compiled for 32 or 64-bit
systems using unsigned integers. The library also supports

encoding functions, allowing for implementation with real
numbers and computations on Boolean values through
TFHE by encrypting and bootstrapping.

The concrete library consists of two layers, namely the
Core API and the Crypto API, which are structured as a
stack. The Core API is a lower-level layer focused on main-
taining the library’s efficiency. Accessible only to FHE
experts, it ensures that computations are performed effi-
ciently. On the other hand, the Crypto API is the second
layer implemented above the Core API. It can be accessed by
any programmer and offers a user-friendly communication
interface. notably, the Crypto API keeps track of the noise
generated during computations using automated metadata
and decoding parameters. This metadata summarizes essen-
tial information and facilitates accurate tracking of computa-
tions and their correctness [23].

This library is primarily implemented using the TFHE
scheme, which relies on the concept of Learning with Errors
(LWE) for its learning methodology. The library utilizes pre-
vious errors to enhance its learning process. However, as
the noise level increases, the decryption of homomorphic
operations on ciphertexts can become limited. To address
this limitation, it is necessary to periodically refresh noisy
ciphertexts, which helps reduce the noise level. A crucial
concept in the library is Programmable Bootstrapping (PBS).
PBS is a general technique that enables the evaluation of any
function on ciphertexts by refreshing the ciphertexts at regu-
lar intervals. PBS involves three fundamental algorithms:
Blind Rotate, Switch Modulus, and Sample Extract. Blind
Rotate is the first algorithm, which allows the rotation of
ciphertexts without decrypting them. Switch Modulus is the
second algorithm, used to change the modulus of the cipher-
texts while preserving the encrypted values. Lastly, Sample
Extract is the third algorithm, used to extract samples from
noisy ciphertexts and refresh them to reduce noise accumu-
lation. These three algorithms in PBS collectively contribute
to the ability to evaluate functions on ciphertexts while peri-
odically refreshing them to maintain computational accuracy
and reduce the impact of noise.

The functionalities of these algorithms are discussed
below:

1. Blind Rotate: The Blind Rotate algorithm begins with
an accumulator and updates itself by utilizing control
bits. Its purpose is to blindly select a specific coefficient
in a constant term. This algorithm is employed to rotate
the coefficient of the plaintext polynomial stored in an
RLWE ciphertext in a homomorphic manner.

2. Switch Modulus: Switch Modulus is an optional opera-
tion that is utilized in conjunction with sample extrac-
tion and blind rotation. In LWE ciphertext encryption,
a unique private key is necessary, distinct from the keys
typically used for inputs. To reverse this process and

 SN Computer Science (2024) 5:24 24 Page 8 of 24

SN Computer Science

retrieve the original key, the key switching formula is
employed.

3. Sample Extract:Sample Extract is an algorithm
employed to construct an output with the desired coef-
ficient, ensuring it is free from noise. This algorithm
randomly selects coefficients from the provided input
sequence. Typically categorized as a “public operation,”
it helps generate a noise-free output.

The concrete-core repository is used to implement the
low-level cryptographic primitives. Such a repository is as
follows:

• Concrete: This is mostly used by cryptographers who
don’t have any idea about the information regarding
the details of implementations. One can implement the
homomorphic application as fast as possible, competi-
tively.

• Concrete-Boolean: This is what cryptographers use to
implement boolean gates in a way that doesn’t change
how they work. It can be used to run any kind of circuit
over encrypted data.

• Concrete-Shortint: Concrete-Shortint has the ability to
implement operations on short integers. The short inte-
gers range from 1 to 4 bits.

• Concrete-Integer: Concrete-Integer has the ability to
implement operations on short integers. The short inte-
gers range from 4 to 16 bits.

Lattigo

Lattigo is a Homomorphic Encryption (HE) library that
utilizes the Go programming language. Its development
began in 2019, and it is designed to be implemented as a
single-threaded library with built-in concurrency control
in its API. Lattigo focuses on the implementation of Ring-
Learning-With-Errors (RLWE) homomorphic encryption
primitives, as well as Multiparty Homomorphic Encryption,
both of which rely on secure protocols [24]. This library has
gained popularity due to several notable advantages. Firstly,
it employs high-precision bootstrapping procedures for full-
RNS CKKS (approximate arithmetic) scheme, utilizing both
dense-key and sparse-key techniques. Secondly, Lattigo
supports multiple encryption schemes, including full-RNS,
BFV, and CKKS. Thirdly, it delivers performance compara-
ble to leading C++ libraries in the field. Lastly, the Lattigo
implementation includes support for WASM (WebAssem-
bly) compilation, particularly beneficial for browser clients,
and enables cross-platform builds. Lattigo is well-suited for
implementing HE in distributed systems and microservices
architectures. The choice of the Go programming language
is preferred due to its concurrency model and portability,
making it a suitable option for such applications [25].

The library offers some main packages using which we
can perform our implementation. They can be seen as [26]:

1. Lattigo/Ring: Lattigo/Ring implements modular arith-
metic operations that use RNS polynomials. The basis
of RNS includes RNS rescaling, RNS basis extension,
and number theoretic transform (NTT).

2. Lattigo /BFV: Lattigo /BFV can be implemented on
Full-RNS, which is one of the variants of Brakerski-
Fan-Vercauteren. The operations of modular arithmetic
are performed on integers.

3. Lattigo /CKKS: Lattigo /CKKS implements Full-RNS
Homomorphic Encryption only for approximate num-
bers, so it can operate over complex numbers as well as
real numbers.

4. Lattigo/DBFV and Lattigo/DCKKS: Lattigo/DBFV and
Lattigo/DCKKS are multiparty versions of the BFV and
CKKS schemes that perform computations using shared
secret keys.

5. Lattigo/examples: This directory contains examples of
the Lattigo library. All the sub-packages and test files
further use lattigo primitives.

6. Lattigo/Utils: This package is used to support functions
and structures.

There are some important features in Lattigo, that will be
further used in cryptographic research. They are as fol-
lows [27]:

• Standalone Arithmetic Layer In the Lattigo library,
the polynomial arithmetic functionalities are mainly
exposed through the Lattigo/Ring sub-package. Lattigo
is implemented entirely in Go and relies on low-level
optimized algorithms for its operations. It does not
depend on external numerical libraries and minimally
utilizes the unsafe package. The Lattigo/Ring sub-pack-
age includes various operations such as Montgomery-
form arithmetic, Number-Theoretic Transform (NTT),
evaluation of automorphisms, specific ring operations,
sampling from Gaussian, uniform, and ternary distribu-
tions, as well as RNS (Residue Number System) base
extensions and scaling. With these capabilities, Lattigo
has the ability to construct and evaluate other homo-
morphic encryption (HE) schemes and their primitives
based on Ring-Learning-With-Errors (R-LWE). By pro-
viding the necessary tools and operations, the library
enables the development and execution of a wide range
of HE schemes built upon the R-LWE foundation [28].

• The Generalized Keyswitch Procedure Lattigo
employs a generalized key switching procedure that
allows users to determine the norm of the decompo-
sition basis during the key switching process. This
functionality is applicable to both the BFV and CKKS

SN Computer Science (2024) 5:24 Page 9 of 24 24

SN Computer Science

schemes. By identifying the norm, users can optimize
the key switching operation and its impact on the
capacity of homomorphic computations. During the
evaluation of throughput, it is observed that while the
run-time is reduced, there is also a loss in the homo-
morphic capacity of the system. In order to strike a bal-
ance and improve the overall performance, optimizing
the key switching algorithm becomes necessary. This
optimization is particularly beneficial for evaluating
automorphisms, such as rotations, in a more efficient
manner. By optimizing the keyswitch algorithm, Lat-
tigo aims to enhance the performance and capabilities
of its homomorphic encryption schemes

• Novel BFV Quantization In Lattigo, homomorphic mul-
tiplication is performed using Residue Number System
(RNS) quantization techniques, which are specifically
designed for the RNS variant of the CKKS scheme. In
general, homomorphic multiplication in the BFV scheme
is known to be computationally expensive because it
requires a secondary and temporary basis. However,
Lattigo tackles this challenge in a more efficient man-
ner. Lattigo implements homomorphic multiplication in
a way that minimizes the computational overhead. By
leveraging RNS quantization techniques, Lattigo stream-
lines the multiplication operation, resulting in a more
friendly and efficient execution. This optimization allows
for improved performance and reduced computational
costs when performing homomorphic multiplication
within Lattigo’s CKKS scheme.

• CKKS Bootstrapping Lattigo implements CKKS boot-
strapping. It is known as the second library that has
implemented a bootstrapping circuit using the CKKS
scheme. The implementation was done on an open-
source platform, and Lattigo made the implementation
available for the full-RNS variant. This procedure was
precise and more efficient compared to the state-of-the-
art. Also, the use of any sparse secret key is not required.

• Homomorphic Polynomial Evaluation The Lattigo/
CKKS package offers a critical set of functionalities,
including an algorithm for depth-optimal polynomial
evaluation and scale invariance. Within this package,
there are key functions that provide clear-text polynomial
coefficients and allow users to specify the desired output
scale. To ensure precise rescaling procedures through-
out the evaluation process, the package utilizes recursive
backward propagation. This recursive approach guaran-
tees the exactness of all rescaling operations, ensuring
accuracy and reliability in the evaluation process.

Hence Lattigo supports the use of Go language primitives,
making it easier to develop applications such as new HE
and MHE applications. As a result, if we are able to reduce

that, Lattigo can be used in both the adoption of HE in real
systems and cryptography research.

FHE C++ Transpiler

FHE (Fully Homomorphic Encryption) plays a vital role
in today’s market, offering advanced security for sensi-
tive data. However, one of its primary challenges lies in
its performance limitations. FHE requires specific criteria,
wherein programs are initially compiled using unencrypted
data, while the actual FHE computations are carried out on
encrypted data. This process poses certain obstacles.

To address these limitations, the FHE C++ Transpiler
[71] has been introduced. This innovative solution boasts a
modular architecture designed to seamlessly convert regu-
lar C++ code into FHE-compatible C++ code. Essentially,
once this transpiler is implemented, the traditional workflow
of working on unencrypted data and subsequently converting
it into encrypted data becomes unnecessary.

With the integration of the FHE C++ Transpiler, the
entire procedure becomes more streamlined and secure.
There’s no longer a need to handle unencrypted data during
development. Instead, developers can confidently work with
encrypted data, ensuring the confidentiality and integrity of
their code throughout the process. This advancement sig-
nificantly enhances the safety and efficiency of operating on
encrypted data while utilizing the benefits of Fully Homo-
morphic Encryption.

We have compared all libraries to different parameters in
tabulated form (Table 1) so that it becomes easy for readers
to come to a conclusion regarding which library to use for
their further implementation.

Framework

The framework for Homomorphic Encryption (HE) is
designed with the intention of concealing the underlying
API of the Fully Homomorphic Encryption (FHE) library
from the programmer. The codes written in various librar-
ies remain unchanged, with the only distinction being the
absence of a unified common API requirement [29]. When
designing a framework, there are several prerequisites that
developers need to consider. These requirements aim to
provide developers with a clear understanding of the fun-
damental concepts involved in selecting a framework and
guidance on how to effectively work with it. Let us go over
them one by one:

1. After executing each statement in a program, the frame-
work mandates the maintenance of an accurate state.
Simply put, if the program encounters an interruption
at any point, the framework must decrypt the encrypted

 SN Computer Science (2024) 5:24 24 Page 10 of 24

SN Computer Science

values, ensuring that the decrypted values match their
unencrypted counterparts. This ensures consistency and
integrity in the program’s execution, allowing for seam-
less resumption in case of any interruptions.

2. The usage of a standard compiler is essential, and the
execution of the program should be carried out using
standard executables. Executing the program with stand-
ard executables ensures that the program can run on
common platforms and environments, promoting port-
ability and interoperability.

3. During the compilation of any program, it is essential to
carry out precise computations. This requirement holds

true even when dealing with encrypted data, such as
performing branching operations on encrypted data. It
is crucial to accurately record and handle the processing
of encrypted data during the compilation process. This
ensures that all computations involving encrypted data
are accurately accounted for and properly managed.

4. There is no requirement to have knowledge of any
plaintext or ciphertext prior to program compilation, as
the generation of plaintext and ciphertext occurs dur-
ing runtime. The process of obtaining plaintext and
ciphertext data happens dynamically during the execu-
tion of the program, rather than being predetermined at

Table 1 Comparison of homomorphic libraries against multiple parameters

References LIB Method of encryption Operation supports Operation based on Schemes used

[9, 10] MS SEAL Symmetric and asym-
metric

Addition, subtraction,
multiplication, bitwise
operations, matrix
operation, square,
Negation

Real numbers, integers BGV/BFV

[11, 12] PiHeaan Asymmetric Addition, subtraction,
multiplication

Real numbers, integers CKKS

[15] TFHE Asymmetric Addition, substraction
multiplication, Boolean
functions and binary
gates, square

NAND gate, bootstrap-
ping

Gate by gate bootstrapping

[17] HeLib Asymmetric Multiplication, addition,
shift, set, bitwise
operations, matrix
operation, square,
negation

Real numbers, integers BGV/CKKS

[20] FV/NFLib Asymmetric Addition, subtraction Real numbers, integers,
polynomial

FV-scheme

[21] Pallisade Asymmetric Addition, substraction,
Boolean functions

Real numbers, integers BGV/BFV, CKKS, FHEW

[23] Concrete Asymmetric Multiplication, addition,
substraction

Real numbers, unsigned
integers

TFHE

[25] lattigo Asymmetric Multiplication, addition,
subtraction

Real numbers, integers,
polynomial

RNS (residue number
system), CKKS, BFV

[72] FHE C++ Transpiler Asymmetric Addition, substraction
multiplication, Boolean
functions and binary
gates, square

Real numbers, integers Gate by gate boot- strap-
ping

 References LIB Library used Encoder Language support Type of output

[9, 10] MS SEAL ZLIB and Zstandard CKKS encoder C++, Python Approximate
[11, 12] PiHeaan Python library CKKS ENCODER C++, Python Approximate
[15] TFHE Ring variant of GSW TRLWE C Approximate
[17] HeLib NTL Mathematical Lib BGV, CKKS, RLWE C++, Python Approximate/optimized
[20] FV/NFLib NF Lib TFHE, LWE C++ Checks correctness/

approximate
[21] Pallisade None C++, C Approximate
[23] Concrete Zama’s variant LWE C Approximate
[25] Lattigo lattigo/ring sub-package CKKS,BFV C++, Go Approximate/exact
[72] FHE C++ Transpiler TFHE library, XLS

library
– C++, Python Approximate

SN Computer Science (2024) 5:24 Page 11 of 24 24

SN Computer Science

the compilation stage. Therefore, it is not necessary to
have prior knowledge of plaintext or ciphertext during
program compilation, as these values are generated and
utilized during runtime.

5. The encryption process maintains the integrity and
confidentiality of the data, allowing it to be securely
processed within the program without necessitating
additional encryption steps for program updates. This
independence of ciphertext encryption simplifies pro-
gram maintenance while preserving the security of the
encrypted information.

Let us now go over some frameworks:

E3

E3, which stands for Evervault Encryption Engine, was
developed to address the inherent insecurity of exchanging
data over the internet in plaintext. In the past, this left data
vulnerable to unauthorized access and manipulation. E3
serves as a highly secure and user-friendly service specifi-
cally designed for cryptographic operations. The operations
performed by E3 are characterized by high scalability, reli-
ability, and low latency. Cryptographic operations, such as
relays and cages, are carried out to ensure the protection of
users and their datasets from unauthorized parties. E3 func-
tions as a security tool, acting as a shield against security
issues like data breaches or leaks.

To mitigate the complexities and risks associated with
data security, E3 was built to enable end-to-end encryption.
This ensures that data remains encrypted at all times, pro-
viding a robust solution for computing sensitive information
while maintaining the confidentiality and integrity of the
data [30].

There were four required aspects which were taken care
of for establishing E3:

1. Evervault must verifiably not be able to access or
decrypt data E3 was purposefully designed to ensure
the impossibility of tampering or unauthorized access
to any confidential data. Evervault, the entity working
with sensitive data, took the initiative to demonstrate to
developers that the data stored within E3 was completely
inaccessible to Evervault itself. This assurance was pro-
vided to instill confidence in the security and privacy of
the data entrusted to E3, highlighting the commitment
to safeguarding sensitive information and maintaining
strict data confidentiality [31].

2. E3 should be use-case agnostic To maintain stability,
E3 was carefully maintained, and great attention was
given to preserving the integrity of the existing code-
base. The aim was to ensure that any new code additions
or modifications did not disrupt the fundamental struc-

ture of E3. This approach ensured that the functionality
of E3 remained reliable and consistent, minimizing the
risk of introducing new issues or vulnerabilities. The
stability of E3 served as a foundation for developers to
confidently build upon, allowing for the secure and effi-
cient implementation of encryption strategies.

3. Low latency, high throughput, and full redundancy
should be maintained by E3 The third requirement was
to keep cryptographic operations secure and redundant
while achieving an optimized high throughput.

4. The integrity of keys must be absolutely guaranteed
E3 is designed to prioritize the integrity of encryption
keys, ensuring that data remains encrypted and is never
decrypted under any circumstances. This fundamental
principle is embedded within the architecture of E3,
with a strong emphasis on maintaining the security of
the encryption keys. Even at the customer’s request,
E3 is specifically engineered to prevent the disclosure
or access to the encryption keys. This means that the
keys are not accessible or enclosed, even when explic-
itly requested by the customer. This approach ensures
that the encryption keys remain secure and confiden-
tial, reducing the risk of unauthorized access or potential
compromises.

There are two implementing ways in which E3 was imple-
mented, and they are [32]:

1. Fully-homomorphic encryption (FHE)
 Fully Homomorphic Encryption (FHE) is a crypto-

graphic technique that enables performing computations
on encrypted ciphertext without the need for decryption.
FHE based on ideal lattices was introduced in 2009, lev-
eraging addition and multiplication operations to enable
computation on encrypted data. However, implement-
ing FHE within the E3 framework presented challenges
due to certain limitations. E3 was unable to support the
implementation of FHE due to its inability to handle
high-scale use cases and general-purpose applications
effectively. The limitations of E3 prevented the seam-
less integration of FHE into the framework, impeding
its ability to perform computations on encrypted data.

2. Trusted execution environments (TEEs)
 The architecture of Trusted Execution Environments

(TEE) was widely acknowledged to have design flaws,
particularly in the loose coupling of input/output (I/O)
operations. However, E3 was determined to address
these challenges and ensure the secure and reliable
functioning of TEE. Despite the acknowledged issues,
E3 approached the integration of TEE with confidence,
emphasizing the importance of security and safety. By
leveraging their expertise and careful engineering, E3

 SN Computer Science (2024) 5:24 24 Page 12 of 24

SN Computer Science

aimed to overcome the shortcomings and enhance the
functionality of TEE.

Hence, to make it possible, they opted for 3 approaches,
such as [33];

1. Intel Software Guard Extensions (SGX): SGX, short
for Software Guard Extensions, is an Intel instruction
set extension that focuses on maintaining both integrity
and confidentiality, except in the most extreme cases. It
incorporates the Intel Attestation Server (IAS) mecha-
nism, which ensures the security of the channel used
for exchanging sensitive data and allows for third-party
verification. One of the significant challenges faced by
SGX was the lack of support from many cloud provid-
ers, particularly those utilizing the SkyLake micro-
architecture, as they did not have enabled BIOS and
lacked SGX compatibility. To address this limitation,
SGX2 was introduced, promising to overcome the draw-
backs of its predecessor. SGX2 utilized the Gemini Lake
micro-architecture, which successfully resolved various
issues associated with SGX.

2. AMD Secure Encrypted Virtualization (AMD
SEV): AMD SEV, short for Secure Encrypted Virtu-
alization, enabled virtual machines to have a dedicated
encrypted memory set. However, it suffered from a
significant drawback in the form of unrestricted I/O,
which increased the attack surface and compromised its
authenticity. As a result, it necessitated extensive main-
tenance of the operating system and kernel to ensure
security [34].

3. AWS Nitro Enclaves:AWS Nitro Enclaves is designed
to handle resource isolation by utilizing dedicated hard-
ware specifically built for this purpose. It is a feature
of EC2 that offers an isolated execution environment.
By doing so, it effectively reduces the potential attack
surface when processing data applications.

E3 supports multiple HE libraries and is capable of combin-
ing two types of computations: bit-level computation and
modular computation. These computations are secure and
serve as general-purpose computations. E3 utilizes protected
types, which are equivalent to standard C++ integral types,
and does not rely on specific encryption schemes. This char-
acteristic of E3 enables data encryption to be independent.
Additionally, E3 supports bridging, which involves blend-
ing different arithmetic abstractions and leads to enhanced
performance.

SHEEP

SHEEP was developed as a research framework with the
purpose of exploring the field of homomorphic encryption

and its associated library. It is specifically dedicated to the
HE library and does not make any commitments or guaran-
tees regarding other external libraries or their usage. The
primary objective of the SHEEP project is to provide cryp-
tographers with a platform where they can assess various
fully homomorphic encryption functions and work with their
technologies. SHEEP has the capability to evaluate different
computations using multiple libraries and implements vari-
ous HE schemes with exceptional security measures [35].

The SHEEP platform consists of several components,
including an interpreter for the SHEEP language, a report-
ing component, and an abstraction layer. The interpreter
facilitates the execution of instructions written in different
programming languages without the need for compilation
into machine-understandable code. The instructions are
directly executed from the scripted or provided program-
ming language. The supported languages include the high-
level SHEEP language and predefined benchmarks. The
computed results can be visualized through a web interface.

In general, computations on the SHEEP platform are
described in a generic manner, using a library-agnostic lan-
guage similar to an assembly language. The abstraction layer
plays a crucial role in concealing the details of executed
programs or computations within the subsystem. It divides a
given task into two separate entities that process the task step
by step. Each entity is assigned to a specific task or com-
putation, ensuring that the other entity remains idle until it
receives data for further processing. This approach maintains
interoperability and platform independence. Furthermore,
the abstraction layer ensures that there is no sharing of a
common file system between users or operations.

In the SHEEP platform, an abstraction layer is utilized to
integrate homomorphic libraries through their correspond-
ing wrappers. This layer serves multiple functions. Firstly, it
logs internet request data, capturing and storing the collected
data in a log server, which is subsequently used for web
protection purposes. Secondly, it provides insights into the
current status and activity of the internet. These components
contribute to the overall computational capabilities of the
SHEEP platform.

The homomorphic encryption scheme supported by
SHEEP includes various operations such as encryption,
decryption, homomorphic addition, multiplication, and com-
parison. These operations enable secure computations while
preserving the confidentiality of the data.

SHEEP offers programmers the ability to write code
using a predefined set of benchmarks included in the library.
Additionally, users can execute their own executable pro-
grams through a web interface. The native benchmarks are
categorized based on their complexity levels, ranging from
low-level microbenchmarks for basic homomorphic encryp-
tion (HE) operations to data analysis tasks.

SN Computer Science (2024) 5:24 Page 13 of 24 24

SN Computer Science

When a program is provided as input, it is evaluated
across all available HE libraries according to the program’s
instructions. The evaluation process first checks if the HE
libraries support the provided instructions. The evaluated
results are then cross-checked for correctness and ciphertext
size. After completing the computations, the web interface
stores the ciphertext size information in a database.

It should be noted that the current version of the SHEEP
platform has limitations in addressing issues related to secu-
rity, latency, and bandwidth constraints. As a result, the
SHEEP code is maintained as open source, relying on com-
munity efforts to improve and enhance its capabilities [36].
We have compared all frameworks to different parameters in
tabulated form (Table 2) so that it becomes easy for readers
to come to a conclusion regarding which library to use for
their further implementation.

FHE‑IBM Encryption Toolkit

The IBM Integration Toolkit is built on the Eclipse plat-
form and comprises an integrated development envi-
ronment (IDE) and a graphical user interface (GUI).
This toolkit is designed to facilitate the development of
resources that primarily involve message flow. It achieves
this by allowing the connection of these resources to one
or more integrated nodes for deploying the message flow
[37].

Installation

The IBM Integration Toolkit is compatible with Windows
and Linux operating systems. It can be installed on these
platforms to enable its functionality. Furthermore, communi-
cation with integration nodes is specifically supported when
using IBM Integration Bus Version 10.0.

Beginning with IBM

When initiating the IBM Integration Toolkit, users will
encounter a single window that appears, containing multiple
perspectives. This initial setup might be slightly overwhelm-
ing for some users. To facilitate a smooth start, there are two
recommended methods for launching the IBM Integration
Toolkit: 1, On Windows: Open the IBM Integration Con-
sole and enter "./iib toolkit" as the command. 2, On Linux:
Access the command environment and enter "./iib toolkit"
to initiate the toolkit. By following these steps, users can
seamlessly begin their experience with the IBM Integration
Toolkit.

Ta
bl

e
2

 C
om

pa
ris

on
 o

f v
ar

io
us

 a
cc

el
er

at
or

s b
as

ed
 o

n
di

ffe
re

nt
 p

ar
am

et
er

s

Re
fe

re
nc

es
N

am
e

In
st

al
le

d
on

Su
pp

or
te

d
op

er
at

io
n

Se
rv

ic
es

 p
ro

vi
de

d
La

ng
ua

ge
s s

up
po

rt
M

ec
ha

ni
sm

 o
pt

ed

[3
0,

 3
2]

E3
W

in
do

w
 /L

in
ux

C
ry

pt
og

ra
ph

ic
Re

la
ys

 a
nd

 c
ag

es
C

+
+

IA
S

(I
nt

el
 A

tte
st

at
io

n
Se

rv
er

)
[3

5]
SH

EE
P

W
in

do
w

 /L
in

ux
C

ry
pt

og
ra

ph
ic

D
at

a
an

al
yz

at
io

n
Li

br
ar

y
ag

no
sti

c
la

ng
ua

ge
N

at
iv

e
be

nc
hm

ar
k

 R
ef

er
en

ce
s

N
am

e
En

cr
yp

tio
n

Pe
rfo

rm
an

ce
O

pe
n

so
ur

ce
La

ng
ua

ge
 fo

rm
at

[3
0,

 3
2]

E3
FH

E/
TE

E
La

te
nc

y,
 se

cu
rit

y,
 a

nd

ba
nd

w
id

th
Ye

s
Ru

st

[3
5]

SH
EE

P
FH

E
N

o
la

te
nc

y,
 se

cu
rit

y,
 a

nd

ba
nd

w
id

th
Ye

s
H

ig
h

le
ve

l S
H

EE
P

la
ng

ua
ge

 SN Computer Science (2024) 5:24 24 Page 14 of 24

SN Computer Science

The IBM Integration Toolkit Perspectives

A perspective in the IBM Integration Toolkit refers to a
collection of views that provide users with the necessary
information and tools to accomplish specific tasks. These
views act as references and assist users in completing their
assigned tasks. Editors, on the other hand, are utilized for
editing or browsing various resources such as projects,
folders, and files within the IBM Integration Toolkit. They
enable users to interact with and modify these resources as
needed [38]. The perspective can be described as:

• Integration Development perspective The Integration
Development perspective in the IBM Integration Toolkit
is specifically designed for application development pur-
poses. When starting the IBM Integration Toolkit, the
initial view that appears is the Integration Development
perspective, providing users with the necessary tools and
features for application development tasks.

• Debug perspective Debug perspective is used to debug
those messages which are flowing through it.

The IBM Integration Toolkit is a software tool that utilizes
open-source code to enable data processing while maintain-
ing strict access control. It heavily relies on encrypted data
for computations, employing lattice cryptography as its
encryption method. The toolkit supports various operations
such as encryption, decryption, and other homomorphic
operations, typically performed on data blocks. notably, it
can execute multiplication operations through 30,000 single-
bit multiplications.

For encryption, the IBM Integration Toolkit employs 256-
bit AES algorithm keys, utilizing the maximum key length
allowed by AES. This toolkit empowers users and program-
mers to incorporate IBM’s solutions into their research or
projects. By performing computations directly on encrypted
data, the use of Fully Homomorphic Encryption (FHE) can
significantly impact privacy and data security. The toolkit
is based on the open-source HE library called HELib, pro-
viding a range of low-level routines (e.g., add, multiply,
set, shift) and higher-level features like multi-threading and
automatic noise management. HELib has gained recognition
as one of the most versatile encryption libraries globally
[39]. While collaboration with the IBM Fully Homomor-
phic Encryption Toolkit can enhance performance, it also
introduces vulnerabilities to theft or tampering. The IBM
Integration Toolkit supports macOS and iOS platforms, in
addition to Linux and Android.

To maximize the benefits of the IBM Integration Toolkit,
it offers a playground environment with a sample application
that enables querying an encrypted database.

Cingulata

Cingulata [70] stands as both a runtime environment and a
versatile toolchain, purpose-built to execute C++ programs
with an ingenious twist. The remarkable innovation lies in
its ability to perform program executions on encrypted data,
all accomplished through the sophisticated framework of
Fully Homomorphic Encryption (FHE) techniques. As an
open-source compiler, Cingulata embraces collaboration and
community contributions.

At its core, Cingulata empowers developers with the
means to harness the extraordinary potential of FHE compu-
tations. Through the fusion of C++ programming and FHE
methodologies, it unlocks a realm of secure computations
on data shrouded in encryption. This amalgamation of tech-
nologies is orchestrated seamlessly by a meticulously crafted
compiler toolchain, efficiently transmuting C++ programs
into their encrypted counterparts, poised for FHE-driven
execution.

Execution Modes

1. Offline mode (compiled): Cingulata’s offline compiled
mode incorporates specialized optimization modules
that are dedicated to diminishing the size and multipli-
cative depth of Boolean circuits in applications. Addi-
tionally, it seamlessly interfaces with lwe-estimator to
ensure the secure generation of Fully Homomorphic
Encryption (FHE) parameters.An advanced parallel
runtime environment facilitates the execution of these
Boolean circuits, enabling the utilization of various FHE
schemes.

 Within the compiled mode, Cingulata’s front-end
undertakes the conversion of C++ input code into a
corresponding representation in the form of a Boolean
circuit (constructed using logical AND and XOR gates).
Subsequently, the intermediate layer refines the Boolean
circuit crafted by the front-end, employing ABC-an
open-source tool renowned for hardware synthesis opti-
mization. Ultimately, the refined circuit is dynamically
executed on encrypted data, employing diverse FHE
schemes for heightened security.

2. Online mode (on-the-fly execution): The C++ input
application is executed directly through a low-level
implementation of the intended cryptosystem. Currently,
the offline mode is tailored for somewhat homomorphic
schemes (using an in-house B/FV implementation),
while the online mode is designed for fully homomor-
phic schemes, utilizing the TFHE library.

SN Computer Science (2024) 5:24 Page 15 of 24 24

SN Computer Science

Installation

Cingulata can be installed through two distinct approaches:
one involves the B/FV backend, and the other entails the
utilization of the TFHE library backend.

Two modes of selection are available: static (set as the
default value) and interactive.

1. Static mode: In the absence of a parameter set satisfying
the provided constraints, the system compiles a roster of
parameter sets within the database, considering factors
such as: Specified multiplicative depth, Designated bkz
reduction cost model and Security level falling within
the range [lambda-8, lambda+56]. From this roster, a
suitable parameter set is selected. In cases where the
roster remains devoid of options, the system transitions
into interactive mode.

2. Interactive mode: In the event that no parameter set
adhering to the specified constraints is located, the sys-
tem offers the user the option to choose a parameter
set from the database using the yad tool. This process
allows for flexibility, enabling the user to adjust the three
defined constraints as needed. Furthermore, the sys-
tem grants permission for the database to be refreshed
through the HEAD commit of the LWE-Estimator, pro-
vided that a new version is accessible.

Accelerator

HE accelerators are utilized to enhance the performance of
fully homomorphic encryption (FHE) operations [40]. FHE
enables computation on encrypted data without the need for
decryption, ensuring that only the data owner can decrypt
it. However, FHE schemes based on lattices introduce sig-
nificant noise in the ciphertexts for security reasons, which
can impede computation speed [41]. In order to sustain FHE
computations, a process called bootstrapping is performed
to reduce the noise. Bootstrapping involves using accelera-
tors to optimize the implementation and bridge the perfor-
mance gap between encrypted data and plaintext. Studies
and research summaries indicate that FHE operations can
sometimes lead to memory bottlenecks [42]. By employing
HE accelerators, the efficiency and overall performance of
FHE operations can be improved, allowing for more practi-
cal and efficient computation on encrypted data while miti-
gating the impact of noise and memory limitations [43]. Let
us discuss some of the main accelerator.

Homomorphic Encryption Acceleration (HEAX)

HEAX [44] is a high-performance architecture that com-
putes homomorphically encrypted data using an HE acceler-
ator used for improving the computational speed. HEAX is a
kind of Homomorphic Encryption Acceleration. This accel-
erator was introduced to overcome the issue of the slower
rate of computation. The hardware acceleration is used to
reduce the performance gap. The performance gap is a pro-
cess where the rate of computation is reduced between the
homomorphic evaluations in software and computations on
plaintext. The performance gap lies within five to six orders
of magnitude, which is quite a delaying process. Therefore,
HEAX reduces the performance gap [45].

HEAX, which stands for Homomorphic Encryption
Acceleration, is a high-performance architecture designed
to enhance the computational speed of homomorphically
encrypted data. It addresses the challenge of slower compu-
tation rates typically associated with homomorphic evalu-
ations. By utilizing hardware acceleration, HEAX aims to
reduce the performance gap that exists between software-
based homomorphic evaluations and computations per-
formed on plaintext data.

The performance gap refers to the significant difference
in computational speed between homomorphic evaluations
and traditional computations on plaintext data. This gap can
span several orders of magnitude, resulting in delays and
inefficiencies. HEAX is specifically developed to mitigate
this performance gap, allowing for faster and more efficient
computations on homomorphically encrypted data. By lev-
eraging HEAX’s acceleration capabilities, the computational
speed of homomorphic encryption is significantly improved,
narrowing the performance gap and making homomorphic
computations more practical and feasible in real-world
scenarios.

HEAX is a non-programmable accelerator that offers
several advantages over programmable accelerators due to
its ability to reuse computational elements. It optimizes the
key-switching mechanism of RNS-HEaaN by breaking it
down into partitioned steps and assigning a dedicated block
for each step. This approach enables high throughput per-
formance [46]. The key-switching operations in HEAX are
executed using a block pipeline architecture consisting of
six stages. This architecture processes polynomial residues
sequentially, resulting in a high asymptotic throughput.
HEAX employs separate arithmetic units for homomorphic
multiplication and re-linearization. However, hardware-
based rescaling of homomorphic addition and subtraction
operations is not feasible.

The unique implementation of RNS-HEaaN on FPGA is
specific to the HEAX accelerator and sets it apart from other

 SN Computer Science (2024) 5:24 24 Page 16 of 24

SN Computer Science

accelerators. This implementation represents a significant
advancement in FPGA-based homomorphic encryption.

In real-time applications, data dependencies play a cru-
cial role, as the software host incurs overhead when pro-
cessing operands and results. Consequently, the processing
time of an application is determined by latency rather than
throughput. Achieving high asymptotic throughput in HEAX
assumes a certain number of data-independent homomor-
phic operations and no overhead on the host side, which
manages input–output streams of ciphertexts (Fig. 1).

One limitation of HEAX is its lack of programmability.
Its architecture is specifically designed for block-pipelined
key-switching operations and does not support other func-
tionalities [47].

System View of HEAX

Let’s examine the system view of HEAX as shown in Fig. 1
and discuss the data flow. HEAX comprises an FPGA board,
a host CPU, and a Peripheral Component Interconnect
Express (PCIe) bus, with all components interconnected.
Starting with the FPGA board, it offers two methods of data
storage. Firstly, it includes off-chip DRAM, and secondly, it
utilizes on-chip BRAM.

• Off-chip DRAM The primary function of the off-chip
memory is to store intermediate results, which can
impact the overall performance of the system. How-
ever, the read and write operations performed by the
off-chip memory introduce high response delays, lead-
ing to decreased performance.

• On-chip BRAM The on-chip memory, specifically the
Block RAM (BRAM), exhibits excellent throughput
and response time. It has a capacity of a few mega-
bits, allowing for efficient storage and retrieval of data
within the FPGA chip.

The FPGA board includes various components, such as the
shell, which is responsible for minimizing the number of
wrappers. It ensures that each physical device is assigned
only one wrapper, simplifying the management of tasks
and the merging of multiple devices. The control unit plays
a crucial role in managing these tasks, handling interface
issues, and optimizing performance. On the FPGA side,
buffers are allocated to store received data. Two methods
are employed for this purpose: (i) Sequencing and Batch-
ing, and (ii) Double and Quadruple Buffering. The selec-
tion of these methods is based on the specific requirements
of the system [48].

PCIe Data Transfer: There are three critical steps that
occur when data transfers in PCIe; they are as follows:

• The polynomial content is copied to pin memory pages,
and this process involves issuing a memcpy operation.
To optimize the data copying time, direct memory
access (DMA) is utilized.

• The CPU signals to the FPGA whether the data is ready
or not.

• Finally, the FPGA reads the data from PCIe.

MULT module and key switching: The MULT module and
key switching operations are executed using two different

Fig. 1 System view of HEAX

SN Computer Science (2024) 5:24 Page 17 of 24 24

SN Computer Science

buffering techniques: Double Buffering and Quadruple
Buffering.

• In the case of the MULT module, Double Buffering is
employed. This allows the FPGA to read from one buffer
while the CPU simultaneously writes to another buffer.
By using two buffers, the operations can be performed in
parallel, improving efficiency.

• On the other hand, key switching requires Quadruple
Buffering due to the presence of numerous data depend-
encies on the input polynomial. To prevent buffer over-
riding and ensure data integrity, the read and write pro-
cesses occur one after another. The use of four buffers
enables the sequential execution of key switching opera-
tions.

HOST CPU: On the HOST-CPU side, sequencing and
batching operations are carried out to optimize the execu-
tion of multiple operations in a program. The user has the
freedom to choose their preferred library for performing
these operations, as the library selection is entirely depend-
ent on the user. The scheduling of tasks is managed by the
scheduler, which aims to maximize CPU utilization. The
scheduler ensures that all scheduled tasks are executed effi-
ciently. Meanwhile, the memory map plays a crucial role in
managing available memory. It provides information about
the memory availability and allows debuggers to allocate
memory addresses for storing actual data. Overall, the
HOST-CPU side performs sequencing, batching, task sched-
uling, and memory management to enhance the performance
and resource utilization of the program.

F1

F1 is recognized as the pioneering FHE accelerator, being
the first system designed to accelerate entire programs of
fully homomorphic encryption [49]. It is a programmable
accelerator capable of executing complete FHE programs.
F1 is equipped with multiple functional units, includ-
ing number-theoretic transforms, modular arithmetic, and
structured permutations, providing extensive support for
various operations. One of the notable advantages of F1 is
its ability to minimize data movement by achieving high
computed throughput. This results in improved performance
and efficiency (Fig. 2). Additionally, F1 offers support for
multiple FHE schemes, namely BGV, CKKS, and GSW,
utilizing the same hardware architecture. In summary, F1
revolutionizes FHE acceleration by enabling the execution
of full programs, delivering efficient data processing, and
accommodating various FHE schemes within a single hard-
ware platform. F1 is made up of three major characteristics
that define F1 very precisely [50]. They are:

• F1 achieves optimal speed by synchronizing with FHE
operations and leveraging wide functional units with vec-
tor processing capabilities. It incorporates specialized
Number-Theoretic Transform (NTT) units and an auto-
morphism functional unit to address the challenges posed
by complex dataflows in key operations. A distinguishing
feature of F1 is its adoption of static scheduling, which
enables multiple operations per cycle with minimal con-
trol overhead. This mitigates the difficulties associated
with dataflow graphs in FHE programs, particularly in
arithmetic operations on vectors where operation depend-
encies are predetermined. Thus, F1 effectively overcomes
this limitation.

• In terms of data movement optimization, F1 employs
strategies to minimize latency and decouple data move-
ment. It employs mechanisms to hide access latencies
by preloading data in advance and makes efficient use
of limited memory bandwidth through scheduling algo-
rithms.

• F1’s synchronized approach, wide functional units, NTT
capabilities, static scheduling, and data movement opti-
mization contribute to its effectiveness in accelerating
FHE operations and addressing the challenges posed by
complex dataflows and limited memory bandwidth.

System View of F1

The system view of F1 is discussed in Fig. 2, Tables 3, 4, 5.

• Vector execution with functional units (FU): F1 incor-
porates a vector processing mechanism with specialized
functional units (FUs) specifically designed for FHE
operations. These operations include automorphisms,
modular addition, modular multiplication, and NTTs
(both forward and inverse) performed within the same
unit. The FUs within F1 are fully pipelined, ensuring
consistent throughput throughout the execution of these
operations [51].

• Compute clusters: The compute clusters in F1 are organ-
ized groups of functional units (FUs). Each FU within a
cluster is equipped with vector processing capabilities,
including automorphism, multipliers, adders, and NTT.
Additionally, the FUs in F1 are accompanied by a banked
register file, which ensures a steady supply of operands in
every cycle, enabling continuous utilization of the FUs.
F1 employs a chip architecture that consists of multiple
compute clusters. These compute clusters, while execut-
ing operations, do not directly access the main memory
due to the high bandwidth requirements associated with
such access.

• Memory system: F1 incorporates a well-designed mem-
ory system that includes a large and partitioned scratch-
pad, integrated compute clusters, and high-bandwidth

 SN Computer Science (2024) 5:24 24 Page 18 of 24

SN Computer Science

off-chip memory. To mitigate the effects of main memory
latency, F1 utilizes decoupled data orchestration.

• Scratchpad banks: The scratchpad banks serve as inter-
mediate storage and fetch data from the main memory.
As the off-chip memory has limited bandwidth, the
scratchpad banks hold the required data to avoid fre-
quent staging from the main memory. Each scratchpad
bank efficiently transfers vectors to the computing units,
minimizing the need for extended staging at the register
file side.

• Static scheduling: The compiler plays a crucial role in
static scheduling and managing data transfers to prevent
data hazards. Static scheduling simplifies the logic across
the chip, eliminating the need for dynamic arbitration in
handling conflicts. The on-chip network employs simple
switches for independent configuration changes, and the
functional units operate without stalling logic.

• Distributed control: F1 processes individual instruc-
tion streams for each component. Programs are compiled
into linear sequences of instructions without control flow
within F1. Each component, including register files, net-
work switches, functional units, scratchpad banks, and
memory controllers, has its own instruction stream.
These instructions are fetched in small blocks through
the control unit.

• Register file (RF) design: The register file design in F1
accommodates long vectors, which are distributed across
banks. The functional units cycle through the banks,
accessing different banks in each cycle. This approach
eliminates the need for multiporting and its associated
complexities.

Medha

Medha is an accelerator designed specifically for enhancing
the performance of cloud-side operations in homomorphic
encryption schemes. It focuses on accelerating key opera-
tions such as key-switching, relinearization, homomorphic
addition, subtraction, and multiplication. Implemented as
an instruction-set processor architecture, Medha targets
the RNS (small coefficients) variant of the HEaaN homo-
morphic encryption scheme [52]. The design of Medha
emphasizes parallel processing at each level of the imple-
mentation hierarchy, leveraging a modular hardware design
to achieve efficient homomorphic operations with minimal
computational time. It is a programmable accelerator, sup-
porting all routines of the levelled RNS-HEaaN scheme for
comprehensive homomorphic evaluation. When compared

Fig. 2 System view of F1

SN Computer Science (2024) 5:24 Page 19 of 24 24

SN Computer Science

Ta
bl

e
3

 A
pp

lic
at

io
n,

 a
dv

an
ta

ge
s,

an
d

lim
ita

tio
ns

 o
f m

ul
tip

le
 to

ol
s

Re
fe

re
nc

es
To

ol
s

A
pp

lic
at

io
n

A
dv

an
ta

ge
s

Li
m

ita
tio

ns

[5
7]

SE
A

L
Se

cu
re

 c
lo

ud
 c

om
pu

tin
g,

 p
riv

ac
y-

pr
es

er
vi

ng

m
ac

hi
ne

 le
ar

ni
ng

, s
ec

ur
e

m
ul

tip
ar

ty
 c

om
pu

ta
-

tio
n,

 m
ed

ic
al

 d
at

a
an

al
ys

is
, c

ry
pt

oc
ur

re
nc

y
an

d
bl

oc
kc

ha
in

 a
nd

 io
t d

at
a

pr
oc

es
si

ng

Se
cu

re
 o

ut
so

ur
ci

ng
, fl

ex
ib

ili
ty

, e
ffi

ci
en

cy
, m

ul
-

tip
ar

ty
 c

om
pu

ta
tio

n,
 c

ro
ss

-p
la

tfo
rm

 su
pp

or
t,

on
go

in
g

de
ve

lo
pm

en
t,

re
al

-w
or

ld
 a

pp
lic

at
io

ns

Pe
rfo

rm
an

ce
 a

nd
 c

om
pu

ta
tio

na
l o

ve
rh

ea
d,

 k
ey

 m
an

-
ag

em
en

t a
nd

 d
ist

rib
ut

io
n,

 li
m

ite
d

se
t o

f o
pe

ra
-

tio
ns

, h
om

om
or

ph
ic

 n
oi

se
 g

ro
w

th
, l

ar
ge

 k
ey

 si
ze

s,
co

m
pl

ex
ity

 o
f d

ev
el

op
m

en
t,

lim
ite

d
us

e
ca

se
s

[5
8]

TF
H

E
Pr

iv
ac

y-
pr

es
er

vi
ng

 m
ac

hi
ne

 le
ar

ni
ng

, e
nc

ry
pt

ed

da
ta

ba
se

 q
ue

rie
s,

se
cu

re
 m

ul
ti-

pa
rty

 c
om

pu
ta

-
tio

n,
 h

om
om

or
ph

ic
 e

nc
ry

pt
io

n
as

 a
 se

rv
ic

e,
 d

at
a

m
on

et
iz

at
io

n
an

d
sh

ar
in

g,
 se

cu
re

 v
ot

in
g

sy
ste

m
s

Fa
st

lo
w

-le
ve

l o
pe

ra
tio

ns
, b

oo
tst

ra
pp

in
g

te
ch

-
ni

qu
e,

 su
ita

bl
e

fo
r c

lo
ud

 c
om

pu
tin

g,
 p

ar
am

et
er

se

le
ct

io
n

fle
xi

bi
lit

y,
 m

at
he

m
at

ic
al

ly
 ri

go
ro

us
,

effi
ci

en
cy

 im
pr

ov
em

en
ts

, r
ic

h
se

t o
f l

ib
ra

rie
s

C
om

pu
ta

tio
na

l o
ve

rh
ea

d,
 n

oi
se

 g
ro

w
th

 a
nd

bo

ot
str

ap
pi

ng
, b

it-
le

ve
l o

pe
ra

tio
ns

 e
m

ph
as

is
,

pa
ra

m
et

er
 se

le
ct

io
n

co
m

pl
ex

ity
, l

im
ite

d
hi

gh
-le

ve
l

ab
str

ac
tio

ns
, c

om
pl

ex
ity

 fo
r d

ev
el

op
er

s,
no

t s
ui

t-
ab

le
 fo

r a
ll

op
er

at
io

ns
[5

9]
H

eL
ib

Se
cu

re
 c

lo
ud

 c
om

pu
tin

g,
 p

riv
at

e
da

ta
 a

na
ly

si
s,

m
ac

hi
ne

 le
ar

ni
ng

 o
n

en
cr

yp
te

d
da

ta
, p

riv
ac

y-
pr

es
er

vi
ng

 b
io

m
et

ric
 a

ut
he

nt
ic

at
io

n

C
ol

la
bo

ra
tiv

e
an

al
ys

is
, d

at
a

co
nfi

de
nt

ia
lit

y,

m
iti

ga
tin

g
in

si
de

r t
hr

ea
ts

, c
om

pl
ia

nc
e

w
ith

re

gu
la

tio
ns

, d
at

a
ag

gr
eg

at
io

n,
 m

ac
hi

ne
 le

ar
ni

ng

w
ith

 p
riv

ac
y,

 re
du

ce
d

da
ta

 p
re

pr
oc

es
si

n

Li
m

ite
d

su
pp

or
te

d
op

er
at

io
ns

, p
ar

am
et

er
 se

le
ct

io
n

se
ns

iti
vi

ty
, l

im
ite

d
pr

ac
tic

al
 u

se
 c

as
es

, s
ec

ur
ity

as

su
m

pt
io

ns
, l

ea
rn

in
g

an
d

in
te

gr
at

io
n

cu
rv

e,

ho
m

om
or

ph
ic

 e
nc

ry
pt

io
n

sc
he

m
es

, l
ac

k
of

 st
an

d-
ar

di
za

tio
n,

 o
ng

oi
ng

 re
se

ar
ch

 a
nd

 d
ev

el
op

m
en

t
[6

0]
FV

/N
FL

ib
Pr

iv
ac

y-
pr

es
er

vi
ng

 c
om

pu
ta

tio
n,

 d
at

a
se

cu
rit

y,

se
cu

re
 o

ut
so

ur
ci

ng
, c

ol
la

bo
ra

tiv
e

an
al

ys
is

, r
eg

u-
la

to
ry

 c
om

pl
ia

nc
e,

 p
riv

at
e

m
ac

hi
ne

 le
ar

ni
ng

,
se

cu
re

 d
at

a
ag

gr
eg

at
io

n,
 m

iti
ga

tio
n

of
 in

si
de

r
th

re
at

s

Pr
iv

ac
y-

pr
es

er
vi

ng
 c

om
pu

ta
tio

n,
 d

at
a

se
cu

rit
y,

se

cu
re

 o
ut

so
ur

ci
ng

, c
ol

la
bo

ra
tiv

e
an

al
ys

is
, r

eg
u-

la
to

ry
 c

om
pl

ia
nc

e,
 p

riv
at

e
m

ac
hi

ne
 le

ar
ni

ng
,

se
cu

re
 d

at
a

ag
gr

eg
at

io
n,

 m
iti

ga
tio

n
of

 in
si

de
r

th
re

at
s

Li
m

ite
d

effi
ci

en
cy

, p
ar

am
et

er
 se

le
ct

io
n,

 n
oi

se

gr
ow

th
, l

im
ite

d
su

pp
or

te
d

op
er

at
io

ns
, k

ey
 m

an
-

ag
em

en
t,

la
rg

e
ci

ph
er

te
xt

 si
ze

, l
ea

rn
in

g
cu

rv
e,

se

cu
rit

y
as

su
m

pt
io

ns
, t

ra
de

-o
ffs

, c
ur

re
nt

 st
at

e
of

re

se
ar

ch
, i

nt
er

op
er

ab
ili

ty
 a

nd
 st

an
da

rd
iz

at
io

n
[6

1]
Pa

lis
ad

e
Se

cu
re

 c
lo

ud
 c

om
pu

tin
g,

 p
riv

ac
y-

pr
es

er
vi

ng
 d

at
a

an
al

ys
is

, s
ec

ur
e

ou
ts

ou
rc

in
g

of
 c

om
pu

ta
tio

n,

pr
iv

ac
y-

pr
es

er
vi

ng
 b

io
m

et
ric

 a
ut

he
nt

ic
at

io
n,

fin

an
ci

al
 a

na
ly

si
s

D
iv

er
se

 c
ry

pt
og

ra
ph

ic
 te

ch
ni

qu
es

, p
riv

ac
y-

pr
e-

se
rv

in
g

co
m

pu
ta

tio
ns

, c
us

to
m

iz
ab

le
 a

nd
 e

xt
en

si
-

bl
e,

 re
se

ar
ch

 a
nd

 d
ev

el
op

m
en

t,
cr

yp
to

gr
ap

hi
c

pr
ot

oc
ol

 d
ev

el
op

m
en

t,
pr

iv
ac

y
co

m
pl

ia
nc

e,

en
cr

yp
tio

n
re

se
ar

ch

N
oi

se
 a

cc
um

ul
at

io
n,

 li
m

ite
d

su
pp

or
te

d
op

er
at

io
ns

,
ke

y
m

an
ag

em
en

t,
se

cu
rit

y
as

su
m

pt
io

ns
, l

ar
ge

ci

ph
er

te
xt

 si
ze

, l
ea

rn
in

g
cu

rv
e,

 o
ng

oi
ng

 re
se

ar
ch

,
in

te
ro

pe
ra

bi
lit

y,
 p

ot
en

tia
l b

ug
s a

nd
 v

ul
ne

ra
bi

lit
ie

s

[6
2]

C
on

cr
et

e
D

at
a

en
cr

yp
tio

n,
 c

ol
la

bo
ra

tiv
e

an
al

ys
is

, p
riv

ac
y-

pr
es

er
vi

ng
 q

ue
rie

s,
se

cu
re

 a
gg

re
ga

tio
n,

 re
gu

la
-

to
ry

 c
om

pl
ia

nc
e,

 d
at

a
ow

ne
rs

hi
p

Pr
es

er
ve

d
da

ta
 c

on
fid

en
tia

lit
y,

 d
at

a
so

ve
re

ig
nt

y,

re
gu

la
to

ry
 c

om
pl

ia
nc

e,
 c

ol
la

bo
ra

tiv
e

in
si

gh
ts

,
tru

st
an

d
co

op
er

at
io

n

Pr
oc

es
si

ng
 d

el
ay

s,
sc

al
ab

ili
ty

 c
ha

lle
ng

es
, r

es
ou

rc
e

re
qu

ire
m

en
ts

, b
al

an
ci

ng
 p

riv
ac

y
an

d
effi

ci
en

cy

[6
3]

La
tti

go
Se

cu
re

 m
ul

ti-
pa

rty
 c

om
pu

ta
tio

n
(m

pc
),

pr
i-

va
cy

-p
re

se
rv

in
g

da
ta

 sh
ar

in
g,

 c
ry

pt
og

ra
ph

ic

pr
ot

oc
ol

s,
re

gu
la

to
ry

 c
om

pl
ia

nc
e,

 c
ol

la
bo

ra
tiv

e
re

se
ar

ch
, s

ec
ur

e
fin

an
ci

al
 d

at
a

an
al

ys
is

La
tti

ce
-b

as
ed

 se
cu

rit
y,

 p
riv

ac
y-

pr
es

er
vi

ng
 c

om
-

pu
ta

tio
ns

, fl
ex

ib
le

 e
nc

ry
pt

io
n

sc
he

m
es

, p
ot

en
tia

l
fo

r q
ua

nt
um

 re
si

st
an

ce
, r

es
ea

rc
h

an
d

in
no

va
tio

n,

co
m

m
un

ity
 su

pp
or

t,
re

gu
la

to
ry

 c
om

pl
ia

nc
e,

lo

ng
-te

rm
 se

cu
rit

y

Li
m

ite
d

ha
rd

w
ar

e
su

pp
or

t,
le

ar
ni

ng
 c

ur
ve

, n
oi

se

ac
cu

m
ul

at
io

n,
 li

m
ite

d
ap

pl
ic

at
io

n
do

m
ai

ns
, a

lg
o-

rit
hm

ic
 a

dv
an

ce
s,

cr
yp

ta
na

ly
si

s r
is

k,
 in

te
ro

pe
r-

ab
ili

ty

[6
4]

E3
G

en
om

ic
 re

se
ar

ch
, s

ec
ur

e
da

ta
 sh

ar
in

g,
 a

ut
he

n-
tic

at
io

n
an

d
id

en
tit

y,
 su

pp
ly

 c
ha

in
 a

na
ly

tic
s,

pr
iv

ac
y-

pr
es

er
vi

ng
 A

I i
n

he
al

th
ca

re

Se
cu

re
 a

gg
re

ga
tio

n,
 c

on
fid

en
tia

l c
om

pu
ta

tio
n,

re

gu
la

to
ry

 c
om

pl
ia

nc
e,

 m
iti

ga
tin

g
in

si
de

r
th

re
at

s,
au

di
tin

g
an

d
ac

co
un

ta
bi

lit
y,

 se
cu

rin
g

Io
T

an
d

ed
ge

 c
om

pu
tin

g,
 p

os
t-q

ua
nt

um
 se

cu
rit

y

C
om

pu
ta

tio
na

l c
om

pl
ex

ity
, l

im
ite

d
se

t o
f o

pe
ra

-
tio

ns
, l

ar
ge

 c
ip

he
rte

xt
 si

ze
, k

ey
 m

an
ag

em
en

t,
ho

m
om

or
ph

ic
 n

oi
se

, l
im

ite
d

us
e

ca
se

s

[6
5]

SH
EE

P
pr

iv
ac

y-
pr

es
er

vi
ng

 c
om

pu
ta

tio
ns

, c
ol

la
bo

ra
tiv

e
an

al
ys

is
, s

et
tin

g
up

 F
H

E
G

oo
d

fo
r p

ra
ct

iti
on

er
’s

, p
riv

at
e

in
fo

rm
at

io
n

re
tri

ev
al

, c
on

fid
en

tia
l c

om
pu

ta
tio

n,
 se

cu
re

 in
ne

r
pr

od
uc

t

Li
m

ite
d

lib
ra

ry
 a

cc
es

s,
in

co
m

pl
et

e
so

lu
tio

n
to

 th
e

gi
ve

n
pr

ob
le

m
, u

ns
af

e
ex

te
rn

al
 li

br
ar

ie
s

[4
4,

 4
6,

 6
6]

H
EA

X
Se

cu
re

 m
ul

ti-
pa

rty
 c

om
pu

ta
tio

n,
 d

at
a

m
on

et
iz

a-
tio

n,
 p

riv
ac

y-
pr

es
er

vi
ng

 d
at

a
an

al
ys

is
, l

at
tic

e-
ba

se
d

cr
yp

to
sy

ste
m

s

D
iv

er
se

 c
ry

pt
og

ra
ph

ic
 te

ch
ni

qu
es

, a
ut

he
nt

ic
 c

om
-

pu
ta

tio
ns

, d
at

a
so

ve
re

ig
nt

y,
 fl

ex
ib

le
 e

nc
ry

pt
io

n
sc

he
m

es
, r

eg
ul

at
or

y
co

m
pl

ia
nc

e

Li
m

ite
d

su
pp

or
te

d
op

er
at

io
ns

, l
ow

 k
ey

 m
an

ag
e-

m
en

t,
po

te
nt

ia
l b

ug
s a

nd
 v

ul
ne

ra
bi

lit
ie

s,
m

or
e

re
so

ur
ce

 re
qu

ire
m

en
ts

, l
im

ite
d

ap
pl

ic
at

io
n

do
m

ai
ns

 SN Computer Science (2024) 5:24 24 Page 20 of 24

SN Computer Science

to state-of-the-art reconfigurable hardware accelerators,
Medha demonstrates faster computational latency within a
smaller area, assuming the parameters remain constant. The
RNS (small coefficients) variant of the HEaaN homomor-
phic encryption scheme employs residue polynomials for
efficient computation of small coefficients. These polyno-
mials lend themselves well to parallel processing, making
the RNS HEaaN scheme more implementation-friendly than
the original HEaaN scheme [53]. Medha is designed as an
instruction-set architecture (ISA), enabling programmability
by treating the repeated resources as instructions. In order to
process the residue polynomials of multiple high-level units,
computation is performed in parallel. These residue poly-
nomial units are collectively referred to as Residue Polyno-
mial Arithmetic Units (RPAUs). When Medha encounters a
high-level instruction, it is translated into the corresponding
RPAUs to perform the necessary computations [54].

System View of Medha

The system view of Medha, as depicted in Fig. 3, comprises
three main components: HE Routines, Polynomial Arith-
metic, and Modular Arithmetic, along with other low-level
operations. The implementation of Medha involves two dis-
tinct sides: the user side and the cloud side. (Table 6).

On the user side, functions like key generation, encryp-
tion, decryption, encoding, decoding, and error sampling
are performed at the lowest level. These tasks are essential
for setting up and managing the homomorphic encryption
scheme. On the cloud side, Medha provides operations such
as homomorphic subtraction, addition, multiplication, and
relinearization. These operations enable the computation of
homomorphic functions on encrypted data without the need

Ta
bl

e
3

 (c
on

tin
ue

d)

Re
fe

re
nc

es
To

ol
s

A
pp

lic
at

io
n

A
dv

an
ta

ge
s

Li
m

ita
tio

ns

[4
9,

 6
7]

F1
w

id
e-

ve
ct

or
 e

xe
cu

tio
n,

 m
od

ul
ar

 a
dd

iti
on

, m
od

ul
ar

m

ul
tip

lic
at

io
n,

 N
TT

s,
au

to
m

or
ph

is
m

s
Fi

xe
d,

 sm
al

l a
rit

hm
et

ic
, f

ul
ly

 p
ip

el
in

ed
, e

xe
cu

te
s

fu
ll

FH
E

pr
og

ra
m

s,
hi

gh
-th

ro
ug

hp
ut

 fu
nc

tio
na

l
un

its

hi
gh

 c
om

pu
ta

tio
n

ov
er

he
ad

s,
bu

gs
 a

nd
 v

ul
ne

ra
bi

li-
tie

s,
pr

oc
es

si
ng

 d
el

ay
s,

lo
w

 b
al

an
ci

ng
 p

riv
ac

y
an

d
effi

ci
en

cy
, l

im
ite

d
ha

rd
w

ar
e

su
pp

or
t

[5
2,

 6
8]

M
ed

ha
Se

cu
re

 d
at

a
an

al
ys

is
, p

riv
at

e
cl

ou
d

co
m

pu
tin

g,

fin
an

ci
al

 se
rv

ic
es

, g
en

om
ic

 re
se

ar
ch

, m
ac

hi
ne

le

ar
ni

ng
 o

n
se

ns
iti

ve
 d

at
a,

 in
te

rn
et

 o
f t

hi
ng

s,
su

pp
ly

 c
ha

in
 c

ol
la

bo
ra

tio
n,

 g
ov

er
nm

en
t a

nd
 la

w

en
fo

rc
em

en
t

Pr
iv

ac
y,

 d
at

a
se

cu
rit

y,
 o

ut
so

ur
ci

ng
 c

om
pu

ta
tio

ns
,

da
ta

 u
til

iz
at

io
n,

 se
cu

re
 m

ac
hi

ne
 le

ar
ni

ng
, r

eg
u-

la
to

ry
 c

om
pl

ia
nc

e,
 re

du
ce

d
tru

st
re

qu
ire

m
en

ts

C
om

pu
ta

tio
na

l o
ve

rh
ea

d,
 li

m
ite

d
fu

nc
tio

na
lit

y,
 k

ey

m
an

ag
em

en
t,

al
go

rit
hm

 c
ho

ic
e,

 se
cu

rit
y

as
su

m
p-

tio
ns

, c
om

m
un

ic
at

io
n

ov
er

he
ad

, l
ar

ge
 c

ip
he

rte
xt

si

ze

[6
9,

 7
1]

FH
E

C
+

+
 T

ra
ns

pi
le

r
Se

cu
re

 c
om

pu
ta

tio
n

on
 e

nc
ry

pt
ed

 d
at

a,
 p

riv
ac

y-
pr

es
er

vi
ng

 c
lo

ud
 c

om
pu

tin
g,

 c
on

fid
en

tia
l d

at
a

an
al

ys
is

, s
ec

ur
e

m
ac

hi
ne

 le
ar

ni
ng

, o
ut

so
ur

ci
ng

co

m
pu

ta
tio

ns
, s

ec
ur

e
da

ta
 sh

ar
in

g

Pr
iv

ac
y-

pr
es

er
vi

ng
 a

na
ly

tic
s,

se
cu

re
 m

ac
hi

ne

le
ar

ni
ng

, c
on

fid
en

tia
l c

ol
la

bo
ra

tio
n,

 c
om

pl
ia

nc
e

w
ith

 re
gu

la
tio

ns
, d

at
a

m
on

et
iz

at
io

n,
 in

no
va

tiv
e

ap
pl

ic
at

io
ns

C
om

pu
ta

tio
na

l o
ve

rh
ea

d,
 li

m
ite

d
effi

ci
en

cy
, l

ar
ge

ci

ph
er

te
xt

 si
ze

, k
ey

 m
an

ag
em

en
t c

om
pl

ex
ity

,
al

go
rit

hm
 c

ho
ic

e,
 li

m
ite

d
su

pp
or

te
d

op
er

at
io

ns
,

im
pl

em
en

ta
tio

n
co

m
pl

ex
ity

[7
0]

C
in

gu
la

ta
Se

cu
re

 c
om

pu
ta

tio
n

on
 e

nc
ry

pt
ed

 d
at

a,
 se

cu
re

m

ac
hi

ne
 le

ar
ni

ng
, fi

na
nc

ia
l d

at
a

an
al

ys
is

Pr
iv

ac
y-

pr
es

er
vi

ng
 a

na
ly

tic
s,

se
cu

re
 m

ac
hi

ne

le
ar

ni
ng

, c
on

fid
en

tia
l c

ol
la

bo
ra

tio
n,

 la
rg

e-
sc

al
e

de
pl

oy
m

en
t

C
om

pu
ta

tio
na

l o
ve

rh
ea

d,
 li

m
ite

d
effi

ci
en

cy
, l

ar
ge

ci

ph
er

te
xt

 si
ze

Fig. 3 System View of Medha

SN Computer Science (2024) 5:24 Page 21 of 24 24

SN Computer Science

Table 4 Comparison of different accelerators against multiple parameter

References Accelerator Memory usage Programming type Arch. Operation support

[44, 46] HEAX Off-chip memory non- Programmable Fixed pipelined architecture Homomorphic multiplication, relinearization
[49] F1 On-chip memory Programmable Instruction based wide-vec-

tor processor architecture
Homomorphic multiplication, addition and

subtraction, rescaling, relinearization
[52] Medha On-chip memory Programmable Instruction based Homomorphic multiplication, addition and

subtraction, rescaling, relinearization

 References Accelerator Polynomial degree Application Efficiency

[44, 46] HEAX 214 Less Similar to Medha
[49] F1 214 Applicable Equal to Medha
[52] Medha 215 More practical Better than HEAX

Table 5 Comparison of diffrent tools against multiple parameter

Note:- � : Security parameter, n: Some positive integer, R: Commutative ring with arbitrary element, P: Prime number, n: Computed element,t:
Plaintext modulus, (P,Q): Set of private keys and Z: Integral field modulo

Component SEAL Pi- Heean TFHE HeLib FV/NFLib Palisade Concrete

Space complexity 2 MB 1 MB 2 MB 2 MB 2 MB 2 MB 2 MB
Time complexity 2 × (n/2) O(� 10) R[X]/(xn + 1) mod(p) O(log2(n/2n)) p mod t –
User friendly Yes Yes Yes Yes Yes Yes Yes
Availability GitHub GitHub GitHub GitHub GitHub GitHub GitHub
Open source Yes Yes Yes Yes Yes Yes Yes
Serialization Yes No Yes Yes No Yes Yes
Ciphertext size 1 MB 1 MB 1 MB 1 MB 1 MB 1 MB 1 MB
Symmetric No No No No No Yes Yes
Multithreading Yes Yes No Yes Yes Yes Yes
Noise Yes Yes Yes Yes Yes Yes Yes
Relinearization Yes Yes No Yes Yes Yes Yes
Memory Req 4 GB 2 GB 2 GB 2 GB 2 GB 2 GB 2 GB

 Component Lattigo E3 SHEEP HEAX F1 Medha FHE C++
Transpiler

Space complexity 8 MB 8 MB 8 MB 8 MB 4 MB 8 MB 64 MB
Time complexity log Q,log P – – – – RQ,2N = ZQ [X]/(xn + 1) –
User friendly Yes Yes Yes Yes Yes Yes Yes
Availability Apache 2.0 SHEEP server GitHub GitHub GitHub GitHub Github
Open source Yes Yes Yes Yes Yes Yes Yes
Serialization Yes Yes Yes Yes Yes Yes Yes
Ciphertext size 64 bits 24 bits 10-128 bits 10-128 bits 10-128 bits 10-128 bits 256 bits
Symmetric No Yes Yes Yes Yes Yes No
Multithreading Yes Yes Yes Yes Yes Yes Yes
Noise Yes Yes Yes Yes Yes Yes Yes
Relinearization Yes Yes Yes Yes Yes Yes Yes
Memory Req 30 MB 30 MB 30 MB 30 MB 32 MB 32 MB 6GB

 SN Computer Science (2024) 5:24 24 Page 22 of 24

SN Computer Science

for decryption. The cloud side is responsible for executing
these high-level operations efficiently using the capabilities
of Medha. By dividing the functionality between the user
side and the cloud side, Medha enables secure and efficient
computation on encrypted data, ensuring privacy and confi-
dentiality in cloud-based environments [55, 56]. Lets discuss
the levels of hierarchy:

1. Highest level of hierarchy: This level of hierarchy
performs computations on ciphertext. The operations
include key-switching, addition, subtraction, and multi-
plication. Further, these arithmetic operations are trans-
lated into polynomials.

2. Middle level of hierarchy: This level of hierarchy
receives the operations that it has to convert into polyno-
mial operations, such as coefficient-wise multiplication,
polynomial addition, polynomial subtraction, coeffi-
cient-wise modular reduction polynomial multiplication,
and coefficient-wise operation scalar multiplication.

3. Lowest level of hierarchy: The lowest level of hierarchy
consists of modular arithmetic. It simply wraps around
the values when they reach a certain value.

Conclusion

In the current era, as the sharing of data over the inter-
net becomes increasingly necessary, ensuring data secu-
rity against hackers has become a priority. Homomorphic
encryption (HE) schemes have emerged as a more secure
approach, as they allow data to remain encrypted while still
being accessible to authorized users. Despite the availability

of the technology, there are still challenges related to expen-
sive and time-consuming legal procedures that aim to main-
tain strict privacy. However, there is optimism that practical
homomorphic encryption will lead to a significant increase
in applications in cloud and edge computation, where pri-
vacy is of utmost importance. Our objective is to share our
experiences, inspire our peers, and contribute to the advance-
ment of science and technology in society. We have focused
on various libraries, frameworks, and accelerators based on
different encryption schemes, providing comparisons to help
users make informed decisions about their future implemen-
tations. When choosing a library, framework, or accelerator,
it is crucial to consider factors such as limitations, diversity,
and compatibility with the intended implementation. We
have discussed these factors and provided insights into the
capacities and limitations of the various libraries, frame-
works, and accelerators we explored. Overall, our aim is to
promote the adoption of secure data communication prac-
tices, facilitate informed decision-making, and contribute
to the continuous advancement of technology in the field of
homomorphic encryption.

Author Contributions All the authors contributed equally to this work.

Funding Information No funding was received for conducting this
study.

Data Availability The data used to support the findings of this study
are included within the article.

Declarations

Conflict of Interest The authors declare that there are no conflicts of
interest regarding the publication of this paper.

References

 1. Mahato GK, Chakraborty SK. A compartive review on homo-
morphic encryption for cloud security. IETE Journal of Research.
Taylor and Francis. 2021;1-10.

 2. Yousuf H, Lahzi M, Salloum SA, Shaalan K. Systematic review
on fully homomorphic encryption scheme and its application.
Recent Advances in Intelligent Systems and Smart Applications.
2021;537-551.

 3. Dhiman S, Nayak S, Mahato GK, Ram A, Chakraborty SK.
Homomorphic Encryption based Federated Learning for Finan-
cial Data Security. 4th International Conference on Computing
and Communication Systems. IEEE. I3CS. 2023;1-6.

 4. Acar A, Aksu H, Uluagac AS, Conti M. A survey on homomor-
phic encryption schemes: Theory and implementation. ACM
Comput Surv. 2018;51(4):1–35.

 5. Alloghani M, Alani MM, Al-Jumeily D, Baker T, Mustafina J,
Hussain A, Aljaaf AJ. A systematic review on the status and pro-
gress of homomorphic encryption technologies. J Informn Secu-
rity Appl. 2019;48: 102362.

Table 6 Current versions of multiple tools

References Tools Version Newest launch

[57] SEAL v4.1.1 2023
[58] TFHE v1.0.1 2017
[59] HeLib HeLib 2.2.2 2022
[60] FV/NFLib GPLv3 2016
[61] Palisade v1.11.7 2022
[62] Concrete python:v1.0.0 2022
[63] Lattigo v4.1.0 2022
[64] E3 GPLv3 2022
[65] SHEEP MIT License 2018
[66] HEAX Basic 2009
[67] F1 Basic 2009
[68] Medha CC BY 4.0 2022
[69] FHE C++ Transpiler GCC version 9 2017

SN Computer Science (2024) 5:24 Page 23 of 24 24

SN Computer Science

 6. Takeshita J, Koirala N, McKechney C, Jung T. HEProfiler: An In-
Depth Profiler of Approximate Homomorphic Encryption Librar-
ies; 2022.

 7. Natarajan D, Dai W. SEAL-embedded: A homomorphic encryp-
tion library for the internet of things. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems. 2021;756-779.

 8. Huang J, Wu D. Cloud Storage Model Based on the BGV Fully
Homomorphic Encryption in the Blockchain Environment. Secu-
rity and Communication Networks. 2022;2022.

 9. Aydin F, Karabulut E, Potluri S, Alkim E, Aysu A. RevEAL: sin-
gle-trace side-channel leakage of the SEAL homomorphic encryp-
tion library. In Design, Automation Test in Europe Conference &
Exhibition. IEEE. 2022;1527-1532.

 10. Lee E, Lee JW, Kim YS, no JS. Optimization of homomor-
phic comparison algorithm on rns-ckks scheme. IEEE Access.
2022;10:26163–76.

 11. Chen H, Iliashenko I, Laine K. When heaan meets fv: a new some-
what homomorphic encryption with reduced memory overhead.
In IMA International Conference on Cryptography and Coding
(pp. 265-285). Springer, Cham; 2021.

 12. Moon S, Lee Y. An efficient encrypted floating-point representa-
tion using HEaaN and TFHE. Security and Communication Net-
works; 2020.

 13. Brenna L, Singh IS, Johansen HD, Johansen D. TFHE-rs: A
library for safe and secure remote computing using fully homo-
morphic encryption and trusted execution environments. Array.
2022;13: 100118.

 14. Jiang L, Lou Q, Joshi N. MATCHA: A Fast and Energy-Efficient
Accelerator for Fully Homomorphic Encryption over the Torus.
arXiv preprint arXiv: 2202. 08814; 2022.

 15. Ferrara M, Tortora A. A CONCRETE approach to torus fully
homomorphic encryption. Cryptology ePrint Archive; 2022.

 16. Halevi S, Shoup V. Design and implementation of HElib: a homo-
morphic encryption library. Cryptology ePrint Archive; 2020.

 17. github HElib. https:// github. com/ homenc/ HElib. Accessed Sept;
2022.

 18. Aguilar Melchor C, Kilijian MO, Lefebvre C, Ricosset T. A com-
parison of the homomorphic encryption libraries HElib, SEAL
and FV-NFLlib. In International Conference on Security for Infor-
mation Technology and Communications (pp. 425-442). Springer,
Cham; 2018.

 19. github FV-NFLlib. https:// github. com/ Crypt oExpe rts/ FV- NFLlib.
Accessed Sept; 2022.

 20. Halevi S, Polyakov Y, Shoup V. An improved RNS variant of the
BFV homomorphic encryption scheme. In Cryptographers’ Track
at the RSA Conference (pp. 83-105). Springer, Cham; 2019.

 21. github PALISADE lattice cryptography library. https:// git. njit. edu/
palis ade/ PALIS ADE. Accessed Sept; 2022.

 22. Chillotti I, Gama N, Georgieva M, Izabachène M. TFHE:
fast fully homomorphic encryption over the torus. J Cryptol.
2020;33(1):34–91.

 23. github concrete. https:// github. com/ zama- ai/ concr ete- core.
Accessed Sept; 2022.

 24. Mouchet C, Bossuat JP, Troncoso-Pastoriza J, Hubaux JP. Lattigo:
A multiparty homomorphic encryption library in go. In WAHC
2020-8th Workshop on Encrypted Computing & Applied Homo-
morphic Cryptography; 2020.

 25. Bajard JC, Eynard J, Hasan MA, Zucca V. A full RNS variant of
FV like somewhat homomorphic encryption schemes. In Interna-
tional Conference on Selected Areas in Cryptography (pp. 423-
442). Springer, Cham; 2016.

 26. github lattigo. https:// github. com/ tunei nsight/ latti go. Accessed
Sept; 2022.

 27. github lattigo. https:// pkg. go. dev/ github. com/ ldsec/ latti go/ v2.
Accessed Sept; 2022.

 28. Gomathisankaran M, Tyagi A, Namuduri K. HORNS: A homo-
morphic encryption scheme for Cloud Computing using Residue
Number System. In 2011 45th Annual Conference on Information
Sciences and Systems. 2011;1-5. IEEE.

 29. Ouyang Y, Rohde PP. A general framework for the composition
of quantum homomorphic encryption & quantum error correc-
tion. arXiv preprint arXiv: 2204. 10471 Xing, Bin Cedric, Mark
Shanahan, and Rebekah Leslie-Hurd. "Intel® software guard
extensions (Intel® SGX) software support for dynamic memory
allocation inside an enclave." Proceedings of the Hardware and
Architectural Support for Security and Privacy 2016 (2016):
1-9. (2022)

 30. Chielle E, Mazonka O, Gamil H, Tsoutsos NG, Maniatakos M.
E3: A framework for compiling C++ programs with encrypted
operands. Cryptology ePrint Archive; 2018.

 31. Brenner M, Dai W, Halevi S, Han K, Jalali A, Kim M, Sunar
B. A standard API for RLWE-based homomorphic encryption.
Homomorphic Encryption Standardization; 2017.

 32. github E3. https:// github. com/ momal ab/ e3. Accessed Sept;
2022.

 33. Chillotti I, Gama N, Georgieva M, Izabachene M. Faster fully
homomorphic encryption: Bootstrapping in less than 0.1 sec-
onds. In international conference on the theory and application of
cryptology and information security. 2016;3-33. Springer, Berlin,
Heidelberg.

 34. Viand A, Jattke P, Hithnawi A. Sok: Fully homomorphic encryp-
tion compilers. In 2021 IEEE Symposium on Security and Privacy
(SP) (pp. 1092-1108). IEEE; 2021.

 35. github SHEEP. https:// github. com/ alan- turin g insti tute/ SHEEP.
Accessed Sept; 2022.

 36. Chowdhary S, Dai W, Laine K, Saarikivi O. EVA Improved: Com-
piler and Extension Library for CKKS. In Proceedings of the 9th
on Workshop on Encrypted Computing & Applied Homomorphic
Cryptography (pp. 43-55); 2021.

 37. github IBM-FHE Toolkit. URL: https://www.ibm.com/blogs/
research/2020/06/ibm-releases-fully-homomorphicencryption-
toolkit-for-macos-and-ioslinux-and-android-coming-soon.
Accessed Sept; 2022.

 38. github IBM-FHE Toolkit. https:// github. com/ IBM/ fhe- toolk it-
linux. Accessed Sept; 2022.

 39. github IBM-FHE Toolkit.https:// www. ibm. com/ blogs/ resea rch/
2020/ 07/ homom orphic- encry ption- comes- to- linux- on- ibm-z/.
Accessed Sept; 2022.

 40. Kim S, Kim J, Kim MJ, Jung W, Kim J, Rhu M, Ahn JH. Bts:
An accelerator for bootstrappable fully homomorphic encryption.
In Proceedings of the 49th Annual International Symposium on
Computer Architecture (pp. 711-725); 2022.

 41. Migliore V, Real MM, Lapotre V, Tisserand A, Fontaine C,
Gogniat G. Hardware/software co-design of an accelerator for
FV homomorphic encryption scheme using Karatsuba algorithm.
IEEE Trans Comput. 2016;67(3):335–47.

 42. Roy SS, Mert AC, Kwon S, Shin Y, Yoo D. Accelerator for Com-
puting on Encrypted Data. Cryptology ePrint Archive; 2021.

 43. Zhang N, Gamil H, Brinich P, Reynwar B, Al Badawi A, Neda N,
Franchetti F. Towards Full-Stack Acceleration for Fully Homo-
morphic Encryption; 2022.

 44. Riazi MS, Laine K, Pelton B, Dai W. HEAX: An architecture for
computing on encrypted data. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (pp. 1295-1309); 2020.

 45. Han M, Zhu Y, Lou Q, Zhou Z, Guo S, Ju L. coxHE: A soft-
ware-hardware co-design framework for FPGA acceleration of
homomorphic computation. In 2022 Design, Automation & Test
in Europe Conference & Exhibition (DATE) (pp. 1353-1358).
IEEE; 2022.

http://arxiv.org/abs/2202.08814
https://github.com/homenc/HElib
https://github.com/CryptoExperts/FV-NFLlib
https://git.njit.edu/palisade/PALISADE
https://git.njit.edu/palisade/PALISADE
https://github.com/zama-ai/concrete-core
https://github.com/tuneinsight/lattigo
https://pkg.go.dev/github.com/ldsec/lattigo/v2
http://arxiv.org/abs/2204.10471Xing
https://github.com/momalab/e3
https://github.com/alan-turing%20institute/SHEEP
https://github.com/IBM/fhe-toolkit-linux
https://github.com/IBM/fhe-toolkit-linux
https://www.ibm.com/blogs/research/2020/07/homomorphic-encryption-comes-to-linux-on-ibm-z/
https://www.ibm.com/blogs/research/2020/07/homomorphic-encryption-comes-to-linux-on-ibm-z/

 SN Computer Science (2024) 5:24 24 Page 24 of 24

SN Computer Science

 46. Al Badawi A, Veeravalli B, Mun CF, Aung KMM. High-perfor-
mance FV somewhat homomorphic encryption on GPUs: An
implementation using CUDA. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, 70-95; 2018.

 47. Bos JW, Lauter K, Loftus J, Naehrig M. Improved security for a
ring-based fully homomorphic encryption scheme. In IMA Inter-
national Conference on Cryptography and Coding (pp. 45-64).
Springer, Berlin, Heidelberg; 2013.

 48. Cheon JH, Kim A, Kim M, Song Y. Homomorphic encryption for
arithmetic of approximate numbers. In International conference on
the theory and application of cryptology and information security
(pp. 409-437). Springer, Cham; 2017.

 49. Samardzic N, Feldmann A, Krastev A, Devadas S, Dreslinski R,
Peikert C, Sanchez D. F1: A fast and programmable accelerator
for fully homomorphic encryption. In MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture (pp.
238-252); 2021.

 50. Feldmann A, Samardzic N, Krastev A, Devadas S, Dreslinski R,
Peikert C, Sanchez D. F1: A fast and programmable accelerator
for fully homomorphic encryption. In Proceedings of the 54th
annual IEEE/ACM international symposium on Microarchitecture
(MICRO-54); 2021.

 51. Cheon JH, Kim A, Kim M, Song Y. Homomorphic encryption for
arithmetic of approximate numbers. In International conference on
the theory and application of cryptology and information security
(pp. 409-437). Springer, Cham; 2017.

 52. Mert AC, Kwon S, Shin Y, Yoo D, Lee Y, Roy SS. Medha: Micro-
coded Hardware Accelerator for computing on Encrypted Data.
Cryptology ePrint Archive; 2022.

 53. Roy SS, Mert AC, Kwon S, Shin Y, Yoo D. Accelerator for Com-
puting on Encrypted Data. Cryptology ePrint Archive; 2021.

 54. Takeshita J, Reis D, Gong T, Niemier M, Hu XS, Jung T. Algo-
rithmic acceleration of B/FV-Like somewhat homomorphic
encryption for compute-enabled RAM. In International Confer-
ence on Selected Areas in Cryptography (pp. 66-89). Springer,
Cham; 2020.

 55. Zhai Y, Ibrahim M, Qiu Y, Boemer F, Chen Z, Titov A, Lya-
shevsky A. Accelerating encrypted computing on intel gpus. In
2022 IEEE International Parallel and Distributed Processing Sym-
posium (IPDPS) (pp. 705-716). IEEE; 2022.

 56. Mahato GK, Chakraborty SK. Privacy Protection of Edge Com-
puting Using Homomorphic Encryption. In Pattern Recognition
and Data Analysis with Applications (pp. 395-407). Springer,
Singapore; 2022.

 57. github SEAL. https:// github. com/ micro soft/ SEAL. Accessed May;
2023.

 58. github TFHE. https:// github. com/ tfhe/ tfhe. Accessed May; 2023.
 59. github HElib. https:// github. com/ homenc/ HElib. Accessed May;

2023.
 60. github FV-NFLlib. https:// github. com/ Crypt oExpe rts/ FV- NFLlib/

blob/ master/ LICEN SE. Accessed May; 2023.
 61. Palisade. https:// palis ade- crypto. org/. Accessed May; 2023.
 62. github Concrete. https:// github. com/ zama- ai/ concr ete. Accessed

May; 2023.
 63. github Lattigo. https:// github. com/ tunei nsight/ latti go. Accessed

May; 2023.
 64. github E3. https:// github. com/ momal ab/ e3. Accessed May; 2023.
 65. github SHEEP. https:// github. com/ alan- turing- insti tute/ SHEEP.

Accessed May; 2023.
 66. Roy SS, Mert AC, Kwon S, Shin Y, Yoo D. Accelerator for com-

puting on encrypted data. Cryptology. ePrint Archive; 2021.
 67. Feldmann A, Samardzic N, Krastev A, Devadas S, Dreslinski R,

Eldefrawy K, Genise N, Peikert C, Sanchez D. F1: A fast and
programmable accelerator for fully homomorphic encryption
(extended version). (arXiv preprint arXiv: 2109. 05371); 2021.

 68. Mert AC, Kwon S, Shin Y, Yoo D, Lee Y, Roy SS. Medha: Micro-
coded hardware accelerator for computing on encrypted data.
(arXiv preprint arXiv: 2210. 05476); 2022.

 69. Gorantala S, Springer R, Purser-Haskell S, Lam W, Wilson R,
Ali A, Astor EP, Zukerman I, Ruth S, Dibak C, Schoppmann P.
A general purpose transpiler for fully homomorphic encryption.
(arXiv preprint arXiv: 2106. 07893); 2021.

 70. github Cingulata. https:// github. com/ CEA- LIST/ Cingu lata/ wiki.
Accessed August; 2023.

 71. github FHE C++ transpiler. https:// github. com/ topics/ trans
piler?l= c% 2B% 2B. Accessed August; 2023.

 72. Al Badawi A, Bates J, Bergamaschi F, Cousins DB, Erabelli S,
Genise N, Halevi S, Hunt H, Kim A, Lee Y, Liu Z. Openfhe:
Open-source fully homomorphic encryption library. Encrypted
Computing and Applied Homomorphic Cryptography.(pp. 53-63);
2022.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://github.com/microsoft/SEAL
https://github.com/tfhe/tfhe
https://github.com/homenc/HElib
https://github.com/CryptoExperts/FV-NFLlib/blob/master/LICENSE
https://github.com/CryptoExperts/FV-NFLlib/blob/master/LICENSE
https://palisade-crypto.org/
https://github.com/zama-ai/concrete
https://github.com/tuneinsight/lattigo
https://github.com/momalab/e3
https://github.com/alan-turing-institute/SHEEP
http://arxiv.org/abs/2109.05371
http://arxiv.org/abs/2210.05476
http://arxiv.org/abs/2106.07893
https://github.com/CEA-LIST/Cingulata/wiki
https://github.com/topics/transpiler?l=c%2B%2B
https://github.com/topics/transpiler?l=c%2B%2B

	Homomorphic Encryption Library, Framework, Toolkit and Accelerator: A Review
	Abstract
	Introduction
	Homomorphic Encryption Library
	Microsoft Simple Encrypted Arithmetic Library (SEAL)
	Homomorphic Encryption for Arithmetic of Approximate Numbers (Pi-HEaaN)
	Fast Fully Homomorphic Encryption Over the Torus (TFHE)
	Homomorphic Encryption Library (HElib)
	FV-NFLlib
	Palisade
	Concrete
	Lattigo
	FHE C++ Transpiler

	Framework
	E3
	SHEEP

	FHE-IBM Encryption Toolkit
	Installation
	Beginning with IBM
	The IBM Integration Toolkit Perspectives

	Cingulata
	Execution Modes
	Installation

	Accelerator
	Homomorphic Encryption Acceleration (HEAX)
	System View of HEAX

	F1
	System View of F1

	Medha
	System View of Medha

	Conclusion
	References

