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Abstract
Renal toxicity prediction plays a vital role in drug discovery and clinical practice, as it helps to identify potentially harm-
ful compounds and mitigate adverse effects on the renal system. Compound with inherent renal-toxic potential is one of 
the major concerns for drug development as it leads to failure in drug discovery. Predicting nephrotoxic probabilities of a 
compound at an early stage can be effective for reducing the drug failure rate. Hence, it is crucial to develop a mechanism 
to analyze the renal toxicity of a drug-candidate optimally and quickly. To mitigate the risks associated with renal toxicity, 
predictive models leveraging machine learning and deep learning techniques have gained significant attention. In this study, 
287 human renal-toxic drugs and 278 non-renal-toxic drugs were collected to develop a deep learning model and 27 machine 
learning models using 8 kinds of fingerprints and Rdkit descriptors. The deep neural network model shows better generaliza-
tion scores on five-fold cross-validation and Extra-tree model shows better performance score on test data. Structural alerts, 
specific chemical substructures associated with renal toxicity, offer a valuable tool for early toxicity assessment. Therefore, 
the substructures of renal toxic compounds were studied by applying association rule mining technique based on frequent 
itemset patterns. A method has been proposed for generating structural alerts and 10 structural alerts have been generated 
using the method.
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Introduction

Kidney is one of the major and vital organs of human body 
and its main function is to filter blood, remove toxins and 
to maintain homeostasis of the body fluids. Renal toxicity 
(RT) is the deterioration of the kidney function due to toxic 
effect of medications and/or chemicals. Exposure to certain 
drugs, chemicals, or environmental factors can lead to renal 

toxicity, causing severe damage to renal cells and impair-
ing kidney function. Renal toxicity is a significant concern 
in drug development and clinical practice, as it can lead to 
adverse drug reactions, treatment failures, and even life-
threatening conditions.

To prevent kidney failure due to adverse effect, early 
detection of kidney damage is necessary. However, toxic-
ity analysis of lead compounds during drug discovery is an 
expensive and time-consuming process. In current time, the 
machine learning (ML) and deep learning (DL) methods 
have gained considerable attention in the field of drug dis-
covery [1–11]. These advanced computational approaches 
offer the potential to improve the accuracy, efficiency, and 
scalability of predicting renal toxicity, aiding in early iden-
tification and prevention of nephrotoxicity-related complica-
tions. By leveraging large-scale data analysis, pattern recog-
nition, and predictive modeling, machine learning and deep 
learning methods can provide valuable insights into the field 
of nephrotoxicity, thereby guiding drug development and 
clinical decision-making processes [12–24].
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Considering the various factors involved, predicting 
renal toxicity through machine learning model can be an 
alternative, effective, and a cost-efficient approach as com-
pared to the traditional methods. Apart from renal-toxicity 
prediction, ML algorithms have also contributed as well 
as outperformed in different areas like virtual screening, 
antiviral predictions, drug repurposing, membrane perme-
ability, other toxicity prediction [1, 7–11], etc. trigger-
ing an emerging space of research in computational drug 
discovery.

These algorithms can learn from historical data compris-
ing chemical descriptors, structural information, and various 
molecular properties to create predictive models that can 
classify compounds as either nephrotoxic or non-nephro-
toxic. By identifying the specific features or combinations of 
features that correlate with renal toxicity, these models can 
provide insights into the underlying mechanisms of nephro-
toxicity [25–28]. With the ability to capture complex rela-
tionships and patterns in large and diverse datasets, deep 
learning models can provide highly accurate predictions of 
renal toxicity. These models can analyze diverse data types, 
including molecular structures, gene expression profiles, 
and clinical data, to uncover hidden associations and gain a 
comprehensive understanding of the factors contributing to 
nephrotoxicity [12–20].

Another approach to toxicity analysis involves the use of 
structural alerts, which are specific substructures or chemical 
moieties associated with known toxic effects. By identify-
ing and evaluating these structural alerts, researchers can 
make informed decisions regarding the potential toxicity 
risks associated with specific compounds [25–29]. These 
features can include functional groups, chemical motifs, or 
specific arrangements of atoms within a molecule. By apply-
ing computational methods, researchers can uncover patterns 
and associations between these structural alerts and various 
toxicological endpoints, such as nephrotoxicity, hepatotoxic-
ity, genotoxicity, or cardiotoxicity. Approaches employed for 
generating structural alerts for renal toxicity include expert 
knowledge-based approaches, rule-based systems, and data-
driven methods. Expert knowledge-based approaches rely 
on the expertise of toxicologists and medicinal chemists to 
identify substructures linked to renal toxicity. Rule-based 
systems utilize predefined rules and criteria to classify 
compounds based on the presence of specific substructures. 
Data-driven methods employ computational algorithms and 
machine learning techniques to extract structural alerts from 
large toxicological databases.

Data sources related to kidney studies include patient 
registries and epidemiology data, electronic health records 
(EHR) and healthcare administrative data, clinical tri-
als, mobile devices and wearable sensors, molecular data 
repositories (genomics, epigenomics, transcriptomics, pro-
teomics, and metabolomics) [12]. However, labeled data 

for developing ML-based model to predict renal-toxicity of 
compounds are very less and all the relevant studies have 
been conducted using SIDER dataset [30].

In this study, new deep neural network (DNN) and ML 
model have been proposed for predicting renal-toxicity of 
compounds. Moreover, a method has been proposed for gen-
erating structural alerts. This is done by applying association 
rule mining technique based on frequent itemset patterns 
to generate structural alerts about renal toxic compounds. 
Association among the fingerprint-based substructures was 
also studied to identify substructures that maybe responsi-
ble for the renal toxicity of the drug molecule. In addition, 
models developed using fingerprints and descriptors have 
been compared in this study.

The paper is organized as follows: in “Introduction”, the 
background knowledge about renal toxicity is introduced 
and motivation for design of DNN and machine learning 
models for detection of renal toxic drugs is emphasized. In 
“Related work”, related works in this domain is discussed. 
In “Materials and methods”, materials and methods con-
cerning prediction of renal toxic drugs are discussed. This 
include description of the dataset, descriptor generation, fea-
ture selection, and various algorithms of machine learning 
possible to be applied in solving drug discovery problems 
along with application of association rule mining based on 
frequent pattern mining for developing techniques to analyze 
the molecular substructures of drug molecules for detection 
of possible causes of renal toxicity. In “Result and analysis”, 
the experimental results are presented, compared with other 
such results, and analyzed. In “Pattern mining for structural 
alert generation”, a method has been proposed for generating 
structural alerts about renal toxic compounds by applying 
association rule mining technique based on frequent itemset 
patterns. The paper is concluded with a discussion about the 
findings.

Related Work

The quick assessment of the renal toxic potential of com-
pounds is crucial in reducing the failures of drug devel-
opment. In vivo testing for drug-induced nephrotoxicity 
assessment is complex, expensive, time-consuming, and not 
suitable for screening large numbers of compounds, particu-
larly virtual chemicals. Additionally, experimental results 
are susceptible to different factors such as model animals, 
technology, and environmental conditions. Computational 
toxicology methods offer significant advantages over bio-
logical experimental approaches for estimating nephrotoxic-
ity of compounds: (1) rapid prediction for large compound 
sets, (2) prediction of compound toxicity based on structure 
alone, even without synthesis. Therefore, the development of 
fast and accurate computational tools for nephrotoxicity risk 
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estimation holds great importance. While numerous ML and 
DL models have been developed for different kinds of toxic-
ity prediction over the years,  but only a few have focused 
on renal toxicity.

Machine learning (ML) has been used for predicting kid-
ney malfunction [13], drug-induced adverse effects [14], 
xenobiotic-induced renal-toxicity [15], chemical-induced 
nephrotoxicity [16], detection of nephrotoxicity of a specific 
chemical like Tacrolimus [17]. Again, machine learning has 
been used for evaluating chronic [18] and acute [19] kidney 
disease, predicting complicacy after kidney transplant [20, 
21], assessment of renal cancer tumors [22], prediction of 
kidney injury after a medical treatment surgery [23, 24]. 
Mostly, linear regression, random forest, support vector 
machine, k-nearest-neighbor, naive Bayes, XGBoost, arti-
ficial neural network have been used to develop these mod-
els. However, most of the above models were not exactly 
relevant for predicting renal-toxicity of compounds since 
these models were predicting the risk of disease in patients.

Lee et al. [25] use molecular fingerprints and metabo-
lites of 540 compounds to build an SVM-based ML model 
for predicting renal toxicity of compounds with an accu-
racy of 80%. In the study, structural alerts for nephrotoxic 
compounds were identified using information gain and sub-
structure fragment analysis [25]. Since metabolites are used 
as features, first these metabolites need to be generated for 
predicting toxicity of new compounds.

Lei et al. [26] developed an SVM-based model for pre-
dicting urinary tract toxicity using 279 compounds. They 
have achieved the highest accuracy of 90.8%. In the study, 
structural alerts were generated using a software, SARpy 
[29]. Lei et al. conducted a comprehensive summary of the 
models that have been reported and are associated with uri-
nary tract toxicity up until the year 2017. In the study, only 
279 compounds were used to train and test the models.

Shi et al. [27], have used molecular descriptors of 565 
chemicals and different ML and DL algorithms to develop 
models for predicting renal toxicity of compounds. The 
study achieved the highest accuracy of 75.9% in the training 
set. The study, performed five-fold cross-validation on the 
test set and the best model was selected based on the cross-
validation scores. Again, they have generated the structural 
alerts by calculating f-score and positive rate.

Gong et al. [28] have developed ML-based models for 
predicting nephrotoxicity of chemical drugs and Chinese 
herbal medicines. In their study, they have used molecu-
lar fingerprints of 777 compounds. They have achieved 
the highest accuracy of 86% using light gradient boosting 
algorithm. However, their test data includes compounds that 
are present in their training set. Therefore, reliability of this 
model is questionable. Again, Gong et al. have identified 
structural alerts by SARpy.

Gardiner et al. [13] have developed models for predic-
tion of animal drug toxicity using gene expression data 
and three ML-based algorithms. In their study, Gaussian 
process-based Bayesian model was used to measures the 
model uncertainty. However, to predict renal toxicity of a 
compound, first gene expression needs to be calculated since 
gene expressions were used as features to train the model. In 
this study no structural alerts were generated.

Above studies have not checked the relation between 
combinations of substructures and renal toxicity. Therefore, 
in this study, association rule mining [31] technique was 
used to generate the alerts by considering all the combina-
tions of all the substructures. Again, some of the models 
were not evaluated properly and some models need wet lab 
experimental data before prediction. Therefore, it is required 
to deploy a properly-tested model that can predict nephro-
toxicity of compounds without much overhead. The most 
relevant related works are summarized in Table 1.

Materials and Methods

The models and structural alerts were developed using 
python 3 environments in Ubuntu system (version 20.4) 
which was installed in a Dell PC consisting of i7 core and 
16 GB RAM.

Model Development

Dataset Preparation

In this study, 565 marketed drugs with human nephrotoxic 
and non-nephrotoxic labels were collected from a published 
dataset [27]. Shi et al. extracted 287 human nephron-toxic 
compounds from Side Effect Resource (SIDER) database 
[30] and 278 non-nephrotoxic compounds from Zhang’s 
work [32]. SIDER is a widely used repository of adverse 
drugs reactions on human. Since a compound can have 
different SMILES notion so it is not useful for duplicate 
removal. Therefore, a unique identifier, InchiKeys has been 
generated using OpenBabel [33] to check duplicate and 
ambiguous compounds in the dataset.

Descriptor Generation

Molecular descriptors and molecular fingerprints are widely 
used forms of a molecule representation. These representa-
tions were used in most of the machine learning studies. 
Fingerprints embed the presence or absence of a particular 
structural feature in a vector. On the other hand, molecular 
descriptors list the numeric values of different physio-chem-
ical properties of a chemical. In this study, 2D molecular 
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descriptors of 565 compounds were calculated using RDKIT 
software [34] and eight kinds of molecular fingerprints 
namely MACCS, Extended, Graph-only, Klekota-Roth, 
Pubchem, Atom-pair, Substructure, and Estate fingerprints 
were generated using Padel descriptor software [35].

Outliers Study

A widely used technique, principal component analysis 
(PCA) was used to plot the data in two-dimensional graph 
for visually detecting outliers in the dataset. Later, those 
datapoints whose first principal component (PC1) is more 
than or lower than interquartile range were deleted.

Feature Selection

Correlation among the features is a well-known method 
for reducing the number of features. In this study, result of 
the correlation was further filtered using forward feature 
selection method to overcome the curse of dimensionality 
issue. In the first step, Pearson’s correlation coefficient was 
calculated to see the related features. The correlation value 
between pairs of features is used to keep only one feature 
when the correlation among the features is more than 90%. 
In the next step, sequential feature selection method [36] was 
used to extract those features which gave the best accuracy 
score of logistic regression model.

DL and ML Algorithm

Deep Neural Network: The artificial neural network that con-
tains more than one hidden layer are termed as Deep Neural 
Network (DNN). DNN architecture has neurons in each hid-
den layer and these neurons execute some mathematical cal-
culations and forward this calculated value to the succeeding 
layer based on the bias, weight, and activation function [37].

XGBoost: XGBoost [38] classifier uses boosting tech-
nique where N base-trees are built in such a manner, so that 
mth tree decreases the errors of the predecessor’s tree. The 
mth tree learns from its predecessors and updates the resid-
ual errors of (m − 1)th tree. This model was highly used in 
developing ML predictive models.

Extremely Randomized Tree (Extra-tree) [39]: Given a 
A × B dimensional dataset (where A = number of datapoints 
and B = number of independent variables), an Extra-tree of 
E decision trees (estimators) is constructed by iteratively 
choosing n samples (where n < A) using random sampling 
with replacement technique. The Extra-tree model’s final 
classification depends on the maximum voting of the E esti-
mators. Extra-tree differs from Random Forest (RF) in the 
way of selecting the cut points for splitting its nodes. In RF 
it selects the best split whereas Extra-tree makes random 
selection for this purpose.

Training and Testing

The dataset obtained after removing the outliers was divided 
into training and testing set in the ratio of 8:2. In the training 

Table 1  Related works in the field of predicting renal toxicity using ML and/or DL

Ref Model # Compounds Structural alerts Disadvantage/shortcoming/limitation

[25] SVM 540 Information gain and substructure fragment 
analysis

Metabolites are used as features, so these metabo-
lites need to be generated before predicting 
toxicity. So extra time and effort is needed. Did 
not consider combinations of substructures in 
generating the alerts

[26] SVM 279 A software, SARpy was used to generate structural 
alerts

A small number of chemicals were used to develop 
the model. Did not consider combinations of 
substructures in generating the alerts

[13] Gaussian 
process, 
LightGBM

429 No Gene expressions were used as features to train the 
model. For predicting renal toxicity of unseen 
compounds first gene expressions needs to be 
calculated. Computation of gene-expression is 
time consuming and expensive. Structural alerts 
were not generated

[27] Consensus 565 F score and positive rate were used to generate 
structural alerts

Performed five-fold cross-validation on test set. 
Did not evaluate combinations of substructures in 
generating the alerts

[28] SVM 777 A software, SARpy was used to generate structural 
alerts

The presence of training set instances in test set. 
Did not consider combinations of substructures in 
generating the alerts
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phase, one bagging classifier (Extra-tree), one boosting clas-
sifier (XGBoost) and one deep learning (DL) based clas-
sifier (DNN) was fed with fingerprints and descriptors of 
compounds in the training set. The hyper-parameter space of 
Extra-tree and XGBoost classifiers were searched and best 
hyper-parameters were selected with the help Grid-Search 
CV [36]. Since, the hyper-parameter space of DNN is large, 
Bayesian optimization [40] was used to extract the optimal 
hyper-parameters. As the output of the Bayesian optimiza-
tion method did not gave good result, hyper-parameters of 
DNN are tuned manually in the next phase.

The tunned parameter of Extra-tree classifiers includes 
number of estimators, max_features, max_depth, min_
samples_leaf, min_samples_split, criterion. Similarly, for 
XGBoost classifier it includes number of estimators, max_
depth, learning_rate, colsample_bytree, gamma, and regu-
larization. The optimized hyper-parameters for deep neural 
network include number of hidden layers, number of neurons 
in hidden layers, optimizers, activation functions, learning 
rate, drop-out rate, l2-regulirazation, number of epochs, and 
batch-size.

To validate the models, five-fold cross-validation was 
used in the training set. Again, following metrics were cal-
culated on the test-set to evaluate a model—ROC-AUC, 
accuracy, specificity, sensitivity, Matthew’s correlation 
coefficient (MCC), and Cohen’s Kappa coefficient (κ). The 
standard definitions of these metrics were used in this study.

Structural Alert Generation

(i) Pattern discovery through association rule mining:
An association rule implies that in a database of transac-

tions whenever there are occurrences of set of attributes X 
in some transactions then another set of attributes Y also 
occurs along with X in the same transactions. Association 
rules are of the form X ⇒ Y  where X and Y are sets of items 
or attributes of a transaction database and the meaning of 
this rule is whenever an itemset X is present in transactions 
of the database the itemset Y is also co-present along with 
X such that X ∩ Y = ϕ [41]. There is no common attribute 
in the sets of attributes X and Y. Thus X ⇒ Y  is an if-then 
rule which connects set of attributes X with set of attributes 
Y if X is already present. In other words, association rules 
provide occurrence patterns of attributes of objects in large 
databases of transactions as if-then rules. Using association 
rule, occurrence patterns of features or attributes can be dis-
covered in the transaction databases.

The acceptability of an association rule depends on how 
good or interesting or strong the rule is. This is measured 
using different parameters of strength-like support, confi-
dence, lift, etc. Support and confidence [31] are two widely 
used parameters to denote the merits of the rule. Support of a 
rule X ⇒ Y  is determined by the frequency of the combined 

occurrences of all the attributes in the attribute set X in the 
antecedent and in the attribute set Y in the consequent in 
the entire database of transactions. That is the frequency of 
occurrence of the set X ∪ Y in the entire database of trans-
actions is the support of the rule X ⇒ Y  and it means how 
often X and Y occur together as percentage of total number 
of transactions.

For determination of effective association rules, a pre-
specified minimum support threshold is provided as input. 
As a result, the sets of attributes which have support equal 
or more than the pre-specified minimum support are called 
frequent itemsets. All the frequent itemsets are computed 
in a database of transactions to discover the association 
rules. The frequent itemsets or attribute sets thus represent 
frequently occurring patterns of attributes and their rela-
tionships during occurrences are represented as association 
rules.

Confidence of an association rule is another parameter to 
measure its effectiveness. For a rule X ⇒ Y  , its confidence 
c is defined as c% of the transactions in the database that 
support X also support Y. Confidence of a rule measures 
the extent a set of attributes (X) is dependent on the set of 
attribute Y. In other words, the confidence of the rule X ⇒ Y  
is nothing but the conditional probability of occurrence of 
the set of attribute Y in the database of transactions when the 
set of attributes X has already occurred. In terms of support, 
the confidence c of the rule X ⇒ Y  is given as:

It is required to discover all such rules which are having 
support and confidence equal or more than a certain pre-
specified minimum threshold on support and confidence.

There are two major computational tasks involved in the 
process of discovery of association rules from a database 
of transactions with respect to certain pre-specified mini-
mum thresholds on support and confidence. First, to discover 
all the frequent set of attributes and second, to generate all 
the association rules from the frequent set of attributes 
discovered.

There are two broad approaches of discovery of fre-
quent set of attributes—one, by generating candidate sets 
of attributes and the other is without generating candidate 
sets of attributes. A number of algorithms are designed for 
discovery of frequent itemsets and association rules based 
on these two approaches of discovery of frequent sets of 
attributes. Most prominent among these are the a priori algo-
rithm [31] and the Frequent Pattern (FP) Tree Growth algo-
rithm [41]. There are many other algorithms for discovery 
of frequent itemsets and association rules but most of these 
algorithms are designed based on the principles of either the 
a priori algorithm or the Frequent Pattern (FP) Tree Growth 
algorithm.

c = support (X ∪ Y)∕ support (X).
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(ii) Why and how Frequent Itemset mining and Associa-
tion Rule Discovery is relevant in analyzing drug molecules 
for Renal Toxicity:

For analyzing the renal toxicity of drug molecules, the 
molecular fingerprints of the drug molecules are gener-
ated. This allows the listing of the constituent types like 
MACCS FP, substructure FP, estate FP, etc. for each drug 
molecule as transactions. When this is done for all the 
collected drug molecules a database of transactions con-
taining all the molecular fingerprints is generated in which 
every row corresponds to a particular drug molecule and 
every column represents a specific fingerprint or substruc-
ture. The presence of particular fingerprint for a molecule 
is marked as 1 and while its absence is marked as 0 in the 
corresponding row of each molecule. Thus, a complete 
binary transaction dataset of molecular fingerprints is pre-
pared for entire set of molecules. Once this dataset is pre-
pared in which one of the columns (attribute) is about the 
toxicity of the molecules and for those molecules which 
are renal toxic, this column has value 1 otherwise the value 
of this attribute is 0. Now frequent attribute set discovery 
and association rule mining algorithms can be applied on 
this dataset.

This is mining frequent patterns and association rules in 
database of molecular fingerprints for the purpose of discov-
ery of frequent molecular fingerprints among the types like 
MACCS FP, substructure FP, estate FP, etc. in the renal toxic 
drug molecules. This will lead to identification of the most 
frequent occurrences of various molecular fingerprints and 
their associations with renal toxicity of the drug molecules. 
This, in turn is likely to help in finding the causes of toxic-
ity in these molecules without performing wet laboratory 
experiments and may also help in focusing upon designing 
techniques for possible elimination of toxicity in these mol-
ecules. Further, this may lead to many other domain-based 
analysis on these substructures and other types of molecular 
fingerprints and the corresponding molecules.

Based on the survey works undertaken in this study it 
has been observed that frequent pattern mining in databases 
of molecular fingerprints is not undertaken in any of the 
reviewed literature. However, it is envisaged that based on 
frequent pattern mining and association rule mining vital 
information about the interdependencies among the molecu-
lar fingerprints can be discovered not only for renal toxic 
drug molecules but for other kinds of drug molecules as 
well. This is an unsupervised machine learning model of 
computing which is based on discovery driven approach. 
Therefore, a need is felt for frequent pattern mining in such 
molecular finger prints of drug molecules and accordingly 
by executing the FP tree growth algorithm many frequent 
patterns of molecular fingerprints and their correspondence 
consisting of MACCS FP, substructure FP, estate FP, etc. 
are discovered from the drug molecules which are highly 

informative, previously unknown, novel and shall be useful 
from the point of view of design and discovery of drug mol-
ecules. The discovered patterns carry such useful informa-
tion which cannot be predicted based on supervised learning 
techniques as such techniques evaluates the prospects and 
prediction of whether a drug molecule is renal toxic or not. 
When such a prediction is combined with the results of fre-
quent pattern mining and the discovered associations among 
the fingerprints, then more concrete information is obtained 
and it can be prescribed for further experimentation in wet 
laboratory environment.

(iii) Structural alerts through pattern mining:
By applying association rule mining technique in the 

database of molecular fingerprints of a large number of com-
pounds, association among their constituent substructures 
can be discovered. Based on such rules, structural alerts for 
nephrotoxic compounds can be generated. For generating 
structural alerts, first the renal toxic compounds were fil-
tered from the original dataset. In the next step, three types 
of fingerprints namely MACCS FP, substructure FP, and 
estate FP were generated for all the renal toxic compounds 
which resulted in three datafiles. The MACCS FP, estate FP, 
and substructure FP based datafiles represents the presence 
or absence (1 or 0) of 166, 79, and 301 substructures in a 
compound, respectively. The MACCS FP datafile consists of 
287 rows corresponding to the number of compounds, 166 
columns corresponding to the number of substructures and 
1 column for representing the renal toxicity. In the third step, 
these datafiles were used as input in the FP-tree algorithm to 
find the relationship between the powerset of substructures 
and renal toxicity. Complete methodology of this study is 
presented in Fig. 1.

Result and Analysis

Data Distribution

In the study, two principal components of 565 compounds 
(including 287 renal toxic drugs and 278 non-renal toxic 
drugs) are plotted in Fig. 2. From this figure, it can be 
observed that the range of the second principal component 
(PC2) is relatively wide and both training and test sets share 
a similar chemical space. However, some outliers can be 
detected based on the first principal component (PC1), so all 
the 32 outliers were removed from the dataset. After remov-
ing the outliers, 523 compounds are randomly divided into 
training and test set in the ratio of 8 is to 2. It is worth to 
mention that the number of toxic drugs is approximately 
equal to the number of non-toxic drugs, so this dataset does 
not suffer from class imbalance issue.
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Fig. 1  Methodology for developing predictive models and structural alerts for determining renal toxicity of compounds

Fig. 2  Data distribution of compounds: a distribution of training and testing set data; b distribution of renal-toxic and non-renal-toxic data
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Model Development

In this study, model development starts with missing value 
calculation, removal of outliers, selection of descriptors, and 
min–max normalization. It was observed that Rdkit was not 
able to generate values for 12 attributes of 1 compound. 
Since the percentage of missing value is less than 0.5% 
these values are imputed using the mean value of the attrib-
ute. Further, the 208 molecular descriptors were screened 
to select the important features. Initially, 67 features were 
removed based on the Pearson’s correlation coefficient. In 
the second step, out of the 141 features, 138 features were 
selected based on the score obtained from the sequential fea-
ture selection method. The correlation heat-map and feature 
scores are shown in Figs. 3 and 4, respectively.

In the training phase, initially various ML algorithms 
like Logistic regression, SVM, KNN, Naïve Bayes, Ran-
dom Forest, Extra-tree, XGBoost, and DL algorithms like 
Convolutional  Neural  Network, transfer learning, deep 
neural network are explored. However, accuracy of most of 
these models are below 70% on the test set so only three 
techniques have been considered for further exploration. In 
the second phase, hyper-parameters of one bagging clas-
sifier (Extra-tree), one boosting classifier (XGBoost), and 
one DL-based classifier (DNN) were tuned to enhance these 
models. In case of Extra-tree and XGBoost classifier, opti-
mized parameters are obtained using GridSearchCV. In case 
of DNN, initially Bayesian optimization technique was used 
to find the optimized hyper-parameters. In the later stage, 
resultant values of the Bayesian method were used to reduce 
the hyper-parameter search space and this reduced space is 
manually explored to enhance the performance of the DNN 
model. The corresponding values of the tuned hyper-param-
eters are shown in Table 2.

In this study, model validation was started with five-fold 
cross-validation on training data and followed by evaluat-
ing different performance metrics of models on the test set. 

The ROC-AUC of 19 models in the five-fold were studied 
to check the underfitting, overfitting, and for tunning hyper-
parameters of the models. Table 3 depicts the performance 
of the datasets and models in terms of mean ROC-AUC 
scores in the five-fold cross-validation. It was seen that the 
models trained using Atom-pair, MACCS, Grap-only, and 
Rdkit datasets shows ROC-AUC of more than 0.80. The 
DNN model trained with Rdkit descriptors shows the high-
est scores of 0.88 on the cross-validation and the XGBoost 
model trained with the substructure fingerprints shows the 
least score of 0.61. It was observed that scores of 52 folds 
are greater than the average ROC-AUC (0.75) and scores of 
42 models are below the average, hence it can be inferred 
that some models are not generalizing well. Therefore, all 
the models are not considered for further study.

The five-fold cross-validation ROC-AUC curves of 
three models are shown in Fig. 5. From this figure it can be 
observed that the performance of the DNN model is very 
consistent in all the folds. As the five-fold ROC-AUC score 
of DNN is between 0.85 and 0.88, it can be inferred that this 
model is free from overfitting and underfitting. The differ-
ence between ROC-AUC scores of Extra-tree and XG Boost 
models were 0.6 and 0.7, respectively, so it can be inferred 
that these models slightly overfit.

Table 4 displays the different performance scores of all 
the models on the test set. It was observed that the models 
trained using Rdkit molecular descriptors have performed 
better than the models that were trained using fingerprints. 
The Extra-tree classifier has performed much better than 
the XGBoost and DNN model on the test set with 0.87 
ROC-AUC and 82% accuracy. The XGBoost model trained 
using estate, MACCS, and substructure fingerprints shows 
the least ROC-AUC score of 0.73. In terms of accuracy the 
Extra-tree model trained using extended fingerprints shows 
the least score of 64%. Since the same Extra-tree algo-
rithm gave the highest and lowest scores depending on the 
dataset it can be concluded that there is an impact of data 

Fig. 3  Feature selection performance of logistic regression for different combinations of 111–138 features
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representation (dataset) on the performance of the model. 
Again, seven models showed better scores than the average 
accuracy of 71% and 12 models' individual accuracy were 
lower than the average. Similarly, scores of ten models are 
above the average ROC-AUC (0.78) and ROC-AUC of 9 
models are below the average. Examining all test-set scores, 
it can be inferred that both the algorithm and the data rep-
resentation (molecular descriptors and fingerprints) plays 
an important role in developing renal toxicity prediction 
models.

It was found that the performance of DNN model on test-
ing is lower than the training. Since all the important hyper-
parameters of DNN model have been explored exhaustively 
and the five-fold cross-validation scores were better than 

other models, the size of the test set may have impacted the 
DNN model performance and it is expected that the perfor-
mance of DNN model will increase if the size of the dataset 
can be increased. It is worth to mention that the maximum 
accuracy of the DNN model was 0.79 on the test set while 
performing the model.fit operation.

Shi et al. [27] has developed models for predicting the 
nephrotoxicity of compounds using the same dataset. The 
prediction accuracy of their best model was 75.9%. The five-
fold cross-validation ROC-AUC score of their best model 
(consensus) was 0.83. In the current study, the highest accu-
racy of 82.1% has been achieved by the Extra-tree model. 
Again, DNN model has achieved the highest ROC-AUC 
score of 0.86 on the five-fold cross-validation. Comparing 

Fig. 4  Correlation between different features, correlation heat-map
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Table 2  Hyper-parameter search space and optimized values of DNN, Extra-tree, and XGBoost models

Model Hyper-parameter Search space Bayesian selection Manual selection

DNN Optimizer Rmsprop, Adadelta, Adam, SGD, 
Adagrad, Adamax, Nadam, Ftrl

Adam Adam

Activation Function Softplus, Softsign, Relu, Sigmoid, 
Elu, Exponential, Leaky relu, Tanh, 
Selu

Elu Relu

Neurons 10–138 69 138
LearningRate 0.0001–1 0.64 0.001
BatchSize 16–256 217 128
Epochs 20–1000 343 80
Hidden layers 1–12 4 4
Normalization 0–1 0.5635
DropoutRate 0–1 0.4849 0.5
L2 regularization 0.01

Model Hyper-parameter Selected value Model Hyper-parameter Selected value

Extra-tree Bootstrap FALSE XGBoost ColsampleBytree 0.2
MaxDepth None Gamma 0.1
MaxFeatures 0.5 LearningRate 0.05
MinSamplesLeaf 1 MaxDepth 5
MinSamplesSplit 2 Estimators 200
Estimators 50 Reg. Alpha 0.5

Reg. Lambda 2

Table 3  The mean ROC-AUC 
of five-fold cross-validation for 
19 models on the training set

Model F1 F2 F3 F4 F5 Mean Max Min Range

Maccs_EXT 0.82 0.75 0.73 0.78 0.79 0.78 0.82 0.73 0.09
Maccs_XGB 0.79 0.77 0.73 0.79 0.77 0.77 0.79 0.73 0.06
extended_EXT 0.78 0.78 0.79 0.7 0.8 0.77 0.8 0.7 0.1
atompair_EXT 0.82 0.79 0.69 0.7 0.79 0.76 0.82 0.69 0.12
extended_XGB 0.77 0.76 0.77 0.69 0.77 0.75 0.77 0.69 0.08
pubchem_XGB 0.76 0.8 0.78 0.68 0.72 0.75 0.8 0.68 0.13
klekota_roth_EXT 0.8 0.77 0.71 0.71 0.75 0.75 0.8 0.71 0.08
pubchem_EXT 0.79 0.76 0.75 0.68 0.75 0.75 0.79 0.68 0.12
substructure_EXT 0.79 0.7 0.75 0.69 0.77 0.74 0.79 0.69 0.1
atompair_XGB 0.77 0.74 0.64 0.68 0.83 0.73 0.83 0.64 0.19
estate_EXT 0.75 0.75 0.72 0.7 0.7 0.73 0.75 0.7 0.06
graph_XGB 0.76 0.7 0.72 0.7 0.73 0.72 0.76 0.7 0.06
estate_XGB 0.7 0.79 0.68 0.7 0.68 0.71 0.79 0.68 0.11
graph_EXT 0.81 0.66 0.7 0.67 0.71 0.71 0.81 0.66 0.15
klekota_roth_XGB 0.78 0.73 0.63 0.67 0.73 0.71 0.78 0.63 0.15
substructure_XGB 0.74 0.72 0.7 0.61 0.75 0.7 0.75 0.61 0.14
Rdkit_XGB 0.75 0.74 0.8 0.74 0.81 0.77 0.81 0.74 0.07
Rdkit_EXT 0.78 0.75 0.8 0.77 0.81 0.78 0.81 0.75 0.06
Rdkit_DNN 0.86 0.86 0.88 0.85 0.85 0.86 0.88 0.85 0.03
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the ROC-AUC value, models developed in this study is bet-
ter than the Shi et al.

Pattern Mining for Structural Alert 
Generation

In this study, the association between substructure and 
renal-toxicity is studied using pattern mining for identify-
ing substructures that are responsible for renal-toxicity. 
Co-occurrences of items are discovered in large transac-
tion datasets to determine the influence of one set of items 
on another set of items when these occur together in large 
number of transactions. The idea here is to find possibil-
ity about any substructure that is responsible for a drug 
molecule exhibiting renal-toxicity through their associa-
tions with other functional groups of such molecules. The 

result of the FP Tree growth algorithm [41] which is used 
for extracting the patterns is shown in Table 5.

From the pattern mining result, it was observed that 
99% of the renal toxic compounds consists of substructure-
based fingerprints—SubFP295, SubFP300, SubFP301, and 
SubFP307. 86–99% of nephron-toxic compounds consist 
of MACCS-based fingerprints—MACCSFP22, MAC-
CSFP163, MACCSFP164, and MACCSFP165. Again, 
88% toxic compounds consist of estate-based fingerprints—
EStateFP9 and 80% toxic compounds consist of EstateFP35. 
This is based on support of an association rule which indi-
cates the combined occurrences of the itemset on both the 
antecedent and consequent of an association rule together 
in the transactions of the database as percentage of the total 
number of the transactions in the whole database. Thus, for 
example consider the association rule appearing in the first 
row of Table 5, viz. Antecedent: SubFP295, SubFP307, 

Fig. 5  Five-fold cross-validation ROC-AUC scores of the three classifiers trained on Rdkit descriptors: a Extra-tree, b XGBoost, and c DNN
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Table 4  Performance scores 
of various models trained on 
descriptors and fingerprints

EXT extra-tree, XGB XGBoost, DNN deep neural network

Model Accuracy Sensitivity Specificity MCC ROC-AUC K

Rdkit_XGB 0.786 0.739 0.842 0.579 0.847 0.573
Rdkit_EXT 0.821 0.804 0.842 0.644 0.878 0.642
Klekota_Roth_XGB 0.743 0.754 0.732 0.487 0.782 0.487
Klekota_Roth_EXT 0.717 0.789 0.643 0.437 0.798 0.433
Pubchem_XGB 0.673 0.719 0.625 0.346 0.736 0.345
Pubchem_EXT 0.735 0.789 0.679 0.471 0.798 0.468
Estate_XGB 0.681 0.737 0.625 0.364 0.725 0.362
Estate_EXT 0.681 0.772 0.589 0.368 0.744 0.362
Extended_XGB 0.655 0.702 0.607 0.31 0.743 0.309
Extended_EXT 0.637 0.649 0.625 0.274 0.777 0.274
MACCS_XGB 0.69 0.754 0.625 0.383 0.734 0.38
MACCS_EXT 0.717 0.789 0.643 0.437 0.806 0.433
Substructure_XGB 0.673 0.684 0.661 0.345 0.734 0.345
Substructure_EXT 0.699 0.684 0.714 0.399 0.798 0.398
Graph_XGB 0.699 0.754 0.643 0.4 0.789 0.398
Graph_EXT 0.699 0.702 0.696 0.398 0.781 0.398
Atompair_XGB 0.699 0.702 0.696 0.398 0.761 0.398
Atompair_EXT 0.699 0.684 0.714 0.399 0.762 0.398
Rdkit_DNN 0.743 0.623 0.865 0.502 0.813 0.487

Table 5  Substructure alerts 
based on the support and 
confidence of association rules

Antecedents Consequent Support Confidence #Antecedent

SubFP295, SubFP307, SubFP301 RT 0.99 1 3
SubFP307 RT 0.997 1 1
SubFP295 RT 0.997 1 1
SubFP295, SubFP307 RT 0.993 1 2
SubFP301 RT 0.993 1 1
SubFP295, SubFP301 RT 0.993 1 2
SubFP307, SubFP301 RT 0.99 1 2
SubFP295, SubFP307, SubFP301 RT 0.99 1 3
SubFP300 RT 0.993 1 1
SubFP300, SubFP301 RT 0.993 1 2
SubFP300, SubFP295 RT 0.993 1 2
MACCSFP22 RT 0.997 1 1
MACCSFP165 RT 0.934 1 1
MACCSFP22, MACCSFP165 RT 0.934 1 2
MACCSFP164 RT 0.92 1 1
MACCSFP164, MACCSFP22 RT 0.92 1 2
MACCSFP164, MACCSFP165 RT 0.868 1 2
MACCSFP164, MACCSFP22, MAC-

CSFP165
RT 0.868 1 3

MACCSFP163 RT 0.916 1 1
MACCSFP163, MACCSFP22 RT 0.916 1 2
MACCSFP163, MACCSFP165 RT 0.909 1 2
EStateFP9 RT 0.889 1 1
EStateFP35 RT 0.805 1 1
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SubFP301; Consequent: RT; Support: 0.99; and Confidence: 
1. In formal notation, this rule is written as:

In this rule the itemset {SubFP295, SubFP307, 
SubFP301, RT} is present or occurred in 99% of the trans-
actions of the whole database. The confidence of the above 
rule is 1, i.e., 100%. The meaning of this rule is whenever 
the antecedent {SubFP295, SubFP307, SubFP301} of the 
above rule is found present in the transactions of the dataset 
(in this case it is present in 99% of the transactions) the 
itemset {RT} is also present in all these transactions as the 
confidence is 100%.

Now interpreting this rule in the context of the data set of 
compounds prepared for renal toxicity it can be inferred that 
99% of the renal toxic compounds in the dataset contains 
the substructure-based fingerprints SubFP295, SubFP307, 
SubFP301 together in each compound. Thus, there may be 
a possibility of these substructures contributing to the toxic 
nature of the compounds. Further, from the frequent patterns 
and the association rules in Table 5, it is seen the substruc-
tures SubFP295 and SubFP307 are present individually in 
99.7% of the renal toxic compounds and these two together 
are present in the 99.3% of the renal toxic compounds. Simi-
larly, the substructure SubFP301 is present alone in 99.3% of 
the renal toxic compounds in the dataset and in combination 
with SubFP295 it is present in 99.3% and with SubFP307 it 
is present in 99%.

In this manner, in Table 5, the highly frequent fingerprint-
based molecular substructures which are common to most 
of the renal toxic compounds in the dataset are discovered 
by the techniques of association rule mining. In this case the 
frequent itemset patterns and the rules are discovered with 
60% minimum support threshold and maximum confidence 
of 100%. This was done to see both the minimum and the 
maximum occurrences of any substructure patterns which 
may lead to renal toxicity. However, rules with other values 
of minimum thresholds on support and confidence can also 
be discovered. In Table 5 most of the frequent occurrences 
are listed. As can be seen from Table 5 that certain finger-
print-based substructures occur in most of the compounds 
which exhibit renal toxicity. The possible influence of these 
substructures for the toxic behavior of these drug molecules 
may further be tested in wet lab conditions or based on the 
identity of the structures.

The FP Tree Growth algorithm [41] works by construct-
ing a prefix tree to represent the itemsets present in the 
transaction database which contains the fingerprint-based 
substructures of the renal toxic compounds.

{SubFP295, SubFP307, SubFP301}− > {RT} with support

= 0.99 and confidence = 1.

Conclusion

A dataset of only human nephron-toxic and non-nephron-
toxic drugs is prepared in which eight types of fingerprints 
and one type of descriptor were used to represent the molec-
ular structures to develop ML and DL based models for pre-
dicting renal toxicity of natural and artificial compounds. 
From the five-fold cross-validation result, the model with 
best prediction performance for renal toxicity was DNN. The 
best model for predicting renal toxicity of test-set drugs was 
found to be Extra-tree model. The performance of molecu-
lar descriptor-based models was better than the fingerprint-
based models. At the same time, ten substructures of toxic 
drugs are identified by pattern mining. The presence of these 
substructures may indicate the likelihood of nephron-toxic 
potential of a compound. Structural alerts and models devel-
oped in this study can assist in assessing the risk of renal 
toxicity of compounds in drug discovery.
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