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Abstract
Software fault prediction models are very important to prioritize software classes for effective testing and efficient use of 
resources so that the testing process’s time, effort, and cost can be reduced. Fault prediction models can be based on either 
metrics’ threshold values or machine learning. Code metrics’ threshold-based models are easy to automate and faster than 
machine learning-based models, which can save significant time in the testing process. ROC, Alves ranking, and VARL are 
famous threshold value calculation techniques. Out of which ROC is the best threshold calculation technique. This research 
article proposes a new threshold values calculation technique based on metaheuristics. A genetic algorithm and particle 
swarm optimizer are used to calculate the threshold values, and the proposed technique is tested on ten open-source object-
oriented software datasets and four open-source procedural software datasets. Results show that the metaheuristic-based 
thresholds give better results than ROC-based thresholds.

Keywords  Software fault prediction · Metrics’ threshold · PSO · GA · ROC

Introduction

Software systems must be fault free to prevent the interrup-
tion of the service and money losses. Therefore, proper soft-
ware testing after development is necessary to develop qual-
ity software, but testing of the software consumes almost 
half of the allocated resources and money [1]. Testing effort 
and cost should be reduced to develop quality software with 
a limited budget. High-quality software must have less num-
ber of faults, which reduces the testing cost and effort for 
detecting and correcting faults because the fault proneness 
of the modules depends upon the code quality of the soft-
ware [1]. To develop high-quality software, all the software 
modules under development must be tested properly. How-
ever, it is difficult to execute all test cases based on execu-
tion paths of complex software to ensure it is defects free. 

Fault prediction models based on code quality can identify 
poor-quality and fault-prone modules to support the testing 
and development team so that high-quality software can be 
developed with limited resources and budget. All the fault 
prediction models use code quality metrics to identify fault-
prone modules of the software.

Researchers in the literature have proposed many code 
metrics-based defect prediction models. The Chidamber and 
Kemerer (CK) metrics suit is widely used for software defect 
prediction models in the object-oriented system [2–5]. These 
fault prediction models are either based on machine learn-
ing (ML) algorithms or on the code metrics' threshold val-
ues [6–13]. Code metrics’ threshold-based fault prediction 
is faster than machine learning-based algorithms because 
the tester can directly identify the fault-prone modules by 
checking the threshold values. Code metrics’ thresholds-
based models predict software modules as defective when 
the value of a certain metric exceeds the threshold value. 
Many researchers proposed different defect prediction mod-
els based on threshold values of code metrics. Henderson-
Sellers proposed a model to categorize the classes into safe, 
flag, and alarm (defective) based on different threshold val-
ues of code metrics [14]. He also suggested that thresholds 
of metrics are relative to the complexity of the software. 
Daly et al. [15] studied the average time needed for the 
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maintenance change in a software module with a different 
number of inheritance levels. He noted that up to three lev-
els of inheritance reduce the time of maintenance chance in 
software, and more than three levels of inheritance increase 
the time of maintenance change. Cartwright et al. [16] repli-
cated the study done by Daly with different datasets, and the 
results differed from Daly’s study. El Emam et al. [17, 18] 
proposed a new method to find the threshold values of code 
metrics which uses logistic regression to draw a threshold 
line. Erni and Lewerentz [19] proposed a method to find 
the thresholds based on the mean and standard deviation 
of code metrics' values. Shatnawi et al. [3] proposed a new 
method based on ROC curves to find the thresholds of dif-
ferent code metrics. Many other methods exist to find code 
metrics thresholds, like Alves ranking and VARL [20, 21]. 
All these methods calculate the threshold value for each 
code metric independently, but the software module cannot 
be categorized as fault based on only one metric’s threshold 
value, and there is a need for relative threshold values of all 
metrics in the dataset.

This research article proposes a new method based on 
metaheuristic algorithms to find the thresholds of different 
code metrics in an object-oriented and procedural system. 
A new objective function is generated based on specificity 
(also called true negative rate) and sensitivity (also called 
true positive rate), and metaheuristic algorithms such as PSO 
and GA are used to optimize the objective function. The 
class with at least one metric value beyond the threshold 
value is considered faulty while calculating the TPR and 
TNR. We use the genetic algorithm and particle swarm algo-
rithm to find the thresholds of code metrics and compare the 
performance of metaheuristic-based models with the ROC 
curves-based model, as Boucher et al. [1] proved that ROC 
curves-based models give the best performance as compared 
to other models such as Alves ranking and VARL.

The research article is organized into related works, meth-
odology, results, and conclusion. Related works give a sum-
mary of past work done in this field. "Methodology" presents 
our proposed metaheuristic-based and ROC-based threshold 
calculation techniques. It also explains the feature selection 
procedure to select the optimal set of features to generate 
a threshold-based fault prediction model. The result sec-
tion compares the performance of the metaheuristic-based 
model with the ROC curves-based model, followed by a 
conclusion.

Related Works

Many studies have been done in the recent past to develop 
threshold-based software fault prediction models because 
there is a direct relationship between code quality and metrics 

values. This research article section presents past studies to 
develop threshold-based software fault prediction models.

McCabe [22] proposed a threshold value for McCabe’s 
cyclomatic complexity metric based on some experience. 
Catel et al. [11] used PREDICTIVE to calculate the thresh-
olds of code quality metrics. The PREDICTIVE tool is no 
longer available. Rosenberg et al. [23] proposed a statistical 
analysis method to calculate the thresholds. They calculated 
the thresholds of code quality metrics based on experience 
and statistical methods for CK metrics suit.

Shatnawi et al. [3] proposed a new method that uses the 
ROC curve to find the thresholds of different code quality 
metrics. They plot a curve between sensitivity and specificity 
for different thresholds for software code metrics, and the 
threshold with the maximum area under the curve is chosen 
for software fault prediction. The experiment is performed 
on three versions of Eclipse projects for binary and multi-
class classification. They proved that the proposed method 
is good for multi-class classification. However, for binary 
class classification, there is a need for more accurate and 
sophisticated methods.

Bender [20] proposed a novel method called VARL to 
calculate the thresholds of code metrics. This method was 
originally not proposed for software code metrics. However, 
it is used by many researchers in their studies to find the 
optimal threshold values [3, 6, 24]. This method uses univar-
iate logistic regression to calculate the correct threshold of 
the metric. Some studies proved it useful for threshold calcu-
lation [24]; on the other hand, some researchers mentioned 
that no valid threshold values were found with VARL [3, 6].

Alves et al. [21] proposed a sophisticated method called 
Alves ranking to calculate the correct threshold of different 
code metrics. They combine the data of several projects to 
find the single threshold value per code metrics which is uni-
versal for all projects. They calculated the threshold value to 
find the quality of the software module. However, they have 
not used it to identify the defective modules of the software.

In their study, Benlarbi et al. [25] used logistic regression 
to find the threshold of software code metrics. They proved 
that logistic regression is not able to calculate the optimal 
thresholds and hence does not improve the model’s predic-
tion performance.

In their other study, Catel et al. [26] used the ROC curve 
method, originally proposed by Shatnawi et al. [3], to find 
the thresholds for software fault prediction. They modified 
this method a little bit. Instead of maximizing the value of 
sensitivity (TPR) and specificity (TNR), they plotted a curve 
between sensitivity and 1-specificity, and the AUC value 
among three points (0, 0), (sensitivity, 1—specificity), and 
(1, 1) is maximized.

After studying different techniques to find the thresh-
old values in literature, we propose a metaheuristic-based 
method to calculate the relative thresholds of different code 
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metrics in this research article. Table 1 presents a compara-
tive study of the proposed work with existing threshold-
based fault prediction methods.

Based on the literature, we identified that threshold-based 
software fault prediction models are faster than machine 
learning-based models [1]. Once the universal threshold 
value of the code metric is decided, then it can be applied 
to any software to identify the faulty modules, which saves 
the cost and effort of the testing team because the tester 
can identify faulty modules immediately based on the code 
metric threshold values and no need of prediction model. 
Many techniques exist to calculate the thresholds of the code 
metrics, such as ROC, VARL, and Alves ranking. All these 
techniques calculate threshold values of the code metrics 
independently. However, there is a need to find the relative 
threshold values of code metrics because independent thresh-
olds of the code metrics cannot identify the faulty classes.

Methodology

This section of the research article shows the detailed steps 
of our proposed technique to decide the threshold values 
of different code metrics for software fault identification. 
Figure 1 shows the overall structure of the proposed model.

The first step of Fig. 1 normalize the original dataset using 
the min–max normalization technique. Normalized dataset 
are divided into training and testing data. In the training data, 
ranking is assigned to all the features based on the ROC value 
of the features. Feature with high ROC value has a higher 
rank. Relevant features are selected based on the iterative 
feature elimination method from the ranked features. In the 
iterative feature elimination process feature with the lowest 
rank is eliminated in each step. In the next step, a dataset 
with selected features is provided as input to train the model 
based on metaheuristic algorithms such as PSO and GA; after 
training the model based on metaheuristic algorithms, opti-
mal threshold values of the selected features are extracted and 
used for software fault prediction on testing data. Finally, the 
model's performance is evaluated based on accuracy, sensi-
tivity (true positive rate), and specificity (true negative rate).

ROC Curve Based Thresholds

The ROC curve-based threshold detection method plots 
ROC curves for all code metrics. Optimal threshold values 
are selected where the sum of the sensitivity and specific-
ity is maximum. Plotting the ROC curve needs one con-
tinuous variable and one categorical variable. Here con-
tinuous variable is the code metric, and the categorical 
variable is the class labels. The ROC curve is drawn based 
on a range of threshold values from the minimum possible 
value to the maximum possible value of the code metric. Ta
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After drawing the ROC curve threshold value is chosen 
where the sum of sensitivity and specificity is maximum. 
These threshold values are used for software fault predic-
tion after finding the threshold values of all code metrics. 
Class is considered faulty if the threshold value of at least 
one code metric is violated.

Metaheuristic Algorithms Based Thresholds

Steps to apply metaheuristic algorithms to find the optimal 
threshold values of software code metrics are shown in 
algorithm 1.

Algorithm 1: Pseudo code of Proposed technique 

Input:  
: Training Samples  ∈  ℝ ∗   
: Class labels ∈ { , }  

 
Step 1: Dataset is normalized between 0 and 1 to standardize the ranges of code metrics.  

Step 2: Best features are selection based on iterative feature elimination technique. 

Step 3: Optimization algorithms such as GA and PSO are applied to calculate thresholds of code metrics. 

Step 4: Optimal thresholds of the selected code metrics are returned after completion of all steps. 

Original dataset

Normalized dataset

Training data Testing data

Optimal feature set

Threshold values of 

selected features

Performance 

evaluation

Population

Objective values

Best objective 

value and optimal 

thresholds

Apply any metaheuristic such as GA and PSO 

to select the optimal thresholds and run 100 

iterations

Return optimal 

thresholds

Min-max normalization

Train test split

ROC based ranking and iterative feature selection

Fig. 1   Proposed fault prediction model based on metrics’ thresholds
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Normalization

Simple min–max normalization is used to standardize the 
range of all selected code metrics to apply metaheuristic 
algorithms. Values of code metrics are normalized between 
0 and 1.

Some code metrics, such as WMC, CBO, and RFC, are 
directly proportional to quantifying code quality. On the 
other hand, some code metrics, such as TCC, LCC, and 
SCOM, are inversely proportional to quantifying the code 
quality. It is required to reverse the values of inversely pro-
portional code metrics by subtracting each value from 1.0 
after normalization.

Feature Selection

In the first step, we select relevant code metrics out of avail-
able 20 code metrics in promise repository datasets. The 
selection of relevant code metrics is very important to build 
a software fault prediction model based on metrics threshold 
values. Otherwise, irrelevant features can drastically reduce 
the software fault prediction performance. Features can 
be selected based on experimentation or feature selection 
techniques.

In this work, we select the best features based on the fol-
lowing steps:

(1)	 The objective value (sum of specificity and sensitivity) 
of each performance metric on each selected dataset is 
calculated based on the ROC curve method.

(2)	 The average object value of each performance metric 
on all selected datasets is taken to find the overall per-
formance of each performance metric on all selected 
datasets.

(3)	 After finding the average of objective values of all 
performance metrics on selected datasets, metrics are 
arranged in decreasing order based on average objec-
tive values because our objective function is a maximi-
zation function.

(4)	 After sorting features in decreasing order, features are 
eliminated from lower to higher ranks based on their 
performance. In each iteration, the lowest-ranked fea-
ture (with the lowest objective value) is eliminated, 
and after eliminating the lowest-ranked feature, the 
combined objective value of the remaining features is 
calculated and compared with the performance of the 
previous objective value. If performance is degraded, 
then we stop further feature elimination.

Figure 2 shows the forth stem of the above procedure 
for the selection of features. In Fig. 2, obj represents the 
objective value of the feature set in the current iteration 
and objprev represents the objective value of the feature set 
in the previous iteration. Initially, objprev is set to 0 and 
feature set contains all 20 features arranged in descending 
order of ROC value. Ɛ is a small constant value that is set 
to 0.01 in our case.

Fig. 2   Feature set selection 
based on iterative feature 
elimination

Feature-set with their objective values 

Calculate objective value ( ) 

< −  ɛ 

Save current feature-set 

And set =  

Eliminate lowest ranked feature 

Return saved feature-set 
Y 

N 
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Objective Function

Our objective is to maximize the sum of sensitivity and 
specificity. Sensitivity also called true positive rate (TPR), 
is used to check the number of correctly classified instances 
as positive out of total positive instances. Specificity also 
called true negative rate (TNR), is used to check the number 
of correctly classified instances as negative out of total nega-
tive instances. Sensitivity and specificity can be calculated 
based on Eqs. (1) and (2) [28].

Threshold values are used to differentiate the positive and 
negative classes, so we need to maximize the sum of sensi-
tivity and specificity, as shown in Eq. (3).

(1)Sensitivity (TPR) =
TP

TP + FN

(2)Specificity (TNR) =
TN

TN + FP

(3)Objective function =

(

TP

TP + FN
+

TN

TN + FP

)

Class with metric value greater than threshold for at 
least one metric is considered as faulty otherwise class is 
considered as healthy. Value of objective function can vary 
between 0 and 2.

Metaheuristic Algorithms

Any metaheuristic algorithm can optimize the objective 
function in Eq. (3). This research article uses a genetic algo-
rithm (GA) and PSO (particle swarm optimizer) to optimize 
this objective function.

In the genetic algorithm, chromosome size is equals 
to the number of code metrics to detect threshold values. 
Each chromosome element represents the threshold value 
of the corresponding code metric, and each element must 

contain a value between 0 and 1 because each code met-
ric is normalized between 0 and 1. A population of 20 
chromosomes is generated in the first step of the algo-
rithm. After generating the population, in the second step, 
the value of the objective function is calculated based on 
Eq. (3). To calculate the objective value, first, we need 
to calculate the value of specificity and sensitivity. Class 
with at least one metric value greater than the threshold 
value is considered faulty in calculating the sensitivity 
and specificity. After finding each chromosome's objec-
tive value, the chromosomes are sorted based on the high 
to low objective value. The best two chromosomes are 
selected, and a binary crossover is applied to generate the 
offspring. The best chromosome and its objective value 
are stored as the global optimum value. The mutation is 
performed to add randomization with a mutation probabil-
ity of 0.1. After a hundred iterations of the algorithm, the 
best chromosome is returned, representing the threshold 
values of code metrics that can be used for software fault 
prediction. Algorithm 2 represents the overall steps of the 
genetic algorithm.

Algorithm 2: Pseudo code of GA based threshold calculation 

Input:  
: Training Samples  ∈  ℝ ∗   
: Class labels ∈ { , }  

 

Step 1: Initialize random population. 

Step 2: calculate the objective value of each chromosome. 

Step 3: find two best chromosomes with maximum value of objective function. 

Step 4: Apply binary crossover on best selected chromosomes. 

Step 5: Identify the best objective value out of all four candidates. (two parents and two offspring) 

Step 6: Update the global objective value and save the chromosome with best objective value. 

Step 7: repeat steps 2 to 6 hundred times. 
Step 8: return best chromosome after 50 iterations. 

Twenty random particle positions are initialized 
between 0 and 1 in the particle swarm optimizer. Each 
particle's size equals the number of code metrics in the 
feature set. All particles’ velocities are initialized between 
– 0.5 and 0.5 for each particle. Global best objective value 
and local best objective values are initialized to 0. Global 
best particle position and local best particle position are 
empty initially.

After initialization, in the second step objective value 
of each particle is calculated based on Eq. (3) in a similar 
way as that calculated in the genetic algorithm. Local best 
value and global best value of fitness function are stored. 
The best particle with the best global value is also saved. 
In the next step, the velocity and position of each particle 
are updated based on Eqs. (4) and (5) [29].
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While calculating the new position of the particle, if 
the value of any element of the particle goes beyond the 
range of the code metrics, which is between 0 and 1 in our 
case, then reinitialize that element of the particle randomly 
between 0 and 1.

Global best objective value and particle are returned 
after a hundred iterations. The global best particle rep-
resents the optimal threshold values of the features used 
for software fault prediction. Algorithm 3 shows the over-
all steps of the PSO algorithm applied to select optimal 
threshold values.

(4)
v
i(t + 1) = w × v

i(t) + c1r1

(

besti
local

− X
i(t)

)

+ c2r2

(

bestglobal − X
i(t)

)

(5)X
i(t + 1) = X

i(t) + v
i(t + 1)

Algorithm 3: Pseudo code of PSO based threshold calculation 

Input:  
: Training Samples  ∈  ℝ ∗   
: Class labels ∈ { , }  

 

Step 1: Initialize twenty particles and their velocities randomly.   

Step 2: calculate the objective value of each particle based on equation (3). 

Step 3: Save the global best particle and its objective value. 

Step 4: Save the local best objective value and local best particle. 

Step 5: update the velocity of each particle based on equation (4). 

Step 6: update the position of each particle based on equation (5). 

Step 7: reinitialize particle if value cross the lower bound or upper bound. 

Step 8: repeat step 2 to 7 hundred times. 

Step 9: return global best objective value and particle.   

Results and Discussion

This section of the research article shows the results of the 
experiments performed on selected datasets. Experimenta-
tion is done on an HP Pavilion laptop with 8 GB RAM and 
a corei5 processor.

Datasets

Table 2 shows the selected datasets for our experimentation. 
Datasets are downloaded from the PROMISE repository [27] 
and selected based on recent studies [30–34]. Datasets are 
divided into two categories in Table 2. The first ten datasets are 
created based on object-oriented code metrics, and the last four 
datasets are created based on procedural code metrics because 

the last four software are developed in a procedural program-
ming language. Datasets of software developed in object-ori-
ented programming language contain 20 features each, which 
are WMC, CBO, RFC, LOC, LCOM, LCOM3, DIT, NOC, 
CA, CE, MAX_CC, AVG_CC, NPM, MOA, MFA, DAM, 
CAM, IC, and AMC. Datasets of software developed in proce-
dural programming language contains 28 code metrics which 
are total_loc, blank_loc, comment_loc, code_and_comment_
loc, executable_loc, unique_operands, unique_operators, total_
operands, total_operators, halstead_vocabulary, halstead_
length, halstead_volume, halstead_level, halstead_difficulty, 
halstead_effort, halstead_error, halstead_time, branch_count, 
decision_count, call_pairs, condition_count, multiple_con-
dition_count, cyclomatic_complexity, cyclomatic_density, 
decision_density, design_complexity, design_density, normal-
ized_cyclomatic_complexity, formal_parameters.

This research article uses only six features for datasets 
of software developed in object-oriented programming lan-
guages: WMC, LOC, CBO, RFC, DIT, and LCOM because 
these six features provide the best results based on threshold 

Table 2   Datasets used to perform experiments

Datasets Instances Features Fault percentage

Lucene-2.4 340 20 59.70
Jedit-4.0 306 20 24.50
Ant-1.6 351 20 26.21
Jedit-4.1 312 20 25.32
Ivy-1.4 241 20 6.63
Camel-1.4 872 20 16.62
Ivy-2.0 352 20 11.36
Ant-1.5 293 20 10.92
Poi-3.0 442 20 63.57
Lucene-2.2 247 20 58.29
Ar3 63 28 12.69
Ar4 107 28 18.69
Ar5 36 28 22.22
Ar6 101 28 14.85



	 SN Computer Science           (2023) 4:770   770   Page 8 of 12

SN Computer Science

values compared to datasets with the existing 20 features. For 
datasets of software developed in the procedural program-
ming language, selected code metrics are halstead_volume, 
cyclomatic_complexity, cyclomatic_density, decision_density, 
design_density, and normalized_cyclomatic_complexity. Each 
dataset is divided into a 67–33% ratio. 67% data is used to find 
the threshold values, and the remaining 33% is used to test the 
performance. Each experiment is performed ten times on each 
dataset, and averages and standard deviations are collected to 
compare the techniques.

Performance Metrics

Accuracy, sensitivity, and specificity performance metrics 
are selected to compare the performance. Accuracy is used 
to show the overall performance of the model. Specificity and 
sensitivity check how well the proposed approach differenti-
ates the classes in binary classification problems. Accuracy, 
sensitivity, and specificity can be calculated based on Eqs. (6), 
(7), and (8) [28].

(6)Accuracy =
TP + TN

TP + TN + FP + FN

(7)Sensitivity =
TP

TP + FN

(8)Specificity =
TN

TN + FP

Parameter Configuration

(1)	 ROC: step size = 0.0001
(2)	 GA: iterations = 100, population size = 20, crosso-

ver = binary, mutation rate = 0.1
(3)	 PSO: iterations = 100, c

1
= c

2
= 1 , number of parti-

cles = 20

Performance Comparison

This section of the research article compares the proposed 
threshold based software fault prediction technique with an 
existing technique based on Accuracy, specificity, and sen-
sitivity performance metric.

Selection of Features

Selection of good features is important while predicting 
software faults based on metric threshold values; otherwise, 
prediction accuracy drops drastically.

Table  3 shows the accuracy comparison of different 
threshold selection techniques with all features and selected 
features. Selected features are WMC, CBO, RFC, LCOM, 
LOC, and DIT for object-oriented software and halstead_
volume, cyclomatic_complexity, cyclomatic_density, deci-
sion_density, design_density, and normalized_cyclomatic_
complexity for procedural software. It is not necessary that 
for all datasets, the selected feature set will be the same. It 
may differ for different datasets depending upon the initial 
feature set and values of the features. But, we can select the 
optimal set of features based on the algorithm presented in 
"Normalization".

Table 3   Accuracy comparison 
of selected features with all 
features

Boldface letters show the best results

Datasets ROC GA PSO

Selected All Selected All Selected All

Lucene-2.4 0.64336 0.58359 0.66106 0.60796 0.66017 0.62300
Jedit-4.0 0.54851 0.34257 0.69009 0.44131 0.70396 0.44253
Ant-1.6 0.44137 0.28534 0.76810 0.58331 0.74827 0.58121
Jedit-4.1 0.54951 0.36796 0.70388 0.46944 0.69902 0.46578
Ivy-1.4 0.34249 0.18875 0.69000 0.48972 0.63125 0.48738
Camel-1.4 0.375 0.17187 0.62256 0.47765 0.62013 0.47143
Ivy-2.0 0.45982 0.14188 0.74273 0.54115 0.73162 0.54236
Ant-1.5 0.33195 0.16288 0.81443 0.56281 0.81443 0.55345
Poi-3.0 0.68356 0.57341 0.75684 0.65684 0.73835 0.64383
Lucene-2.2 0.6 0.57895 0.56707 0.55731 0.53780 0.56780
Ar3 0.23809 0.14285 0.65238 0.20952 0.58095 0.21904
Ar4 0.31388 0.19166 0.725 0.21944 0.64166 0.21388
Ar5 0.37500 0.23333 0.72499 0.30833 0.65833 0.29999
Ar6 0.23823 0.16470 0.64117 0.28235 0.57941 0.23823
Average 0.43862 0.29498 0.69716 0.45765 0.66752 0.45356



SN Computer Science           (2023) 4:770 	 Page 9 of 12    770 

SN Computer Science

Prediction accuracy with all features is very low, as 
shown in Table 3. So, choosing good features to achieve 
acceptable results is super important. The best values are 
shown in boldface letters in Table 3.

In the case of ROC-based software fault prediction, 
selected features give approximately 14% improvement; 
in the case of GA-based software fault prediction, selected 
features give 24% improvement; and in the case of PSO-
based software fault prediction, selected features give a 21% 
improvement in accuracy. However, prediction results based 
on the ROC curve and selected features are poor and below 

the acceptable range of 0.6 [1]. In the case of GA and PSO, 
achieved performance is above the acceptable range, and GA 
gives 3% better results than PSO.

Based on Table 3, it can be concluded that selected fea-
tures give a significant improvement in the performance 
of the threshold-based software fault prediction. Further, 
metaheuristic algorithms provide better relative threshold 
values of selected features than ROC, and in the case of 
metaheuristic, GA provides better results than PSO.

Accuracy Comparison

Table 4 presents the accuracy comparison of metaheuristic 
algorithms-based threshold detection technique with ROC-
based threshold detection technique. The average accuracy 
and standard deviation with the ‘ ± ’ sign of 10 runs are 
shown in Table 4. The best results are shown in boldface 
letters. GA gives the best results for 12/14 datasets. Out of 
the remaining two datasets, for Lucene-2.2, ROC gives the 
best results, and for Jedit-4.0, PSO gives the best results.

On average, ROC achieves 43% accuracy based on selected 
features that are poor to apply for real-life projects. On the 
other hand, metaheuristic-based selected threshold values 
achieve accuracy greater than 60%, which is acceptable. PSO-
based thresholds achieve 66% average accuracy, which is not 
bad, and GA-based threshold values achieve 69% average 
accuracy, considered good and better 2% than PSO.

Figure 3 compares the accuracy of different threshold-
based software fault prediction techniques. The red line 
shows the results of ROC-based threshold values, the Blue 
line shows the accuracy of PSO-based threshold values, and 
the green line shows the accuracy achieved by GA-based 
threshold values.

Table 4   Accuracy comparison of metaheuristic algorithms with ROC 
based threshold

Boldface letters show the best results

Datasets ROC GA PSO

Lucene-2.4 0.64336 ± 0.0319 0.66106 ± 0.0349 0.66017 ± 0.0398
Jedit-4.0 0.54851 ± 0.0458 0.69009 ± 0.0554 0.70396 ± 0.0382
Ant-1.6 0.44137 ± 0.0272 0.76810 ± 0.0323 0.74827 ± 0.0423
Jedit-4.1 0.54951 ± 0.0421 0.70388 ± 0.0462 0.69902 ± 0.0694
Ivy-1.4 0.34249 ± 0.1114 0.69000 ± 0.0693 0.63125 ± 0.0859
Camel-1.4 0.375 ± 0.0195 0.62256 ± 0.0407 0.62013 ± 0.0434
Ivy-2.0 0.45982 ± 0.0741 0.74273 ± 0.0448 0.73162 ± 0.0544
Ant-1.5 0.33195 ± 0.0535 0.81443 ± 0.0586 0.81443 ± 0.0470
Poi-3.0 0.68356 ± 0.0304 0.75684 ± 0.0254 0.73835 ± 0.0277
Lucene-2.2 0.6 ± 0.0525 0.56707 ± 0.0460 0.53780 ± 0.0524
Ar3 0.23809 ± 0.0928 0.65238 ± 0.0953 0.58095 ± 0.0791
Ar4 0.31388 ± 0.0735 0.725 ± 0.0601 0.64166 ± 0.0997
Ar5 0.37500 ± 0.1003 0.72499 ± 0.0916 0.65833 ± 0.1145
Ar6 0.23823 ± 0.0517 0.64117 ± 0.0506 0.57941 ± 0.0921
Average 0.43862 0.69716 0.66752

Fig. 3   Accuracy comparison of ROC, GA, and PSO based threshold 
detection techniques

Table 5   Sensitivity comparison

Boldface letters show the best results

Datasets ROC GA PSO

Lucene-2.4 0.92853 0.66298 0.63942
Jedit-4.0 0.89383 0.66744 0.68768
Ant-1.6 0.91563 0.72010 0.75500
Jedit-4.1 0.90565 0.72872 0.73511
Ivy-1.4 0.93333 0.53154 0.70142
Camel-1.4 0.94373 0.64654 0.65913
Ivy-2.0 0.92896 0.71605 0.70954
Ant-1.5 0.89883 0.63514 0.59432
Poi-3.0 0.96649 0.78911 0.76300
Lucene-2.2 0.98872 0.58419 0.51002
Ar3 1.0 0.76666 0.80666
Ar4 0.97638 0.75952 0.77186
Ar5 1.0 0.86833 0.775
Ar6 0.95833 0.72880 0.47027
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The green line and blue line are almost overlapping each 
other. However, there is a slight difference between the 
green and blue lines, and we can say GA performs better 
than PSO because the green line is slightly above the blue 
line. Both GA and PSO outperform the ROC method, as 
shown in Fig. 3.

So, it is clear from Fig. 3 that the results of GA and PSO 
are comparable. However, GA gives slightly better results 
than PSO. The results of PSO and GA are far better than 
ROC based threshold detection technique.

Other Metrics Comparison

Table 5 shows the sensitivity comparison of ROC, GA, and 
PSO-based threshold detection techniques over selected 
datasets. It is clear from Table 5 that ROC based thresh-
old detection technique provides better sensitivity than the 
metaheuristic algorithms-based technique. Sensitivity, also 
called true positive rate, is better for ROC in the case of all 
datasets. But based on only a true positive rate, we can’t 
say ROC-based threshold values develop a better model. We 
need to consider the true negative rate also.

Table 6 presents the comparison of the specificity of dif-
ferent threshold detection techniques. In the case of 9/14 
datasets, GA gives better results, and PSO gives better 
results for the remaining five datasets. The metaheuristic 
algorithms-based technique for all ten datasets gives better 
results than the ROC-based threshold detection technique. 
However, based on only the true negative rate, we cannot 
conclude that the metaheuristic-based threshold provides a 
better software fault prediction model. We need to consider 
both the true positive and negative rates.

Figure 4 compares the specificity and sensitivity trade-
offs of different threshold detection techniques. In the case 
of sensitivity, ROC gives better results, and in the case of 
specificity, the metaheuristic algorithms-based technique 
gives better results. However, metaheuristic algorithms 
give better results than ROC if we compare the sensi-
tivity and specificity trade-offs. The results of different 
metaheuristic algorithms are comparable.

In Fig. 4, the red line shows the performance of ROC-
based threshold values, the green line shows the perfor-
mance of GA-based threshold values, and the blue line 
shows the performance of PSO-based threshold val-
ues. The blue and green lines are above the red lines 
in the graph. So, based on Fig. 4, we can conclude that 
metaheuristic-based threshold values are better than ROC 
for developing a good software fault prediction model.

Threat to Validity

This study compares the metaheuristic-based threshold 
values with ROC-based threshold values for software fault 
prediction. We used fourteen open-source software, ten 
developed in object-oriented programming, and four devel-
oped in procedural programming. However, threshold-based 
fault prediction models' performance depends on features 
extracted from the code. We compare results based on only 
20 object-oriented and 28 procedural code metrics, but many 
code metrics exist in the literature, and the model's perfor-
mance can vary with changes in input features.

Table 6   Specificity comparison

Boldface letters show the best results

Datasets ROC GA PSO

Lucene-2.4 0.21972 0.65932 0.69360
Jedit-4.0 0.43100 0.69827 0.70978
Ant-1.6 0.27694 0.78905 0.74479
Jedit-4.1 0.43324 0.69278 0.69006
Ivy-1.4 0.30563 0.70008 0.62882
Camel-1.4 0.25480 0.61640 0.61272
Ivy-2.0 0.40041 0.74738 0.73531
Ant-1.5 0.26417 0.83850 0.84512
Poi-3.0 0.20627 0.69872 0.69887
Lucene-2.2 0.03109 0.55273 0.59656
Ar3 0.13614 0.63630 0.54837
Ar4 0.17246 0.71165 0.61476
Ar5 0.16847 0.67117 0.61454
Ar6 0.12666 0.63035 0.58678

Fig. 4   Trade-off between sensitivity and specificity
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Second, we cannot say that the threshold values decided 
in this research article are universal because the experiment 
is done on a small set of datasets.

Third, thresholds decided by metaheuristic algorithms are 
not perfect. Metaheuristics always gives approximate solu-
tions. However, performance is better than the ROC-based 
technique, and properly tuned algorithms can achieve good 
results.

Conclusion

In this research article, we propose a new method based 
on metaheuristic algorithms to find the threshold values of 
software code metrics for software fault prediction. GA and 
PSO are used to find the threshold values, and performance 
is compared with ROC-based threshold values. In the first 
experiment, useful code metrics are selected based on exper-
imentation out of available 20 object-oriented code metrics 
and 28 procedural code metrics because bad code metrics 
can drastically reduce the prediction performance of thresh-
old-based software fault prediction models. In the second 
experiment, threshold values of selected code metrics are 
detected and used for software fault prediction. Accuracy, 
sensitivity, and specificity performance metric results are 
compared with ROC curve-based threshold detection tech-
niques. Results show that metaheuristic algorithms give bet-
ter threshold values for software fault prediction.

In the future, we will compare the performance of more 
metaheuristic algorithms for better and fast convergence 
and use threshold values for cross-project software fault 
prediction.
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