
Vol.:(0123456789)

SN Computer Science (2023) 4:770
https://doi.org/10.1007/s42979-023-02217-x

SN Computer Science

ORIGINAL RESEARCH

Improved Software Fault Prediction Model Based on Optimal Features
Set and Threshold Values Using Metaheuristic Approach

Manpreet Singh1 · Jitender Kumar Chhabra1

Received: 28 February 2023 / Accepted: 2 August 2023
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023

Abstract
Software fault prediction models are very important to prioritize software classes for effective testing and efficient use of
resources so that the testing process’s time, effort, and cost can be reduced. Fault prediction models can be based on either
metrics’ threshold values or machine learning. Code metrics’ threshold-based models are easy to automate and faster than
machine learning-based models, which can save significant time in the testing process. ROC, Alves ranking, and VARL are
famous threshold value calculation techniques. Out of which ROC is the best threshold calculation technique. This research
article proposes a new threshold values calculation technique based on metaheuristics. A genetic algorithm and particle
swarm optimizer are used to calculate the threshold values, and the proposed technique is tested on ten open-source object-
oriented software datasets and four open-source procedural software datasets. Results show that the metaheuristic-based
thresholds give better results than ROC-based thresholds.

Keywords  Software fault prediction · Metrics’ threshold · PSO · GA · ROC

Introduction

Software systems must be fault free to prevent the interrup-
tion of the service and money losses. Therefore, proper soft-
ware testing after development is necessary to develop qual-
ity software, but testing of the software consumes almost
half of the allocated resources and money [1]. Testing effort
and cost should be reduced to develop quality software with
a limited budget. High-quality software must have less num-
ber of faults, which reduces the testing cost and effort for
detecting and correcting faults because the fault proneness
of the modules depends upon the code quality of the soft-
ware [1]. To develop high-quality software, all the software
modules under development must be tested properly. How-
ever, it is difficult to execute all test cases based on execu-
tion paths of complex software to ensure it is defects free.

Fault prediction models based on code quality can identify
poor-quality and fault-prone modules to support the testing
and development team so that high-quality software can be
developed with limited resources and budget. All the fault
prediction models use code quality metrics to identify fault-
prone modules of the software.

Researchers in the literature have proposed many code
metrics-based defect prediction models. The Chidamber and
Kemerer (CK) metrics suit is widely used for software defect
prediction models in the object-oriented system [2–5]. These
fault prediction models are either based on machine learn-
ing (ML) algorithms or on the code metrics' threshold val-
ues [6–13]. Code metrics’ threshold-based fault prediction
is faster than machine learning-based algorithms because
the tester can directly identify the fault-prone modules by
checking the threshold values. Code metrics’ thresholds-
based models predict software modules as defective when
the value of a certain metric exceeds the threshold value.
Many researchers proposed different defect prediction mod-
els based on threshold values of code metrics. Henderson-
Sellers proposed a model to categorize the classes into safe,
flag, and alarm (defective) based on different threshold val-
ues of code metrics [14]. He also suggested that thresholds
of metrics are relative to the complexity of the software.
Daly et al. [15] studied the average time needed for the

This article is part of the topical collection “Research Trends
in Computational Intelligence” guest edited by Anshul Verma,
Pradeepika Verma, Vivek Kumar Singh and S. Karthikeyan.

 *	 Manpreet Singh
	 manibhangu92@gmail.com

1	 Computer Engineering Department, National Institute
of Technology, Kurukshetra, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-02217-x&domain=pdf

	 SN Computer Science (2023) 4:770 770   Page 2 of 12

SN Computer Science

maintenance change in a software module with a different
number of inheritance levels. He noted that up to three lev-
els of inheritance reduce the time of maintenance chance in
software, and more than three levels of inheritance increase
the time of maintenance change. Cartwright et al. [16] repli-
cated the study done by Daly with different datasets, and the
results differed from Daly’s study. El Emam et al. [17, 18]
proposed a new method to find the threshold values of code
metrics which uses logistic regression to draw a threshold
line. Erni and Lewerentz [19] proposed a method to find
the thresholds based on the mean and standard deviation
of code metrics' values. Shatnawi et al. [3] proposed a new
method based on ROC curves to find the thresholds of dif-
ferent code metrics. Many other methods exist to find code
metrics thresholds, like Alves ranking and VARL [20, 21].
All these methods calculate the threshold value for each
code metric independently, but the software module cannot
be categorized as fault based on only one metric’s threshold
value, and there is a need for relative threshold values of all
metrics in the dataset.

This research article proposes a new method based on
metaheuristic algorithms to find the thresholds of different
code metrics in an object-oriented and procedural system.
A new objective function is generated based on specificity
(also called true negative rate) and sensitivity (also called
true positive rate), and metaheuristic algorithms such as PSO
and GA are used to optimize the objective function. The
class with at least one metric value beyond the threshold
value is considered faulty while calculating the TPR and
TNR. We use the genetic algorithm and particle swarm algo-
rithm to find the thresholds of code metrics and compare the
performance of metaheuristic-based models with the ROC
curves-based model, as Boucher et al. [1] proved that ROC
curves-based models give the best performance as compared
to other models such as Alves ranking and VARL.

The research article is organized into related works, meth-
odology, results, and conclusion. Related works give a sum-
mary of past work done in this field. "Methodology" presents
our proposed metaheuristic-based and ROC-based threshold
calculation techniques. It also explains the feature selection
procedure to select the optimal set of features to generate
a threshold-based fault prediction model. The result sec-
tion compares the performance of the metaheuristic-based
model with the ROC curves-based model, followed by a
conclusion.

Related Works

Many studies have been done in the recent past to develop
threshold-based software fault prediction models because
there is a direct relationship between code quality and metrics

values. This research article section presents past studies to
develop threshold-based software fault prediction models.

McCabe [22] proposed a threshold value for McCabe’s
cyclomatic complexity metric based on some experience.
Catel et al. [11] used PREDICTIVE to calculate the thresh-
olds of code quality metrics. The PREDICTIVE tool is no
longer available. Rosenberg et al. [23] proposed a statistical
analysis method to calculate the thresholds. They calculated
the thresholds of code quality metrics based on experience
and statistical methods for CK metrics suit.

Shatnawi et al. [3] proposed a new method that uses the
ROC curve to find the thresholds of different code quality
metrics. They plot a curve between sensitivity and specificity
for different thresholds for software code metrics, and the
threshold with the maximum area under the curve is chosen
for software fault prediction. The experiment is performed
on three versions of Eclipse projects for binary and multi-
class classification. They proved that the proposed method
is good for multi-class classification. However, for binary
class classification, there is a need for more accurate and
sophisticated methods.

Bender [20] proposed a novel method called VARL to
calculate the thresholds of code metrics. This method was
originally not proposed for software code metrics. However,
it is used by many researchers in their studies to find the
optimal threshold values [3, 6, 24]. This method uses univar-
iate logistic regression to calculate the correct threshold of
the metric. Some studies proved it useful for threshold calcu-
lation [24]; on the other hand, some researchers mentioned
that no valid threshold values were found with VARL [3, 6].

Alves et al. [21] proposed a sophisticated method called
Alves ranking to calculate the correct threshold of different
code metrics. They combine the data of several projects to
find the single threshold value per code metrics which is uni-
versal for all projects. They calculated the threshold value to
find the quality of the software module. However, they have
not used it to identify the defective modules of the software.

In their study, Benlarbi et al. [25] used logistic regression
to find the threshold of software code metrics. They proved
that logistic regression is not able to calculate the optimal
thresholds and hence does not improve the model’s predic-
tion performance.

In their other study, Catel et al. [26] used the ROC curve
method, originally proposed by Shatnawi et al. [3], to find
the thresholds for software fault prediction. They modified
this method a little bit. Instead of maximizing the value of
sensitivity (TPR) and specificity (TNR), they plotted a curve
between sensitivity and 1-specificity, and the AUC value
among three points (0, 0), (sensitivity, 1—specificity), and
(1, 1) is maximized.

After studying different techniques to find the thresh-
old values in literature, we propose a metaheuristic-based
method to calculate the relative thresholds of different code

SN Computer Science (2023) 4:770 	 Page 3 of 12  770

SN Computer Science

metrics in this research article. Table 1 presents a compara-
tive study of the proposed work with existing threshold-
based fault prediction methods.

Based on the literature, we identified that threshold-based
software fault prediction models are faster than machine
learning-based models [1]. Once the universal threshold
value of the code metric is decided, then it can be applied
to any software to identify the faulty modules, which saves
the cost and effort of the testing team because the tester
can identify faulty modules immediately based on the code
metric threshold values and no need of prediction model.
Many techniques exist to calculate the thresholds of the code
metrics, such as ROC, VARL, and Alves ranking. All these
techniques calculate threshold values of the code metrics
independently. However, there is a need to find the relative
threshold values of code metrics because independent thresh-
olds of the code metrics cannot identify the faulty classes.

Methodology

This section of the research article shows the detailed steps
of our proposed technique to decide the threshold values
of different code metrics for software fault identification.
Figure 1 shows the overall structure of the proposed model.

The first step of Fig. 1 normalize the original dataset using
the min–max normalization technique. Normalized dataset
are divided into training and testing data. In the training data,
ranking is assigned to all the features based on the ROC value
of the features. Feature with high ROC value has a higher
rank. Relevant features are selected based on the iterative
feature elimination method from the ranked features. In the
iterative feature elimination process feature with the lowest
rank is eliminated in each step. In the next step, a dataset
with selected features is provided as input to train the model
based on metaheuristic algorithms such as PSO and GA; after
training the model based on metaheuristic algorithms, opti-
mal threshold values of the selected features are extracted and
used for software fault prediction on testing data. Finally, the
model's performance is evaluated based on accuracy, sensi-
tivity (true positive rate), and specificity (true negative rate).

ROC Curve Based Thresholds

The ROC curve-based threshold detection method plots
ROC curves for all code metrics. Optimal threshold values
are selected where the sum of the sensitivity and specific-
ity is maximum. Plotting the ROC curve needs one con-
tinuous variable and one categorical variable. Here con-
tinuous variable is the code metric, and the categorical
variable is the class labels. The ROC curve is drawn based
on a range of threshold values from the minimum possible
value to the maximum possible value of the code metric. Ta

bl
e 

1  
A

 c
om

pa
ra

tiv
e

stu
dy

 o
f p

ro
po

se
d

m
od

el
 w

ith
 e

xi
sti

ng
 th

re
sh

ol
d

ba
se

d
fa

ul
t p

re
di

ct
io

n
m

od
el

s

A
ut

ho
r

M
et

ho
do

lo
gy

St
re

ng
th

W
ea

kn
es

s

Sh
at

na
w

i e
t a

l.
[3

]
RO

C
-b

as
ed

 th
re

sh
ol

d
ca

lc
ul

at
io

n
of

 c
od

e
m

et
ric

s
A

 n
ew

 m
et

ho
d

ba
se

d
on

 th
e

RO
C

 c
ur

ve
 is

 p
ro

po
se

d
to

ca

lc
ul

at
e

th
e

m
et

ric
s t

hr
es

ho
ld

 v
al

ue
s a

nd
 p

ro
ve

 th
at

th

re
sh

ol
d-

ba
se

d
so

ftw
ar

e
fa

ul
t p

re
di

ct
io

n
is

 fa
ste

r a
nd

sa

ve
s m

or
e

tim
e

an
d

co
st

It
is

 w
ea

ke
r t

ha
n

m
ac

hi
ne

 le
ar

ni
ng

, a
nd

 fe
at

ur
es

 sh
ou

ld

be
 v

er
y

go
od

 to
 d

iff
er

en
tia

te
 fa

ul
ty

 a
nd

 n
on

-fa
ul

ty

m
od

ul
es

 b
as

ed
 o

n
bi

na
ry

 sp
lit

B
ou

ch
er

 e
t a

l.
[1

]
A

 c
om

pa
ra

tiv
e

stu
dy

 o
f R

O
C

, A
lv

es
 ra

nk
in

g,
 a

nd

VA
R

L
te

ch
ni

qu
es

 to
 c

al
cu

la
te

 th
re

sh
ol

ds
 o

f t
he

 c
od

e
m

et
ric

s

It
is

 p
ro

ve
d

th
at

 R
O

C
 is

 th
e

be
st

te
ch

ni
qu

e
fo

r t
hr

es
ho

ld

ca
lc

ul
at

io
n,

 a
nd

 in
 so

m
e

ca
se

s,
th

re
sh

ol
d-

ba
se

d
m

od
-

el
s o

ut
pe

rfo
rm

 m
ac

hi
ne

 le
ar

ni
ng

 a
lg

or
ith

m
s

In
 m

os
t c

as
es

, m
ac

hi
ne

 le
ar

ni
ng

 p
ro

vi
de

s b
et

te
r r

es
ul

ts

th
an

 th
re

sh
ol

d-
ba

se
d

fa
ul

t p
re

di
ct

io
n

A
ra

r e
t a

l.
[3

3]
B

ug
 se

ve
rit

y
pr

ed
ic

tio
n

ba
se

d
on

 th
re

sh
ol

d
va

lu
es

ca

lc
ul

at
ed

 b
as

ed
 o

n
RO

C
 a

nd
 V

A
R

L
Th

re
sh

ol
d

va
lu

es
 c

an
 b

e
us

ed
 fo

r m
ul

ti-
cl

as
s c

la
ss

ifi
ca

-
tio

n
to

 p
re

di
ct

 th
e

se
ve

rit
y

of
 th

e
fa

ul
t

M
ac

hi
ne

 le
ar

ni
ng

 is
 b

et
te

r f
or

 b
ug

 se
ve

rit
y

pr
ed

ic
tio

n

Pr
op

os
ed

 w
or

k
M

et
ah

eu
ris

tic
-b

as
ed

 th
re

sh
ol

d
de

te
ct

io
n

m
od

el
 fo

r f
au

lt
pr

ed
ic

tio
n

It
pe

rfo
rm

s b
et

te
r t

ha
n

th
e

RO
C

 m
et

ho
d

w
ith

 le
ss

 n
um

-
be

r o
f f

ea
tu

re
s.

So
, i

t s
av

es
 m

or
e

te
sti

ng
 ti

m
e

an
d

co
st

St
ill

, r
es

ul
ts

 a
re

 n
ot

 b
et

te
r t

ha
n

ad
va

nc
ed

 m
ac

hi
ne

 le
ar

n-
in

g
te

ch
ni

qu
es

 su
ch

 a
s b

ag
gi

ng
 a

nd
 b

oo
sti

ng

	 SN Computer Science (2023) 4:770 770   Page 4 of 12

SN Computer Science

After drawing the ROC curve threshold value is chosen
where the sum of sensitivity and specificity is maximum.
These threshold values are used for software fault predic-
tion after finding the threshold values of all code metrics.
Class is considered faulty if the threshold value of at least
one code metric is violated.

Metaheuristic Algorithms Based Thresholds

Steps to apply metaheuristic algorithms to find the optimal
threshold values of software code metrics are shown in
algorithm 1.

Algorithm 1: Pseudo code of Proposed technique

Input:
: Training Samples ∈ ℝ ∗
: Class labels ∈ { , }

Step 1: Dataset is normalized between 0 and 1 to standardize the ranges of code metrics.

Step 2: Best features are selection based on iterative feature elimination technique.

Step 3: Optimization algorithms such as GA and PSO are applied to calculate thresholds of code metrics.

Step 4: Optimal thresholds of the selected code metrics are returned after completion of all steps.

Original dataset

Normalized dataset

Training data Testing data

Optimal feature set

Threshold values of

selected features

Performance

evaluation

Population

Objective values

Best objective

value and optimal

thresholds

Apply any metaheuristic such as GA and PSO

to select the optimal thresholds and run 100

iterations

Return optimal

thresholds

Min-max normalization

Train test split

ROC based ranking and iterative feature selection

Fig. 1   Proposed fault prediction model based on metrics’ thresholds

SN Computer Science (2023) 4:770 	 Page 5 of 12  770

SN Computer Science

Normalization

Simple min–max normalization is used to standardize the
range of all selected code metrics to apply metaheuristic
algorithms. Values of code metrics are normalized between
0 and 1.

Some code metrics, such as WMC, CBO, and RFC, are
directly proportional to quantifying code quality. On the
other hand, some code metrics, such as TCC, LCC, and
SCOM, are inversely proportional to quantifying the code
quality. It is required to reverse the values of inversely pro-
portional code metrics by subtracting each value from 1.0
after normalization.

Feature Selection

In the first step, we select relevant code metrics out of avail-
able 20 code metrics in promise repository datasets. The
selection of relevant code metrics is very important to build
a software fault prediction model based on metrics threshold
values. Otherwise, irrelevant features can drastically reduce
the software fault prediction performance. Features can
be selected based on experimentation or feature selection
techniques.

In this work, we select the best features based on the fol-
lowing steps:

(1)	 The objective value (sum of specificity and sensitivity)
of each performance metric on each selected dataset is
calculated based on the ROC curve method.

(2)	 The average object value of each performance metric
on all selected datasets is taken to find the overall per-
formance of each performance metric on all selected
datasets.

(3)	 After finding the average of objective values of all
performance metrics on selected datasets, metrics are
arranged in decreasing order based on average objec-
tive values because our objective function is a maximi-
zation function.

(4)	 After sorting features in decreasing order, features are
eliminated from lower to higher ranks based on their
performance. In each iteration, the lowest-ranked fea-
ture (with the lowest objective value) is eliminated,
and after eliminating the lowest-ranked feature, the
combined objective value of the remaining features is
calculated and compared with the performance of the
previous objective value. If performance is degraded,
then we stop further feature elimination.

Figure 2 shows the forth stem of the above procedure
for the selection of features. In Fig. 2, obj represents the
objective value of the feature set in the current iteration
and objprev represents the objective value of the feature set
in the previous iteration. Initially, objprev is set to 0 and
feature set contains all 20 features arranged in descending
order of ROC value. Ɛ is a small constant value that is set
to 0.01 in our case.

Fig. 2   Feature set selection
based on iterative feature
elimination

Feature-set with their objective values

Calculate objective value ()

< − ɛ

Save current feature-set

And set =

Eliminate lowest ranked feature

Return saved feature-set
Y

N

	 SN Computer Science (2023) 4:770 770   Page 6 of 12

SN Computer Science

Objective Function

Our objective is to maximize the sum of sensitivity and
specificity. Sensitivity also called true positive rate (TPR),
is used to check the number of correctly classified instances
as positive out of total positive instances. Specificity also
called true negative rate (TNR), is used to check the number
of correctly classified instances as negative out of total nega-
tive instances. Sensitivity and specificity can be calculated
based on Eqs. (1) and (2) [28].

Threshold values are used to differentiate the positive and
negative classes, so we need to maximize the sum of sensi-
tivity and specificity, as shown in Eq. (3).

(1)Sensitivity (TPR) =
TP

TP + FN

(2)Specificity (TNR) =
TN

TN + FP

(3)Objective function =

(

TP

TP + FN
+

TN

TN + FP

)

Class with metric value greater than threshold for at
least one metric is considered as faulty otherwise class is
considered as healthy. Value of objective function can vary
between 0 and 2.

Metaheuristic Algorithms

Any metaheuristic algorithm can optimize the objective
function in Eq. (3). This research article uses a genetic algo-
rithm (GA) and PSO (particle swarm optimizer) to optimize
this objective function.

In the genetic algorithm, chromosome size is equals
to the number of code metrics to detect threshold values.
Each chromosome element represents the threshold value
of the corresponding code metric, and each element must

contain a value between 0 and 1 because each code met-
ric is normalized between 0 and 1. A population of 20
chromosomes is generated in the first step of the algo-
rithm. After generating the population, in the second step,
the value of the objective function is calculated based on
Eq. (3). To calculate the objective value, first, we need
to calculate the value of specificity and sensitivity. Class
with at least one metric value greater than the threshold
value is considered faulty in calculating the sensitivity
and specificity. After finding each chromosome's objec-
tive value, the chromosomes are sorted based on the high
to low objective value. The best two chromosomes are
selected, and a binary crossover is applied to generate the
offspring. The best chromosome and its objective value
are stored as the global optimum value. The mutation is
performed to add randomization with a mutation probabil-
ity of 0.1. After a hundred iterations of the algorithm, the
best chromosome is returned, representing the threshold
values of code metrics that can be used for software fault
prediction. Algorithm 2 represents the overall steps of the
genetic algorithm.

Algorithm 2: Pseudo code of GA based threshold calculation

Input:
: Training Samples ∈ ℝ ∗
: Class labels ∈ { , }

Step 1: Initialize random population.

Step 2: calculate the objective value of each chromosome.

Step 3: find two best chromosomes with maximum value of objective function.

Step 4: Apply binary crossover on best selected chromosomes.

Step 5: Identify the best objective value out of all four candidates. (two parents and two offspring)

Step 6: Update the global objective value and save the chromosome with best objective value.

Step 7: repeat steps 2 to 6 hundred times.
Step 8: return best chromosome after 50 iterations.

Twenty random particle positions are initialized
between 0 and 1 in the particle swarm optimizer. Each
particle's size equals the number of code metrics in the
feature set. All particles’ velocities are initialized between
– 0.5 and 0.5 for each particle. Global best objective value
and local best objective values are initialized to 0. Global
best particle position and local best particle position are
empty initially.

After initialization, in the second step objective value
of each particle is calculated based on Eq. (3) in a similar
way as that calculated in the genetic algorithm. Local best
value and global best value of fitness function are stored.
The best particle with the best global value is also saved.
In the next step, the velocity and position of each particle
are updated based on Eqs. (4) and (5) [29].

SN Computer Science (2023) 4:770 	 Page 7 of 12  770

SN Computer Science

While calculating the new position of the particle, if
the value of any element of the particle goes beyond the
range of the code metrics, which is between 0 and 1 in our
case, then reinitialize that element of the particle randomly
between 0 and 1.

Global best objective value and particle are returned
after a hundred iterations. The global best particle rep-
resents the optimal threshold values of the features used
for software fault prediction. Algorithm 3 shows the over-
all steps of the PSO algorithm applied to select optimal
threshold values.

(4)
v
i(t + 1) = w × v

i(t) + c1r1

(

besti
local

− X
i(t)

)

+ c2r2

(

bestglobal − X
i(t)

)

(5)X
i(t + 1) = X

i(t) + v
i(t + 1)

Algorithm 3: Pseudo code of PSO based threshold calculation

Input:
: Training Samples ∈ ℝ ∗
: Class labels ∈ { , }

Step 1: Initialize twenty particles and their velocities randomly.

Step 2: calculate the objective value of each particle based on equation (3).

Step 3: Save the global best particle and its objective value.

Step 4: Save the local best objective value and local best particle.

Step 5: update the velocity of each particle based on equation (4).

Step 6: update the position of each particle based on equation (5).

Step 7: reinitialize particle if value cross the lower bound or upper bound.

Step 8: repeat step 2 to 7 hundred times.

Step 9: return global best objective value and particle.

Results and Discussion

This section of the research article shows the results of the
experiments performed on selected datasets. Experimenta-
tion is done on an HP Pavilion laptop with 8 GB RAM and
a corei5 processor.

Datasets

Table 2 shows the selected datasets for our experimentation.
Datasets are downloaded from the PROMISE repository [27]
and selected based on recent studies [30–34]. Datasets are
divided into two categories in Table 2. The first ten datasets are
created based on object-oriented code metrics, and the last four
datasets are created based on procedural code metrics because

the last four software are developed in a procedural program-
ming language. Datasets of software developed in object-ori-
ented programming language contain 20 features each, which
are WMC, CBO, RFC, LOC, LCOM, LCOM3, DIT, NOC,
CA, CE, MAX_CC, AVG_CC, NPM, MOA, MFA, DAM,
CAM, IC, and AMC. Datasets of software developed in proce-
dural programming language contains 28 code metrics which
are total_loc, blank_loc, comment_loc, code_and_comment_
loc, executable_loc, unique_operands, unique_operators, total_
operands, total_operators, halstead_vocabulary, halstead_
length, halstead_volume, halstead_level, halstead_difficulty,
halstead_effort, halstead_error, halstead_time, branch_count,
decision_count, call_pairs, condition_count, multiple_con-
dition_count, cyclomatic_complexity, cyclomatic_density,
decision_density, design_complexity, design_density, normal-
ized_cyclomatic_complexity, formal_parameters.

This research article uses only six features for datasets
of software developed in object-oriented programming lan-
guages: WMC, LOC, CBO, RFC, DIT, and LCOM because
these six features provide the best results based on threshold

Table 2   Datasets used to perform experiments

Datasets Instances Features Fault percentage

Lucene-2.4 340 20 59.70
Jedit-4.0 306 20 24.50
Ant-1.6 351 20 26.21
Jedit-4.1 312 20 25.32
Ivy-1.4 241 20 6.63
Camel-1.4 872 20 16.62
Ivy-2.0 352 20 11.36
Ant-1.5 293 20 10.92
Poi-3.0 442 20 63.57
Lucene-2.2 247 20 58.29
Ar3 63 28 12.69
Ar4 107 28 18.69
Ar5 36 28 22.22
Ar6 101 28 14.85

	 SN Computer Science (2023) 4:770 770   Page 8 of 12

SN Computer Science

values compared to datasets with the existing 20 features. For
datasets of software developed in the procedural program-
ming language, selected code metrics are halstead_volume,
cyclomatic_complexity, cyclomatic_density, decision_density,
design_density, and normalized_cyclomatic_complexity. Each
dataset is divided into a 67–33% ratio. 67% data is used to find
the threshold values, and the remaining 33% is used to test the
performance. Each experiment is performed ten times on each
dataset, and averages and standard deviations are collected to
compare the techniques.

Performance Metrics

Accuracy, sensitivity, and specificity performance metrics
are selected to compare the performance. Accuracy is used
to show the overall performance of the model. Specificity and
sensitivity check how well the proposed approach differenti-
ates the classes in binary classification problems. Accuracy,
sensitivity, and specificity can be calculated based on Eqs. (6),
(7), and (8) [28].

(6)Accuracy =
TP + TN

TP + TN + FP + FN

(7)Sensitivity =
TP

TP + FN

(8)Specificity =
TN

TN + FP

Parameter Configuration

(1)	 ROC: step size = 0.0001
(2)	 GA: iterations = 100, population size = 20, crosso-

ver = binary, mutation rate = 0.1
(3)	 PSO: iterations = 100, c

1
= c

2
= 1 , number of parti-

cles = 20

Performance Comparison

This section of the research article compares the proposed
threshold based software fault prediction technique with an
existing technique based on Accuracy, specificity, and sen-
sitivity performance metric.

Selection of Features

Selection of good features is important while predicting
software faults based on metric threshold values; otherwise,
prediction accuracy drops drastically.

Table 3 shows the accuracy comparison of different
threshold selection techniques with all features and selected
features. Selected features are WMC, CBO, RFC, LCOM,
LOC, and DIT for object-oriented software and halstead_
volume, cyclomatic_complexity, cyclomatic_density, deci-
sion_density, design_density, and normalized_cyclomatic_
complexity for procedural software. It is not necessary that
for all datasets, the selected feature set will be the same. It
may differ for different datasets depending upon the initial
feature set and values of the features. But, we can select the
optimal set of features based on the algorithm presented in
"Normalization".

Table 3   Accuracy comparison
of selected features with all
features

Boldface letters show the best results

Datasets ROC GA PSO

Selected All Selected All Selected All

Lucene-2.4 0.64336 0.58359 0.66106 0.60796 0.66017 0.62300
Jedit-4.0 0.54851 0.34257 0.69009 0.44131 0.70396 0.44253
Ant-1.6 0.44137 0.28534 0.76810 0.58331 0.74827 0.58121
Jedit-4.1 0.54951 0.36796 0.70388 0.46944 0.69902 0.46578
Ivy-1.4 0.34249 0.18875 0.69000 0.48972 0.63125 0.48738
Camel-1.4 0.375 0.17187 0.62256 0.47765 0.62013 0.47143
Ivy-2.0 0.45982 0.14188 0.74273 0.54115 0.73162 0.54236
Ant-1.5 0.33195 0.16288 0.81443 0.56281 0.81443 0.55345
Poi-3.0 0.68356 0.57341 0.75684 0.65684 0.73835 0.64383
Lucene-2.2 0.6 0.57895 0.56707 0.55731 0.53780 0.56780
Ar3 0.23809 0.14285 0.65238 0.20952 0.58095 0.21904
Ar4 0.31388 0.19166 0.725 0.21944 0.64166 0.21388
Ar5 0.37500 0.23333 0.72499 0.30833 0.65833 0.29999
Ar6 0.23823 0.16470 0.64117 0.28235 0.57941 0.23823
Average 0.43862 0.29498 0.69716 0.45765 0.66752 0.45356

SN Computer Science (2023) 4:770 	 Page 9 of 12  770

SN Computer Science

Prediction accuracy with all features is very low, as
shown in Table 3. So, choosing good features to achieve
acceptable results is super important. The best values are
shown in boldface letters in Table 3.

In the case of ROC-based software fault prediction,
selected features give approximately 14% improvement;
in the case of GA-based software fault prediction, selected
features give 24% improvement; and in the case of PSO-
based software fault prediction, selected features give a 21%
improvement in accuracy. However, prediction results based
on the ROC curve and selected features are poor and below

the acceptable range of 0.6 [1]. In the case of GA and PSO,
achieved performance is above the acceptable range, and GA
gives 3% better results than PSO.

Based on Table 3, it can be concluded that selected fea-
tures give a significant improvement in the performance
of the threshold-based software fault prediction. Further,
metaheuristic algorithms provide better relative threshold
values of selected features than ROC, and in the case of
metaheuristic, GA provides better results than PSO.

Accuracy Comparison

Table 4 presents the accuracy comparison of metaheuristic
algorithms-based threshold detection technique with ROC-
based threshold detection technique. The average accuracy
and standard deviation with the ‘ ± ’ sign of 10 runs are
shown in Table 4. The best results are shown in boldface
letters. GA gives the best results for 12/14 datasets. Out of
the remaining two datasets, for Lucene-2.2, ROC gives the
best results, and for Jedit-4.0, PSO gives the best results.

On average, ROC achieves 43% accuracy based on selected
features that are poor to apply for real-life projects. On the
other hand, metaheuristic-based selected threshold values
achieve accuracy greater than 60%, which is acceptable. PSO-
based thresholds achieve 66% average accuracy, which is not
bad, and GA-based threshold values achieve 69% average
accuracy, considered good and better 2% than PSO.

Figure 3 compares the accuracy of different threshold-
based software fault prediction techniques. The red line
shows the results of ROC-based threshold values, the Blue
line shows the accuracy of PSO-based threshold values, and
the green line shows the accuracy achieved by GA-based
threshold values.

Table 4   Accuracy comparison of metaheuristic algorithms with ROC
based threshold

Boldface letters show the best results

Datasets ROC GA PSO

Lucene-2.4 0.64336 ± 0.0319 0.66106 ± 0.0349 0.66017 ± 0.0398
Jedit-4.0 0.54851 ± 0.0458 0.69009 ± 0.0554 0.70396 ± 0.0382
Ant-1.6 0.44137 ± 0.0272 0.76810 ± 0.0323 0.74827 ± 0.0423
Jedit-4.1 0.54951 ± 0.0421 0.70388 ± 0.0462 0.69902 ± 0.0694
Ivy-1.4 0.34249 ± 0.1114 0.69000 ± 0.0693 0.63125 ± 0.0859
Camel-1.4 0.375 ± 0.0195 0.62256 ± 0.0407 0.62013 ± 0.0434
Ivy-2.0 0.45982 ± 0.0741 0.74273 ± 0.0448 0.73162 ± 0.0544
Ant-1.5 0.33195 ± 0.0535 0.81443 ± 0.0586 0.81443 ± 0.0470
Poi-3.0 0.68356 ± 0.0304 0.75684 ± 0.0254 0.73835 ± 0.0277
Lucene-2.2 0.6 ± 0.0525 0.56707 ± 0.0460 0.53780 ± 0.0524
Ar3 0.23809 ± 0.0928 0.65238 ± 0.0953 0.58095 ± 0.0791
Ar4 0.31388 ± 0.0735 0.725 ± 0.0601 0.64166 ± 0.0997
Ar5 0.37500 ± 0.1003 0.72499 ± 0.0916 0.65833 ± 0.1145
Ar6 0.23823 ± 0.0517 0.64117 ± 0.0506 0.57941 ± 0.0921
Average 0.43862 0.69716 0.66752

Fig. 3   Accuracy comparison of ROC, GA, and PSO based threshold
detection techniques

Table 5   Sensitivity comparison

Boldface letters show the best results

Datasets ROC GA PSO

Lucene-2.4 0.92853 0.66298 0.63942
Jedit-4.0 0.89383 0.66744 0.68768
Ant-1.6 0.91563 0.72010 0.75500
Jedit-4.1 0.90565 0.72872 0.73511
Ivy-1.4 0.93333 0.53154 0.70142
Camel-1.4 0.94373 0.64654 0.65913
Ivy-2.0 0.92896 0.71605 0.70954
Ant-1.5 0.89883 0.63514 0.59432
Poi-3.0 0.96649 0.78911 0.76300
Lucene-2.2 0.98872 0.58419 0.51002
Ar3 1.0 0.76666 0.80666
Ar4 0.97638 0.75952 0.77186
Ar5 1.0 0.86833 0.775
Ar6 0.95833 0.72880 0.47027

	 SN Computer Science (2023) 4:770 770   Page 10 of 12

SN Computer Science

The green line and blue line are almost overlapping each
other. However, there is a slight difference between the
green and blue lines, and we can say GA performs better
than PSO because the green line is slightly above the blue
line. Both GA and PSO outperform the ROC method, as
shown in Fig. 3.

So, it is clear from Fig. 3 that the results of GA and PSO
are comparable. However, GA gives slightly better results
than PSO. The results of PSO and GA are far better than
ROC based threshold detection technique.

Other Metrics Comparison

Table 5 shows the sensitivity comparison of ROC, GA, and
PSO-based threshold detection techniques over selected
datasets. It is clear from Table 5 that ROC based thresh-
old detection technique provides better sensitivity than the
metaheuristic algorithms-based technique. Sensitivity, also
called true positive rate, is better for ROC in the case of all
datasets. But based on only a true positive rate, we can’t
say ROC-based threshold values develop a better model. We
need to consider the true negative rate also.

Table 6 presents the comparison of the specificity of dif-
ferent threshold detection techniques. In the case of 9/14
datasets, GA gives better results, and PSO gives better
results for the remaining five datasets. The metaheuristic
algorithms-based technique for all ten datasets gives better
results than the ROC-based threshold detection technique.
However, based on only the true negative rate, we cannot
conclude that the metaheuristic-based threshold provides a
better software fault prediction model. We need to consider
both the true positive and negative rates.

Figure 4 compares the specificity and sensitivity trade-
offs of different threshold detection techniques. In the case
of sensitivity, ROC gives better results, and in the case of
specificity, the metaheuristic algorithms-based technique
gives better results. However, metaheuristic algorithms
give better results than ROC if we compare the sensi-
tivity and specificity trade-offs. The results of different
metaheuristic algorithms are comparable.

In Fig. 4, the red line shows the performance of ROC-
based threshold values, the green line shows the perfor-
mance of GA-based threshold values, and the blue line
shows the performance of PSO-based threshold val-
ues. The blue and green lines are above the red lines
in the graph. So, based on Fig. 4, we can conclude that
metaheuristic-based threshold values are better than ROC
for developing a good software fault prediction model.

Threat to Validity

This study compares the metaheuristic-based threshold
values with ROC-based threshold values for software fault
prediction. We used fourteen open-source software, ten
developed in object-oriented programming, and four devel-
oped in procedural programming. However, threshold-based
fault prediction models' performance depends on features
extracted from the code. We compare results based on only
20 object-oriented and 28 procedural code metrics, but many
code metrics exist in the literature, and the model's perfor-
mance can vary with changes in input features.

Table 6   Specificity comparison

Boldface letters show the best results

Datasets ROC GA PSO

Lucene-2.4 0.21972 0.65932 0.69360
Jedit-4.0 0.43100 0.69827 0.70978
Ant-1.6 0.27694 0.78905 0.74479
Jedit-4.1 0.43324 0.69278 0.69006
Ivy-1.4 0.30563 0.70008 0.62882
Camel-1.4 0.25480 0.61640 0.61272
Ivy-2.0 0.40041 0.74738 0.73531
Ant-1.5 0.26417 0.83850 0.84512
Poi-3.0 0.20627 0.69872 0.69887
Lucene-2.2 0.03109 0.55273 0.59656
Ar3 0.13614 0.63630 0.54837
Ar4 0.17246 0.71165 0.61476
Ar5 0.16847 0.67117 0.61454
Ar6 0.12666 0.63035 0.58678

Fig. 4   Trade-off between sensitivity and specificity

SN Computer Science (2023) 4:770 	 Page 11 of 12  770

SN Computer Science

Second, we cannot say that the threshold values decided
in this research article are universal because the experiment
is done on a small set of datasets.

Third, thresholds decided by metaheuristic algorithms are
not perfect. Metaheuristics always gives approximate solu-
tions. However, performance is better than the ROC-based
technique, and properly tuned algorithms can achieve good
results.

Conclusion

In this research article, we propose a new method based
on metaheuristic algorithms to find the threshold values of
software code metrics for software fault prediction. GA and
PSO are used to find the threshold values, and performance
is compared with ROC-based threshold values. In the first
experiment, useful code metrics are selected based on exper-
imentation out of available 20 object-oriented code metrics
and 28 procedural code metrics because bad code metrics
can drastically reduce the prediction performance of thresh-
old-based software fault prediction models. In the second
experiment, threshold values of selected code metrics are
detected and used for software fault prediction. Accuracy,
sensitivity, and specificity performance metric results are
compared with ROC curve-based threshold detection tech-
niques. Results show that metaheuristic algorithms give bet-
ter threshold values for software fault prediction.

In the future, we will compare the performance of more
metaheuristic algorithms for better and fast convergence
and use threshold values for cross-project software fault
prediction.

Data Availability  Data will be made available on reasonable request to
corresponding author.

Declarations 

Conflict of Interest  The authors declare that they have no conflict of
interest.

References

	 1.	 Boucher A, Badri M. Software metrics thresholds calculation
techniques to predict fault proneness: an empirical comparison.
Inf Softw Technol. 2018;96:38–67.

	 2.	 Chidamber SR, Kemerer CF. A metrics suite for object oriented
design. IEEE Trans Softw Eng. 1994;20(6):476–93.

	 3.	 Shatnawi R, Li W, Swain J, Newman T. Finding software met-
rics threshold values using ROC curves. J Softw Maint Evol.
2010;22(1):1–16.

	 4.	 Shatnawi R. A quantitative investigation of the acceptable risk
levels of object oriented metrics in open-source systems. IEEE
Trans Softw Eng. 2010;36(2):216–25.

	 5.	 Gyimothy T, Ferenc R, Siket I. Empirical validation of object-
oriented metrics on open source software for fault prediction.
IEEE Trans Softw Eng. 2005;31(10):897–910.

	 6.	 Malhotra R, Jain A. Fault prediction using statistical and machine
learning methods for improving software quality. J Inf Process
Syst. 2012;8(2):241–62.

	 7.	 Jureczko M, Madeyski L. Towards identifying software project
clusters with regard to defect prediction. In: Proceedings of the
6th International Conference on Predictive Models in Software
Engineering - PROMISE ’10, 2010. p. 1.

	 8.	 Kaur A, Kaur K. Performance analysis of ensemble learning for
predicting defects in open source software. In: 2014 International
Conference on Advances in Computing, Communications and
Informatics (ICACCI), 2014. pp. 219–225.

	 9.	 Yu L. Using negative binomial regression analysis to predict soft-
ware faults: a study of Apache ANT. Int J Inf Technol Comput Sci.
2012;4(8):63–70.

	10.	 Dejaeger K, Verbraken T, Baesens B. Toward comprehensible
software fault prediction models using Bayesian network classi-
fiers. IEEE Trans Softw Eng. 2013;39(2):237–57.

	11.	 Catal C, Sevim U, Diri B. Clustering and metrics thresholds based
software fault prediction of unlabeled program modules. In: ITNG
2009 - 6th International conference on information technology:
new generations, 2009. pp. 199–204.

	12.	 Abaei G, Selamat A, Fujita H. An empirical study based on semi-
supervised hybrid self-organizing map for software fault predic-
tion. Knowl Based Syst. 2014;74:28–39.

	13.	 Shatnawi R. Improving software fault-prediction for imbalanced
data. In: 2012 International Conference on Innovations in Infor-
mation Technology, IIT 2012, 2012. pp. 54–59.

	14.	 Henderson-Sellers B. Object-oriented metrics: measures of com-
plexity. Prentice-Hall, Inc; 1995.

	15.	 Daly J, Brooks A, Miller J, Roper M, Wood M. Evaluating inherit-
ance depth on the maintainability of object-oriented software. J
Empir Softw Eng. 1996;1(2):109–32.

	16.	 Cartwright M. An empirical view of inheritance. Inf Softw Tech-
nol. 1998;40(4):795–9.

	17.	 Emam K, Benlarbi S, Goel N, Rai S. The confounding effect of
class size on the validity of object-oriented metrics. IEEE Trans
Softw Eng. 2001;27(7):630–48.

	18.	 El Emam K, Benlarbi S, Goel N, Melo W, Lounis H, Rai S. The
optimal class size for object-oriented software. IEEE Trans Softw
Eng. 2002;28(5):494–509.

	19.	 Erni K, Lewerentz C. Applying design-metrics to object-oriented
frameworks. In: Proceedings of the third international symposium
on software metrics: from measurement to empirical results, 1996;
64–74.

	20.	 Bender R. Quantitative risk assessment in epidemiological studies
investigating threshold effects. Biom J. 1999;41(3):305–19.

	21.	 Alves TL, Ypma C, Visser J. Deriving metric thresholds from
benchmark data. In: 2010 IEEE International Conference on Soft-
ware Maintenance, 2010. pp. 1–10.

	22.	 McCabe T. A complexity measure. IEEE Trans Softw Eng.
1976;SE-2(4):308–20.

	23.	 Rosenberg LH (1998) Applying and interpreting object oriented
metrics. In: Software Technology Conference.

	24.	 Singh S, Kahlon KS. Object oriented software metrics
threshold values at quantitative acceptable risk level. Csit.
2014;2(3):191–205.

	25.	 Benlarbi S, El Emam K, Goel N, Rai S. Thresholds for object-
oriented measures. In: Proceedings 11th International Symposium
on Software Reliability Engineering. ISSRE 2000, IEEE Comput.
Soc, 2000. pp. 24–38

	 SN Computer Science (2023) 4:770 770   Page 12 of 12

SN Computer Science

	26.	 Catal C, Alan O, Balkan K. Class noise detection based on soft-
ware metrics and ROC curves. Inf Sci. 2011;181(21):4867–77.

	27.	 Boetticher G. The PROMISE repository of empirical software
engineering data, 2007. https://​cir.​nii.​ac.​jp/​all?q=​http://​promi​
sedata.​org/​repos​itory

	28.	 Canbek G, Sagiroglu S, Temizel TT, Baykal N. Binary classifica-
tion performance measures/metrics: A comprehensive visualized
roadmap to gain new insights. In: 2017 International Conference
on Computer Science and Engineering (UBMK), IEEE, 2017. pp.
821–826.

	29.	 Kennedy J, Eberhart R. Particle swarm optimization. In: Proceed-
ings of ICNN'95-international conference on neural networks, vol.
4. IEEE, 1995. pp. 1942–1948.

	30.	 Rathi SC, Misra S, Colomo-Palacios R, Adarsh R, Neti LBM,
Kumar L. Empirical evaluation of the performance of data sam-
pling and feature selection techniques for software fault predic-
tion. Expert Syst Appl. 2023;223: 119806.

	31.	 Sharma U, Sadam R. How far does the predictive decision impact
the software project? The cost, service time, and failure analy-
sis from a cross-project defect prediction model. J Syst Softw.
2023;195: 111522.

	32.	 Feng S, Keung J, Zhang P, Xiao Y, Zhang M. The impact of the
distance metric and measure on SMOTE-based techniques in soft-
ware defect prediction. Inf Softw Technol. 2022;142: 106742.

	33.	 Arar ÖF, Ayan K. Deriving thresholds of software metrics to pre-
dict faults on open source software: replicated case studies. Expert
Syst Appl. 2016;61:106–21.

	34.	 Nevendra M, Singh P. Empirical investigation of hyperparameter
optimization for software defect count prediction. Expert Syst
Appl. 2022;191: 116217.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://cir.nii.ac.jp/all?q=http://promisedata.org/repository
https://cir.nii.ac.jp/all?q=http://promisedata.org/repository

	Improved Software Fault Prediction Model Based on Optimal Features Set and Threshold Values Using Metaheuristic Approach
	Abstract
	Introduction
	Related Works
	Methodology
	ROC Curve Based Thresholds
	Metaheuristic Algorithms Based Thresholds
	Normalization
	Feature Selection
	Objective Function
	Metaheuristic Algorithms

	Results and Discussion
	Datasets
	Performance Metrics
	Parameter Configuration
	Performance Comparison
	Selection of Features
	Accuracy Comparison
	Other Metrics Comparison

	Threat to Validity
	Conclusion
	References

