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Abstract
A wireless sensor network (WSN) is a network of sensors deployed in a specific area to monitor environmental character-
istics. The primary objective is to collect and analyze the sensed data for deriving valuable information. Due to the limited 
memory, processing power, and battery capacity of sensors, all the data must be transmitted to the base station (BS) for 
further processing. Clustering is a commonly used method for data routing in WSNs. In this method, cluster heads (CHs) 
are responsible for aggregating the data within their clusters and transmitting it to the BS directly or through multi-hop 
transmission. However, the main challenges in this approach lie in achieving optimal CHs’ selection, efficient data routing, 
and load balancing. An unbalanced load among CHs can lead to hot-spot problem. To address these challenges, we propose 
a novel clustering algorithm called the Multi-Objective Unequal Optimal Clustering Algorithm for WSN (MOUOC). This 
algorithm combines fuzzy logic with a linear mathematical model, considering four essential sensor parameters: residual 
energy, average distance of nearby nodes, the standard deviation of the distance of nearby nodes, and the distance to the BS. 
MOUOC selects optimal CHs with appropriate cluster size and load balancing. It solves the hot-spot problem and operates 
in a distributed manner, enabling high scalability. The performance of MOUOC is evaluated against four existing models 
across three different scenarios. The comparative analysis demonstrates that MOUOC surpasses the performance of existing 
models in terms of energy efficiency and network lifespan.

Keywords Energy optimization · Sensors · Multi-objective optimization · Fuzzy Logic

Introduction

A wireless sensor network (WSN) is a network of sensors 
deployed in a specific area to monitor environmental char-
acteristics. Numerous industries, including the military, 
business, healthcare, intelligent buildings, traffic control, 
etc., use WSNs [1–4]. Some of the terminologies used in a 
standard WSN are given below:

WSN: Wireless sensors, which are distributed spatially, 
form a WSN [5]. The WSN consists of Cluster Heads (CHs), 
normal nodes, and the Base Station (BS). Here is a concise 
summary of these components [6].

Cluster heads: When using the clustering method of data 
transmission in a WSN, some sensors are chosen as CHs. 
The CHs obtain data from normal nodes and dispatch it to 
the BS after aggregating and processing.

Normal nodes: The term normal nodes or regular nodes 
refer to all the sensors in a cluster other than the CHs. The 
normal nodes transmit their data to their CHs.

Base station: The BS or sink node gathers all the sensed 
data of WSN for subsequent analysis. The data stored at 
the BS can be accessed from anywhere due to its Internet 
connectivity.

A WSN monitors a region to detect the occurrence of 
an event. Tiny sensors have limited battery life, computing 
power, and limited sensing capability [7–10]. Therefore, all 
crucial data must be gathered at the BS for further analy-
sis. Numerous models have been proposed for efficient data 

This article is part of the topical collection “Research Trends in 
Communication and Network Technologies” guest edited by Anshul 
Verma, Pradeepika Verma and Kiran Kumar Pattanaik.

 * Shivendra Kumar Pandey 
 shivaiert@gmail.com

 Buddha Singh 
 b.singh.jnu@gmail.com

1 School of Computer and Systems Sciences, Jawaharlal 
Nehru University, New Mehrauli Road, New Delhi 110067, 
India

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-02119-y&domain=pdf


 SN Computer Science           (2023) 4:671   671  Page 2 of 20

SN Computer Science

routing to BS. Clustering is among the most widely utilized 
techniques. In clustering, some normal nodes are chosen 
as CHs either randomly [1, 11] or based on some specific 
parameters, such as Residual Energy (RE), the distance to the 
BS, the local distance, the cluster density, etc., [12–19]. After 
the CHs are determined, the normal nodes join one of the CH 
to create the clusters. After the clusters are formed, normal 
nodes communicate with their CHs and forward the data. To 
generate a single packet, the CHs combine all of the received 
data with their own data [20] and transmit it to the BS either 
in a direct manner [1] or using multi-hop data transmission 
[3, 21]. However, in multi-hop transmission, the CHs closer 
to the BS experience higher data load, leading to early energy 
depletion, commonly known as the hot-spot problem [3].

To mitigate the hot-spot problem, it is essential to achieve 
load balancing among the CHs. Various methods have been 
proposed for selecting optimal CHs and balancing load 
among them. Fuzzy logic exhibits superior performance to 
other models, such as probability-based and linear math-
ematical models. The performance of fuzzy logic improves 
by increasing the input and output variables. However, as 
the number of input and output variables and fuzzy rules 
increases, the system’s complexity increases exponentially. 
A complex fuzzy model makes the system slow, energy-con-
suming (due to computational work) and hard to implement 
on actual sensors. Therefore, instead of a complex fuzzy 
system, we propose a model that uses a lightweight fuzzy 
system along with a mathematical model for selecting opti-
mal CHs and balancing load among them.

A lightweight fuzzy system is a fuzzy system with fewer 
input–output variables and fewer fuzzy rules. The lightweight 
fuzzy model reduces the complexity of traditional fuzzy mod-
els by minimizing the number of input–output variables and 
fuzzy rules. This streamlined approach brings several advan-
tages, such as improved overall efficiency and energy savings. 
The simplified structure also enables faster processing speeds, 
making it well suited for real-time applications. The model’s 
simplicity also facilitates easy implementation on actual sen-
sor, making it an ideal choice for various applications. The 
reduced input–output variables and reduced fuzzy rules limit 
the performance of lightweight fuzzy logic. To achieve com-
parable results with reduced input–output variables and fuzzy 
rules, we employ a linear mathematical model in conjunction 
with lightweight fuzzy logic. This mathematical model helps 
to overcome the limitations of the lightweight fuzzy model. 
By combining both approaches, we aim to achieve a more 
energy-efficient system with higher scalability. This means 
that the system can efficiently handle an increasing number of 
nodes or sensors without sacrificing performance. The signifi-
cant contributions of this paper are given below:

• In this research, we propose a novel technique for the 
selection of CHs by combining lightweight fuzzy logic 

with a linear mathematical model. The paper introduces 
several parameters for sensor nodes that will be utilized by 
fuzzy logic and linear mathematical model. The primary 
goal of the algorithm is to identify the most suitable CHs 
along with optimal cluster size, aiming to achieve optimal 
energy utilization and an extended network lifetime.

• The proposed algorithm requires less computational 
work, making it suitable for implementation on actual 
sensors. It operates in a distributed manner based on local 
competition, which leads to improved performance and 
scalability. Moreover, this approach effectively reduces 
computational complexity and communication costs 
compared to centralized CH selection methods.

• We also propose an energy-efficient hierarchical rout-
ing technique to enhance the data transmission process 
from the CHs to the BS. This algorithm aims to minimize 
energy consumption while ensuring timely data deliv-
ery to the BS. The proposed algorithm uses a multi-hop 
approach and strategically selects intermediate nodes to 
relay data between the CHs and the BS. By doing so, the 
algorithm reduces the overall energy consumption and 
extends the network lifetime.

• The proposed model is evaluated by comparing it with 
four existing algorithms in three different scenarios. 
These scenarios are carefully selected to investigate 
the effect of the position of the BS and the type of data 
transmission over uniformly distributed sensors. The 
comparison aims to demonstrate the superiority of our 
proposed approach in terms of performance metrics, such 
as network lifetime, energy efficiency, etc.

The rest of the paper is structured as follows: The state 
of the art is described in the section Related work”. The 
assumptions and parameters used in our model are com-
prehensively described in the section “Assumptions, param-
eters, and energy consumption model”. The proposed model 
is described in the section “Proposed work”. The section 
“Experiment and results” compares the results with four 
well-known models in three different scenarios and analyses 
them. The section “Conclusion and future work” outlines the 
conclusion and its future scope. The references used in this 
paper are included in the last.

Related Work

To increase the energy efficiency of WSNs, numerous meth-
ods have been developed. The most often used hierarchical 
clustering-based technique is LEACH [1]. In LEACH, the 
probabilistic model is used for CHs’ selection. If the prob-
ability of a node is less than a predefined threshold, it will be 
selected as a CH. Once a node is elected as the CH, it cannot 
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be considered again unless all other nodes are selected as the 
CH. Equation (1) is used to determine the specified threshold 
value of probability in LEACH

The calculated threshold value for round r is T(n). The 
symbol � represents the CHs’ percentage in the network. G 
represents the group of sensor nodes that were not chosen 
as CHs in previous 1∕� rounds, and r represents the current 
round. LEACH has several limitations [22]. When choos-
ing CHs, LEACH does not contemplate other factors like 
RE, sensor location, or sensor distribution. These param-
eters should be taken into account while selecting optimal 
CHs. These metrics are taken into account by several other 
algorithms. Similar to LEACH, EECS employs the RE of 
the node to choose the CHs to prolong the network lifetime 
[14]. The CHs are determined in HEED [23] based on prob-
ability. However, a node with higher RE is more likely to 
succeed. To address the issue of hot-spot, Energy Efficient 
Uneven Clustering (EEUC) [21] proposes the idea of une-
qual clustering. In EEUC, a predetermined number of nodes 
are initially chosen as the possible CHs. These possible CHs 
have different competition radii based on their distance to 
BS. A possible CH will be selected as final CH if it has the 
highest RE among other possible CHs within its competi-
tion radius. For the selection of CHs, RE is also employed 
in the studies cited in [24, 25]. These models do not take 
into account additional factors like the distance to the sink, 
the distribution of nodes, the average energy, the average 
distance between nodes, etc. Therefore, these models might 
choose inefficient CHs.

Evolutionary algorithms (EAs) have been widely used in 
WSNs for optimization and decision-making tasks due to 
their ability to handle complex and dynamic problems. Some 
EAs-based popular models are discussed here. Singh et al. 
[26] utilize the particle swarm optimization (PSO) approach 
to select CHs by incorporating distance, energy, node 
degree, and headcount as parameters into its fitness function. 
PSO is employed in several other algorithms, including [18, 
27–29] by considering various parameters of sensors. For 
the purpose of choosing the CHs, the Firefly and Gray Wolf 
search-based approach is proposed in [19]. Sahoo et al. [30] 
proposed an improved bat algorithm for unequal clustering 
and efficient routing. In [31], the concept of a mobile sink 
is proposed for efficient data collection. It uses the PSO-
GA algorithm to find the optimal position for the sink. The 
authors of [32] propose a clustering algorithm by combining 
hybrid PSO and firefly algorithm. Multi-Criteria Decision-
Making (MCDM) is also employed in several algorithms. 
The MCDM techniques, such as AHP, ANP, TOPSIS, etc., 
are used in various models to select optimal CHs. In [33, 

(1)T(n) =

{ �

1−�
(

r mod
1

�

) , if n ∈ G

0, otherwise.

34], 7 and 12 criteria are used to determine the CHs using 
AHP and TOPSIS. The TOPSIS method is also used in 
[35–37] for efficient CHs’ selection. EAs have a downside 
in that they demand extensive computational resources and 
a significant amount of data. Consequently, they can only be 
implemented at a centralized level (at BS), limiting the pos-
sibility of distributed CH selection algorithms. In contrast, 
there are alternative algorithms, such as fuzzy logic, that 
necessitate fewer data and computation, thus facilitating the 
use of distributed CH selection algorithms.

The fuzzy logic has been widely used in WSN to address 
issues related to imprecision and uncertainty in sensor data, 
energy efficiency, routing protocols, and many other aspects 
of WSN design and operation. In CHEF [38], fuzzy logic is 
used with parameters RE and local distance to calculate the 
CHs. In [3], the authors utilize fuzzy logic to compute the 
competition radius, incorporating input membership func-
tions, such as RE, distance to BS, and density. After cal-
culating the competition radius, the node with the highest 
RE is chosen as the CHs. In [2], closeness to CH and RE is 
used to calculate the chance of a node becoming CH using 
fuzzy logic. In [39], hierarchical clustering is used for the 
selection of CHs and super CHs using the mobility of BS, 
centrality, and RE. In [40], competition radius of tentative 
CH is calculated using the RE of the node and distance to 
BS. Each member node will compete with other tentative 
nodes to become CH in its competition radius. If node i 
has the highest energy among the tentative nodes within its 
competition radius, it will win and become CH.

In [41], a fuzzy-topsis technique based on MCDM is 
proposed for the election of CHs with five parameters. In 
[42], RE, distance, and density are used with fuzzy logic 
to calculate the competition radius. In the FBECS [43], the 
authors utilize variables, namely, RE, distance from the 
sink, and node density, to assess the eligibility of a node to 
become a CH using fuzzy logic. They establish three lin-
guistic variables for RE, three for distance from the sink, 
and three for density, leading to 27 fuzzy rules. The sensing 
area in FBECS is divided into four equal regions based on 
their distance from the BS. Each region is assigned a fixed 
probability that determines the threshold value for CH selec-
tion. Notably, nodes in closer proximity to the BS have higher 
probabilities, while those in farther regions have lower prob-
abilities. Consequently, there are a greater number of CHs 
with smaller cluster sizes in the vicinity of the BS, while the 
regions farther away have fewer CHs with larger cluster sizes. 
By dynamically adjusting the cluster size, FBECS aims to 
distribute the load among the CHs, thereby enhancing energy 
optimization and prolonging the lifetime of the WSN.

In the HROCF [44], the authors employ three fuzzy input 
variables: RE, cost, and position, to determine the most suit-
able CHs. They establish five linguistic variables for RE, 
three for cost, and three for distance, leading to 45 fuzzy 
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rules. By considering these variables and applying the asso-
ciated rules, HROCF aims to select optimal CHs. From the 
literature survey, we observed that the most existing models, 
including FBECS [43] and HROCF [44], suffer from a com-
mon issue. While they attempt to select the best CHs by con-
sidering various parameters and employing different opti-
mization models, they fail to address the combined aspects 
of load balancing among normal nodes, load balancing 
among CHs, and maintaining an optimal distance between 
the CHs. Consequently, not maintaining an optimal distance 
between the CHs can result in some CHs being located too 
close to each other sometimes, and sometimes, they may 
be positioned far apart. This inconsistency in CHs place-
ment can lead to higher energy consumption during data 
transmission. Considering a higher number of parameters, 
incorporating more membership functions and fuzzy rules 
introduces complexities, increases energy consumption in 
computation work, and becomes less practical to implement 
on actual sensors, thereby diminishing its overall feasibility.

Hence, our objective is to develop a model that selects 
the optimal CHs, promotes higher scalability, and considers 
minimal energy consumption from CHs and normal nodes 
during data transmission. Furthermore, this model aims to 
ensure an optimal distance between CHs based on the cir-
cumstances. By achieving these goals, we aim to minimize 
the overall energy consumption in WSNs. For a comprehen-
sive understanding of our proposed and existing models, we 
provide a summary of essential points in Table 1.

The subsequent subsection provides a detailed discussion 
of the assumptions, parameters, and energy consumption 
model used in our proposed model.

Assumptions, Parameters, and Energy 
Consumption Model

This section will provide the foundation for our proposed 
work (discussed in the section “Proposed work”). This sec-
tion has been divided into four parts. In the first part, we 
discussed the assumptions we made while developing our 
model. These assumptions helped us to model the real-
world problem and form a basis for our approach. In the 
second part, we explained how energy consumption is mod-
eled and considered in our work, providing insights into the 
factors and mechanisms involved. Moving on to the third 
part, we explain all the parameters used in our algorithm. 
Finally, in the fourth part, we discussed the communication 
messages employed in our proposed algorithm. Each part 
of this section has been described sequentially, offering a 
detailed explanation of the respective topic.

Assumptions

We have considered several assumptions for our proposed 
model. These assumptions help to model the real-world 
problem and form a basis for our approach. These assump-
tions are given below:

• All the sensors are identical.
• All the sensors are deployed randomly.
• There is only one stationary sink node.
• Sensor nodes can transmit data at different energy levels.

Table 1  Comparison of different algorithms based on various criteria

Model name CH selection Topology Objective Parameter used Scalability Complexity

LEACH [1] Random Single-hop Energy optimization None Low Low
LEACH-C [45] Random Single-Hop Energy optimization RE Low Medium
HEED [23] Random Single-hop Energy optimization RE, node degree Medium Medium
TEEN [46] Random Multi-hop Energy optimization None Low High
PEGASIS [47] Random Multi-hop Energy optimization None (chain based routing) Medium High
EECS [14] Random Single-hop Energy optimization RE Low Low
EEUC [21] Random Single-hop Energy optimization RE Medium Low
EDCA [25] Random Single-hop Energy optimization RE Medium Low
CHEF [38] Random Single-hop Energy optimization RE, Local distance Medium Low
Yadav et al. [16] Random with election Single-Hop Energy optimization Position of nodes, commu-

nication range
Medium Low

MOFCA [3] Random with election Multi-hop Energy optimization RE, distance, density Medium High
FBECS [43] Random with election Multi-hop Energy optimization RE, distance, density Medium High
HROCF [44] Random with election Multi-hop Energy optimization, load 

balancing
RE, cost, position Medium High

MOUOC (proposed) Random with election Multi-hop Energy optimization, load 
balancing

RE, distance to BS, stand-
ard deviation of local 
distance

High Medium
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• The receiving signal strength can be used to calculate the 
distance between the sender and receiver.

• All nodes begin with an equal amount of initial energy.
• After the deployment, the position of sensor nodes does 

not change.
• Every sensor is within the communication range of BS.
• The BS is connected to the energy source.

These assumptions will help us simulate our proposed work. 
We have considered that the sensor nodes consume energy 
in several different activities. The activities and the energy 
consumed in each activity are discussed below.

Energy Consumption Model

One of the crucial components of our proposed model is the 
calculation of energy consumption, which is achieved by uti-
lizing the first-order radio model proposed in [1]. The sensor 
node’s energy is depleted as it performs various tasks, such 
as data transmission, data reception, and data aggregation. 
In the transmission phase, energy is consumed by transmitter 
electronics and signal amplification, while in the receiving 
phase, energy is only consumed by receiver electronics, as 
shown in Fig. 1.

Three categories can be used to classify energy 
consumption:

• Energy consumed in transmitting the data ( ETX(k, d)).
• Energy consumed in receiving the data ( ERX(k)).
• Energy consumed in aggregation of data ( Eaggr).

Energy consumed in transmitting the data ( ETX(k, d) ): To 
transmit k bits of data at a distance d, the energy consump-
tion ( ETX(k, d) ) will be in transmit electronics and signal 
amplification. The energy consumed in transmit electronics 
will be k ∗ Eelec , and the energy consumed in signal ampli-
fication will be k ∗ �fs ∗ d2 if d < d0 else k ∗ �mp ∗ d4 using 
first-order radio model [1]. The value of d0 is constant and 

can be calculated by Eq. (6). The formula for ETX(k, d) is 
derived in Eq. (2) [1]

Energy consumed in receiving the data ( ERX(k, d) ): The 
energy consumed in receiving k bit of data ( ERX(k) ) can be 
calculated by Eq. (3)

Energy consumed in aggregation of data ( Eaggr ): CHs aggre-
gate the received data with their data and transmit the packet 
to the sink. If there are m normal nodes in the cluster with 
packet size k bits, and aggregation ratio Raggr , the length of 
aggregated message laggr can be calculated by Eq. (4)

Energy consumption in data aggregation Eaggr is shown in 
Eq. (5)

Here:
ETX : Transmission Energy.
ERX : Energy consumed in receiving k bits.
k: No. of bits in one packet.
Eelec : The amount of energy needed to operate electronic 

circuitry per bit
EDA : The energy required to aggregate one bit of data.
�fs : The energy required to amplify a single bit of data 

using Radio Frequency (RF) when the transmission distance 
is less than do.

�mp : The energy required to amplify a single bit of data 
using RF when the transmission distance exceeds do . Here, 
do can be calculated as in Eq. (6) [1]:

(2)ETX(k, d) =

{

k ∗ Eelec + k ∗ 𝜖fs ∗ d2, if d < d0
k ∗ Eelec + k ∗ 𝜖mp ∗ d4, otherwise

.

(3)ERX(k) = k ∗ Eelec.

(4)laggr = m ∗ k ∗ Raggr + k.

(5)Eaggr = laggr ∗ EDA.

(6)do =

√

�fs

�mp

.

Fig. 1  Energy consumption 
model
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Thus, data receiving, compilation, and transmission will all 
require energy from CHs. The energy consumed by a CH 
with m normal nodes, k bit of packet size and Raggr aggrega-
tion ratio can be calculated by Eq. (7)

Here, ERX(k) can be calculated by Eq. (3), Eaggr can be cal-
culated by Eq. (5) and ETX(k, d) can be calculated by Eq. (2). 
The d is the distance from sender to receiver. The K is the 
packet size after aggregation. Normal nodes will consume 
energy only in data transmission to CH. If d represents the 
distance between a normal node and its CH, the energy 
consumed by the normal node in data transmission can be 
calculated by Eq. (2).

Utilized Parameters

We have utilized several parameters in our proposed model. 
These parameters will be used by our proposed model as input 
parameters for the computation of output parameters chance 
and competition radius. These parameters are explained below.

Residual energy (e): The residual energy of a node is the 
remaining amount of energy at the beginning of round r. In 
a homogeneous network, all nodes start with the same ini-
tial energy. However, due to varying amounts of energy con-
sumption in each round, the sensor nodes may have differing 
amounts of energy after a few rounds. Equation (8) can be used 
to determine the RE of a node i at round r

Here, er
i
 represents the RE on node i at the beginning of 

round r. The variable Eo
i
 represents the initial energy of the 

node i, and ek
ic

 represents the amount of energy consumed 
by node i in round k.

Average distance of nearby nodes ( davg ): The parameter davg 
represents the average of the distance of a node with the nodes 
within distance Ro . Here, Ro represents the maximum value of 
the competition radius. The davg is a non-beneficial parameter. 
It means that the lower value of davg is preferable. If there are 
n nodes within distance Ro and dj

CHi

 represents the distance 
between node j and member CH i, then the di

avg
 can be calcu-

lated by Eq. (9)

Standard deviation of the distance of nearby nodes ( Dsd ): 
The parameter Dsd denotes the standard deviation of the dis-
tances of nearby nodes that lie within a distance of Ro . If a 
node has a smaller value of Dsd , it is more likely to be chosen 

(7)ECH = ERX(k) ∗ m + Eaggr + ETX(K, d).

(8)er
i
= Eo

i
−

r−1
∑

k=1

ek
ic
.

(9)di
avg

=

∑n

j=1
d
j

CHi

n
.

as the CH. The value of parameter Dsd can be calculated by 
Eq. (10)

Here, di
avg

 represents the average distance from member CH 

i, and dj
CHi

 represents the distance between sensor node j and 
member CH i. The communication messages used in our 
proposed model are discussed below.

Communication Messages

We have used three types of messages in our model. These 
messages are used by sensor nodes during the CH selection 
process. These messages are explained below.

Member_CH_Msg(ID, C, R): This message is transmit-
ted within distance Ro by a sensor node if it is willing to 
participate in the CH selection process. Here, ID represents 
the unique integer identification number assigned to the sen-
sor node. The variables C and R represent the chance and 
competition radius of the node. A node with a higher C value 
is more likely to be selected as CH. The competition radius 
represents the area in which the sensor node is competing. 
If a sensor node was elected CH, no other node could be 
elected as CH in its R.

Final_CH_Msg(ID): Once a node gets elected as CH, it 
will transmit the message Final_CH_Msg(ID) in the distance 
Ro, so that all the other nodes competing for CH must leave 
the competition for the current round.

Quit_Election_Msg(ID): If a participating node i is 
within distance Ro of a winning node j, then it will transmit 
the message Quit_Election_Msg(ID) to inform all the other 
competitor nodes within R of i that it is quitting the competi-
tion for the current round.

A detailed explanation of the proposed work and algo-
rithms is given in the section “Proposed work”.

Proposed Work

In this section, we provide a comprehensive discussion of 
the CH selection, clustering, and multi-hop routing process 
of our proposed model, MOUOC. Our model operates in two 
distinct phases, each serving a specific purpose.

In the first phase, CHs are elected, and clustering is per-
formed. Among the sensor nodes, some nodes are chosen 
as CHs in each round. The remaining nodes are known as 
normal nodes. If the distance between normal nodes and 
the BS is less than a defined threshold, TNMAX , the normal 

(10)Di
sd
=

�

∑n

j=1
(d

j

CHi

− di
avg

)2

n
.
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nodes transmit their data directly to the BS. However, if the 
distance exceeds TNMAX , the normal nodes join the nearest 
CHs to form clusters. Within each cluster, the normal nodes 
transmit their data to their respective CHs.

In the second phase, the data routing process takes 
place. The CHs receive the data from the normal nodes of 
their clusters. They preprocess and aggregate these data 
into a single packet before transmitting it to the BS. If the 
distance between a CH and the BS is less than a defined 
threshold, THMAX , the CH directly transmits the data to 

the BS. However, if the distance exceeds THMAX , the CH 
identifies the optimal intermediate node and transmits the 
data to it. This process continues until the data reach the 
BS. Once the data from all the sensors have reached the 
BS, the round is considered complete.

Figure 2 depicts the flowchart illustrating the steps 
involved in each round of MOUOC. Below, we provide 
a detailed elaboration on both phases of our proposed 
model, highlighting the specific steps and procedures 
undertaken in each phase.

Fig. 2  Flowchart of proposed model
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Phase 1: Cluster Head Selection and Clustering

To select final CHs, initially, a fixed percentage of nodes 
are randomly selected as member CHs. These member CHs 
compete for final CHs. Each member CHs calculate two 
parameters for themselves: chance and competition radius. 
First, we will explain the process to compute these param-
eters and then the CH selection and clustering process. The 
detailed process to compute these parameters is given below.

Calculation of the Parameter Chance

To calculate the parameter chance (C), we have used fuzzy 
logic with three input parameters RE (e), average distance of 
nearby nodes ( davg ), and standard deviation of the distance 
of nearby nodes ( Dsd) . These parameters are discussed in 
the section “Utilized parameters” in detail. The linguistic 
variables for e are Low, Medium, and High, with trapezoidal 
membership functions for Low, High, and triangular mem-
bership function for Medium. The membership functions of 
e are shown in Fig. 3). The linguistic variables for davg are 
Close, Medium, and Far, with trapezoidal membership func-
tions for Close, Far, and triangular membership functions for 
Medium. Figure 4 illustrates the membership functions for 
variable davg . Our third parameter is Dsd with two linguistic 
variables, Small and Large. We have used trapezoidal mem-
bership functions for both of these variables. The member-
ship functions representing Dsd are shown in Fig. 5. The 
output membership function we have taken for our project 
is C. We have considered 18 linguistic variables for Chance, 
from C1 to C18. Here, C1 represents the slightest chance, 
and C18 represents the highest chance of getting selected 
as CH. We have used trapezoidal membership functions for 
C1 and C18, while triangular membership functions for C2 
to C17. The membership functions for output variable C are 
shown in Fig. 6. We have defined 18 fuzzy rules in our fuzzy 
rule base. The graphical representation of these fuzzy rules 

is shown in Fig. 7. In this figure, the linguistic variables of 
all the input and output variables are represented by colored 
shapes. For example, in rule 1, if the e is Low, Dsd is Large 
and davg is Far, then C1 will be the output. These rules are 
created in such a way that a node with the lowest value e, the 
highest value of davg and Dsd has the lowest chance, while 

Fig. 3  The membership functions for fuzzy input variable ‘residual 
energy (e)’

Fig. 4  The membership functions for fuzzy input variable ‘average 
distance of nearby nodes ( davg)�

Fig. 5  The membership functions for fuzzy input variable ‘standard 
deviation of the distance of nearby nodes ( Dsd)’

Fig. 6  The membership functions for fuzzy output variable ‘chance 
(C)’
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a node with the highest e, lowest davg and Dsd has highest 
chance of getting selected as CH.

The fuzzy model with all the inputs and output vari-
ables of our proposed work is shown in Fig. 8. We have 
three input membership functions which are already dis-
cussed in the section “Utilized parameters”. The fuzzy 
interface takes crisp input values of these input param-
eters, and with the set of defined rules, it generates crisp 
output C. For fuzzification, we have used the Mamdani 
method [48]. This method has been used in several past 
algorithms like [2, 39, 42]. To get crisp output by defuzzi-
fication, the Center of Area (COA) method is used. In the 
COA method, the defuzzified value �  can be calculated 
by Eq. (11)

The parameter C, along with another parameter R, will 
be used in our algorithm for the selection of final CHs. The 
method for computation of parameter R is discussed below.

Calculation of the Parameter Competition Radius

The competition radius (R) is calculated for all these mem-
ber nodes based on their distance to sink, their RE, and the 
minimum and maximum distance of the sensors from BS. 
We assume that after the deployment of sensors, the BS 
transmits a hello packet to all the nodes in the network. All 

(11)� =
∫ x�A(x)dx

∫ �A(x)dx
.

Fig. 7  Graphical representation 
of proposed fuzzy rules

Fig. 8  Input and output vari-
ables of fuzzy set
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the sensor nodes calculate their distance with BS based on 
the received signal strength. We have already assumed that 
the sensors may calculate the distance based on the received 
signal strength. After the calculation of the distance, a 
small data packet with sensor ID and distance information 
is flooded toward BS. The BS receives all the information, 
calculates dmax , dmin , and shares it with all the sensor nodes. 
This process is done only once after the deployment of the 
sensors, and only a tiny amount of energy from the sensors 
is consumed in this process. After each round, if some nodes 
are dead, BS recalculates the value of dmax , dmin and shares 
it with all the sensor nodes again. If some new nodes are 
added in WSN or the position of some nodes is changed due 
to any reason, or any node finds its distance to BS out of the 
range ( dmin,dmax ), then we have to recalculate the value of 
dmax and dmin . After getting the value of all the parameters, 
each node computes the value of its R using Eq. (12). A 
similar method to compute R is also proposed in [21], but it 
does not consider the RE of the nodes. The formula for the 
calculation of R is given in Eq. (12)

where

• Ro = maximum competition radius.
• c1 , c2 = predefined constant.
• dmax = distance of the furthest node from sink.
• dmin = distance of the closest node from sink.
• Eo = initial energy of the node.
• S(i).e = RE of node i.
• d(Si,BS) = distance of node i from sink node.
• S(i).R = competition radius of node i.

It can be observed from Eq. (12) that a node with higher 
RE has higher R. A node’s R is lower if it is nearer the 
BS, whereas it is higher if it is farther away from BS. To 
prevent hot-spot situations and prolong the lifespan of the 
network, we adjusted the value of R to distribute the load 

(12)
S(i).R =

{

1 − c1 ∗
(dmax − d(S

i
,BS))

(dmax − dmin)

− c2 ∗
(Eo − S(i).e))

(Eo)

}

∗ Ro;

evenly across the CHs. Here, the predefined constants c1 
and c2 are used to decide the range of R. It can be observed 
from Eq. (12) that the range of R will be from (1-c1-c2)*Ro 
to Ro . We have tuned our values of c1 and c2 manually to get 
the optimal results. The parameter R, along with another 
parameter C, will be used in our proposed algorithm for the 
computation of CHs. Our proposed algorithm for the selec-
tion of the final CHs is given in the subsequent subsection.

Algorithm for Cluster Head Selection and Clustering

We assume that the WSN consists of n sensors. The set 
of these sensors is denoted by S. In our proposed model 
MOUOC, initially, some member CHs ( Member_CH ) are 
selected randomly. All the nodes have the same probability 
of becoming the Member_CH . These Member_CH will par-
ticipate in the final CH selection process. The CH selection 
process is based on the local competition. The proposed CH 
selection algorithm is shown in Algorithm 1. Here, Th is a 
predefined threshold used to define the percentage of mem-
ber CHs in the WSN. The Si.C and Si.R represent the chance 
and competition radius of node i. All the messages are 
transmitted within distance do . As shown in the algorithm, 
each Member_CH i will prepare a list ( Si.List ) of nearby 
Member_CH nodes j, such that d(Si, Sj) ≤ Si.R OR d(Si, Sj) ≤ 
Sj.R . Here, d(Si, Sj) represents the distance between node i 
and node j. After preparing the list, each node i will compete 
with the Member_CHs of its list ( Si.List ) and be selected 
as the final CH only if it has the highest value of C. Once a 
node i ( i ∈ n ) got selected as the final CH, all the nodes in 
its Si.List leave the competition for the current round and 
become a normal node. After receiving the Final_CH_Msg 
messages, all the normal node computes their distance with 
finally selected CHs. The normal nodes transmit their data 
directly to the BS if the BS is closer than TNMAX . Other-
wise, they will join the nearest CH to form the clusters. 
The TNMAX is a predefined constant. Therefore, after this 
phase, we obtain the final CHs and clusters. Our proposed 
algorithm selects CHs based on local competition, ensuring 
high scalability in the system. After clusters are formed, data 
transmission occurs, which is discussed in Phase 2.
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Algorithm 1 Algorithm for cluster head selection

1: Input: The non-clustered WSN
2: Output: Finally selected Cluster Heads.
3: Set Si.F inal CH = False ∀ i ∈ n
4: ρ ← rand()
5: if ρ ≤ Th then
6: Si.Member CH = True
7: Calculate Si.R and Si.C and share Member CH Msg(ID,Ch,R)
8: end if
9: if Si.Member CH = True & Sj .Member CH = True then

10: Sj after getting Member CH Msg from Si, calculates d(Si, Sj)
11: if d(Si, Sj) ≤ Sj .R OR d(Si, Sj) ≤ Si.R then
12: Insert Si to Sj .List
13: end if
14: end if
15: if Si.C > Sj .C ∀ Sj ∈ Si.List then
16: Si.F inal CH = True and share Final CH Msg(ID)
17: else
18: Si.Member CH = False and share Quit Election Msg(ID)
19: end if
20: Sj after receiving Final CH Msg from node Si

21: if Sj ∈ Si.List then
22: Sj.Member CH = False and share Quit Election Msg(ID)
23: end if
24: Sj after receiving Quit Election Msg(ID) from Si

25: if Si ∈ Sj .List then
26: Remove Si from Sj .List
27: end if

Phase 2: Algorithm for Multi‑hop Routing

Our proposed algorithm of data transmission (Algorithm 2) 
improves data transmission efficiency by leveraging two 
predefined constants: TNMAX and THMAX . Normal nodes 
transmit data directly to the BS if their distance is less than 
TNMAX ; otherwise, they transmit data to their CH. Similarly, 

if a CH is closer than THMAX to the BS, it transmits data 
directly to the BS. Otherwise, it will find an optimal inter-
mediate node to transmit the data toward BS. The proposed 
algorithm selects the CHs closer to the BS and has the mini-
mum cost as an intermediate node. This process is repeated 
until the data are reached to BS. The details of our proposed 
algorithm are shown in Algorithm 2. 
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Algorithm 2 Algorithm for multi-hop routing

1: Input: Clustered WSN.
2: Output: Route from CHs to BS is identified.
3: for i = 1 : 1 : n do
4: if (Si.T ype = N) then
5: if (d(Si, BS) ≤ TNMAX) then
6: Transmit data to BS directly.
7: else
8: Transmit data to Si.CH.
9: end if

10: end if
11: if (Si.T ype = CH) then
12: if (d(Si, BS) ≤ THMAX) then
13: Transmit data to BS directly;
14: else if d(Si, BS) > THMAX then
15: Repeat steps until the packet reaches BS
16: Step 1: Find all nodes Nj such that
17: d(Si, BS)2 > d(Si, Nj)2 + d(Nj , Sink)2

18: Step 2: Calculate effective distances of Nj as shown below:
effective distance Nj = d(Si, Nj)2 + d(Nj , Sink)2

19: Step 3: Forward packet to Nj with minimum
effective distance Nj

20:

21: end if
22: end if
23: end for

We assume that there are n sensors in the WSN. The 
variable Si represents the sensor node i ( ∀ i ∈ n). The vari-
able Si.Type represents the type of sensor i. A sensor can 
be of three types. Type N represents the normal node, type 
CH represents cluster heads and type D is assigned to dead 
nodes. The variable Si.CH represents the CH of normal node 
i. The variable d(Si,BS) represents the distance between 
node i and the BS. We manually tuned the value of THMAX 
and TNMAX for optimal results and got the values 60 m and 
45 m, respectively.

In our evaluation, we have compared the proposed algo-
rithm with four prevalent clustering algorithms, namely, 
LEACH [1], EEUC [21], FBECS [43], and HROCF [44], 
across three different scenarios. Our objective is to enhance 

the existing clustering algorithms through our proposed 
model.

By comparing our model with these four algorithms, 
we aim to assess the effectiveness and performance of our 
approach in improving clustering efficiency. The comparison 
results are shown in the section “Experiment and results”.

Experiment and Results

To simplify our analysis, we assume an ideal MAC layer 
and transmission links free of errors. Our proposed work, 
MOUOC, is compared with LEACH [1], EEUC [21], 
FBECS [43], and HROCF [44] in three scenarios. To 

Table 2  Key points of compared algorithms

S. no. Model name Parameters used CH selection Abbreviation

1 LEACH [1] None Probability based Algo 1
2 EEUC [21] Distance to BS Based on RE Algo 2
3 FBECS [43] RE, distance to BS, density Fuzzy logic Algo 3
4 HROCF [44] RE, cost and position Fuzzy logic Algo 4
5 MOUOC (proposed) RE, distance to BS, average distance of nearby nodes, 

standard deviation of the distance of nearby nodes
Fuzzy logic combined with a 

linear mathematical model
Proposed
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conduct a comprehensive assessment, we have specifi-
cally chosen these four notable algorithms for comparison. 
LEACH stands as the pioneering algorithm that introduced 
the concept of clustering in WSN. EEUC addresses the hot-
spot problem by incorporating unequal clustering. On the 
other hand, FBECS and HROCF utilize fuzzy logic to opti-
mize the clustering process. All the compared algorithms are 
implemented in MATLAB R2015a. We have used the direct 

data transmission method in Algo 1, while multi-hop routing 
is employed for Algo 2, Algo 3, Algo 4, and the proposed 
model in all the scenarios. In Algo 3, we have divided the 
AoI into four equal regions along the y-axis based on their 
distance to the BS in all the scenarios while keeping other 
parameters the same as discussed in [43]. By evaluating 
our proposed algorithm against these established models, 
we aim to highlight its potential advancements in achieving 
improved clustering performance. We have used abbrevia-
tions for all the models to simplify the result analysis. The 
details and key aspects of compared models with their abbre-
viations are shown in Table 2.

To evaluate our proposed model, we have considered 
three scenarios of WSN. The primary objective of explor-
ing these three scenarios is to comprehensively assess the 
proposed model’s performance across all possible BS posi-
tions. These positions encompass being outside the Area 
of Interest (AoI), positioned at the corner of the AoI, and 
located within the AoI itself. The AoI denotes the region 
where the sensors are deployed. The specific positions of the 
BS within these scenarios are outlined below

Table 3  Parameter

S. no. Parameter Value

1 AOI (0, 0) m to (200, 200) m
2 Sensors (n) 100
3 Location of BS (100,250)
4 Eelec 50 nj
5 �fs 10 pj/bit/m2

6 �mp 0.0013 pj/bit/m4

7 Packet size 4000 bits
8 EDA 5 nJ/bit/signal
9 do 87.7058 m
10 Initial energy ( Eo) 0.1 j
11 C (for Algo 2) 0.5
12 T (for Algo 2) 0.4
13 TDMAX (for Algo 2) 90
14 R

0

comp
 (for Algo 2) 80 m

15 p (for Algo 1) 0.1
16 Thr (for MOUOC) 0.4
17 Ro (for MOUOC) 75 m
18 c

1
 (for MOUOC) 0.3

19 c
2
 (for MOUOC) 0.2

20 Raggr 10%

21 THMAX 60
22 TNMAX 45

Fig. 9  The WSN for Case 1

Fig. 10  Remaining nodes versus round for Case 1

Fig. 11  RE of WSN versus round for Case 1
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• Case 1: Area = 200*200 m 2 , BS = (100, 250), n = 100, 
Eo = 0.1 J.

• Case 2: Area = 300*300 m 2 , BS = (0, 300), n = 200, Eo 
= 0.2 J.

• Case 3: Area = 500*500 m 2 , BS = (250, 250), n = 200, 
Eo = 0.5 J.

Table 3 presents the important parameters utilized in Case 
1. For Case 2, and Case 3, the parameters like coverage area, 
number of nodes, the position of BS and initial energy are 
changed, and the remaining parameters are the same as in 
Case 1. The details of the modified parameters are explained 
at the beginning of each case.

Case 1: Area = 200*200 m 2 , BS = (100,250), n = 100, 
Eo = 0.1 J.

For Case 1, our coverage area spans 200 × 200 m 2 , 
extending from location (0, 0) to (200, 200). The BS is situ-
ated at (100, 250), outside the AOI, as illustrated in Fig. 9. 
The plus symbol ( + ) in the figure denotes the position of BS, 
the circles (o) represent the position of the sensors, and the 
lines represent the boundaries of the AOI. The distribution 
of sensors is random.

To get a complete understanding of the performance of 
compared models, we have generated several graphs. The 
comparison of alive nodes in each round of all the models is 
shown in Fig. 10. It can be observed from the figure that in 
Algo 1, nodes start dying earliest (from round 33), and after 
round 200, Algo 1 shows more surviving nodes compared 
to other algorithms. This is due to the random selection of 
CHs and direct data transmission, where CHs near the BS 
consume less energy, allowing them to stay alive, while CHs 
farther away consume more energy and die earlier. Algo 2 
improves Algo 1 by varying the size of clusters for load bal-
ancing, so it performs better than Algo 1. The performance 
of Algo 3 and Algo 4 appears to be similar initially, but after 
a few rounds, Algo 4 marginally dominates Algo 3. Algo 3 
aims to select optimal CHs by considering three parameters: 
RE, cost, and distance, while Algo 4 improves upon the per-
formance of Algo 3 by considering the communication cost 
along with the RE and position of each node, so Algo 4 
dominates Algo 3. The proposed algorithm performs best 
by considering the minimum communication cost, adjusting 
the cluster size based on the node’s position and RE, and 
maintaining suitable distances between CHs.

Figure 11 depicts the RE of WSN for all the models. The 
RE of WSN at round r is calculated as the total sum of the 
RE of all alive nodes during round r. This comparison is cru-
cial as it provides insights into the rate of energy depletion 

Fig. 12  Energy consumption versus round for Case 1

Fig. 13  FND, HND, and LND of all the models for Case 1

Table 4  Sum of RE of nodes across compared algorithms after differ-
ent rounds for Case 1

Rounds\
models

Algo 1 Algo 2 Algo 3 Algo 4 Proposed

50 4.744903 6.402146 6.580201 6.927031 7.410297
100 2.00706 2.854278 3.359092 3.941743 4.835151
150 0.602489 0.133566 0.322308 1.097368 2.221868
200 0.03998 0 0 0 0.023843

Fig. 14  The WSN for Case 2
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in each model, allowing for an assessment of their energy 
efficiency. It can be observed from the figure that the RE of 
the WSN decreases significantly in Algo 1 due to its random 
selection of CHs and direct data transmission. Initially, the 
performance of Algo 2 and Algo 3 appears to be similar. 
However, after a few rounds, Algo 3 outperforms Algo 2 
due to its superior selection of CHs. The MOUOC exhibits 
the best overall performance, except for the last few rounds. 
In these final rounds, alive sensors decrease significantly, 
leading to inconsistent energy consumption. This trend can 
also be observed in Fig. 12.

Figure 12 represents the energy consumption of each 
model in each round, revealing that the energy consump-
tion is highly irregular in Algo 1. In contrast, other mod-
els show more consistent energy consumption patterns. It 
is because Algo 1 selects the CHs randomly, while other 
models select the CHs based on several parameters. The 
proposed model consumes the least amount of energy. 
Still, in the last few rounds, the performance of the pro-
posed algorithm has deteriorated due to the challenge of 
transmitting data through multi-hop data transmission with 
only a limited number of remaining nodes.

The comparison of First Node Dead (FND), Half Node 
Dead (HND), and Last Node Dead (LND) for Case 1 is 
presented in Fig. 13. The FND, HND, and LND have sig-
nificant importance in WSNs, because several algorithms, 
such as [38, 49], consider FND as the lifetime of the WSN, 
while algorithms like [3, 40] consider HND as the lifetime 
of the WSN. Although LND is not as significant, we have 
included it to provide an overall view of the performance 
of the compared models. Algo 1 performs worst in FND 
and HND, but it performs best in the case of LND. The 
LND does not hold much significance. As a significant 
number of nodes are dead in the sensor network, obtain-
ing accurate information from the remaining sensors is 
impossible. In most cases, when half of the nodes are dead, 
the remaining sensors are discarded as well [3]. Figure 13 
shows that the proposed algorithm performs 38.2% better 

than Algo 1, 21.3% better than Algo 2, 15.8% better than 
Algo 3, and 8.2% better than Algo 4 when evaluated using 
the HND metric. This can be attributed to the selection of 
optimal CHs, efficient routing and improved load balanc-
ing among the nodes.

An analysis is conducted to evaluate the performance of 
different models by comparing the summation of RE for 
sensor nodes across multiple rounds, as shown in Table 4. 
The table presents data for rounds 50, 100, 150, and 200, 
with values accurately measured up to five decimal places. 
The analysis reveals that Algo 1 demonstrates the poor-
est performance during rounds 50, 100, and 150, whereas 
the proposed model outperforms the others. In round 200, 
Algo 2, 3, and 4 yield zero values due to the absence of 
any remaining alive nodes. Algo 1’s comparatively better 
performance at round 200 is because some nodes near the 
BS remain alive due to no inter-cluster load. However, this 
advantage is insignificant, because if more than 50% of 
nodes are depleted, the WSN is discarded [3].

Case 2: Area = 300*300 m 2 , BS = (000,300), n = 200, 
Eo = 0.2 J.

For this scenario, we have assumed that the BS is posi-
tioned at the corner of the AOI. In Case 2, the AoI covers 

Fig. 15  Remaining nodes versus round for Case 2

Fig. 16  RE of WSN versus round for Case 2

Fig. 17  Energy consumption versus round for Case 2
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an area ranging from (0, 0) to (300, 300) m and comprises 
200 sensor nodes distributed randomly. The BS is situated 
at the corner of the AOI, specifically at coordinates (0, 300), 
as depicted in Fig. 14. Here, the plus symbol ( + ) represents 
the location of the BS, circles (o) represent the location of 
sensors, and lines show the borders of AoI. The sensors have 
an initial energy level of 0.2 joules.

In Fig. 15, the comparison of alive nodes in each round 
of each model is shown. The sensors in Algo 1 start deplet-
ing at the earliest. This is attributed to the random selec-
tion of CHs and the direct data transmission method used 
in Algo 1. Algo 2 outperforms Algo 1 due to its improved 
load balancing achieved by varying the size of clusters. The 
performance of Algo 3 and Algo 4 is consistent; still, Algo 
4 outperforms Algo 3 due to better CHs selection and load 
balancing. However, the proposed algorithm surpasses all 
others due to optimal CHs selection, improved load balanc-
ing, and efficient data routing.

Figure 16 provides a comparative analysis of the RE in 
WSNs across different models. This comparison is crucial as 
it sheds light on the rate of energy depletion in each model, 
enabling an assessment of their energy efficiency. Notably, 
the figure highlights the distinctive behavior of Algo 1. Ini-
tially, Algo 1 experiences a significant drop in the energy 
of WSN, but it stabilizes when only a few nodes remain 
alive. This phenomenon is attributed to the direct trans-
mission employed in Algo 1, which leads to higher energy 

consumption by CHs located farther from the BS, causing 
them to exhaust their energy sooner. However, energy con-
sumption decreases as most sensors far from the BS become 
dead, leaving only the sensors closer to the BS alive. The 
proposed algorithm performs the best due to the optimal 
selection of CHs, improved load balancing, and efficient data 
routing.

The diagram presented in Fig. 17 illustrates the energy 
consumption of each model in every round. Upon examina-
tion, it becomes evident that Algo 1 exhibits high inconsist-
ency in energy consumption, whereas Algo 2, Algo 3, Algo 
4, and the proposed algorithm demonstrate more consist-
ent energy consumption patterns. Particularly, the proposed 
algorithm showcases the lowest energy consumption in each 
round, except for the last few rounds. This achievement 
can be attributed to the proposed algorithms’ emphasis on 
improved CH selection, balanced load distribution among 
CHs and normal nodes, as well as maintaining optimal 
distances between CHs. As a result, it becomes the most 
energy-efficient model, with the exception of the last few 
rounds. However, in the last few rounds, the energy con-
sumption of the proposed algorithm is relatively higher com-
pared to other algorithms due to the fact that in those rounds, 

Fig. 18  FND, HND, and LND of all the models for Case 2

Table 5  Sum of RE of nodes across compared algorithms after differ-
ent rounds for Case 2

Rounds\
models

Algo 1 Algo 2 Algo 3 Algo 4 Proposed

50 15.74612 30.41254 31.87247 32.3678 34.0722
100 8.310691 20.21698 23.70105 24.80552 28.27422
150 5.0345 10.9438 15.41207 17.27071 22.36871
200 2.883021 3.778588 7.285189 9.736677 16.486
250 1.57283 0.797413 0.879234 2.423945 10.55157

Fig. 19  The WSN for Case 3

Fig. 20  Remaining nodes versus round for Case 3
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a majority of the sensors in other algorithms have already 
depleted their energy. In contrast, a significant number of 
sensors are still active in the proposed algorithm. Conse-
quently, the active nodes continue to consume energy, caus-
ing the energy consumption of the proposed model to be the 
highest during this phase.

Figure 18 compares the FND, HND, and LND of all algo-
rithms in Case 2. The figure clearly shows that the proposed 
model outperforms all other algorithms in terms of FND and 
HND. Specifically, the proposed algorithm performs 72.8% 
better than Algo 1, 42.2% better than Algo 2, 21% better than 
Algo 3, and 14.7% better than Algo 4 when evaluated using 
the HND metric. On the other hand, Algo 1 exhibits better 
performance in terms of LND, because some nodes near the 
BS remain alive due to no inter-cluster load. These findings 
emphasize the potential of load balancing and efficient rout-
ing in improving the lifetime of WSNs, especially in terms 
of FND and HND.

We conducted an analysis of the summation of RE for 
alive sensor nodes across multiple rounds in all models, as 
depicted in Table 5. The table provides comparative data 
for rounds 50, 100, 150, 200, and 250, with values accu-
rate up to five decimal places. The results demonstrate that 

Algo 1 exhibits the poorest performance, while the proposed 
model outperforms the others. Furthermore, as the number 
of rounds increases, the performance gap between existing 
and proposed models widens. These findings strongly sup-
port the notion that the optimal selection of CHs, effective 
load balancing, and optimal distance between CHs can sig-
nificantly enhance energy consumption.

Case 3: Area = 500*500 m 2 , BS = (250,250), n = 200, 
Eo = 0.5 J.

In this scenario, we have carefully chosen an area 
measuring 500 × 500 m 2 and positioned the BS at the 
coordinates (250, 250). Figure 19 illustrates a snapshot of 
the AOI and the position of BS in Case 3. In this figure, 
the circles (o) represent the position of sensors, and the 
plus symbol ( + ) represents the position of BS. To evalu-
ate the models’ performance, we have compared them on 
several criteria. Figure 20 represents the number of alive 
nodes in each round of each model. The figure shows that 
Algo 1 performs the worst in terms of FND, while the pro-
posed MOUOC algorithm performs the best. This occurs, 
because, in Algo 1, the selection of CHs is solely based 
on probability, which occasionally results in suboptimal 
CHs’ selection and, consequently, high energy consump-
tion by the sensors. Additionally, Algo 1 employs direct 
data transmission from CHs to the BS, resulting in higher 
energy consumption and faster depletion for CHs located 
far from the BS. Algo 2 surpasses Algo 1 by implementing 

Fig. 21  RE of WSN versus round for Case 3

Fig. 22  Energy consumption versus round for Case 3

Fig. 23  FND, HND, and LND of all the models for Case 3

Table 6  Sum of RE of nodes across compared algorithms after differ-
ent rounds for Case 3

Rounds\
models

Algo 1 Algo 2 Algo 3 Algo 4 Proposed

100 65.09083 83.16402 84.77899 84.4875 88.70867
200 38.71584 66.36428 69.44261 69.69816 77.65009
300 22.11478 49.41275 54.19218 55.63196 66.53523
400 11.95578 32.64867 38.73252 41.77027 55.40596
500 4.136032 15.91745 23.79679 28.28215 44.26891
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improved load balancing through varying cluster sizes. 
Algo 4 outperforms Algo 3 due to superior CH selec-
tion and load balancing. In our proposed model, we have 
endeavored to further enhance these algorithms by select-
ing better CHs and improving load balancing efficiently. 
As a result, our model consumes the least energy, enabling 
sensors to remain active for a longer duration.

Figure 21 compares the RE of the WSN. The RE of the 
WSN at round r is calculated as the sum of the RE of all 
the active nodes at that round. From the figure, it can be 
observed that the RE of the WSN decreases significantly in 
Algo 1. Due to the random selection of CHs and the utiliza-
tion of direct data communication in Algo 1, the CHs located 
far from the BS experience higher energy consumption and 
deplete earlier. Initially, the difference in RE between Algo 
2, Algo 3, and Algo 4 is not substantial, but after a few 
rounds, the difference becomes significant, with Algo 4 out-
performing Algo 1, Algo 2, and Algo 3. The proposed model 
exhibits the best performance due to its optimized energy 
consumption and load-balancing methods.

To gain an overview of each model’s performance 
throughout its lifetime, we compared the energy consump-
tion of each model in every round, as shown in Fig. 22. 
Upon observing the figure, it becomes apparent that energy 
consumption in Algo 1 is highly inconsistent. The irregular 
lines in the graph for Algo 1 indicate that, in certain rounds, 
energy consumption is considerably higher, surpassing the 
energy consumption of previous rounds. This inconsistency 
arises due to the fact that, in Algo 1, CHs are selected solely 
based on probability, and direct data transmission proves 
to be ineffective in larger areas. In contrast, Algo 2, Algo 
3, Algo 4, and the proposed model demonstrate consistent 
energy consumption throughout their lifetimes. Notably, 
the proposed model excels in achieving the highest level of 
consistency and consuming the least amount of energy. This 
can be attributed to several factors, including the optimal 
selection of CHs, optimal cluster size, efficient load balanc-
ing among sensors, and effective data routing from CHs to 
the BS.

The comparison of FND, HND, and LND among all the 
models is presented in Fig. 23. The figure shows that Algo 
1 performs the poorest in terms of FND and HND, whereas 
the proposed algorithm demonstrates the best performance. 
In this scenario, the proposed model performs 57.9% better 
than Algo 1, 26.8% better than Algo 2, 20.2% better than 
Algo 3, and 13.3% better than Algo 4 when evaluated using 
the HND metric. These results support our assumption that 
selecting optimal CHs, implementing better load-balancing 
techniques, and optimizing routing mechanisms can enhance 
the network’s lifetime.

The summation of the RE for the alive nodes has been 
examined across various rounds for all models, as depicted 

in Table 6. In this table, we present the comparative data for 
rounds 100, 200, 300, 400, and 500. The values provided are 
accurate up to five decimal places. The results indicate that 
Algo 1 exhibits the poorest performance, while the proposed 
model demonstrates the best performance. For instance, at 
round 100, the MOUOC outperforms Algo 1 by 23.6%, Algo 
2 by 6%, Algo 3 by 4.4%, and Algo 4 by 4.7%. This perfor-
mance gap widens with an increasing number of rounds. 
These findings affirm that the optimal selection of CHs, effi-
cient load balancing, optimal distance between CHs, and 
efficient routing significantly enhance energy consumption.

Based on the analysis of these scenarios, it is observed 
that the performance of the proposed model varies with the 
position of the BS and the distribution of the sensors. How-
ever, despite these variations, the overall findings confirm 
that the proposed model’s approach, which focuses on opti-
mal CHs’ selection, load balancing, maintaining an optimal 
distance between CHs and efficient routing, plays a crucial 
role in extending the lifespan of the network.

Conclusion and Future Work

This paper aims to introduce a new and innovative model 
that optimizes the selection of CHs, balances the load, and 
enables efficient multi-hop data transmission in WSNs. Our 
proposed model operates in a distributed manner and is 
designed to be lightweight enough for deployment on actual 
sensors. To achieve these objectives, we have developed a 
CH selection algorithm that leverages both lightweight fuzzy 
logic and a linear mathematical model. By incorporating the 
latter, we are able to simplify the fuzzy logic, improving its 
efficiency without sacrificing performance.

We evaluated our proposed model against four alterna-
tive models in three distinct scenarios, using several met-
rics, including total alive nodes, the RE of the WSN, energy 
consumption, and the round of FND, HND, and LND occur-
rences. The results confirm that our algorithm effectively 
balances energy consumption, improves network lifetime, 
and addresses the hot-spot issue using optimal competition 
radii for CHs.

The parameters c1 and c2, which are used to calculate the 
competition radius and value of the maximum competition 
radius, are currently manually tuned for improved results. 
However, in the future, some advanced machine learning-
based methods may be developed to determine the optimal 
values of these parameters based on specific circumstances. 
Moreover, while we have endeavored to use the best parame-
ters for CH selection, there is always room for improvement. 
Finally, our proposed model currently considers only one 
stationary BS. However, in the future, it may be extended to 
support more than BS or a mobile BS.
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