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Abstract
At present, scams and malicious websites are one of the most widespread and dangerous problems on the website. It brings 
enormous economic suffering and irretrievable losses to companies and individuals. This approach can strengthen the Inter-
net’s legitimacy and impose sanctions on criminals who engage in prohibited or malicious activities. However, governments 
still need a derivation to classify websites as dangerous or non-dangerous. However, several malicious and counterfeit goods 
are published on fraudulent websites to cheat consumers and make high and unfair profits. Due to the proliferation of such 
fraudulent websites, it is difficult to detect and identify them through manual inspection. Phishing attacks include various 
attacks, including spoofing malicious-based, DNS-based, data theft, email/spam, web-based delivery, and telephone-based 
phishing. We propose an integrated machine learning (ML) framework for fraudulent website detection to solve this problem. 
Artificial neural networks (ANN), support vector machine (SVM), random forests (RF), and K-nearest neighbor (K-NN) are 
algorithms to detect phishing websites accurately. Some URLs can be used to classify them as appropriate or phishing. Data 
from publicly available phishing websites can be collected from the UCIrvine ML repository for training and testing. Then, 
the results can be predicted using the features of the dataset. We conduct an in-depth literature review and propose methods 
for detecting phishing websites using ML methods.

Keywords ML · ANN · SVM · RF · KNN · UCIrvine · Phishing · DNS · URL

Introduction

Nowadays, the current machinery and the ease of com-
munication have made fraudsters and criminals vulnerable 
to various attacks. It costs billions of dollars worldwide 
every year. Despite their efforts, several techniques can be 

realized to detect and investigate fraudulent websites due 
to the adversative effects of fraudulent websites. However, 
these methods have limited functionality, and keeping up 
with the growth and divergence of fraud sites is challenging. 
Fraudulent websites often masquerade as legitimate online 
data sources, goods, properties, and facilities [1].

Phishing works as a method to steal sensitive informa-
tion from users, and phishing sites can be used to lure users 
away from the site. Attackers use these to gain access to an 
online service's website and steal sensitive information to 
earn money and reputation. Phishing works by impersonat-
ing website pages and tricking online users into providing 
confidential information. The term victim phishing comes 
from “fishing” for complex data. Phishing is one of the most 
potent and destructive attacks to deceive users. Additionally, 
sensitive activities such as passwords and credit card mate-
rial can be used to compromise peculiar information [2, 3].

Figure 1 represents the basic structure of website fraud 
detection. These include the basic types of phishing tech-
niques and types of attacks. Later, features of the URLs can 
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be used to classify them as legitimate or phishing. Next, the 
fraudulent website can be detected using the ML framework.

A recent Anti-Phishing Working Group (APWG) report 
showed that APWG members detected 250,000 phishing 
attacks between 2015 and 2016 using 195,475 domains. 
Currently, phishing detection methods are divided into three 
main groups based on the visual comparison of web pages: 
blacklisting and whitelisting practices, URL-based systems, 
and attribute-based web content. But phishing concerns 
caused by spyware and email scams have led to non-profit 
industry groups working to combat impersonation and fraud. 
Phishing is a severe problem due to its widespread disrup-
tion to target industries such as payments, financial institu-
tions, and email. However, phishing crimes are estimated to 
cost the US economy between $61 million and $3 billion in 
direct economic losses annually [4, 5].

This section proposes an integrated ML framework for 
fraudulent website detection. ANN, SVM, RF, and K-NN 
work as algorithms to accurately detect phishing websites. 
Also, they can be used to classify specific URLs as legiti-
mate or phishing. Data from publicly available phishing 
websites can be collected from the UC Irvine ML reposi-
tory for training and testing.

Literature Survey

The author investigates malicious user channel gain feed-
back falsification (CGFF) attacks using non-orthogonal 
multiple access (NOMA) approaches to generalize spectral 
performance and define new malicious threats. However, 
even a tiny amount of damage to the receiving channel sig-
nificantly reduces the performance of NOMA, and detect-
ing malicious users is an essential task in NOMA [6]. Long 
short-term memory (LSTM) method is proposed to obtain 
information by detecting malware based on attack detec-
tion. In addition, two attack models should be considered: 
correlated and noncorrelated. Often, when an attack occurs, 
one of the platoon members may use attack patterns to attack 
the platoon. However, the potential for malicious attacks on 
the Cooperative Adaptive Cruise Control (CACC) scheme 

to disrupt driving comfort, traffic flow, and fuel economy 
benefits is high [7].

A technique can be proposed to guarantee low power con-
sumption and detect malicious attacks in a typical functional 
provider wake-up radio (WUR) mode. Later, these also 
defined operational procedures for responding to malicious 
attacks. However, malicious attacks trick the WUR receiver 
into accidentally activating it, such as waking up the main 
radio and putting it into sleep mode [8]. A malicious mobile 
can design and implement KAYO to differentiate malicious 
actions from web pages. Using KAYO, multiple iframes up 
to known invalid phone numbers can be resolved based on 
static page attributes. However, mobile web pages consider-
ably change from desktop web pages' content, layout, and 
functionality [9].

The author presents phishing attacks involving stealing 
user data and downloading and installing malicious soft-
ware. Similarly, attackers can create phishing emails that 
appear legitimate users but are challenging to detect. Attack-
ers use social media sites and emails to trick users into send-
ing false information. It takes place as part of a social engi-
neering attack [10]. An approach such as K-nearest neighbor 
(kNN) and location-based service (LBS) is introduced to 
crawl all website items through an LBS interface efficiently. 
Additionally, crawling algorithms can be developed for 
two-dimensional and high-dimensional spaces. Overhead is 
defined by theoretical analysis as a function of the algorithm 
dimension and the number of objects crawled [11].

In the novel approach, various tests can be carried out in 
the detection mode using classification algorithms to verify 
the recommended convolutional neural network (CNN) per-
formance and deep neural network (DNN) type. Although 
many techniques can be presented to detect malicious web-
sites, it is challenging to achieve satisfactory results in a 
proven manner [12]. The proposed machine learning (ML) 
algorithms can be used to detect malicious websites and 
even get personal information to help malicious websites 
become available websites. These algorithms detect con-
flicting information hidden in high traffic volumes [13]. 
MalJPEG is proposed to provide the first ML-based solution 
tuned to detect unknown malicious JPEG images transpar-
ently and efficiently. MalJPEG can exploit this technique to 
systematically extract recognizable features from the JPEG 
file system with ten simple methods and identify benign and 
malicious JPEG images. However, some ideas contain mali-
cious payloads when performing malicious operations [14].

A proposed artificial intelligence (AI)-based meta-
learner can be installed on a dataset of phishing websites 
to define a performance evaluation. The given model can 
achieve high detection accuracy with a false positive ratio 
of less than 0.028. However, the consequences of phish-
ing attacks are often dangerous and devastating problems 
[15]. Phishing detection programs, in particular, can provide 
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Fig. 1  Basic Architecture of Website Phishing Detection
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software-based programs for systematic review. Reputational 
datasets, detection capabilities, detection techniques, and 
indicators can be learned through the taxonomy of phishing 
detection [16]. The multiobjective evolution/random forest 
(MOE/RF) approach offers a new phishing attack detection 
typically based on a revised objective MOE optimization 
algorithm. The MOE/RF model is designed to accurately 
detect and reduce phishing sites with a high probability of 
false positives [17].

A featureless method can be introduced by proposing 
normalized compression distance (NCD) to detect phishing 
websites. NCD is used to combine two websites to assess 
similarity and eliminate the need for feature extraction. A 
parameter-free similarity measure, in particular, removes 
dependencies between website feature sets [18]. They pro-
posed that it could be implemented as a browser plug-in to 
detect phishing websites using a deep learning (DL)-based 
environment. It can detect in real-time if a user is at risk of 
phishing while viewing a web page and notify a warning 
message. However, stolen personal information, legitimate 
websites, and the rupture of trust in financial institutions 
are beyond illegal gain [19]. A multilayer stacking ensem-
ble learning method with estimators in different layers is 
proposed to feed the current layer’s estimator predictions 
to the subsequent layers. The models were sequenced and 
evaluated using the UCI (D1), Mendeley 2018 (D2), and 
Mendeley 2020 (D3, D4) datasets. However, phishing uses 
fake or impersonates legitimate websites to trick online users 
into revealing delicate data [20].

A novel approach using particle swarm optimization 
(PSO) is proposed to effectively measure different web-
site features and increase the revealing accuracy of phish-
ing websites. Phishing web detection can be improved by 
introducing a weighted PSO function for phishing detection 
[21]. A design-based neuro-fuzzy framework (Fi-NFN) can 
provide similar resource location and network traffic capa-
bilities in phishing websites. Based on fog computing (FC), 
a new approach developed an anti-phishing model that Cisco 
recommends to track and protect. However, fog users from 
phishing attacks are expensive generic hardware routines 
that work against different attacks [22]. Overfitting neural 
networks (OFS-NN) can propose effective phishing website 
exposure models based on OFS methods and NNs. However, 
NN models have many useless, low-impact features in the 
training data set, causing overfitting problems [23].

The novel uses ML and DL techniques to analyze URLs 
to compare how to detect phishing websites. Most modern 
solutions that handle phishing detection can offer a canoni-
cal class homepage without a login form. Additionally, the 
base model can be trained on the old dataset and tested 
with the new URL using datasets from different years [24]. 
They simplify the feature extraction process by considering 
URLs and domain names and reduce processing overhead 

by parsing HTML, DOM, and URL-based features. Among 
them, 12,134 non-phishing data and 20,614 phishing data 
could be coded according to 11 predefined attributes [25]. 
A proposed dataset of 11,000 websites can be combined 
into a phishing URL-based dataset in vector format pulled 
from a dataset repository accessible by Phishing and legiti-
mate URL attributes. After pre-processing, multiple ML 
algorithms block phishing URLs and protect users. Various 
studies have highlighted research on phishing attack’s pre-
vention, detection, and awareness. However, there must be 
a perfect and adequate solution to the present problem [26].

The proposed two methods can be offered based on gen-
erative adversarial networks (GANs). In addition, these 
methods can integrate phishing and legitimate models to 
inform real-world websites. Synthetic data can be generated 
from 10 publicly available phishing datasets used by adver-
sarial autoencoder (AAE) and Wasserstein GAN (WGAN) 
to obtain information about real-world datasets [27]. Risky 
implements the domains classifier based on the risky web-
sites (DOCRIW) structure and is based on two essential 
techniques that help identify domains that contain poten-
tially fraudulent or malicious content. The first statement 
is that the pre-constructed knowledge base has information 
on risky websites. The second statement is that the system 
could be supplemented with a labelable binary classifier to 
classify a website as malicious or non-malicious based on 
its domain [28].

The paper claims that ML techniques can be applied 
to URL patterns, and a new linguistic URL classification 
approach can be proposed. Additionally, a system based on 
language processing natural abilities, word vector represen-
tations, and n-gram models of black-labelled words used as 
salient features can be introduced. However, it is ineffective 
against unknown attacks, most of the episodes are launched 
from malicious URLs, and attackers trick users into clicking 
on malicious URLs [29]. A detailed analysis of malicious 
URL detection techniques and a structural understanding 
of ML can be detected. Enabling proper malicious URL 
detection is an ML approach. In addition, literature studies 
addressing different aspects of the problem can be reviewed 
to categorize contributions (functional representation, algo-
rithm design, etc.). However, deniers could be better, and 
detecting newly created malicious URLs is a complex pro-
cess [30].

Phishing Approach Detection

Phishing can be considered a social engineering tech-
nique in this category. Although it looks legitimate, it 
tricks users into clicking on malicious links that contain 
malware. Some criminals use this technique to obtain 
sensitive information, such as credit card numbers and 
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login credentials. Based on these, phishing techniques and 
phishing types can be well defined (Tables 1, 2).

A.  Types of phishing attacks

Figure 2 shows that phishing attacks mainly aim to 
trick the target into revealing personal information. How-
ever, different types of attacks take place among these. 
Phishing attacks are one of the main ones to watch out for.

Table 3 shows that spoofing phishing attacks are unde-
sirable to appear more legitimate. For example, attackers 
can spoof phone numbers or email domains to make them 
appear more credible.

2 Phishing website detection approaches

This section introduces several anti-phishing methods 
that can detect and prevent phishing attacks. Phishing 
attacks are then divided into five groups based on differ-
ent techniques.

Figure 3 shows that phishing website detection tech-
niques analysis. It is classified as the five phases of 
approaches in this group.

Table 4 illustrates that phishing website detection tech-
niques can be developed using signatures from phishing 
websites. Then this approach also helps to distinguish 
between phishing and simple websites. Further, internet 
detection techniques are divided into five categories.

Table 5 describes the phishing model for detecting 
Internet fraud and the data set used to understand the 
pattern of the data set model. Identification can also be 
done using a systematic sampling of the dataset.

Website Fraudulent Detection for Machine 
Learning (ML) Approaches

In this section, we identify several algorithms, SVM, 
ANN, RF, and K-NN, to accurately detect phishing web-
sites and then describe some of these methods. It can acti-
vate URLs and classify them as legitimate or Phishing. 

A dataset of phishing sites retrieved from the UCI ML 
repository can be used for training and testing, improving 
the capabilities of the dataset to predict outcomes.

In this section, we initially collect a dataset from UCI 
(ML) website fraud detection to investigate the perfor-
mance of website fraud detection described in Fig. 4. 
Then, several algorithms for SVM, ANN, RF and K-NN 
can be used to accurately detect phishing websites using 
the ML approach and describe some of these methods.

UCI (ML) Dataset

This section initially collects datasets from the UCI ML 
repository. Phishing is then seen as identity theft when a 
malicious website impersonates a legitimate website to 
obtain sensitive information such as passwords, account 
details, credit card numbers and more. Potential phishing 
sites can be identified by distinguishing legitimate sites. This 
dataset can identify critical features of phishing websites and 
learn website fraud detection by using this dataset to identify 
ten such features.

Artificial Neural Networks

In this sense, an ANN acts as a series of neurons of inter-
connected nodes and can be inspired by biological neural 
networks. Each neuron receives input from subsequent lay-
ers and exploits the behavioral transfer function to calculate 
weights and nonlinear output. Neuron weights can be ran-
domly set at the beginning of training and gradually adjusted 
using gradient descent to provide an optimal solution. Dif-
ferent layers can be manipulated to change the information 
they contain. The power of NNs works due to the linear 
nature of hidden nodes. Thus, introducing nonlinearity into 
the network is essential to learn functions. Optimal inputs 
for the classifier can be identified using URL vectors. Then, 
the primary tasks of forward and backward propagation of 
the classifier can be handled.

a. Forward propagation

The phishing dataset can be fed into ANN and selected 
with the best features. The input data set can be allocated 
into training and test sets. Among them, the training set of 
phishing websites can be implemented, and the optimal 
structure of ANN can be obtained. Choose a test suite and 
see the overall performance of the phishing website detec-
tion model.

The activation function detects contributions from the 
input layer. It computes the hidden layer neuron unit output 
matrix, the number of hidden layer neurons with randomly 
created weights and offsets. Let's assume y is the detecting 

Types of Phishing

SmishingEmail Spear Angler ClonePhone

Fig. 2  Architecture types of phishing attack
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result, G is hidden layer, z is weight, m is no of input points, 
d is activation function, and a is output level of the matrix.

The output layer of an ANN is referred to as the randomly 
generated weight vector. The number of neuron units calcu-
lated by an activation function is the entire quantity of input 
data points, where P is output, i is neuron units in the hidden 
layer, weight, m is no of input points, f is activation function, 
ai is randomly no of neuron units, and �i is connecting the 
importance of the hidden layer.

b. Backward propagation

(1)Gsum =

⎡⎢⎢⎣

d
�
z1 ∗ y1 + b1

�
…

⋮

d
�
z1 ∗ ym + b1

�
…

d
�
z1 ∗ y1 + aG

�
⋮

d
�
z1 ∗ ym + aG

�
⎤⎥⎥⎦

(2)Pi =

G∑
i=1

βi
(
zi ∗ yi + ai

)
i = 1, 2, 3,… ..m

The ANN outputs the identified data arguments in the train-
ing set in this section. If the ANN makes the correct prediction 
for that data point, the ANN will remain unchanged. Then 
calculate the mean square error of the data points of the ANN.

Equation 3 is the neural network outputs that can be calcu-
lated with the data points. Let's assume the ĉl

i
 is output neural 

network, i is hidden layer, d is function, and l is data points.

Equation 4 is the mean square error of the data argument. 
Let's assume, F is error and l is data points.

Equations 5 and 6 update the data points' weights for 
accurate predictions, where i is hidden layer, z is weight 
vector, � is rate, and c1 − ĉl is ANN that does not change.

In this category, the primary functions of forward and 
backward propagation of the classifier can be handled. How-
ever, when calculating the activation function, we identify 
the output matrix of a unit as the contributions in the input 
layer and the neuron in the hidden layer. The output layer of 
an ANN is referred to as the randomly generated weight vec-
tor, and the data points for accurate prediction are updated.

Support Vector Machine (SVM)

In this segment, linear and nonlinear data can be classified 
using SVM. Additionally, given the original training data, 
a nonlinear graph can transform the algorithm into higher 
dimensions. In this dimension, optimal linear hyperplanes are 
used to separate any two types of data, and then, SVMs can be 

(3)ĉl
i
= d

(
βi − ai

)

(4)Fl =
1

2

1∑
i=1

(
ĉl
i
− ĉl

i

)2

(5)zi ← zi + Δzi

(6)Δzi = �
(
c1 − ĉl

)

Table 3  Analysis of the types of 
phishing attack

S. no Type of phishing 
attack

Contribution of phishing

1 Vishing Vishing campaigns include malicious activities such as phone calls, 
voicemails, and collecting and using people’s data for financial gain

2 Angler Angler phishing is done through social media, tricking consumers into 
stealing data posted on the site or revealing personal information

3 Spear Sophisticated phishing attacks send malicious emails to specific targets
4 Clone These types of attacks are whaling attacks that target corporate executives
5 Phone Malicious attacks can also be carried out through phishing phones
6 Email Attackers send emails to launch attacks to carry out online attacks
7 Smishing Phishing is a scam that uses text messages

Heuristic

Visual similarities

Website Phishing 
Techniques

List-Based

ML

DL

Fig. 3  Analysis of the website phishing detection techniques
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used for classification and numerical prediction. A simple form 
of SVM is a complex binary classifier in which the classes 
are linearly separated. Also, the data can be transformed into 
higher dimensions using an appropriate kernel function to 
implement a linear discriminant process. Segmentation is not 
possible using kernels, and the goal is to reduce the error rate 
of SVM.

Equation 7 is a parameter consisting of input vectors of 
input features that can be calculated to determine the size and 
Model’s bias-variance trade-off. Q is minimum, z is weight 
vector, e is parameter, j is class, a is scalar quantity,�j is posi-
tive slack variable, and m is no of the input vector.

(7)
Q

z,a,�

1

2
∥ z ∥2 +e

m∑
j=1

�j

Table 4  Primary conduct Phishing detection technique approach

S. no Phishing approach Algorithm techniques usages Dataset accuracy Most important findings

1 Heuristic RF, Multilayer Perceptron UCI ML Repository The system detects phishing emails and 
spam with 97.7% and 89.2% accuracy

2 Visual similarity DT, KNN UCI ML Repository Mendeley 21,055 
occurrences

This tentative study achieved an accuracy 
of 97.51% using a dataset from Mende-
ley's Phishing dataset for UCI and ML

3 List –based The DNS Blacklist PhishTank, Google Detects phishing and zero-day phishing 
attacks with an accuracy of 98.90%

4 ML SVM Standard crawl accomplish (5000 URL) This method can detect Phishing and 
legitimate websites with 95.66% 
accuracy

5 DL RNN Phish Tank and Phish Storm
ISCX-URL-2016222,541 URL

The sensitivity is 3.98%, UP from the 
previous work

Table 5  Performance comparison with Phishing dataset

S. no Author name Model Methods Data set description

1 Zhu et al. [41] Phishing detection Optimal Feature Selection—Neural 
Network (OFS-NN)

With the capability to acquire intensively from 
large datasets, NNs are essential heuristic ML 
techniques in phishing website detection and 
blocking

2 Liu et al. [42] Phishing detection Multistage Phishing Detection (MSPD) One is a qualified test of CASE's altered features 
and detection models, which contain tradi-
tional ML and DL algorithms based on the 
construction of complex data sets

3 Zhang et al. [43] Phishing detection Client-Side Cloaking (CSC) The dataset was collected from 112,005 phishing 
websites over the 14 months from 2018 to 
2019. And can run CrawlPhish to analyze them 
entirely

4 Hazim Alkawazet al. [44] Phishing detection ML Kaggle's dataset includes 86 features and 11,430 
complete URLs, half Phishing and half legiti-
mate

5 Aljofey et al. [45] Phishing detection Convolutional neural network (CNN) Experiments indicate that the proposed frame-
work performs better than phishing URL 
models on benchmark datasets

Website 
FraudulentDe
tection

UCI (ML) 
Dataset

ML 
Approach

SVM

RF

ANN

K-NN

Result

Fig. 4  An Overview of Proposed Model in Website Fraudulent 
Detection
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In this Eq. 8, derive the Lagrangian equation in its dual 
problem and calculate using Karush–Kuhn–Tucker conditions 
by substituting values, where o is maximum, α is Lagrangian 
vector, b and c is class, l is kernel function, db, dj is no of fea-
ture mapping, and d is higher dimension.

In Eq. 9, calculate the equivalently expressed dual in vec-
tors. Let us assume the S is function, f is equivalently double 
vector, v represents the dual form vector, and Q is min.

This indicates that partitioning is not possible in the kernel. 
This includes trade-offs between input feature vector size and 
model-dependent variance. These values can then be interpo-
lated to achieve a vector form of equivalent representation in 
dual vectors for later calculation.

Random Forest (RF)

In this section, packing can be combined with random attribute 
selection to generate RF. These are simple decision trees add-
ing inputs or checks at the top and ending with smaller subsets 
of the tree. RF follows an ensemble learning approach and can 
use strategies derived from these to improve performance. A 
clustering mechanism combines random subsets of different 
trees into RF. The accuracy of RF depends on the degree of 
dependence between classifiers and the strength of individual 
classifiers. RF does not need cross-validation or a separate test 
set to acquire a fair estimate of test set error.

Calculate the standard error in RF accuracy using Eq. 10. 
Let's assume the J is test set, E is error, a and b is the average 
number of votes, x is predictor vector, y is classification, and 
mh is margin function.

In Eq. 11, the margin function measures how much the 
average vote for the appropriate class is greater than the aver-
age calculated for the other categories, where Q is max, avk is 
average value, h is tree structure classifier, and k is sensitive 
parameter,

In Eq. 12, the expected value of the edge function gives 
the RF intensity calculation. Let's assume, R is strength and 
E is error.

(8)o
�
z (�) =

m∑
b=1

�i −
1

2

m∑
b=1

m∑
c=1

ybyc�b�c l
(
db, dj

)

(9)Q
�
1

2
�Sv� − fS

�

(10)JE ∗= PAB(mh(AB)) < 0

(11)mh(A,B) = avkI
(
hk(A) = Y

)
− Qj ≠ b

(12)R = EA,B(mh(AB))

In Eq. 13, calculate the generalization error of the con-
strained ensemble classifier as a function of the average cor-
relation between the base classifiers and their average strength, 
where JE is test set error and the� is mean value of correlation.

In this section, a reasonable estimate of the test set error 
can be obtained using the degree of inter-classifier depend-
ence and the strength of individual classifiers to determine the 
accuracy of the RF. Furthermore, ensemble classification can 
be constrained as a function of the average correlation between 
the base classifiers and their average strength to account for 
the generalization error.

K‑nearest Neighbor (K‑NN)

In this category, distance-based contrasts assign equal weight 
to each attribute, which can lead to noise or irrelevant data 
errors. However, editing and pruning techniques can be used to 
solve the problems of wasted data tuples and noisy data tuples, 
respectively. Each tuple can experimentally determine the opti-
mal number of neighbors for a point in n-dimensional space.

Minkowski, Manhattan, and Euclidean distance functions 
can be used in slow classifiers because the entire training data-
set must be optimized for classification. Three mathematical 
expressions of the algorithm can be found under Eqs. 14, 
15 and 16. Let’s assume k-nearest neighbor, u is value, and 
cu and du is attribute variable.

In this section, distance functions can be used in slow clas-
sifiers since the entire training dataset can be implemented in 
three mathematical expressions of the algorithm to be opti-
mized for classification.

Result and Discussion

This section evaluates the model's performance for detect-
ing phishing website datasets published from the UCI ML 
repository. The ML methods techniques can test and define 

(13)JE∗ ≤ �
(
1 − R2

)
∕R2

(14)

√√√√ K∑
u=1

(
cu − du

)2

(15)

√√√√ K∑
u=1

||cu − du
||2

(16)

√√√√
[

K∑
u=1

(||cu − du
||)2

]
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each method's precision, F-measure, sensitivity, specific-
ity, precision, and recall. Different data processing tech-
niques can be used for tenfold cross-validation classifica-
tion; TP, FP, TN and FN each have multiple bits.

Table 6 shows that various ML techniques, namely 
ANN, k-NN, SVM and RF, are used as classifiers for 
phishing detection, and the results are presented. Each 
method can be tested and defined using its TP, FP, TN 
and FN values.

Table 7 demonstrates that confusion matrices are used 
to estimate the efficacy of ML methods for detecting web-
site fraud. Valid and predicted values and contributions 
can be compared with a defined confusion matrix with 
phishing detection in percentage.

Sensitivity

In this category, Fig. 5 shows that ANN and SVM tech-
niques have lower accuracy when compared to sensitivity 
analysis. Comparing these two approaches, the RF method 
achieves a higher accuracy of 79%.

Specificity

Figure 6 illustrates that, compared to specificity analysis, 
ANN and SVM methods are 65% and 69% less accurate, 
respectively. The RF method achieves a higher accuracy 
of 81% compared to the two performance methods in 
specificity.

Accuracy

In this section, Fig. 7 demonstrates that the RF method 
achieves 93% higher accuracy compared to the two per-
formance methods in terms of accuracy. Compared to the 
precision methods, the ANN and SVM analysis methods 
obtained 71% and 81% lower accuracy, respectively.

In this category, in the precision and recall model 
shown in Table 8, comparing the two methods such as PSO 
and CBA, their accuracy has risen to 92 and 95.8%, and 
their number has reached the highest accuracy of 98.99% 
when dealing with another URL model F-measure method.

Conclusion

In this section, the phishing techniques behind the classi-
fication work to automatically classify fraudulent website 
detection into predefined class values based on certain fea-
tures and class variables. Phishing sites can be detected by 

Table 6  Evaluation of matrix

Parameters Formula

Sensitivity TP

TP+FN

Specificity TN

TN+FP

Accuracy TP+TN

TP+FN+TN+FP
∗ 100%

Precision TP

TP+FP

Recall TP

TP+FN

F-Measure 2 ∗
Precision∗Recall

Precision+Recall

Table 7  A performance evaluation of phishing website detection

Real value Forecast value Contribution

Positive (Phishing website) TP Some correctly recognized phishing websites among phishing sites
Negative (Legal Website) FP Wrongly detected as a legal site
Positive (Phishing website) FN Several websites can be misdiagnosed as phishing sites
Negative (Legal website) TN A legitimate website has been correctly identified as fair
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Fig. 5  Analysis of Performance in Sensitivity
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relying on ML-based phishing techniques to gather infor-
mation to help organize websites. Nevertheless, the dam-
age can be mitigated by developing embattled anti-phishing 
programs and technologies and refining the public on spot-
ting and identifying fraudulent phishing websites. Also, they 
include precision and F1 measures, sensitivity, specificity, 
accuracy, and recall that can be improved using algorithms. 
In this regard, their assessment achieved 91% accuracy in 
sensitivity and specificity. The precision and recall models 
outperformed PSO and CBA at 92% and 95.8% accuracy. 
This number was higher at 98.99% when dealing with the 
F-Measurement method for another URL model. In addi-
tion, research can be extended to generate more expansive 
network results and protect individual privacy.
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Table 8  Comparison of precision, recall, and F-measure model

Authors Method Model Analysis of 
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ness
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