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Abstract
Proteins play a vital role by booming out a number of activities within an organism to withstand its life. The field of Natural 
Language Processing has successfully adapted deep learning to get a better insight into the semantic nature of languages. 
In this paper, we propose semantic approaches based on deep learning to work with protein amino acid sequences and com-
pare the performances of these approaches with traditional classifiers to predict their respective families. The Bidirectional 
Encoder Representations from Transformers (BERT) approach was tested over 103 protein families from UniProt consortium 
database. The results show the average prediction accuracy to 99.02%, testing accuracy to 97.70%, validation accuracy to 
97.69%, Normalized Mutual Information (NMI) score on overall data to 98.45, on test data to 96.99, on validation data 
96.93 with high weighted average F1 scores of 99.02 on overall data, 97.72 on test data and 97.70 on validation data, and 
high macro average F1 scores of 99.00 on overall data, 98.00 on test data and 98.00 on validation data. From the results, it 
is justified that our proposed approach is outperforming well when compared to the existing approaches.
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Introduction

Amino acids are the structural blocks of protein. Although 
there are innumerable proteins, the basic building blocks are 
limited to 20 amino acids (as described in Table 1). These 
amino acids are arranged in different orders and composi-
tions to form a specific protein sequence. The task of assign-
ing proteins to their respective families makes use of a range 
of sources, like protein family databases, sequence analysis 
tools, scientific literature, and sequence similarity search 
tools. The protein sequences are known to implicitly encode 
structural information of the proteins, which in turn encodes 
functional properties and proteins with similar functional 
properties tend to belong to the same protein family [1–6].

Thus, the sequence analysis tools make use of this prop-
erty to classify proteins into their families [7]. They mainly 
compare the two sequences token by token, using methods 
like Edit distance, Hamming distance, and a combination of 
these. Algorithms like Needleman–Wunsch [8] is used for 
global alignment, Smith–Waterman for local alignment of 
protein sequences. In terms of Natural Language Process-
ing (NLP), these algorithms perform character by character 
matching for two sentences. The global alignment performs 
alignment based on comparing the entire sequences (end 
to end alignment) whereas, local alignment finds local 
regions with a maximum level of similarity between the 
two sequences. For example, we have two sentences—‘I am 
a man’, and ‘I am not a man’, then these tools will match 
over the characters to get the similarity score. Even the most 
dynamic algorithms in sequence similarity would give irra-
tional results in many such cases. They fail to encompass 
the meaning behind the way the amino acid sequences are 
arranged. Like here, the two sentences express two opposite 
ideas, but the similarity scores after alignment say a different 
story. Similarly, when we take another pair of sentences—
‘My name is Dave’ and ‘Dave is my name’. Here, the two 
sentences express the same meaning but have a different 
structure of representation. Here, we observe that even 
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though the two sentences express similar ideas, the similar-
ity score suggests differently.

However, most of the published methods tend to be 
computationally expensive sequence alignment methodolo-
gies [9]. One of the popular approach is based on the Hid-
den Markov Model (HMM) [10]. This technique provides 
a strong statistical base for building classification models 
that use multiple sequence alignment. This act as extremely 
discriminative models of biological sequences that have a 
formal probabilistic basis. It does not depend on the detec-
tions of intracellular loops and is publicly available through 
a web-server. This method return an 89.7% accuracy. This is 
very expensive in terms of computational time because each 
protein sequence has to be aligned with all the other protein 
sequences in the training set before making the predictions.

Although alignment-independent techniques have been 
developed for the classification of proteins, most of these 
methods are based on feature extraction and the derived 
features are encoded into feature vectors to apply suitable 
machine learning models for training a model for classifi-
cation [1, 2, 4, 5, 11]. Although this method is effective, it 
still needs to extract the features of the proteins from their 
sequences first and then encoding them into vector repre-
sentations to apply machine learning models to them. The 
features obtained are based on the knowledge we have about 
the working of the biological and chemical phenomena of 
the protein sequences, instead in this paper, the method we 
propose is free of this knowledge base. Instead of using any 
pre-existing knowledge modeling procedure, the methods 

proposed here gain insight into the protein sequences based 
on their morphological features, i.e., the arrangement of the 
amino acids and their contexts, the models itself form its 
own knowledge base from the distribution in the dataset and 
then use this knowledge to make further predictions [12].

One such method we use here is the document embedding 
technique where fixed size vectors are created from the pro-
tein sequences based on the amino acid content and arrange-
ment of each sequence. We can then apply the classification 
algorithms such as Logistic Regression, Support Vector 
Classifier (SVC), K-Nearest Neighbors (KNN), Extra Tree 
Classifier, Random Forest Classifier, Gaussian Naïve Bayes 
on the obtained protein vectors for classification. Another 
approach that we applied to the protein sequences for family 
prediction is Bidirectional Encoder Representations from 
Transformers (BERT) [13]. It is a transformer-based bidi-
rectional training approach for language modeling. Unlike 
the previous algorithms which looked at texts from left to 
right or right to left while training, BERT combines both 
of these methodologies to perform bidirectional training 
on the text. Research shows that the bidirectionally trained 
language models have a deeper understanding of the flow of 
language and context. The quality of predictions made by 
these algorithms was then further compared with each other.

Honglei Liu et al. [14] applied the deep learning tech-
niques and Natural Language Processing (NLP) methods 
to find out the liver cancer. They have used the deep learn-
ing methods and NLP methods to extract the radiological 
features. They have developed a computer-aided method 
for diagnosing the liver cancer. The authors have used the 
BERT model to identify the phrases like hypointense in the 
portal phase and hyperintense enhancement in the arterial 
phase. Shivaji Alaparthi et al. [15] investigated the effec-
tiveness of the BERT in supervised deep learning frame-
works. The authors gave a clear study on sentiment analysis 
which will help for the people in analytics company and 
researchers who are working in text analysis. The authors 
have concluded that BERT model is performing well for 
the sentiment classification since it has high computational 
capabilities. Alaa Joukhadar et al. [16] proposed model to 
detect Arabic language dialogue acts and the experiment was 
done on the Arabic datasets. Existing researches show that 
the identification of Arabic dialogue acts is little bit compli-
cated. The authors [16] presented the impact of BERT model 
to identify the Arabic language dialogue acts using different 
models like AraBERT base, AraBERT large, and AraBERT 
original. The authors found out the Arabic corpus and it 
contains more than 21 K tweets. The authors also exploited 
the LevInt Arabic corpus that contains eight speech acts. The 
dysregulation of glutarylation leads to many human diseases 
and identification of the dysregulation of glutarylation is 
becoming an important task. Chuan-Ming Liu et al. [17] pre-
sented a deep-learning word-embedding-based framework to 

Table 1  Amino acids and their 
single letter representations

Amino acids Symbols

Alanine A
Cysteine C
Aspartic acid D
Glutamic acid E
Phenylalanine F
Glycine G
Histidine H
Isoleucine I
Lysine K
Leucine L
Methionine M
Asparagine N
Proline P
Glutamine Q
Arginine R
Serine S
Threonine T
Valine V
Tryptophan W
Tyrosine Y
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identify the dysregulation of glutarylation. The authors have 
done the experiments to improve the protein sequence data 
representation and they identified that deep neural network 
works well to handle complicated problems in protein identi-
fication. The method [17] is used to find the new sites of glu-
tarialisations and shows the relationship between glutarial 
and protein acetylation. Wazib Ansar et al. [18] presented 
a new transformer encoder framework which has less com-
plexity and computational overhead when compared to the 
BERT. Parinnary Chaudhry [19] has utilized the sentiment 
analysis capability of BERT to make a quantitative relation 
between the news and reporting of an industry. Also, the 
authors [19] used BERT to predict the stock market price 
and analyze the human psychology. Jairus Mingua et al. [20] 
used the BERT model to classify the Filipino tweets and 
the results show some significant difference in the accuracy.

Methodology

Protein Sequences as Language

In this paper, we treat the protein sequences as a part of a 
language that our body communicates in. If we consider 
language processing, the primary task is the identification 
of the morphemes of the language. Figure 1 shows the out-
line of the proposed work. The morphemes of the protein 
sequence language are the amino acids, the structural blocks 
of protein. The single-letter symbol representations (as 
shown in Table 1) will act as the alphabets of this language. 
So, now we have a new language with 20 alphabets and a 
vast vocabulary of a lot more than a million texts, which 
now would be regarded as the corpora of this language. So, 
we treat the amino acid symbols (as shown in Table 1) A, 

V, T, etc., as the alphabets of the protein language and the 
protein sequence is formed as a sentence. Now, with a new 
language at hand, a wide range of possibilities opens up. 
The very first major issue would be with tokenization. In 
this work, we have tried to solve sentence tokenization by 
assuming every protein sequence as a sentence. The problem 
with word tokenization is that there is no specific delimiter 
that acts as a tokenizer (Like in English, space—‘’ acts as 
a delimiter between two words, thus facilitating the sim-
ple tokenization). To solve this problem of word tokeniza-
tion, we analyzed tokenization techniques in existing non-
tokenized Asian language like Chinese [21].

We presumed that all the single characters, i.e., amino 
acids are also words themselves. Then we applied a tokeni-
zation algorithm based on the Viterbi decode and a lexicon 
built of frequent k-mers from all the sequences from the 
Swiss-Prot data file [22]. K-mer is a subsequence of length 
‘k’. So, in the sequence AVTLAD, the 2-mers are (AV, VT, 
TL, LA, AD). K-mers from k = 2 to k = 20 is computed 
and then to reduce the size of the set of all k-mers, drop 
the k-mers with frequency probability less than  e−15, thus 
removing the less frequent k-mers and making the process 
memory efficient. These k-mers, along with the characters 
(amino acid symbols), are now treated as words.

Document Embedding with Protein Sequences

Now, with protein sequences established as a language, we 
can move ahead to apply similar algorithms to it to gain 
insight. Document embedding is a deep learning algorithm 
that is used to create fixed-length vectors from variable 
length text documents (in our case, protein sequences). 
We created a custom dataset of all the protein sequences 
tokenized and tagged with their respective families. Here 
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we have used the doc2vec algorithm [23] to create docu-
ment embeddings using the gensim [24] library in python. 
Doc2vec performs robustly on a large scale of data, and as 
we know, the biological data are colossal and increasing 
every day. Doc2vec was proposed in two primary forms—a 
Distributed Bag of Words representation (DBOW), and a 
Distributed Memory (DM) version. Le and Mikolov [25] 
stated that DM alone usually is efficient for most tasks, but 
others have found a combination of DM and DBOW to per-
form better [23, 25]. In this specific case, the combination of 
DM and DBOW algorithms was found to perform with bet-
ter accuracy, than the standalone DM or DBOW algorithm-
based model. The architecture diagram is shown below in 
Fig. 2. The obtained word vectors using the Doc2Vec algo-
rithm can be further used for training a prediction model. We 
used these sequence vector data to model a K-Nearest Neigh-
bor (KNN), Logistic Regression (LR), Extra Tree Classifier 
(ETC), Random Forest Classifier (RFC), Gaussian Naïve 
Bayes (GNB), Support Vector Machine (SVM) models with 
linear and radial basis function (RBF) kernels.

The architecture diagram of the complete model, from 
the raw input of protein fasta sequence to the prediction of a 
protein family, is illustrated in Fig. 2. The process flow of the 
model can also be observed in Fig. 2. The system first takes 
in a protein amino acid sequence input and then passes it to 
the DBOW Doc2Vec model. The sequence vectors obtained 
from here are then passed into a classification model for 
family prediction using the sequence vectors. The classifica-
tion model here represents the different classification models 
of Logistic Regression, Support Vector Classifier (SVC), 
K-Nearest Neighbor, Extra Tree, Random Forest, and Gauss-
ian Naïve Bayes Classifier.

Figure 3 shows architecture of BERT-based model. For 
tokenization, BERT uses a WordPiece tokenizer. In Word-
Piece tokenization, a word can be broken down into more 
than one subword [26]. This type of tokenization proves to 
be useful when dealing with protein sequence vectors where 

we have to work with a lot of out of vocabulary words. The 
tokenized data are then encoded into token ids with the help 
of the pre-trained vocabulary dictionary mapping tokens to 
respective ids. In this work, we use the bert-base-uncased 
model created by Hugging Face. The model has 12 lay-
ers, 768 hidden features, 110 million parameters, and is 
pre-trained using Masked Language Modeling (MLM) on 
English language [27]. Yes, you read correctly a language 
model trained on plethora of English data available. We used 
this pre-trained model on English data because amino acid 
uses a subset of alphabets of English language. Each protein 
sequence fed into the model has a special token (CLS) added 
at the beginning of the sequence and the end of a sequence 
is marked by the special token (SEP), thus separating two 
inputs from each other. The model takes a fixed size input 
of 512 tokens. The sequences shorter than this requirement 
are padded up to a length of 512 and the longer sequences 
are truncated to a size of 512. Apart from the input, there 
exists an attention mask which tells the model which tokens 
should be taken and which should be ignored while training.

Results and Discussion

The family data of the protein sequences were downloaded 
separately from the UniProt website [22, 28], which con-
tained about 5,63,000 proteins, along with their sequences 
and annotations (i.e., additional information as specified in 
Table 2). Recently, it has been used by Chang Woo Ko [29]. 
Swiss-Prot was used because the content here is reviewed 
and maintained by experts, and has minimal redundancy. 
The family to which the protein sequence belonged was pre-
sent in a separate file downloaded from the UniProt website. 
In this work, we first dealt with 36 protein families with a 
document embedding model, the rest of the families with 
number of protein sequences less than 1000 were dropped. 
Later, we deal with 103 protein families with a BERT model, 

Fig. 2  Architecture of the document-embedding-based prediction 
model

Fig. 3  Architecture of BERT-based model
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the rest of the families with number of protein sequences less 
than 700 were dropped.

The protein sequences were tokenized as explained in the 
methodology and stored alongside their respective protein 
family in training, validation, and testing sets. The size of 
these training, validation, and testing sets was in the fol-
lowing ratios. The sequence data were initially used to train 
Doc2Vec models, both DM and DBOW. After designing 
sequence vectorizing models, the protein sequence vector 
obtained from both DM and DBOW models was stored 
alongside their protein family in training, validation, and 
testing data files. To test the document embedding method, 
36 protein families were selected from the Swiss-Prot data-
base, such that number of protein sequences in each family 
was greater than 1,000. Redundant sequences were elimi-
nated before model construction and testing. There were 
72,208 protein sequences in 36 families. The data were shuf-
fled randomly and split into training, validation, and testing 
datasets. To test the BERT method, 103 protein families 
were selected from the Swiss-Prot database, such that num-
ber of protein sequences in each family was greater than 
700. There were 112,401 protein sequences in 103 families.

Document Embedding Model Performance

The obtained accuracies indicate in Table  3 that the 
DBOW algorithm of Doc2Vec modeling is most suitable 
to understand and work with biological sequence data. The 
best average classification accuracy of 0.8827 is achieved 
by applying Support Vector Classifier with radial basis 
function kernel over the protein vector data obtained from 
Doc2Vec (DBOW) model. Also, the highest testing accu-
racy of 0.8346 is achieved using this specific combination. 
Although the accuracy is high, accuracy alone cannot be 
used as a metric for validating a model. This specific prob-
lem can be considered as a clustering problem, wherein we 
have to create clusters out of the given protein sequences 
into 36 protein families’ clusters. So, the models can be 

evaluated using clustering metrics like NMI score. It is a 
good measure for determining the quality of clustering. It 
is an external measure because we need the class labels 
of the instances to determine the NMI. Support Vector 
Classifier with RBF kernel combined with DBOW vectors 
performs well on NMI metric too. The NMI score achieved 
with this combination is 0.7092 over the testing data.

The document embedding models are also evaluated 
using precision–recall curves and Receiver Operating 
Characteristics (ROC) curves on one vs. all classifica-
tion forms of these models. The ROC curves can be seen 
below in Figs. 4, 5, and 6. Considering the highest test-
ing accuracy and highest NMI of the SVC (RBF kernel) 
model on DBOW vectors, the ROC curve of this model 
must be performing better than all the other models on 
DBOW vectors, but from the graph displayed in Fig. 4, one 
can infer that the Gaussian Naïve Bayes model performed 
better than any other model in case of DBOW vectors. 
From this, we could infer that even though the accuracy of 
Support Vector Classifier is greater than Gaussian Naïve 
Bayes Classifier, the reliability of Gaussian Naïve Bayes 
Classifier is greater than other models, but the dataset in 
consideration here is imbalanced, and in case of imbal-
anced dataset, precision–recall curve is considered as a 
much better testing metric than ROC curve.

One can see the precision–recall curves of different 
classifiers combined with sequence vectors obtained using 
DBOW, DM and DBOW + DM algorithms of Doc2Vec 
algorithms in the following Figs. 7, 8, 9, 10, 11, 12, and 
13. In case of precision–recall curve, the perfect test will 
have a curve that passes through the upper right corner cor-
responding to 1.0 precision and 1.0 recall. Generally, it is 
stated that closer the precision–recall curve is to the upper 
right corner, the better the model is. Thus, on observing the 
graphs in Figs. 7, 8, 9, 10, 11, 12, and 13, one can infer that 
the most reliable models are Logistic Regression Classifier 
combined with DBOW Doc2Vec model and SVC with RBF 
kernel combined with DBOW Doc2Vec model.

Table 2  Annotations present in the Swiss-Prot text data file and their significance

ID The first item on the ID line is the entry name of the sequence. This name is an important means to identify a sequence
AC Accession number (Universal to all protein data banks)
DT Date
DE Description
GN Name of the gene(s) that code the stored protein sequence
OC Organism classification
OX Organism taxonomy, identifies the organism in taxonomic database
OH Organism host
RN, RP, RC, RX, RG, 

RA, RT & RL
These lines comprise the literature citations. The citations consist of the sources from where the data are abstracted 

and the authors of the corresponding literatures
DR Database cross reference
And others
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Table 3  Performance of the different document embedding vectors combined with different classifiers

Training data Testing data Overall data

Accuracy NMI Accuracy NMI Accuracy NMI

Extra Trees Classifier
 DBOW 1.0 1.0 0.7936 0.6418 0.8509 0.7819
 DM 1.0 1.0 0.2134 0.0877 0.5366 0.4120
 DBOW + DM 0.9426 0.9040 0.6739 0.4780 0.7625 0.6713

Gaussian Naïve Bayes Classifier
 DBOW 0.9730 0.9502 0.8240 0.6952 0.8644 0.7975
 DM 0.3292 0.2748 0.0652 0.0804 0.2046 0.1801
 DBOW + DM 0.9511 0.9177 0.7463 0.5755 0.7822 0.7007

Logistic Regression Classifier
 DBOW 0.9999 0.9997 0.7985 0.6493 0.8692 0.7880
 DM 0.8930 0.8447 0.3253 0.1828 0.6103 0.4608
 DBOW + DM 0.9788 0.9643 0.7511 0.5890 0.8297 0.7366

Support Vector Classifier (linear kernel)
 DBOW 1.0 1.0 0.7814 0.6370 0.8644 0.7841
 DM 0.9641 0.9456 0.2799 0.1515 0.6045 0.4505
 DBOW + DM 0.9850 0.9728 0.6632 0.5101 0.8274 0.7398

Random Forest Classifier
 DBOW 1.0 1.0 0.7945 0.6425 0.8507 0.7814
 DM 1.0 1.0 0.2042 0.0839 0.5340 0.4097
 DBOW + DM 0.9323 0.8898 0.6715 0.4850 0.7634 0.6698

KNN Classifier (K = 7, metric = Euclidean distance)
 DBOW 1.0 1.0 0.7814 0.6370 0.8644 0.7841
 DM 1.0 1.0 0.1415 0.2724 0.5824 0.4383
 DBOW + DM 0.9850 0.9728 0.5212 0.3837 0.8274 0.7398

Support Vector Classifier (radial basis function kernel)
 DBOW 0.9940 0.9879 0.8346 0.7092 0.8827 0.8167
 DM 0.8965 0.8363 0.4036 0.2182 0.5728 0.5055
 DBOW + DM 0.9914 0.9822 0.7013 0.5904 0.8182 0.7482

Fig. 4  ROC graph of classifiers on DBOW vectors obtained from 
testing data

Fig. 5  ROC graph of classifiers on DM vectors obtained from testing 
data
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So, considering the metrics such as accuracy score, 
NMI score, precision and recall curve, it can be concluded 
that SVC with RBF kernel applied on the sequence vec-
tors obtained using a DBOW form of Doc2Vec algorithm 
is so far the best performing model in this paper for protein 
family prediction using protein sequences alone. With more 
sophisticated data, this model can be re-scaled based on new 
inputs. The elegance of this model is the way it works with 
new data input, which was never used before for training 
either the document embedding or the later classification 
methods like K-Nearest Neighbor, Logistic Regression, 
Extra Trees Classifier, Random Forest Classifier, Gaussian 
Naïve Bayes, Support Vector Classifier models. The archi-
tecture of this model can be applied to any variations of bio-
logical sequences (with sufficient data) for different purposes 
using the concept of transfer learning.

Fig. 6  ROC graph of classifiers on DBOW + DM vectors obtained 
from testing data

Fig. 7  Precision–recall curves 
of K-Nearest Neighbor Classi-
fier (K = 7) on DBOW, DM, and 
DBOW + DM sequence vectors 
obtained from testing data

Fig. 8  Precision–recall curves 
of Random Forest Classifier on 
DBOW, DM ,and DBOW + DM 
sequence vectors obtained from 
testing data

Fig. 9  Precision–recall curves 
of Extra Trees Classifier on 
DBOW, DM, and DBOW + DM 
sequence vectors obtained from 
testing data
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Table 4 represents the overall accuracy of the proposed 
work. The BERT model performs exceptionally well over 
the protein sequence data with decent accuracy, F1 scores, 
and NMI scores. Here, we use a very imbalanced dataset, 
and still achieve a decent weighted average F1 score of 

0.9772 and macro-averaged F1 score of 0.9800 on test data. 
The high NMI metric value of 0.9699 signifies good cluster-
ing. The BERT model used was pre-trained on English lan-
guage corpora but still was able to work with protein data on 
training the model on the available tagged protein sequence 

Fig. 10  Precision–recall curves 
of Gaussian Naïve Bayes 
Classifier on DBOW, DM, and 
DBOW + DM sequence vectors 
obtained from testing data

Fig. 11  Precision–recall curves 
of Support Vector Classifier 
(linear kernel) on DBOW, DM, 
and DBOW + DM sequence 
vectors obtained from testing 
data

Fig. 12  Precision–ecall curves 
of Support Vector Classifier 
(RBF kernel) on DBOW, DM, 
and DBOW + DM sequence 
vectors obtained from testing 
data

Fig. 13  Precision–recall 
curves of Logistic Regression 
Classifier on DBOW, DM and 
DBOW + DM sequence vectors 
obtained from testing data
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data. Moreover, Table 5 is used to identify the significance 
of the proposed method through average precision (AP), 
F1 score (F1), area under receiver operating characteristic 
curve (AUROC), area under precision–recall curve (AUPR) 
and Matthews correlation coefficient (MCC). To verify our 
approach, we compared our model with the state-of-art 
method BLAST and FUTUSA. We have selected three major 
activities namely oxidoreductase, the acetyltransferase, and 
demethylase activity. BERT model depicted higher values 
of accuracy than existing model. Although, the BERT model 
presented on 103 protein families, with the BERT’s prop-
erty of transfer learning, it can be re-scaled to work on any 
number of protein families as long as the sequences per fam-
ily are significant enough for training. Apart from this, it 
can also be inferred that BERT model performs much better 
than document embedding model, and the metrics tested on 
validation data also emphasize the fact that the model is not 
overfitting on the available data.

Conclusion

A BERT model could be used to effectively encompass the 
information in a protein sequence in a context-based manner 
rather than the traditional sequential manner to predict its 
family. From the results, it is identified that the BERT model 
yields the results with an average accuracy of 0.9902, test 
accuracy of 0.9770, average F1 score of 0.9702, and testing 
F1 score of 0.9772 (as shown in Table 6). In this work, we 
also inferred that a standalone DBOW Doc2Vec model per-
formed better over biological sequence data, irrespective of 
the popular opinion of Doc2Vec modeling. The DM model 
works better than any other model and DM supersedes the 
performance of other Doc2Vec models on text data. This 
new strategy has a wide scope of future extensions, because 
these methods tend to assign more meaning to protein 
sequences. Unlike the traditional method of dealing with 
sentences, now we can use these techniques to gain insight 
into these sequences. In this paper, we have applied BERT 
technique for protein family prediction, but this method 
can be transcended to determine the similarity between 
sequences and give better results than any traditional pair-
wise sequence alignment techniques. This new strategy has 
a wide scope of future extensions, because the sequences 
are converted to vectors which tend to assign more mean-
ing to them. In future, with the help of more non-redundant 
data, suitable hyper-parameter tuning and scaling, this BERT 
architecture, a robust model, for prediction of protein family 
for all protein sequences of all known families can be built.

Table 4  Performance of BERT over protein sequences

Measures Train Test Validation Overall

Accuracy 0.9946 0.9770 0.9769 0.9902
F1 score (weighted average) 0.9946 0.9772 0.9770 0.9902
F1 score (macro average) 1.0000 0.9800 0.9800 0.9900
NMI score 0.9913 0.9699 0.9693 0.9845

Table 5  The accuracy 
comparison of the models based 
on the three activity

Bold: It is obeserved that the proposed method is yielding good results when compared to the existing 
methods

Activity Models AP MCC F1 AUPR AUROC

Oxidoreductase BLAST 0.1509 0.3386 0.3014 – –
FUTUSA 0.4319 0.4508 0.4528 0.4272 0.8136
BERT 0.5218 0.5142 0.4950 0.4933 0.8321

Acetyltransferase BLAST 0.0649 0.1818 0.2374 – –
FUTUSA 0.3212 0.4444 0.5331 0.3166 0.7587
BERT 0.3500 0.4934 0.5390 0.3574 0.7894

Demethylase BLAST 0.1521 0.3529 0.3826 – –
FUTUSA 0.3486 0.5000 0.5145 0.3297 0.6906
BERT 0.4120 0.6237 0.5413 0.3528 0.7581
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