
Vol.:(0123456789)

SN Computer Science           (2023) 4:564  
https://doi.org/10.1007/s42979-023-01979-8

SN Computer Science

ORIGINAL RESEARCH

Severity Classification of Code Smells Using Machine‑Learning 
Methods

Seema Dewangan1 · Rajwant Singh Rao1  · Sripriya Roy Chowdhuri2 · Manjari Gupta2

Received: 27 February 2023 / Accepted: 30 May 2023 
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023

Abstract
Code smell detection can be very useful for minimizing maintenance costs and improving software quality. Code smells 
help developers/programmers, researchers to subjectively interpret design defects in different ways. Code smells instances 
can have varied size, intensity or severity which needs to be focused upon as they affect the software quality accordingly. 
Therefore, this study aims to detect the severity of code smells from code smell datasets. The severity of code smells is sig-
nificant for reporting code smell detection performance, as it permits refactoring efforts to be prioritized. Code smell sever-
ity also describes extent of effort required during software maintenance. In our work, we have considered four code smells 
severity datasets to detect the severity of code smell. These datasets are data class, god class, feature envy and long method 
code smells. This paper uses four machine-learning and three ensemble learning approaches to identify the severity of code 
smells. To improve the models’ performance, we used fivefold cross-validation method: Chi-square-based feature selection 
algorithm and parameter optimization techniques. We applied two-parameter optimization techniques, namely grid search 
and random search and also compared their accuracy. The conclusion of this study is that the XG Boost model obtained an 
accuracy of 99.12%, using the Chi-square-based feature selection technique for the long method code smell dataset. In this 
study, the results show that ensemble learning is best as compared to machine learning for severity detection of code smells.

Keywords Severity of code smells · Code smells · Machine learning · Feature selection · Parameter optimization

Introduction

Code smells indicate issues with software design. In addition 
to making the code more difficult to comprehend, a code 
smell may make modifications and mistake proneness more 
likely. Software engineers may learn the code more effi-
ciently than ever by identifying and removing code smells 
from the program.

The software is getting more and more complicated 
because there are more and bigger modules, more compli-
cated requirements, and code smells, among other things. 
Challenging requirements are complex to assess and com-
prehend, making development difficult and beyond the scope 
of developers, but code smells may be recognized and refac-
tored to make the software simpler, straightforward, and 
easier to produce and maintain [1]. The software engineer-
ing principles are required to develop better quality soft-
ware [2]. In general, developers concentrate on functional 
requirements and overlook nonfunctional requirements such 
as maintainability, development, verifiability, reprocessing 
ability, and comprehensibility [3].

The severity of code smells is a significant considera-
tion when reporting outcome of code smell detection, as it 
permits refactoring efforts to be prioritized. High-severity 
code smells can become a significant and complex problem 
for software’s maintainability process. Thus, detecting code 
smells as well as their severity are very useful for software 
developers to minimize maintenance costs and improve soft-
ware quality [4].
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The purpose of the research is to detect the severity of 
code smells to help the software developers minimize the 
maintenance charges and improve the software quality.

In the literature, a number of code smell severity detec-
tion techniques have been developed [5–8]. Each technique 
gives different outcomes because smells can be interpreted 
subjectively and, therefore, can be described in various ways 
[4]. To the best of our knowledge and available literature, 
only Fontana et al. [4] and Abdou [27] have found the code 
smell severity on the code smell dataset. They used ordinal 
and multinomial machine-learning algorithms (MLA) for 
code smell severity detection. In addition, they used ranking-
based correlation to find the best algorithm. The Fontana 
et al. [4] and Abdou [27] approach has the following limita-
tions: they have not presented class-wise accuracy in their 
studies. They did not consider other performance metrics 
such as precision, recall, and F-measure. They used differ-
ent MLA; the ensemble learning methods were not applied.

This study hypothesizes detecting the severity of code 
smells using machine-learning and ensemble learning meth-
ods and presenting class-wise outcomes.

Contributions: In this work, we have applied seven 
MLA/ensemble learning models (logistic regression (LR), 
Random Forest (RF), KNN, decision tree (DT), AdaBoost, 
XGBoost, and Gradient Boost) with the Chi-square feature 
selection approach on each dataset. In addition, we applied 
grid search and random search-based parameter optimization 
techniques (POT) to see the effect of parameters optimiza-
tion on the classification results of code smell severity detec-
tion. We achieved the highest severity classification accuracy 
(SCA), 99.12%, in the XG Boost model for the LM dataset.

The advantage of this research is to detect the severity 
from the code smell severity dataset to make our code or 
source code more effective, accurate, and easily understand-
able by the programmer and users.

The following is the outline of this paper: the next sec-
tion explains related works. The third section describes the 
dataset’s structure and proposed models. The fourth section 
describes the experimental results of our proposed models. 
The fifth section discusses our results and compares these 
with baseline results and the final section concludes the 
work.

Related Work

Various machine learning-based algorithms and techniques 
have been used by the researchers for code smell detection 
and also for code smell severity classification. The related 
work section is divided in two parts: the first part discusses 
the research works done for code smell detection using 
machine-learning techniques, and the second part discusses 
research works related to the severity of code smells.

Machine‑Learning Techniques for Code Smell 
Detection

Fontana et al. [9] proposed a comparison-based obser-
vation among 16 MLAs on 4 code smell datasets from 
74 java systems with manually validated examples on 
the training dataset for code smell detection. In addi-
tion, boosting techniques were used for four code smells 
datasets.

Mhawish et al. [10] suggested an MLA for detecting 
code smells in source code. They used the two-feature 
selection approach based on the genetic algorithm (GA) 
and a POT based on a grid search. Using the GA_CFS 
approach, they obtained the highest accuracy in the data 
class (DC), god class (GC), and long method (LM) smells 
by 98.05%, 97.56%, and 94.31%, respectively. They also 
obtained the highest accuracy of 98.38% in the LM using 
the GA-Naïve Bayes feature selection method. Mhawish 
et al. [11] presented code smell testing of prediction with 
the help of MLA and software metrics. They also used 
feature selection methods based on GA to increase the 
efficiency of these MLA by identifying the appropriate 
features in every dataset. Furthermore, they used the grid 
search algorithm based on POT to improve the perfor-
mance of the approaches. The RF model obtains the high-
est accuracy of 99.71% and 99.70% in predicting the DC 
in the original refined datasets.

Kaur et al. [12] proposed a correlation metrics selection 
strategy and an ensemble learning method for detecting 
code smells in three publicly available Java datasets. They 
used bagging and RF classifier to examine each method 
with four occurrence measures accuracy (P1), G-mean 1 
(P2), G-meam2 (P3), and F-measure (P4). Pushpalatha 
et al. [13] suggested that the severity of bug reports for 
closed-source datasets could be predicted. For this, they 
used the PROMISE Repository to get the dataset (PITS) 
for NASA projects. They improved the accuracy by 
employing ensemble learning strategies and two-dimen-
sional reduction methods, such as Chi-square analysis and 
information gain, respectively. Alazba et al. [14] proposed 
14 MLA and stacking ensemble learning algorithms on the 
six code smell datasets. The results of MLA were com-
pared, and they found that the best accuracy was 99.24% 
applying the Stack-SVM algorithm for the LM Dataset. A 
search-based technique to enhance the code smell detec-
tion using Whale optimization method as a classifier was 
proposed by Draz et al. [15]. They researched five open-
source software projects that detected the nine code smell 
types and established an average of 94.24% precision and 
93.4% recall.

Dewangan et al. [16] presented six MLAs, two Chi-
square, and Wrapper-based FSTs to pick the significant 
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feature from each dataset; the grid search technique was 
then applied to improve the model’s outcome and achieved 
100% accuracy using the LR model for the LM dataset. 
Reis et al. [17] proposed a Crowd smelling approach using 
collective knowledge in code smells detection with the 
LM, GC, and Feature envy (FE) datasets. They applied six 
MLA to detect the code smells. They obtained the highest 
outcome of 0.896% ROC using the Naive Bayes algorithm 
for GC detection and 0.870% ROC using AdaBoostM1al-
gorithm for LM detection. The worst performance was 
0.570% using the RF algorithm for FE detection. Oort 
et al. [18, 19] presented a study to examine the occurrence 
of code smells in machine-learning projects. They col-
lected the 74 machine-learning projects, and then applied 
the Pylint tool to those projects. After this, they assembled 
the delivery of Pylint messages per group per project, the 
best 10 code smells in these projects in general, and the 
best 20 code smells per group. They originate that the 
PEP8 rule for the identifier naming method may not for-
ever be appropriate in machine-learning code due to its 
similarity with mathematical notation. They also detected 
severe problems with the measurement of needs that pre-
sent the main threat to the maintainability and reproduc-
ibility of Python machine-learning projects.

Boutaib et al. [20] proposed a bi-level multi-label detec-
tion of smells (BMLDS) tool to reduce the population of 
classification series for detecting multi-label smells. They 
implemented a bi-level scheme in which the higher-level part 
is to discover the best classification for each measured series, 
and the lower level part is to construct the series.

Abdou et al. [21] proposed three ensemble methods (bag-
ging, boosting, and rotation forest) with a resample tech-
nique to detect the software defects. They used seven code 
smell datasets given in the PROMISE repository. They found 
that the ensemble method gives better accuracy as compared 
to single learning methods. They found the 93.40% high-
est accuracy using Random Forest with resample technique 
model for KC1 dataset.

Dewangan et  al. [22] introduced ensemble and deep 
learning algorithms as a method for identifying the code 
smell. They applied Chi-square-based FST to pick the sig-
nificant features from each code smell dataset and a SMOTE 
technique is used to balance the dataset. They were able to 
achieve an accuracy of 100% by utilizing all of the ensemble 
approaches for the LM dataset.

Dewangan et al. [23] proposed five classification models 
to detect the code smell. They used four code smell datasets 
DC, GC, FE, and LM. They obtained 0.9912% best accuracy 
using Random Forest model for FE dataset.

Dewangan et  al. [24] proposed three ML algorithms 
to detect the code smell. A principle component analysis 
(PCA)-based FST is used to pick the significant features 
from each code smell dataset. They obtained 99.97% best 

accuracy using principal component analysis-based logistic 
regression (PCA_LR) model for DC dataset.

There is a notable difference between these works and 
the technique we used in this paper. The majority of the 
above studies are focused on the identification of code 
smells as described by Flower et al. [25]. Most of the previ-
ous research papers have examined only a few systems and 
applied the MLAs. However, they have not mentioned the 
aspect of severity of code smells in their work.

Machine‑Learning Techniques for Code Smell 
Severity Detection

Vidal et al. [5] proposed a tool for detecting code smells 
using textual analysis. For this purpose, they conducted two 
separate experiments. They started by performing a software 
repository mining study to examine how engineers spotted 
code smells through textual or structural cues. They then 
carried out a user research with industrial developers and 
quality experts to qualitatively examine how they examined 
the detection of code smells using two different sources of 
details. They discovered that textual code smells are simpler 
to pick up.

Liu et al. [6] propose severity prediction of bug reports 
based on feature selection methods. They establish a 
ranking-based policy to enhance existing feature selection 
methods and intend an ensemble learning feature selection 
method by merging existing ones. They applied eight-fea-
ture selection methods. They found that the ranking-based 
strategy gets the highest F1 score, 54.76%. Tiwari et al. 
[7] proposed a method to find the LM and their severity 
that shows the importance of refactoring LMs. They find 
that it matches the expert’s severity evaluation for half the 
approaches within a tolerance level one. In addition, they 
identified a high severity; this evaluation is more or less 
equivalent to an expert’s judgment.

MLAs were suggested by Baarah et al. [8] for closed-
source software bug severity detection. They assembled a 
dataset from past bug information stored in the JIRA bug 
tracking system connected to different closed-source pro-
jects built by INTIX Company in Amman, Jordan. They 
evaluate eight MLAs such as Naive Bayes, Naive Bayes 
Multinomial, SVM, Decision Rules (JRip), Logistic Model 
Trees, DT (J48), RF, and KNN in the measurement of accu-
racy, F-measure, and area under the curve (AUC). The DT 
model obtained the highest performance accuracy, AUC, and 
F-measure with 86.31%, 90%, and 91%, respectively.

Gupta et al. [26] proposed a hybrid method to exam-
ine the severity of the code smell intensity in the Kotlin 
language and found which code smells are equivalent in 
the Java language. They used five types of code smells to 
examine the research work: complex method, long param-
eter list, large class, LM, and string literal duplication. 
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They applied various MLAs, where they found the JRip 
algorithm achieved the best performance with 96% preci-
sion and 97% accuracy. Abdou et al. [27] proposed the 
classification of code smell severity using MLAs based on 
regression, multinomial, and ordinal classifiers. In addi-
tion, they applied the local interpretable model agnostic 
explanations (LIME) approach to explaining the MLAs 
and prediction rules produced by the PART algorithm 
to find the efficiency of the feature. They employed the 
LIME algorithm to help us gain a deeper knowledge of the 
model's decision-making process and the characteristics 
that affect the model’s decision. They found the highest 
accuracy of 92–97% with correlation measurement of the 
Spearman algorithm. Hejres et al. [28] proposed the detec-
tion of code smell severity using MLAs. They applied 
three models, sequential minimal optimization (SMO), 
artificial neural network (ANN), and J48, to detect the 
code smell severity from four datasets. They obtained the 
best result for GC and FE datasets using the SMO model, 
while the LM dataset obtained the best accuracy using 
adaptive neural network ensemble (ANNE) with the SMO 
model.

Nanda et al. [29] proposed a combination of SMOTE and 
Stacking model to classify the severity of GC, DC, FE, and 
LM datasets. They improved their performance from 76 to 
92%. Fontana et al. [4] proposed MLA for classifying the 
severity of code smell. They implemented different MLAs, 
spanning from multinomial classification to regression and 
a binary classifier for ordinal classification. They found the 

correspondence between the actual and predicted severity 
for the top techniques and achieved 88–96%, calculated by 
Spearman’s p.

To the best of our knowledge and available literature, it is 
observed that most of the authors used different code smell 
datasets and code smell severity datasets using different 
types of MLAs, multinomial, and regression techniques to 
find the code smell and severity of code smell from data-
sets. It has been observed that the effect of grid search and 
ensemble learning algorithms on the severity datasets has 
not been applied earlier. Therefore, to study and analyze 
the effect of MLA and ensemble learning approaches, we 
have used MLAs and ensemble learning methods with grid 
search, random search, and Chi-square feature selection 
techniques to find the severity of code smell from the code 
smell severity datasets.

Proposed Model and Dataset Description

The severity of code smells is significant to study when 
describing code smell detection results since it categorizes 
refactoring efforts. This research work builds a model for 
detecting the severity of code smell using machine-learning 
methods. A step-by-step research framework designed for 
code smell severity detection is shown in Fig. 1. First, we 
collected the code smell severity datasets from Fontana et al. 
[4]. Then, we applied the min–max normalization technique 
to find the various values in the datasets. After that, we used 

Fig. 1  Proposed model

Fig. 1 Proposed Model 
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the Chi-square feature selection algorithm to extract the best 
features from the datasets. Then, we applied grid search and 
random search POTs. Then, we applied MLAs with fivefold 
cross-validation, and finally, we obtained the performance 
measurements.

The following research queries are resolved in this paper.
RQ1: Which MLA/ensemble learning algorithm detects 

code smell severity best?
Motivation: Baarah et al. [8] and Fontana et al. [4] pro-

posed various MLAs, such as Naive Bayes, Naive Bayes 
Multinomial, SVM, and Decision Rules (JRip), and also 
multinomial classification, regression, etc. Alazba et al. 
[14] applied both MLA and stacking ensemble learning 
algorithms and compared the performances of MLAs and 
ensemble learning algorithms. They discovered that ensem-
ble learning algorithms were more accurate than MLAs in 
terms of performance. Therefore, to investigate and observe 
the effect of MLA and ensemble learning algorithms to code 
smell severity detection, we applied both MLA and ensem-
ble learning algorithms.

RQ2: What is the effect of applying the feature selection 
method in code smell severity detection?

Motivation: Liu et al. [6], Mhawish et al. [10, 11], Kaur 
et al. [12], and Dewangan et al. [16] introduced the influence 
of various feature selection algorithms on the performance 
measures. They found an enhancement in the performance 
accuracy by applying feature selection methods. Therefore, 
to examine the effect of the feature selection method on the 
method’s accuracy and extract software severities that play 
an essential task in the code smell severity detection process, 
we used Chi-square-based feature selection method for our 
work.

RQ3: Does the hyper-parameter optimization algorithm 
enhance the performance of the detection of the code smell’s 
severity?

Motivation: Mhawish et al. [10, 11] applied grid search-
based parameter optimization and found improvement in 
their results. Therefore, to study and analyze more effec-
tively, tuning in MLA and ensemble learning algorithm 
parameters in this work have been applied.

Dataset Description

In this study of severity detection of code smell, we have 
taken four datasets from Fontana et al. [4], which consist 
of two class level datasets named data class (DC) and god 
class (GC) and two method level datasets named feature 
envy (FE) and long method (LM). These datasets can all 
be found at http:// essere. disco. unimib. it/ rever se/ MLCSD. 
html. Fontana et al. [4] have selected 76 systems out of 111, 
computed by different sizes and a large set of object-oriented 
features. They considered the Qualitas Corpus of systems 
collected by Tempero et al. [30] for the system selection. 

They employed a variety of tools and methods to find code 
smell severity called advisors: iPlasma (GC, Brain Class), 
Anti-pattern Scanner [31], PMD [32], iPlasma, Fluid Tool 
[33] and Marinescu detection rules [34]. Table 1 shows the 
automatic detection tools.

Code Smells Classification of Severity

After manual assessment of code smells, a severity value 
between 1 and 4 is allocated to each assessed occurrence. 
The values with their meanings are describes as follows:

1. Allocated for no smell: a method or class that is unaf-
fected by the code smell.

2. Allocated for non-severe smell: a method or class that is 
only slightly impacted by the code smell.

3. Allocated for smell: the class or method possesses all 
the properties of a smell.

4. Allocated for severe smell: there is a smell that is 
extremely strong in terms of size, complexity, or cou-
pling.

Each code smell dataset has 420 instances (class or 
method), where 63 instances are selected for DC and GC 
datasets, and 84 instances are selected for FE and LM data-
sets. Details as shown by Fontana et al. [4] are given in 
Table 2.

The code smell datasets used in this paper are defined as 
follows:

Data class (DC): It mentions classes that maintain data 
with basic functionality and are heavily relied upon by other 
classes. A DC reveals a lot of features; it is not complicated 
and data are exposed via accessor methods [4].

Table 1  Automatic detector tools (advisors)

Code smell Reference, tool/detection rules

DC iPlasma, Fluid Tool [33], Anti-pattern Scanner [31]
GC iPlasma (GC, Brain Class), PMD [32]
FE iPlasma, Fluid Tool [33]
LM iPlasma (Brain Method), PMD, Marinescu detection 

rule [34]

Table 2  Dataset configuration [4]

Code smell severity 
datasets

Severity

1 2 3 4

DC 151 32 113 124
GC 154 29 110 127
FE 280 23 95 22
LM 280 11 95 34

http://essere.disco.unimib.it/reverse/MLCSD.html
http://essere.disco.unimib.it/reverse/MLCSD.html
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God class (GC): It describes those classes that concentrate 
on the system’s intelligence. The GC is assumed to be the 
utmost convoluted code smells for many causes, actions, and 
tasks that arise there. It causes problems with big-size code, 
coupling, and complexity [4].

Feature envy (FE): It mentions techniques that make 
extensive use of data from classes other than their own. It pre-
fers to use other classes’ features, considering features entered 
through accessor methods [4].

Long method (LM): It mentions techniques that prefer to 
centralize a class’s functionality. An LM has a lot of code, is 
complicated, difficult to understand, and heavily relies on data 
from other classes [4].

Dataset Composition (Structure)

There are 420 manually calculated classes or methods in each 
dataset. Table 2 shows the dataset configuration, including the 
number of instances distributed to each severity level. The 
least repeated severity level in the datasets is 2, and the two 
class-based smells (DC and GC) have a dissimilar balance to 
the two method-based smells (FE and LM) with respect to 
severity levels 1 and 4 [4].

Normalization Technique

The datasets have a wide range of features; therefore, in such a 
case the features should be normalized before MLAs are used. 
The min–max feature scaling strategy was used in this paper 
to rescale the datasets’ range of feature or observable values 
between 0 and 1 [35]. The min–max formula is shown in Eq. 1 
with X′ denoting the normalized value and X representing the 
initial real value. The feature’s Xmin and Xmax values are 
altered to “0” and “1”, respectively, while every other value is 
modified to a decimal between “0” and “1”:

(1)X =
X − Xmin

Xmax − Xmin

Feature Selection Algorithm

Feature selection is used to find the most significant feature 
in a dataset to refine results by improving the understand-
ing of the instances that contribute in making a distinction 
among parallel roles in features [36]. We used a Chi-square-
based feature selection technique in this study to extract the 
best instances from each dataset.

Typically, Chi-square feature selection is used in cat-
egorical datasets. By examining the relationships between 
features, Chi-square aids in choosing the optimal features. 
Equation 2 provides the formula for the Chi-square test [36]:

We can calculate observed frequency and expected fre-
quency for response and independent variables. The Chi-
square calculates the difference between these two numbers. 
The more the difference, the more the response, and vari-
ables that are not related to each other are dependent.

The top 10 instances were extracted from each dataset. 
Table 3 shows these instances extracted by the Chi-square 
feature selection method from each dataset. The detailed 
explanation of selected metrics is described in Table 21 
(Appendix section).

Hyper‑parameter Tuning/Optimization

A hyper-parameter is a parameter value that controls the 
learning process. In machine-learning and ensemble learn-
ing methods, hyper-parameter optimization or tuning is used 
to select the best parameters for each algorithm. The best 
parameters for every method differ based on the learning 
dataset. The various parameter value combinations for each 
algorithm should be tried in order to find the exact param-
eters that will allow the predictive algorithm to successfully 
forecast the test dataset [11].

In this study, the grid search and random search-based 
POTs are applied to select the optimal parameter values 
for every method. Parameter optimization is necessary to 

(2)X
2 =

(Observed frequency − Expected frequency)2

Expected frequency
.

Table 3  Chi-square feature selection method’s extracted feature

Dataset No. of feature Feature extracted by Chi-square

DC 10 LOC_project, LOC_package, NOMNAMM_project, LOC_type, LOCNAMM_type, NOCS_project, NOMNAMM_
package, NOCS_package, Complextype, NIM_type

GC 10 LOC_project, LOC_package, NOMNAMM_project, LOC_type, LOCNAMM_type, NOCS_project, NOMNAMM_
package, NOCS_package, Complextype, NOMNAMM_type

FE 10 Method, ATFD_type, Project, AMW_type, package, AMWNAMM_type, complextype, CBO_type, LOC_method, 
NOAV_method

LM 10 Method, ATFD_type, project, package, complextype, LOC_method, CBO_type, NOAV_method, CYCLO_method, 
CINT_method
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select an algorithm’s optimal hyper parameters, which 
help outcomes for the utmost correct calculations. It 
depends on an inclusive search for the number of criteria 
that yields the best prediction model performance value 
[38]. To avoid over fitting the algorithm on the test dataset, 
a fivefold cross-validation is performed. It is applied to 
determine the efficiency of the procedure for every con-
ceivable parameter combination.

We identified grid search and random search algo-
rithm for each machine-learning and ensemble learning 
algorithms. We allowed the value range and several steps 
to the numeric parameters. As indicated in Table 5, the 
numbers which must be checked are allocated inside the 
range’s upper and lower boundaries according to the given 
step count allocated to every parameter. The best-selected 
parameters and allotted step count for nominal param-
eters for the grid search and random search are shown in 
Tables 4 and 5.

Validation Methodology

This study has used a validation methodology to calcu-
late each experiment’s performance. MLAs are calculated 
using fivefold cross-validation to divide the datasets into 
five segments, five times for the training of the algorithm. 
In each replication dataset, one part is evaluated as the test 
set, and the other is evaluated for the training set.

Performance Capacity

To evaluate the performance capacity of all the models, 
a set of experimental measurements such as true positive 
(TP), true negative (TN), false positive (FP), and false 
negative (FN) are computed with the confusion matrix. In 
this study, we have evaluated various experiments.

• TP (true positive) stands for the outcomes in which the 
system correctly calculates the positive class.

• TN (true negative) stands for the outcomes in which the 
system correctly calculates the negative class.

• FP (false positive) stands for the outcomes in which the 
system calculates positive class but the class is actually a 
negative class. This means the system wrongly identifies 
a positive class.

• FN (false negative) stands for the outcomes where the 
system calculates the negative class which is actually a 
positive class which means that system wrongly identifies 
the negative class.

Table 4  Selected best parameters for each model

Model Parameter Parameter option

DT Criteria Gini index, gain 
ratio, infor-
mation gain, 
accuracy

Gradient Boost Criteria friedman_mse, 
learning rate, 
N_estimators, 
max depth

Table 5  Number of allotted 
steps to every parameter 
(parameter tuning)

Algorithm Parameters Start value End value No. of steps

LR C 0.1 100 100
Penalty 11 12 N/A

RF Number of trees 1 50 15
Maximum depth 1 50 15

DT Maximum depth 1 20 15
Bootstrap True/false
Minimum size of split 1 15 15
Minimum gain 0 10 10
N_estimators 10 1000 100

AdaBoost Learning rate 0.1 100 100
Base_estimator None
N_estimator 1 100 100

XG Boost Learning rate 0.01 100 100
N_estimator 100 1000 100
Objective Multi:softmax

Gradient Boost Learning rate 0.01 100 100
Max depth 1 10 10
N_estimators 100 1000 100
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To compute the performance capacity of MLAs, four 
parameters: positive predictive value, true positive rate, 
F-measure, and SCA, are calculated using TP, TN, FP, and 
FN. The detailed description and equations of all parameters 
are given as follows:

Positive predictive value (PPV): PPV deals with the 
number of code smell instances precisely recognized by the 
MLA. Equation (3) is applied to calculate the PPV:

True positive rate (TPR): TPR deals with the number 
of code smell instances precisely recognized by the MLA. 
Equation (4) is applied to compute TPR:

F-measure: The harmonic mean of PPV and TPR is 
the subject of F-measure, which is calculated for a balance 
between their respective values. The F-measure is calculated 
using Eq. (5):

Severity classification’s accuracy (SCA): SCA deals 
with the organization of PPV and TPR. It depicts the exact 
classification of cases in the positive and negative classifica-
tions. Equation (6) is applied to calculate SCA:

Results of Proposed Model

In order to provide a response to RQ1, we made use of a total 
of three ensemble learning methods and four MLAs. In this 
paper, we have used four code smell severity datasets (DC, 
GC, FE, and LM), and each dataset has four types of severi-
ties. We have shown individual results for each severity of 
each dataset. In addition, the average result of all severity 
classes is also shown. We implemented the severity clas-
sification accuracy (SCA) in two ways: (1) SCA with the 
grid search algorithm and (2) SCA with the random search 
algorithm. The following subsection shows the obtained 
results from every MLA and ensemble learning algorithm 
in tabular form.

The following subsection uses seven MLAs and ensem-
ble learning methods: logistic regression, Random Forest, 
K-nearest neighbor, decision tree, AdaBoost, XG Boost-
ing, and Gradient Boosting. The following “Logistic 
Regression”–“Gradient Boosting (GB Algorithm)”) shows 

(3)PPV =
TP

TP + FP

(4)TPR =
TP

TP + FN

(5)F − measure(F) = 2 ×
PPV × TPR

PPV + TPR

(6)SCA =
TP + TN

TP + TN + FP + FN

the experimental results of the MLA and ensemble learning 
methods in table form.

Logistic Regression

Logistic regression (LR) is a classification algorithm that 
simplifies LR to multi-class problems, i.e., greater than two 
promising distinct results. It is a technique for calculating 
the possibility of the unusual feasible results of classically 
dispersed associated variables, specified a set of particular 
variables [38].

Table 6 presents the SCA of each severity class and the 
average SCA of all severity classes for each dataset using the 
LR method. This study observed that the LR algorithm got 
the highest SCA, 97.34% using the grid search algorithm for 
the LM dataset for an average of all severities, and 91.42% 
SCA obtained using the Random search algorithm for the 
LM dataset for the average of all severities.

Random Forest

Random Forest (RF) is a classification method applied in 
regression and ensemble learning methods. When used for 
the MLA, the outcome of the RF is the class selected by a 
large number of trees.

Table 7 shows the RF algorithm got the highest SCA, 
97.34% using the grid search algorithm for the LM dataset 
for an average of all severities, and 96.20% SCA obtained 
using the random search algorithm for the LM dataset for 
the average of all severities.

K‑Nearest Neighbor

The K-nearest neighbor (KNN) algorithm is an MLA used to 
anticipate classification and regression issues. It is, however, 
generally applied for classification prediction problems. The 
KNN method assigns a value to a new data point based on 
how similar it is to the training point [40].

Table 8 presents that the KNN algorithm got the highest 
SCA, 90.95% using the grid search algorithm for the LM 
dataset for an average of all severities, and 91.64% SCA 
obtained using the Random search algorithm for the LM 
dataset for the average of all severities.

Decision Tree

A decision tree (DT) constructs the classification techniques 
in the structure of a tree. It divides a dataset into smaller 
subsets while, at the same time, a connected DT is incremen-
tally developed. The last outcome is a tree with leaf nodes 
or results. The leaf node corresponds to a classification [39].

Table 9 presents that the DT algorithm got the highest 
SCA, 99.08% using the grid search algorithm for the LM 
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Table 6  Severity classification 
results of LR algorithm

Datasets Class name PPV (%) TPR (%) F-measure (%) Grid search 
SCA (%)

Random 
search SCA 
(%)

DC Severity 1 85.00 85.00 85.00 84.62 37.50
Severity 2 00 00 00 66.67 50.00
Severity 3 47.00 58.00 52.00 58.34 57.20
Severity 4 57.00 73.00 64.00 72.73 46.20
Average result of all class 54.00 62.00 58.00 71.70 68.09

GC Severity 1 93.00 88.00 90.00 87.50 94.12
Severity 2 00 00 00 100 66.67
Severity 3 62.00 67.00 64.00 66.67 63.64
Severity 4 64.00 69.00 67.00 69.24 54.55
Average result of all class 73.00 74.00 73.00 70.11 67.20

FE Severity 1 83.00 100 91.00 100 68.75
Severity 2 00 00 00 60.00 100
Severity 3 73.00 73.00 73.00 72.73 57.20
Severity 4 00 00 00 100 100
Average result of all class 69.00 79.00 73.00 88.09 84.05

LM Severity 1 100 100 100 100 75.00
Severity 2 100 100 100 100 50.00
Severity 3 80.00 100 89.00 100 90.00
Severity 4 100 50.00 67.00 50.00 100
Average result of all class 96.00 95.00 96.00 97.34 91.42

Table 7  Severity classification 
results of RF algorithm

Datasets Class name PPV (%) TPR (%) F-measure (%) Grid search 
SCA (%)

Random 
search SCA 
(%)

DC Severity 1 93.00 82.00 87.00 87.00 82.36
Severity 2 00 00 00 66.67 100
Severity 3 40.00 67.00 50.00 85.00 66.67
Severity 4 73.00 73.00 73.00 79.20 72.73
Average result of all class 65.00 67.00 65.00 76.49 70.47

GC Severity 1 93.00 93.00 93.00 93.34 93.34
Severity 2 00 00 00 100 50.00
Severity 3 69.00 100 82.00 88.89 100
Severity 4 100 88.00 93.00 75.00 87.5
Average result of all class 86.00 88.00 86.00 76.98 78.06

FE Severity 1 100 100 100 100 100
Severity 2 00 00 00 100 100
Severity 3 80.00 100 89.00 100 100
Severity 4 100 33.00 50.00 66.67 66.67
Average result of all class 92.00 93.00 91.00 89.42 91.43

LM Severity 1 100 100 100 100 100
Severity 2 100 100 100 50.00 100
Severity 3 100 90.00 95.00 95.24 90.00
Severity 4 67.00 100 80.00 50.00 100
Average result of all class 98.00 98.00 98.00 97.34 96.20
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Table 8  Severity classification 
results of KNN algorithm

Datasets Class name PPV (%) TPR (%) F-measure (%) Grid search 
SCA (%)

Random 
search SCA 
(%)

DC Severity 1 75.00 86.00 80.00 84.62 85.72
Severity 2 00 00 00 50.00 66.67
Severity 3 50.00 73.00 59.00 50.00 72.73
Severity 4 100 71.00 33.00 61.54 71.43
Average result of all class 71.00 71.00 70.00 71.62 70.82

GC Severity 1 67.00 86.00 75.00 85.72 83.34
Severity 2 00 00 00 57.14 100
Severity 3 32.00 55.00 40.00 54.54 70.00
Severity 4 60.00 30.00 40.00 70.00 63.16
Average result of all class 45.00 50.00 45.00 64.72 69.05

FE Severity 1 82.00 98.00 89.00 98.00 92.00
Severity 2 50.00 25.00 33.00 75.00 78.22
Severity 3 68.00 65.00 67.00 65.22 67.98
Severity 4 00 00 00 85.72 82.56
Average result of all class 70.00 77.00 73.00 68.34 71.57

LM Severity 1 96.00 96.00 96.00 96.15 100
Severity 2 00 00 00 100 92.67
Severity 3 67.00 100 80.00 100 80.00
Severity 4 100 20.00 33.00 80.00 100
Average result of all class 87.00 86.00 83.00 90.95 91.64

Table 9  Severity classification 
results of DT algorithm

Datasets Class name PPV (%) TPR (%) F-measure (%) Grid search 
SCA (%)

Random 
search SCA 
(%)

DC Severity 1 76.00 97.00 85.00 90.63 96.67
Severity 2 00 00 00 100 100
Severity 3 85.00 46.00 59.00 70.37 45.84
severity 4 70.00 92.00 79.00 66.67 92.00
Average result of all class 72.00 75.00 71.00 73.80 75.00

GC Severity 1 92.00 100 96.00 95.24 100
Severity 2 75.00 75.00 75.00 57.14 75.00
Severity 3 88.00 78.00 82.00 66.67 77.78
severity 4 92.00 88.00 90.00 61.54 88.46
Average result of all class 90.00 90.00 90.00 66.67 86.00

FE Severity 1 95.00 100 97.00 87.50 100
Severity 2 100 86.00 92.00 50.00 85.72
Severity 3 100 88.00 93.00 95.24 87.50
severity 4 100 100 100 60.00 100
Average result of all class 97.00 96.00 96.00 86.90 96.00

LM Severity 1 100 98.00 99.00 100 98.36
Severity 2 00 00 00 100 100
Severity 3 81.00 100 89.00 100 100
severity 4 100 100 100 100 100
Average result of all class 93.00 95.00 94.00 99.08 95.00
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dataset for an average of all severities, and 96.00% SCA 
obtained using the Random search algorithm for the FE 
dataset for the average of all severities.

AdaBoost (Adaptive Boosting)

The first well-doing boosting algorithm built for binary 
classification was the AdaBoost algorithm. Yoav Fried and 
Robert Schapire were the ones who found it [41]. A popular 
boosting technique turns several “poor classifiers” into one 
“strong classifier.”

Table 10 presents that the AdaBoost algorithm obtained 
the highest 98.18% SCA using the grid search method for 
the LM dataset for the average of all severities and 97.61% 
SCA using the Random search algorithm for the LM dataset 
for an average of all severities.

XGB Algorithm (XG Boosting)

The XGBoost is a tree-based MLA with superior presen-
tation and speed, commonly known as the extreme gradi-
ent boosting algorithm. It is a straightforward algorithm 
that works with MLA and has grown in popularity since 
it produces effective outcomes for organized and tabular 

data. Tianqi Chen developed XGBoost, which is primarily 
governed by the Distributed Machine-Learning Community 
(DMLC) organization. It is open-source software [42].

Table 11 presents that the XGB algorithm obtained the 
highest 99.12% SCA using the grid search method for the 
LM dataset for the average of all severities and 98.89% SCA 
using the random search method for the LM dataset for the 
average of all severities.

Gradient Boosting (GB Algorithm)

The gradient boosting (GB) algorithm is the most effective 
ensemble MLA. The errors in MLAs are mainly separated 
into two types, i.e., bias error and variance error. GB algo-
rithm is a boosting technique which can be employed to 
decrease the bias error of the algorithm. The GB algorithm 
is used for both categorical and constant target variables, 
such as classifiers and regression [43].

Table 12 presents that the GB algorithm obtained the 
highest, 98.67% SCA using the grid search method for the 
LM dataset for the average of all severities and 98.32% SCA 
using the Random search algorithm for the LM dataset for 
the average of all severities.

Table 10  Severity classification 
results of AdaBoost algorithm

Datasets Class name PPV (%) TPR (%) F-measure (%) Grid search 
SCA (%)

Random 
search SCA 
(%)

DC Severity 1 95.00 72.00 82.00 74.45 72.42
Severity 2 25.00 20.00 22.00 81.00 80.00
Severity 3 42.00 61.00 50.00 52.00 60.87
Severity 4 68.00 63.00 65.00 66.67 62.96
Average result of all class 68.00 63.00 64.00 70.37 63.09

GC Severity 1 100 73.00 85.00 75.18 73.17
Severity 2 00 00 00 52.00 50.00
Severity 3 56.00 50.00 53.00 50.00 50.00
Severity 4 60.00 71.00 65.00 72.00 71.43
Average result of all class 77.00 65.00 70.00 66.12 65.48

FE Severity 1 98.00 97.00 98.00 96.52 96.77
Severity 2 00 00 00 76.00 66.67
Severity 3 80.00 94.00 86.00 92.23 94.12
Severity 4 67.00 100 80.00 100 100
Average result of all class 90.00 93.00 91.00 91.98 92.16

LM Severity 1 1.0 1.0 1.0 100 100
Severity 2 00 00 00 87.24 100
Severity 3 87.00 100 93.00 100 100
Severity 4 100 100 100 98.25 100
Average result of all class 96.00 98.00 97.00 98.18 97.61
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Table 11  Severity classification 
results of XG Boosting 
algorithm

Datasets Class name PPV (%) TPR (%) F-measure (%) Grid search 
SCA (%)

Random 
search SCA 
(%)

DC Severity 1 84.00 96.00 90.00 65.85 96.30
Severity 2 40.00 29.00 33.00 80.00 57.14
Severity 3 65.00 59.00 62.00 68.75 58.62
Severity 4 68.00 71.00 70.00 81.82 71.43
Average result of all class 70.00 71.00 70.00 78.80 80.24

GC Severity 1 97.00 97.00 97.00 66.67 97.06
Severity 2 25.00 14.00 18.00 85.72 71.43
Severity 3 52.00 79.00 62.00 76.20 78.95
Severity 4 82.00 58.00 68.00 69.56 58.34
Average result of all class 77.00 75.00 74.00 78.80 80.00

FE Severity 1 94.00 100 97.00 70.00 100
Severity 2 00 00 00 83.34 60.00
Severity 3 85.00 96.00 90.00 66.67 95.65
Severity 4 75.00 60.00 67.00 100 60.00
Average result of all class 85.00 90.00 88.00 91.90 92.14

LM Severity 1 100 100 100 67.27 100
Severity 2 100 100 100 100 100
Severity 3 100 100 100 80.95 100
Severity 4 100 100 100 66.67 100
Average result of all class 100 100 100 99.12 98.89

Table 12  Severity classification 
results of gradient boosting 
algorithm

Datasets Class name PPV (%) TPR (%) F-measure (%) Grid search 
SCA (%)

Random 
search SCA 
(%)

DC Severity 1 93.00 100 96.00 100 92.98
Severity 2 100 60.00 75.00 60.00 66.67
Severity 3 68.00 83.00 75.00 83.00 84.00
Severity 4 95.00 75.00 84.00 75.00 78.79
Average result of all class 88.00 87.00 87.00 86.90 88.22

GC Severity 1 93.00 84.00 88.00 83.87 85.86
Severity 2 50.00 33.00 40.00 33.34 40.00
Severity 3 59.00 77.00 67.00 77.28 78.89
Severity 4 78.00 72.00 75.00 72.00 76.65
Average result of all class 76.00 75.00 75.00 75.00 76.89

FE Severity 1 92.00 98.00 95.00 98.22 99.00
Severity 2 100 20.00 33.00 80.00 84.56
Severity 3 94.00 89.00 92.00 89.47 90.00
Severity 4 80.00 100 89.00 100 100
Average result of all class 92.00 92.00 90.00 91.67 92.12

LM Severity 1 100 100 100 100 100
Severity 2 100 100 100 100 100
Severity 3 100 100 100 100 100
Severity 4 100 100 100 100 100
Average result of all class 100 100 100 98.67 98.32
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SCA Comparison Between Grid Search and Random 
Search of All Machine‑Learning Methods

Table 13 shows the comparison among the SCA of all the 
machine-learning methods obtained by Grid search and 
Random search algorithms. It is observed that some of the 
machine-learning methods perform better using the grid search 
algorithm, and some perform better using the random search 
algorithm.

From our work, we observed the following: (1) for the DC 
dataset, the highest severity detection accuracy is 88.22% using 
the gradient boosting algorithm for the random search method; 
(2) for the GC dataset, the highest severity detection accu-
racy is 86.00% using the DT algorithm for the random search 
method; (3) for the FE dataset, the highest severity detection 
accuracy is 96.00% using the DT algorithm for the random 
search method; and (4) for the LM dataset, the highest severity 

Table 13  SCA comparison between grid search and random search of 
all machine-learning methods

Datasets Grid search SCA Random 
search 
SCA

LR DC 71.70 68.09
GC 70.11 67.20
FE 88.09 84.05
LM 97.34 91.42

RF DC 76.49 70.47
GC 76.98 78.06
FE 89.42 91.43
LM 97.34 96.20

KNN DC 71.62 70.82
GC 64.72 69.05
FE 68.34 71.57
LM 90.95 91.64

DT DC 73.80 75.00
GC 66.67 86.00
FE 86.90 96.00
LM 99.08 95.00

Ada Boost DC 70.37 63.09
GC 66.12 65.48
FE 91.98 92.16
LM 98.18 97.61

XGB DC 78.80 80.24
GC 78.80 80.00
FE 91.90 92.14
LM 99.12 98.89

GB DC 86.90 88.22
GC 75.00 76.89
FE 91.67 92.12
LM 98.67 98.32
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detection accuracy is 99.12% using the XG Boost algorithm 
for the grid search method.

Comparison Among All the Algorithms Used in this 
Work

A comparison among all machine-learning methods are 
shown in Table 14, and Fig.  2 shows the comparative 
analysis among all the algorithms using a bar graph. The 
following results are obtained here:

1. The gradient boosting (GB) algorithm achieved the high-
est SCA of 88.22% for the DC dataset.

2. The DT approach achieved the maximum SCA of 
86.00% for GC and 96.00% for the FE dataset.

3. XGB approach achieved the highest SCA of 99.12% for 
the LM dataset.

0
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KNN
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AB
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GB

Fig. 2  Comparison bar chart of all algorithms

Table 15  Result comparison 
with and without applying 
feature selection technique

Datasets Algorithms Results with feature selection 
technique

Results without feature selec-
tion technique

F-measure (%) SCA (%) F-measure (%) SCA (%)

DC LR 58.00 71.70 80.00 72.23
RF 65.00 76.49 90.00 75.98
K-nearest neighbor 70.00 71.62 70.00 71.12
DT 71.00 75.00 73.00 73.00
AdaBoost 64.00 70.37 69.00 70.27
XG Boost 70.00 80.24 85.00 81.00
Gradient boosting 87.00 88.22 90.00 86.67

GC LR 73.00 70.11 70.00 65.67
RF 86.00 78.06 86.00 76.76
K-nearest neighbor 45.00 69.05 52.00 61.10
DT 90.00 86.00 85.00 82.08
AdaBoost 70.00 66.12 86.00 65.78
XG Boost 74.00 80.00 77.00 79.56
Gradient boosting 75.00 76.89 82.00 75.00

FE LR 73.00 88.09 79.00 89.14
RF 91.00 91.43 92.00 93.65
K-nearest neighbor 73.00 71.57 72.00 68.78
DT 96.00 96.00 95.00 95.32
AdaBoost 91.00 92.16 90.00 90.26
XG Boost 88.00 92.14 83.00 89.78
Gradient boosting 90.00 92.12 88.00 93.65

LM LR 96.00 97.34 99.00 97.00
RF 98.00 97.34 99.00 98.14
K-nearest neighbor 83.00 91.64 97.00 95.87
DT 94.00 99.08 98.00 93.98
AdaBoost 97.00 98.18 100 98.00
XG Boost 100 99.12 100 98.74
Gradient boosting 100 98.67 100 98.82
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Influence of Feature Selection Technique

This section focuses on the influence of feature selection 
techniques to enhance the results and identify the features 
which play an essential role in code smell severity detection. 
The Chi-square feature selection technique is constructed 
in response to research question 2 (RQ2). The SCA (%) 
and F-measure (%) of all the algorithms with and with-
out applied feature selection techniques are compared in 
Table 15. For this study, ten features are selected from each 
dataset shown in Table 3. This study observed that maxi-
mum algorithms show improved performance of SCA for 
each dataset by applying the feature selection technique, 
and only few of them did not perform well. In this study, 
we observed that the highest severity was detected by the 
gradient boosting model (F-measure—87.00% and accu-
racy—88.22%) from the DC dataset. The highest severity 
detected by the DT model (F-measure—90.00% and accu-
racy—86.00%) from GC dataset, and (F-measure—96.00% 
and accuracy—96.00%) from FE dataset. Similarly, the high-
est severity was detected by the XG Boost model (F-meas-
ure—100% and accuracy—99.12%) from the LM dataset.

Influence of Hyper‑parameter Tuning on Algorithms

In response to research question 3 (RQ3), the influence of 
hyper-parameter tuning on the performance of all algorithms 
is studied. Table 16 represents the various parameter groups 
and obtained the highest SCA of for the DT algorithm. The 
DT algorithm obtained the highest SCA of 99.08% when the 
maximum level is 20, the numbers of trees are 20, and the 
number of the split is 15. Similarly, Tables 17 and 18 show 
the influence of parameter optimization on the SCA of all 
algorithms.

Discussion

In this paper, we have used four code smell severity dataset 
which includes god class, data class, feature envy and long 
method. The severity composition of each dataset is given 
in Table 2. In all the datasets, Severity 1 has the highest 
instances, and Severity 2 has the lowest instances. We have 
shown separate results for each severity of each dataset in 
“Results of Proposed Model”, and we observed a significant 
difference between the results of the four severities for each 
dataset because the combination of the number of severities 
in datasets is different. In “Results of Proposed Model”, we 
found the highest accuracy for severity 1 for each dataset 
because severity 1 has the highest instances and the low-
est accuracy for severity 2 for each dataset because severity 
2 has the lowest instances. In this way, we found a class 

Table 16  Tuning parameters applied on DT algorithm

Parameters Level

Maximum level 20
Criteria and their correspond-

ing SCA (%)
Information gain 99.08%
Accuracy 99.08%
Gini Index 98.28%
Entropy 98.34%

Minimal size of split 15
Minimal gain 0.0
BootStrap False
N_estimators 500
Apply pre-pruning True
Apply pruning False

Table 17  POT’s effect on the LR model’s SCA

Penalty Parameter ‘C’ SCA (%)

11 0.1 97.34
11 1.0 96.98
12 1.0 96.45
12 100 95.92

Table 18  POT’s effect on the RF, AdaBoost, XGBoost, and GB mod-
el’s SCA

Model name Tree’s count Maximum 
level

SCA (%)

RF 10 10 95.32
15 20 96.98
20 20 98.14
30 25 97.12
50 30 97.86

AdaBoost 10 3 95.12
15 5 96.33
20 10 97.85
30 20 98.18
50 30 95.34

XG Boost 10 5 97.54
20 10 97.98
30 15 99.12
40 20 98.78
50 25 97.00

GB 10 5 93.23
20 10 93.65
30 15 92.78
40 20 92.14
50 25 92.65
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imbalance problem in all the datasets, which we will be con-
sidering in our future works.

In this experiment, we solved three research questions 
given in “Proposed Model and Dataset Description”. To 
answer research question 1, we have applied seven machine-
learning algorithms described in “Logistic Regression” to 
“Gradient Boosting (GB Algorithm)”. We found that the DT 
algorithms give the best SCA of 86.00% and 96.00% for the 
GC and FE datasets (Table 14). Likewise, the gradient boost 
algorithm gives the best SCA of 88.22% for the DC dataset, 
and the XG Boost approach gives the maximum SCA of 
99.12% for the LM dataset (Table 14). To answer research 
question two, we obtained the influence of the feature selec-
tion technique in Table 15, and we found that feature selec-
tion gives better performance in all the algorithms for each 
dataset. We applied the POT to each algorithm to answer 
research question three. The influence of the POT on each 
model performance is shown in Tables 16, 17 and 18.

Result Evaluation of Our Results with Other Related 
Works

In earlier literatures, many authors have applied different 
algorithms in different severity datasets, which we have seen 
in detail in “Related Work”. This section constructs a sum-
marized evaluation of our work in comparison with Fontana 
et al. [4] and Abdou [27]. They both applied various MLAs 
and implemented multinomial classification to regression 
and binary classifiers for ordinal classification. A linear 
correlation-based filter method was also applied to select 
the best features by them. In addition, Abdou [27] applied 
projective adaptive resonance theory (PART) algorithm to 
learn the efficiency of software metrics to detect the code 
smells and a local interpretable model agnostic explanations 
(LIME) algorithm was applied to describe the ML models 
and interpretability.

In our approach, we applied four MLAs and three ensem-
ble learning approaches to identify the severity of code 
smells. A Chi-square-based FST is applied to select the best 
metrics, and two-parameter optimization techniques (grid 
search and random search) are applied to optimize the best 
parameters from each model.

Table 19 compares our results with other works. In our 
approach, for the DC dataset GB algorithm achieved 88.22% 
SCA, while Fontana et al. [4] achieved 77.00% SCA using 
the O-RF algorithm, and Abdou [27] achieved 93.00% SCA 
using the O-R-SMO algorithm. Like this, the Abdou [27] 
model is best for severity detection in data class dataset.

To the GC dataset, our approach achieved 86.00% SCA 
using DT algorithm, while Fontana et al. [4] achieved 74.00% 
SCA using the O-DT algorithm, and Abdou [27] achieved 
92.00% SCA using the R-B-RF algorithm. Like this, the Abdou 
[27] model is best for severity detection in God class dataset. Ta
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To the FE dataset, our approach achieved 96.00% SCA 
using DT algorithm, while Fontana et  al. [4] achieved 
93.00% SCA using the J48-Pruned algorithm, and Abdou 
[27] achieved 97.00% SCA using the R-B-JRIP and O-R-
SMO algorithm. Like this, the Abdou [27] model is best for 
severity detection in FE dataset.

To the LM dataset, our approach achieved 99.12% 
SCA using XG Boost algorithm, while Fontana et al. [4] 
achieved 92.00% SCA using the B-Random Forest algo-
rithm, and Abdou [27] achieved 97.00% SCA using the 
R-B-JRIP, O-B-RF, and O-R-JRip algorithm. Like this, our 
model is best for severity detection in LM dataset.

Statistical Analysis for Comparing Machine‑Learning 
Models

From Table 15, we observed that there is not much differ-
ence in the results of two best models to the same dataset. 
In that case, we have used a statistical analysis method to 
choose the one of best model for each dataset. We applied 
a paired T test statistical analysis method on the two best 
models (according to Table 15) for each datasets. For this, 
we have selected two best models which are obtained best 
accuracy for each dataset and then applied paired T test.

A paired T test allows data analysis to consider differ-
ent methods using the same dataset to see if the difference 
is minimal [44]. This method can be used to check that 
there is a statistically significant distinction between two 
models, allowing you to choose only the better one. We 
used mean accuracy as a measurement calculated across 
tenfold cross-validation in our studies, with set the signifi-
cance level (i.e., α = 0.05).

We developed the following hypotheses (H) values for 
each comparison:

Null hypothesis (H0): X and Y’s accuracy of the model 
are obtained from the same sample. As a result, the dif-
ference in levels of accuracy has a predicted value of 0 
(E[diff] = 0). In essence, the two models are identical [45].

Alternative hypothesis (H1): The prediction accuracy 
is obtained from two separate models, E[diff] ≠ 0. Essen-
tially, the models are distinct, and one is superior to the 
other [45].

• H0: ACCU RAC Yx = ACC URACY y (the detection effi-
ciency of the two models is identical).

• H1: ACC URACY x ≠ ACC URACY (the detection effi-
ciency of the two models differs significantly).

where x and y are the two models under consideration. If the 
function returns a p value less than alpha, we can correctly 
reject the null hypothesis.

if p > alpha:
print(“Fail to reject null hypothesis”)
else:
print(“Reject null hypothesis”)
In this study, we calculated two parameters: mean accu-

racy and p value for each dataset.
Mean accuracy: A model has higher mean accuracy that 

means the model is best for dataset as compared to less mean 
accuracy model. p value: If the p value is higher to alpha 
(α = 0.05), the null hypothesis is assumed to be true. If the 
p value is below alpha, the null hypothesis is assumed to 
be incorrect. Then, we have selected to one of best model 
according to mean accuracy from given to two the model.

Table 20 displays the mean accuracy and p value of each 
classification model across each code smell dataset. Form 
Table 20, we observed that the DC, GC, and LM dataset 
has p value less than 0.05. Therefore, the accuracy of both 
the models is different. In this way for DC dataset, the mean 
accuracy of XGBoost model is more than gradient boosting 
model so the XG Boost model is best for DC dataset. For the 
GC dataset, the mean accuracy of XG model is more than DT 
model so the XG Boost model is best for GC dataset. For the 
LM dataset, the mean accuracy of XG model is more than DT 
model so the XG Boost model is best for the LM dataset. The 
FE dataset has p value greater than 0.05. Therefore, the mean 
accuracy of both the models is same (Table 20).

Table 20  Statistical analysis results

Dataset name Two best ML models Mean accuracy 
(%)

P value Results

DC XG Boost 82.74 0.032 Reject null hypothesis (XG Boost model is best)
Gradient boosting 80.23

GC DT 45.24 0.006 Reject null hypothesis (XG Boost model is best)
XG Boost 74.60

FE DT 91.71 0.093 Fail to reject null hypothesis
Gradient boosting 91.71

LM DT 88.89 0.005 Reject null hypothesis (XG Boost model is best)
XG Boost 96.68
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Conclusion

In this research work, to analyze the code smell severi-
ties from software to decrease the maintenance work and 
enhance the software quality, and also find the best algo-
rithms for detecting the code smell severities, we proposed 
the severity classification of code smell framework with 
multi-class classification approaches using four machine-
learning and three ensemble learning algorithms. To select 
the significant features from each dataset, Chi-square feature 
selection algorithm is applied. Two-parameter optimization 
algorithms (grid search and random search) with fivefold 
cross-validation are used to enhance the SCA.

In this study, it is found that the GB method finds the 
maximum SCA of 88.22% using the feature selection algo-
rithm, while the AdaBoost algorithm obtains the lowest 
result of 70.27% without using the feature selection algo-
rithm for the DC dataset.

The DT method found the maximum SCA of 86.00% 
using the feature selection algorithm, while the KNN algo-
rithm obtained the lowest result of 61.10% without using the 
feature selection algorithm for the GC dataset.

The DT algorithm found a maximum SCA of 96.00% 
using the feature selection algorithm, while the lowest result 
was 68.78% obtained by the KNN algorithm without using 
the feature selection algorithm for the FE dataset.

The XG Boost algorithm found a maximum SCA of 
99.12% using the feature selection algorithm, while the 
lowest result was 91.64%, obtained by the KNN model by 
applying the feature selection approach for the LM dataset.

This study found that the GB method is best for the DC 
dataset, the XG Boost model is best for the LM dataset, and 
the DT model is best for the GC and FE datasets to detect 
the severity of code smells. Moreover, the Chi-square feature 
selection technique is always helpful for better detecting the 
severity of code smells.

The limitation of this study is that the code smell sever-
ity datasets have a class imbalance problem; therefore, in 
subsequent work, we intend to enhance outcomes by utiliz-
ing class balancing techniques to address the issue of class 
imbalance (present in the used dataset). In order to deter-
mine the most effective methods for code smell severity 
detection, other learning algorithms and feature selection 
strategies should be investigated.

Appendix

See Table 21.

Table 21  Description of all selected metrics [4]

Quality dimension Selected metric Metric name Granularity

Size LOC_project Lines of code Project, package, class
LOC_package
LOC_type
NOMNAMM_project Number of not accessor or mutator methods Project, package, and class
NOMNAMM_package
LOCNAMM_type Lines of code without accessor or mutator methods Class
NOCS_project Number of classes Project, package
NOCS_package

– Complextype – Class
Inheritance NIM_type Number of inherited methods Class
– Method – –
Complexity ATFD_type Access to foreign data Method
– Project – –
Size AMW_type Average methods weight Class
– Package – –
Complexity AMWNAMM_type Average methods weight of not accessor or Mutator methods Class
– Complex type  = Method
Coupling CBO_type Coupling between objects classes Class
Size LOC_method Lines of code Method

CYCLO_method Cyclomatic complexity
Complexity NOAV_method Number of accessed variables
Coupling CINT_method Coupling intensity
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