
Vol.:(0123456789)

SN Computer Science (2023) 4:564
https://doi.org/10.1007/s42979-023-01979-8

SN Computer Science

ORIGINAL RESEARCH

Severity Classification of Code Smells Using Machine‑Learning
Methods

Seema Dewangan1 · Rajwant Singh Rao1 · Sripriya Roy Chowdhuri2 · Manjari Gupta2

Received: 27 February 2023 / Accepted: 30 May 2023
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023

Abstract
Code smell detection can be very useful for minimizing maintenance costs and improving software quality. Code smells
help developers/programmers, researchers to subjectively interpret design defects in different ways. Code smells instances
can have varied size, intensity or severity which needs to be focused upon as they affect the software quality accordingly.
Therefore, this study aims to detect the severity of code smells from code smell datasets. The severity of code smells is sig-
nificant for reporting code smell detection performance, as it permits refactoring efforts to be prioritized. Code smell sever-
ity also describes extent of effort required during software maintenance. In our work, we have considered four code smells
severity datasets to detect the severity of code smell. These datasets are data class, god class, feature envy and long method
code smells. This paper uses four machine-learning and three ensemble learning approaches to identify the severity of code
smells. To improve the models’ performance, we used fivefold cross-validation method: Chi-square-based feature selection
algorithm and parameter optimization techniques. We applied two-parameter optimization techniques, namely grid search
and random search and also compared their accuracy. The conclusion of this study is that the XG Boost model obtained an
accuracy of 99.12%, using the Chi-square-based feature selection technique for the long method code smell dataset. In this
study, the results show that ensemble learning is best as compared to machine learning for severity detection of code smells.

Keywords Severity of code smells · Code smells · Machine learning · Feature selection · Parameter optimization

Introduction

Code smells indicate issues with software design. In addition
to making the code more difficult to comprehend, a code
smell may make modifications and mistake proneness more
likely. Software engineers may learn the code more effi-
ciently than ever by identifying and removing code smells
from the program.

The software is getting more and more complicated
because there are more and bigger modules, more compli-
cated requirements, and code smells, among other things.
Challenging requirements are complex to assess and com-
prehend, making development difficult and beyond the scope
of developers, but code smells may be recognized and refac-
tored to make the software simpler, straightforward, and
easier to produce and maintain [1]. The software engineer-
ing principles are required to develop better quality soft-
ware [2]. In general, developers concentrate on functional
requirements and overlook nonfunctional requirements such
as maintainability, development, verifiability, reprocessing
ability, and comprehensibility [3].

The severity of code smells is a significant considera-
tion when reporting outcome of code smell detection, as it
permits refactoring efforts to be prioritized. High-severity
code smells can become a significant and complex problem
for software’s maintainability process. Thus, detecting code
smells as well as their severity are very useful for software
developers to minimize maintenance costs and improve soft-
ware quality [4].

This article is part of the topical collection “Research Trends
in Computational Intelligence” guest edited by Anshul Verma,
Pradeepika Verma, Vivek Kumar Singh and S. Karthikeyan.

 * Rajwant Singh Rao
 rajwantrao@gmail.com

1 Department of Computer Science and Information
Technology, Guru Ghasidas Vishwavidyalaya, Bilaspur,
Chhattisgarh, India

2 Computer Science, DST-Centre for Interdisciplinary
Mathematical Sciences, Institute of Science, Banaras Hindu
University, Varanasi, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-01979-8&domain=pdf
http://orcid.org/0000-0001-6993-8927

 SN Computer Science (2023) 4:564 564 Page 2 of 20

SN Computer Science

The purpose of the research is to detect the severity of
code smells to help the software developers minimize the
maintenance charges and improve the software quality.

In the literature, a number of code smell severity detec-
tion techniques have been developed [5–8]. Each technique
gives different outcomes because smells can be interpreted
subjectively and, therefore, can be described in various ways
[4]. To the best of our knowledge and available literature,
only Fontana et al. [4] and Abdou [27] have found the code
smell severity on the code smell dataset. They used ordinal
and multinomial machine-learning algorithms (MLA) for
code smell severity detection. In addition, they used ranking-
based correlation to find the best algorithm. The Fontana
et al. [4] and Abdou [27] approach has the following limita-
tions: they have not presented class-wise accuracy in their
studies. They did not consider other performance metrics
such as precision, recall, and F-measure. They used differ-
ent MLA; the ensemble learning methods were not applied.

This study hypothesizes detecting the severity of code
smells using machine-learning and ensemble learning meth-
ods and presenting class-wise outcomes.

Contributions: In this work, we have applied seven
MLA/ensemble learning models (logistic regression (LR),
Random Forest (RF), KNN, decision tree (DT), AdaBoost,
XGBoost, and Gradient Boost) with the Chi-square feature
selection approach on each dataset. In addition, we applied
grid search and random search-based parameter optimization
techniques (POT) to see the effect of parameters optimiza-
tion on the classification results of code smell severity detec-
tion. We achieved the highest severity classification accuracy
(SCA), 99.12%, in the XG Boost model for the LM dataset.

The advantage of this research is to detect the severity
from the code smell severity dataset to make our code or
source code more effective, accurate, and easily understand-
able by the programmer and users.

The following is the outline of this paper: the next sec-
tion explains related works. The third section describes the
dataset’s structure and proposed models. The fourth section
describes the experimental results of our proposed models.
The fifth section discusses our results and compares these
with baseline results and the final section concludes the
work.

Related Work

Various machine learning-based algorithms and techniques
have been used by the researchers for code smell detection
and also for code smell severity classification. The related
work section is divided in two parts: the first part discusses
the research works done for code smell detection using
machine-learning techniques, and the second part discusses
research works related to the severity of code smells.

Machine‑Learning Techniques for Code Smell
Detection

Fontana et al. [9] proposed a comparison-based obser-
vation among 16 MLAs on 4 code smell datasets from
74 java systems with manually validated examples on
the training dataset for code smell detection. In addi-
tion, boosting techniques were used for four code smells
datasets.

Mhawish et al. [10] suggested an MLA for detecting
code smells in source code. They used the two-feature
selection approach based on the genetic algorithm (GA)
and a POT based on a grid search. Using the GA_CFS
approach, they obtained the highest accuracy in the data
class (DC), god class (GC), and long method (LM) smells
by 98.05%, 97.56%, and 94.31%, respectively. They also
obtained the highest accuracy of 98.38% in the LM using
the GA-Naïve Bayes feature selection method. Mhawish
et al. [11] presented code smell testing of prediction with
the help of MLA and software metrics. They also used
feature selection methods based on GA to increase the
efficiency of these MLA by identifying the appropriate
features in every dataset. Furthermore, they used the grid
search algorithm based on POT to improve the perfor-
mance of the approaches. The RF model obtains the high-
est accuracy of 99.71% and 99.70% in predicting the DC
in the original refined datasets.

Kaur et al. [12] proposed a correlation metrics selection
strategy and an ensemble learning method for detecting
code smells in three publicly available Java datasets. They
used bagging and RF classifier to examine each method
with four occurrence measures accuracy (P1), G-mean 1
(P2), G-meam2 (P3), and F-measure (P4). Pushpalatha
et al. [13] suggested that the severity of bug reports for
closed-source datasets could be predicted. For this, they
used the PROMISE Repository to get the dataset (PITS)
for NASA projects. They improved the accuracy by
employing ensemble learning strategies and two-dimen-
sional reduction methods, such as Chi-square analysis and
information gain, respectively. Alazba et al. [14] proposed
14 MLA and stacking ensemble learning algorithms on the
six code smell datasets. The results of MLA were com-
pared, and they found that the best accuracy was 99.24%
applying the Stack-SVM algorithm for the LM Dataset. A
search-based technique to enhance the code smell detec-
tion using Whale optimization method as a classifier was
proposed by Draz et al. [15]. They researched five open-
source software projects that detected the nine code smell
types and established an average of 94.24% precision and
93.4% recall.

Dewangan et al. [16] presented six MLAs, two Chi-
square, and Wrapper-based FSTs to pick the significant

SN Computer Science (2023) 4:564 Page 3 of 20 564

SN Computer Science

feature from each dataset; the grid search technique was
then applied to improve the model’s outcome and achieved
100% accuracy using the LR model for the LM dataset.
Reis et al. [17] proposed a Crowd smelling approach using
collective knowledge in code smells detection with the
LM, GC, and Feature envy (FE) datasets. They applied six
MLA to detect the code smells. They obtained the highest
outcome of 0.896% ROC using the Naive Bayes algorithm
for GC detection and 0.870% ROC using AdaBoostM1al-
gorithm for LM detection. The worst performance was
0.570% using the RF algorithm for FE detection. Oort
et al. [18, 19] presented a study to examine the occurrence
of code smells in machine-learning projects. They col-
lected the 74 machine-learning projects, and then applied
the Pylint tool to those projects. After this, they assembled
the delivery of Pylint messages per group per project, the
best 10 code smells in these projects in general, and the
best 20 code smells per group. They originate that the
PEP8 rule for the identifier naming method may not for-
ever be appropriate in machine-learning code due to its
similarity with mathematical notation. They also detected
severe problems with the measurement of needs that pre-
sent the main threat to the maintainability and reproduc-
ibility of Python machine-learning projects.

Boutaib et al. [20] proposed a bi-level multi-label detec-
tion of smells (BMLDS) tool to reduce the population of
classification series for detecting multi-label smells. They
implemented a bi-level scheme in which the higher-level part
is to discover the best classification for each measured series,
and the lower level part is to construct the series.

Abdou et al. [21] proposed three ensemble methods (bag-
ging, boosting, and rotation forest) with a resample tech-
nique to detect the software defects. They used seven code
smell datasets given in the PROMISE repository. They found
that the ensemble method gives better accuracy as compared
to single learning methods. They found the 93.40% high-
est accuracy using Random Forest with resample technique
model for KC1 dataset.

Dewangan et al. [22] introduced ensemble and deep
learning algorithms as a method for identifying the code
smell. They applied Chi-square-based FST to pick the sig-
nificant features from each code smell dataset and a SMOTE
technique is used to balance the dataset. They were able to
achieve an accuracy of 100% by utilizing all of the ensemble
approaches for the LM dataset.

Dewangan et al. [23] proposed five classification models
to detect the code smell. They used four code smell datasets
DC, GC, FE, and LM. They obtained 0.9912% best accuracy
using Random Forest model for FE dataset.

Dewangan et al. [24] proposed three ML algorithms
to detect the code smell. A principle component analysis
(PCA)-based FST is used to pick the significant features
from each code smell dataset. They obtained 99.97% best

accuracy using principal component analysis-based logistic
regression (PCA_LR) model for DC dataset.

There is a notable difference between these works and
the technique we used in this paper. The majority of the
above studies are focused on the identification of code
smells as described by Flower et al. [25]. Most of the previ-
ous research papers have examined only a few systems and
applied the MLAs. However, they have not mentioned the
aspect of severity of code smells in their work.

Machine‑Learning Techniques for Code Smell
Severity Detection

Vidal et al. [5] proposed a tool for detecting code smells
using textual analysis. For this purpose, they conducted two
separate experiments. They started by performing a software
repository mining study to examine how engineers spotted
code smells through textual or structural cues. They then
carried out a user research with industrial developers and
quality experts to qualitatively examine how they examined
the detection of code smells using two different sources of
details. They discovered that textual code smells are simpler
to pick up.

Liu et al. [6] propose severity prediction of bug reports
based on feature selection methods. They establish a
ranking-based policy to enhance existing feature selection
methods and intend an ensemble learning feature selection
method by merging existing ones. They applied eight-fea-
ture selection methods. They found that the ranking-based
strategy gets the highest F1 score, 54.76%. Tiwari et al.
[7] proposed a method to find the LM and their severity
that shows the importance of refactoring LMs. They find
that it matches the expert’s severity evaluation for half the
approaches within a tolerance level one. In addition, they
identified a high severity; this evaluation is more or less
equivalent to an expert’s judgment.

MLAs were suggested by Baarah et al. [8] for closed-
source software bug severity detection. They assembled a
dataset from past bug information stored in the JIRA bug
tracking system connected to different closed-source pro-
jects built by INTIX Company in Amman, Jordan. They
evaluate eight MLAs such as Naive Bayes, Naive Bayes
Multinomial, SVM, Decision Rules (JRip), Logistic Model
Trees, DT (J48), RF, and KNN in the measurement of accu-
racy, F-measure, and area under the curve (AUC). The DT
model obtained the highest performance accuracy, AUC, and
F-measure with 86.31%, 90%, and 91%, respectively.

Gupta et al. [26] proposed a hybrid method to exam-
ine the severity of the code smell intensity in the Kotlin
language and found which code smells are equivalent in
the Java language. They used five types of code smells to
examine the research work: complex method, long param-
eter list, large class, LM, and string literal duplication.

 SN Computer Science (2023) 4:564 564 Page 4 of 20

SN Computer Science

They applied various MLAs, where they found the JRip
algorithm achieved the best performance with 96% preci-
sion and 97% accuracy. Abdou et al. [27] proposed the
classification of code smell severity using MLAs based on
regression, multinomial, and ordinal classifiers. In addi-
tion, they applied the local interpretable model agnostic
explanations (LIME) approach to explaining the MLAs
and prediction rules produced by the PART algorithm
to find the efficiency of the feature. They employed the
LIME algorithm to help us gain a deeper knowledge of the
model's decision-making process and the characteristics
that affect the model’s decision. They found the highest
accuracy of 92–97% with correlation measurement of the
Spearman algorithm. Hejres et al. [28] proposed the detec-
tion of code smell severity using MLAs. They applied
three models, sequential minimal optimization (SMO),
artificial neural network (ANN), and J48, to detect the
code smell severity from four datasets. They obtained the
best result for GC and FE datasets using the SMO model,
while the LM dataset obtained the best accuracy using
adaptive neural network ensemble (ANNE) with the SMO
model.

Nanda et al. [29] proposed a combination of SMOTE and
Stacking model to classify the severity of GC, DC, FE, and
LM datasets. They improved their performance from 76 to
92%. Fontana et al. [4] proposed MLA for classifying the
severity of code smell. They implemented different MLAs,
spanning from multinomial classification to regression and
a binary classifier for ordinal classification. They found the

correspondence between the actual and predicted severity
for the top techniques and achieved 88–96%, calculated by
Spearman’s p.

To the best of our knowledge and available literature, it is
observed that most of the authors used different code smell
datasets and code smell severity datasets using different
types of MLAs, multinomial, and regression techniques to
find the code smell and severity of code smell from data-
sets. It has been observed that the effect of grid search and
ensemble learning algorithms on the severity datasets has
not been applied earlier. Therefore, to study and analyze
the effect of MLA and ensemble learning approaches, we
have used MLAs and ensemble learning methods with grid
search, random search, and Chi-square feature selection
techniques to find the severity of code smell from the code
smell severity datasets.

Proposed Model and Dataset Description

The severity of code smells is significant to study when
describing code smell detection results since it categorizes
refactoring efforts. This research work builds a model for
detecting the severity of code smell using machine-learning
methods. A step-by-step research framework designed for
code smell severity detection is shown in Fig. 1. First, we
collected the code smell severity datasets from Fontana et al.
[4]. Then, we applied the min–max normalization technique
to find the various values in the datasets. After that, we used

Fig. 1 Proposed model

Fig. 1 Proposed Model

Code Smell Severity Datasets

Apply min-max
normalization

Feature Selection
Technique

Grid Search Parameter
Optimization

ML and Ensemble Learning models

PerformanceMeasurements

Random Search Parameter
Optimization

ML and Ensemble Learning models

PerformanceMeasurements

Performance Comparison between Grid Search and Random Search

SN Computer Science (2023) 4:564 Page 5 of 20 564

SN Computer Science

the Chi-square feature selection algorithm to extract the best
features from the datasets. Then, we applied grid search and
random search POTs. Then, we applied MLAs with fivefold
cross-validation, and finally, we obtained the performance
measurements.

The following research queries are resolved in this paper.
RQ1: Which MLA/ensemble learning algorithm detects

code smell severity best?
Motivation: Baarah et al. [8] and Fontana et al. [4] pro-

posed various MLAs, such as Naive Bayes, Naive Bayes
Multinomial, SVM, and Decision Rules (JRip), and also
multinomial classification, regression, etc. Alazba et al.
[14] applied both MLA and stacking ensemble learning
algorithms and compared the performances of MLAs and
ensemble learning algorithms. They discovered that ensem-
ble learning algorithms were more accurate than MLAs in
terms of performance. Therefore, to investigate and observe
the effect of MLA and ensemble learning algorithms to code
smell severity detection, we applied both MLA and ensem-
ble learning algorithms.

RQ2: What is the effect of applying the feature selection
method in code smell severity detection?

Motivation: Liu et al. [6], Mhawish et al. [10, 11], Kaur
et al. [12], and Dewangan et al. [16] introduced the influence
of various feature selection algorithms on the performance
measures. They found an enhancement in the performance
accuracy by applying feature selection methods. Therefore,
to examine the effect of the feature selection method on the
method’s accuracy and extract software severities that play
an essential task in the code smell severity detection process,
we used Chi-square-based feature selection method for our
work.

RQ3: Does the hyper-parameter optimization algorithm
enhance the performance of the detection of the code smell’s
severity?

Motivation: Mhawish et al. [10, 11] applied grid search-
based parameter optimization and found improvement in
their results. Therefore, to study and analyze more effec-
tively, tuning in MLA and ensemble learning algorithm
parameters in this work have been applied.

Dataset Description

In this study of severity detection of code smell, we have
taken four datasets from Fontana et al. [4], which consist
of two class level datasets named data class (DC) and god
class (GC) and two method level datasets named feature
envy (FE) and long method (LM). These datasets can all
be found at http:// essere. disco. unimib. it/ rever se/ MLCSD.
html. Fontana et al. [4] have selected 76 systems out of 111,
computed by different sizes and a large set of object-oriented
features. They considered the Qualitas Corpus of systems
collected by Tempero et al. [30] for the system selection.

They employed a variety of tools and methods to find code
smell severity called advisors: iPlasma (GC, Brain Class),
Anti-pattern Scanner [31], PMD [32], iPlasma, Fluid Tool
[33] and Marinescu detection rules [34]. Table 1 shows the
automatic detection tools.

Code Smells Classification of Severity

After manual assessment of code smells, a severity value
between 1 and 4 is allocated to each assessed occurrence.
The values with their meanings are describes as follows:

1. Allocated for no smell: a method or class that is unaf-
fected by the code smell.

2. Allocated for non-severe smell: a method or class that is
only slightly impacted by the code smell.

3. Allocated for smell: the class or method possesses all
the properties of a smell.

4. Allocated for severe smell: there is a smell that is
extremely strong in terms of size, complexity, or cou-
pling.

Each code smell dataset has 420 instances (class or
method), where 63 instances are selected for DC and GC
datasets, and 84 instances are selected for FE and LM data-
sets. Details as shown by Fontana et al. [4] are given in
Table 2.

The code smell datasets used in this paper are defined as
follows:

Data class (DC): It mentions classes that maintain data
with basic functionality and are heavily relied upon by other
classes. A DC reveals a lot of features; it is not complicated
and data are exposed via accessor methods [4].

Table 1 Automatic detector tools (advisors)

Code smell Reference, tool/detection rules

DC iPlasma, Fluid Tool [33], Anti-pattern Scanner [31]
GC iPlasma (GC, Brain Class), PMD [32]
FE iPlasma, Fluid Tool [33]
LM iPlasma (Brain Method), PMD, Marinescu detection

rule [34]

Table 2 Dataset configuration [4]

Code smell severity
datasets

Severity

1 2 3 4

DC 151 32 113 124
GC 154 29 110 127
FE 280 23 95 22
LM 280 11 95 34

http://essere.disco.unimib.it/reverse/MLCSD.html
http://essere.disco.unimib.it/reverse/MLCSD.html

 SN Computer Science (2023) 4:564 564 Page 6 of 20

SN Computer Science

God class (GC): It describes those classes that concentrate
on the system’s intelligence. The GC is assumed to be the
utmost convoluted code smells for many causes, actions, and
tasks that arise there. It causes problems with big-size code,
coupling, and complexity [4].

Feature envy (FE): It mentions techniques that make
extensive use of data from classes other than their own. It pre-
fers to use other classes’ features, considering features entered
through accessor methods [4].

Long method (LM): It mentions techniques that prefer to
centralize a class’s functionality. An LM has a lot of code, is
complicated, difficult to understand, and heavily relies on data
from other classes [4].

Dataset Composition (Structure)

There are 420 manually calculated classes or methods in each
dataset. Table 2 shows the dataset configuration, including the
number of instances distributed to each severity level. The
least repeated severity level in the datasets is 2, and the two
class-based smells (DC and GC) have a dissimilar balance to
the two method-based smells (FE and LM) with respect to
severity levels 1 and 4 [4].

Normalization Technique

The datasets have a wide range of features; therefore, in such a
case the features should be normalized before MLAs are used.
The min–max feature scaling strategy was used in this paper
to rescale the datasets’ range of feature or observable values
between 0 and 1 [35]. The min–max formula is shown in Eq. 1
with X′ denoting the normalized value and X representing the
initial real value. The feature’s Xmin and Xmax values are
altered to “0” and “1”, respectively, while every other value is
modified to a decimal between “0” and “1”:

(1)X =
X − Xmin

Xmax − Xmin

Feature Selection Algorithm

Feature selection is used to find the most significant feature
in a dataset to refine results by improving the understand-
ing of the instances that contribute in making a distinction
among parallel roles in features [36]. We used a Chi-square-
based feature selection technique in this study to extract the
best instances from each dataset.

Typically, Chi-square feature selection is used in cat-
egorical datasets. By examining the relationships between
features, Chi-square aids in choosing the optimal features.
Equation 2 provides the formula for the Chi-square test [36]:

We can calculate observed frequency and expected fre-
quency for response and independent variables. The Chi-
square calculates the difference between these two numbers.
The more the difference, the more the response, and vari-
ables that are not related to each other are dependent.

The top 10 instances were extracted from each dataset.
Table 3 shows these instances extracted by the Chi-square
feature selection method from each dataset. The detailed
explanation of selected metrics is described in Table 21
(Appendix section).

Hyper‑parameter Tuning/Optimization

A hyper-parameter is a parameter value that controls the
learning process. In machine-learning and ensemble learn-
ing methods, hyper-parameter optimization or tuning is used
to select the best parameters for each algorithm. The best
parameters for every method differ based on the learning
dataset. The various parameter value combinations for each
algorithm should be tried in order to find the exact param-
eters that will allow the predictive algorithm to successfully
forecast the test dataset [11].

In this study, the grid search and random search-based
POTs are applied to select the optimal parameter values
for every method. Parameter optimization is necessary to

(2)X
2 =

(Observed frequency − Expected frequency)2

Expected frequency
.

Table 3 Chi-square feature selection method’s extracted feature

Dataset No. of feature Feature extracted by Chi-square

DC 10 LOC_project, LOC_package, NOMNAMM_project, LOC_type, LOCNAMM_type, NOCS_project, NOMNAMM_
package, NOCS_package, Complextype, NIM_type

GC 10 LOC_project, LOC_package, NOMNAMM_project, LOC_type, LOCNAMM_type, NOCS_project, NOMNAMM_
package, NOCS_package, Complextype, NOMNAMM_type

FE 10 Method, ATFD_type, Project, AMW_type, package, AMWNAMM_type, complextype, CBO_type, LOC_method,
NOAV_method

LM 10 Method, ATFD_type, project, package, complextype, LOC_method, CBO_type, NOAV_method, CYCLO_method,
CINT_method

SN Computer Science (2023) 4:564 Page 7 of 20 564

SN Computer Science

select an algorithm’s optimal hyper parameters, which
help outcomes for the utmost correct calculations. It
depends on an inclusive search for the number of criteria
that yields the best prediction model performance value
[38]. To avoid over fitting the algorithm on the test dataset,
a fivefold cross-validation is performed. It is applied to
determine the efficiency of the procedure for every con-
ceivable parameter combination.

We identified grid search and random search algo-
rithm for each machine-learning and ensemble learning
algorithms. We allowed the value range and several steps
to the numeric parameters. As indicated in Table 5, the
numbers which must be checked are allocated inside the
range’s upper and lower boundaries according to the given
step count allocated to every parameter. The best-selected
parameters and allotted step count for nominal param-
eters for the grid search and random search are shown in
Tables 4 and 5.

Validation Methodology

This study has used a validation methodology to calcu-
late each experiment’s performance. MLAs are calculated
using fivefold cross-validation to divide the datasets into
five segments, five times for the training of the algorithm.
In each replication dataset, one part is evaluated as the test
set, and the other is evaluated for the training set.

Performance Capacity

To evaluate the performance capacity of all the models,
a set of experimental measurements such as true positive
(TP), true negative (TN), false positive (FP), and false
negative (FN) are computed with the confusion matrix. In
this study, we have evaluated various experiments.

• TP (true positive) stands for the outcomes in which the
system correctly calculates the positive class.

• TN (true negative) stands for the outcomes in which the
system correctly calculates the negative class.

• FP (false positive) stands for the outcomes in which the
system calculates positive class but the class is actually a
negative class. This means the system wrongly identifies
a positive class.

• FN (false negative) stands for the outcomes where the
system calculates the negative class which is actually a
positive class which means that system wrongly identifies
the negative class.

Table 4 Selected best parameters for each model

Model Parameter Parameter option

DT Criteria Gini index, gain
ratio, infor-
mation gain,
accuracy

Gradient Boost Criteria friedman_mse,
learning rate,
N_estimators,
max depth

Table 5 Number of allotted
steps to every parameter
(parameter tuning)

Algorithm Parameters Start value End value No. of steps

LR C 0.1 100 100
Penalty 11 12 N/A

RF Number of trees 1 50 15
Maximum depth 1 50 15

DT Maximum depth 1 20 15
Bootstrap True/false
Minimum size of split 1 15 15
Minimum gain 0 10 10
N_estimators 10 1000 100

AdaBoost Learning rate 0.1 100 100
Base_estimator None
N_estimator 1 100 100

XG Boost Learning rate 0.01 100 100
N_estimator 100 1000 100
Objective Multi:softmax

Gradient Boost Learning rate 0.01 100 100
Max depth 1 10 10
N_estimators 100 1000 100

 SN Computer Science (2023) 4:564 564 Page 8 of 20

SN Computer Science

To compute the performance capacity of MLAs, four
parameters: positive predictive value, true positive rate,
F-measure, and SCA, are calculated using TP, TN, FP, and
FN. The detailed description and equations of all parameters
are given as follows:

Positive predictive value (PPV): PPV deals with the
number of code smell instances precisely recognized by the
MLA. Equation (3) is applied to calculate the PPV:

True positive rate (TPR): TPR deals with the number
of code smell instances precisely recognized by the MLA.
Equation (4) is applied to compute TPR:

F-measure: The harmonic mean of PPV and TPR is
the subject of F-measure, which is calculated for a balance
between their respective values. The F-measure is calculated
using Eq. (5):

Severity classification’s accuracy (SCA): SCA deals
with the organization of PPV and TPR. It depicts the exact
classification of cases in the positive and negative classifica-
tions. Equation (6) is applied to calculate SCA:

Results of Proposed Model

In order to provide a response to RQ1, we made use of a total
of three ensemble learning methods and four MLAs. In this
paper, we have used four code smell severity datasets (DC,
GC, FE, and LM), and each dataset has four types of severi-
ties. We have shown individual results for each severity of
each dataset. In addition, the average result of all severity
classes is also shown. We implemented the severity clas-
sification accuracy (SCA) in two ways: (1) SCA with the
grid search algorithm and (2) SCA with the random search
algorithm. The following subsection shows the obtained
results from every MLA and ensemble learning algorithm
in tabular form.

The following subsection uses seven MLAs and ensem-
ble learning methods: logistic regression, Random Forest,
K-nearest neighbor, decision tree, AdaBoost, XG Boost-
ing, and Gradient Boosting. The following “Logistic
Regression”–“Gradient Boosting (GB Algorithm)”) shows

(3)PPV =
TP

TP + FP

(4)TPR =
TP

TP + FN

(5)F − measure(F) = 2 ×
PPV × TPR

PPV + TPR

(6)SCA =
TP + TN

TP + TN + FP + FN

the experimental results of the MLA and ensemble learning
methods in table form.

Logistic Regression

Logistic regression (LR) is a classification algorithm that
simplifies LR to multi-class problems, i.e., greater than two
promising distinct results. It is a technique for calculating
the possibility of the unusual feasible results of classically
dispersed associated variables, specified a set of particular
variables [38].

Table 6 presents the SCA of each severity class and the
average SCA of all severity classes for each dataset using the
LR method. This study observed that the LR algorithm got
the highest SCA, 97.34% using the grid search algorithm for
the LM dataset for an average of all severities, and 91.42%
SCA obtained using the Random search algorithm for the
LM dataset for the average of all severities.

Random Forest

Random Forest (RF) is a classification method applied in
regression and ensemble learning methods. When used for
the MLA, the outcome of the RF is the class selected by a
large number of trees.

Table 7 shows the RF algorithm got the highest SCA,
97.34% using the grid search algorithm for the LM dataset
for an average of all severities, and 96.20% SCA obtained
using the random search algorithm for the LM dataset for
the average of all severities.

K‑Nearest Neighbor

The K-nearest neighbor (KNN) algorithm is an MLA used to
anticipate classification and regression issues. It is, however,
generally applied for classification prediction problems. The
KNN method assigns a value to a new data point based on
how similar it is to the training point [40].

Table 8 presents that the KNN algorithm got the highest
SCA, 90.95% using the grid search algorithm for the LM
dataset for an average of all severities, and 91.64% SCA
obtained using the Random search algorithm for the LM
dataset for the average of all severities.

Decision Tree

A decision tree (DT) constructs the classification techniques
in the structure of a tree. It divides a dataset into smaller
subsets while, at the same time, a connected DT is incremen-
tally developed. The last outcome is a tree with leaf nodes
or results. The leaf node corresponds to a classification [39].

Table 9 presents that the DT algorithm got the highest
SCA, 99.08% using the grid search algorithm for the LM

SN Computer Science (2023) 4:564 Page 9 of 20 564

SN Computer Science

Table 6 Severity classification
results of LR algorithm

Datasets Class name PPV (%) TPR (%) F-measure (%) Grid search
SCA (%)

Random
search SCA
(%)

DC Severity 1 85.00 85.00 85.00 84.62 37.50
Severity 2 00 00 00 66.67 50.00
Severity 3 47.00 58.00 52.00 58.34 57.20
Severity 4 57.00 73.00 64.00 72.73 46.20
Average result of all class 54.00 62.00 58.00 71.70 68.09

GC Severity 1 93.00 88.00 90.00 87.50 94.12
Severity 2 00 00 00 100 66.67
Severity 3 62.00 67.00 64.00 66.67 63.64
Severity 4 64.00 69.00 67.00 69.24 54.55
Average result of all class 73.00 74.00 73.00 70.11 67.20

FE Severity 1 83.00 100 91.00 100 68.75
Severity 2 00 00 00 60.00 100
Severity 3 73.00 73.00 73.00 72.73 57.20
Severity 4 00 00 00 100 100
Average result of all class 69.00 79.00 73.00 88.09 84.05

LM Severity 1 100 100 100 100 75.00
Severity 2 100 100 100 100 50.00
Severity 3 80.00 100 89.00 100 90.00
Severity 4 100 50.00 67.00 50.00 100
Average result of all class 96.00 95.00 96.00 97.34 91.42

Table 7 Severity classification
results of RF algorithm

Datasets Class name PPV (%) TPR (%) F-measure (%) Grid search
SCA (%)

Random
search SCA
(%)

DC Severity 1 93.00 82.00 87.00 87.00 82.36
Severity 2 00 00 00 66.67 100
Severity 3 40.00 67.00 50.00 85.00 66.67
Severity 4 73.00 73.00 73.00 79.20 72.73
Average result of all class 65.00 67.00 65.00 76.49 70.47

GC Severity 1 93.00 93.00 93.00 93.34 93.34
Severity 2 00 00 00 100 50.00
Severity 3 69.00 100 82.00 88.89 100
Severity 4 100 88.00 93.00 75.00 87.5
Average result of all class 86.00 88.00 86.00 76.98 78.06

FE Severity 1 100 100 100 100 100
Severity 2 00 00 00 100 100
Severity 3 80.00 100 89.00 100 100
Severity 4 100 33.00 50.00 66.67 66.67
Average result of all class 92.00 93.00 91.00 89.42 91.43

LM Severity 1 100 100 100 100 100
Severity 2 100 100 100 50.00 100
Severity 3 100 90.00 95.00 95.24 90.00
Severity 4 67.00 100 80.00 50.00 100
Average result of all class 98.00 98.00 98.00 97.34 96.20

 SN Computer Science (2023) 4:564 564 Page 10 of 20

SN Computer Science

Table 8 Severity classification
results of KNN algorithm

Datasets Class name PPV (%) TPR (%) F-measure (%) Grid search
SCA (%)

Random
search SCA
(%)

DC Severity 1 75.00 86.00 80.00 84.62 85.72
Severity 2 00 00 00 50.00 66.67
Severity 3 50.00 73.00 59.00 50.00 72.73
Severity 4 100 71.00 33.00 61.54 71.43
Average result of all class 71.00 71.00 70.00 71.62 70.82

GC Severity 1 67.00 86.00 75.00 85.72 83.34
Severity 2 00 00 00 57.14 100
Severity 3 32.00 55.00 40.00 54.54 70.00
Severity 4 60.00 30.00 40.00 70.00 63.16
Average result of all class 45.00 50.00 45.00 64.72 69.05

FE Severity 1 82.00 98.00 89.00 98.00 92.00
Severity 2 50.00 25.00 33.00 75.00 78.22
Severity 3 68.00 65.00 67.00 65.22 67.98
Severity 4 00 00 00 85.72 82.56
Average result of all class 70.00 77.00 73.00 68.34 71.57

LM Severity 1 96.00 96.00 96.00 96.15 100
Severity 2 00 00 00 100 92.67
Severity 3 67.00 100 80.00 100 80.00
Severity 4 100 20.00 33.00 80.00 100
Average result of all class 87.00 86.00 83.00 90.95 91.64

Table 9 Severity classification
results of DT algorithm

Datasets Class name PPV (%) TPR (%) F-measure (%) Grid search
SCA (%)

Random
search SCA
(%)

DC Severity 1 76.00 97.00 85.00 90.63 96.67
Severity 2 00 00 00 100 100
Severity 3 85.00 46.00 59.00 70.37 45.84
severity 4 70.00 92.00 79.00 66.67 92.00
Average result of all class 72.00 75.00 71.00 73.80 75.00

GC Severity 1 92.00 100 96.00 95.24 100
Severity 2 75.00 75.00 75.00 57.14 75.00
Severity 3 88.00 78.00 82.00 66.67 77.78
severity 4 92.00 88.00 90.00 61.54 88.46
Average result of all class 90.00 90.00 90.00 66.67 86.00

FE Severity 1 95.00 100 97.00 87.50 100
Severity 2 100 86.00 92.00 50.00 85.72
Severity 3 100 88.00 93.00 95.24 87.50
severity 4 100 100 100 60.00 100
Average result of all class 97.00 96.00 96.00 86.90 96.00

LM Severity 1 100 98.00 99.00 100 98.36
Severity 2 00 00 00 100 100
Severity 3 81.00 100 89.00 100 100
severity 4 100 100 100 100 100
Average result of all class 93.00 95.00 94.00 99.08 95.00

SN Computer Science (2023) 4:564 Page 11 of 20 564

SN Computer Science

dataset for an average of all severities, and 96.00% SCA
obtained using the Random search algorithm for the FE
dataset for the average of all severities.

AdaBoost (Adaptive Boosting)

The first well-doing boosting algorithm built for binary
classification was the AdaBoost algorithm. Yoav Fried and
Robert Schapire were the ones who found it [41]. A popular
boosting technique turns several “poor classifiers” into one
“strong classifier.”

Table 10 presents that the AdaBoost algorithm obtained
the highest 98.18% SCA using the grid search method for
the LM dataset for the average of all severities and 97.61%
SCA using the Random search algorithm for the LM dataset
for an average of all severities.

XGB Algorithm (XG Boosting)

The XGBoost is a tree-based MLA with superior presen-
tation and speed, commonly known as the extreme gradi-
ent boosting algorithm. It is a straightforward algorithm
that works with MLA and has grown in popularity since
it produces effective outcomes for organized and tabular

data. Tianqi Chen developed XGBoost, which is primarily
governed by the Distributed Machine-Learning Community
(DMLC) organization. It is open-source software [42].

Table 11 presents that the XGB algorithm obtained the
highest 99.12% SCA using the grid search method for the
LM dataset for the average of all severities and 98.89% SCA
using the random search method for the LM dataset for the
average of all severities.

Gradient Boosting (GB Algorithm)

The gradient boosting (GB) algorithm is the most effective
ensemble MLA. The errors in MLAs are mainly separated
into two types, i.e., bias error and variance error. GB algo-
rithm is a boosting technique which can be employed to
decrease the bias error of the algorithm. The GB algorithm
is used for both categorical and constant target variables,
such as classifiers and regression [43].

Table 12 presents that the GB algorithm obtained the
highest, 98.67% SCA using the grid search method for the
LM dataset for the average of all severities and 98.32% SCA
using the Random search algorithm for the LM dataset for
the average of all severities.

Table 10 Severity classification
results of AdaBoost algorithm

Datasets Class name PPV (%) TPR (%) F-measure (%) Grid search
SCA (%)

Random
search SCA
(%)

DC Severity 1 95.00 72.00 82.00 74.45 72.42
Severity 2 25.00 20.00 22.00 81.00 80.00
Severity 3 42.00 61.00 50.00 52.00 60.87
Severity 4 68.00 63.00 65.00 66.67 62.96
Average result of all class 68.00 63.00 64.00 70.37 63.09

GC Severity 1 100 73.00 85.00 75.18 73.17
Severity 2 00 00 00 52.00 50.00
Severity 3 56.00 50.00 53.00 50.00 50.00
Severity 4 60.00 71.00 65.00 72.00 71.43
Average result of all class 77.00 65.00 70.00 66.12 65.48

FE Severity 1 98.00 97.00 98.00 96.52 96.77
Severity 2 00 00 00 76.00 66.67
Severity 3 80.00 94.00 86.00 92.23 94.12
Severity 4 67.00 100 80.00 100 100
Average result of all class 90.00 93.00 91.00 91.98 92.16

LM Severity 1 1.0 1.0 1.0 100 100
Severity 2 00 00 00 87.24 100
Severity 3 87.00 100 93.00 100 100
Severity 4 100 100 100 98.25 100
Average result of all class 96.00 98.00 97.00 98.18 97.61

 SN Computer Science (2023) 4:564 564 Page 12 of 20

SN Computer Science

Table 11 Severity classification
results of XG Boosting
algorithm

Datasets Class name PPV (%) TPR (%) F-measure (%) Grid search
SCA (%)

Random
search SCA
(%)

DC Severity 1 84.00 96.00 90.00 65.85 96.30
Severity 2 40.00 29.00 33.00 80.00 57.14
Severity 3 65.00 59.00 62.00 68.75 58.62
Severity 4 68.00 71.00 70.00 81.82 71.43
Average result of all class 70.00 71.00 70.00 78.80 80.24

GC Severity 1 97.00 97.00 97.00 66.67 97.06
Severity 2 25.00 14.00 18.00 85.72 71.43
Severity 3 52.00 79.00 62.00 76.20 78.95
Severity 4 82.00 58.00 68.00 69.56 58.34
Average result of all class 77.00 75.00 74.00 78.80 80.00

FE Severity 1 94.00 100 97.00 70.00 100
Severity 2 00 00 00 83.34 60.00
Severity 3 85.00 96.00 90.00 66.67 95.65
Severity 4 75.00 60.00 67.00 100 60.00
Average result of all class 85.00 90.00 88.00 91.90 92.14

LM Severity 1 100 100 100 67.27 100
Severity 2 100 100 100 100 100
Severity 3 100 100 100 80.95 100
Severity 4 100 100 100 66.67 100
Average result of all class 100 100 100 99.12 98.89

Table 12 Severity classification
results of gradient boosting
algorithm

Datasets Class name PPV (%) TPR (%) F-measure (%) Grid search
SCA (%)

Random
search SCA
(%)

DC Severity 1 93.00 100 96.00 100 92.98
Severity 2 100 60.00 75.00 60.00 66.67
Severity 3 68.00 83.00 75.00 83.00 84.00
Severity 4 95.00 75.00 84.00 75.00 78.79
Average result of all class 88.00 87.00 87.00 86.90 88.22

GC Severity 1 93.00 84.00 88.00 83.87 85.86
Severity 2 50.00 33.00 40.00 33.34 40.00
Severity 3 59.00 77.00 67.00 77.28 78.89
Severity 4 78.00 72.00 75.00 72.00 76.65
Average result of all class 76.00 75.00 75.00 75.00 76.89

FE Severity 1 92.00 98.00 95.00 98.22 99.00
Severity 2 100 20.00 33.00 80.00 84.56
Severity 3 94.00 89.00 92.00 89.47 90.00
Severity 4 80.00 100 89.00 100 100
Average result of all class 92.00 92.00 90.00 91.67 92.12

LM Severity 1 100 100 100 100 100
Severity 2 100 100 100 100 100
Severity 3 100 100 100 100 100
Severity 4 100 100 100 100 100
Average result of all class 100 100 100 98.67 98.32

SN Computer Science (2023) 4:564 Page 13 of 20 564

SN Computer Science

SCA Comparison Between Grid Search and Random
Search of All Machine‑Learning Methods

Table 13 shows the comparison among the SCA of all the
machine-learning methods obtained by Grid search and
Random search algorithms. It is observed that some of the
machine-learning methods perform better using the grid search
algorithm, and some perform better using the random search
algorithm.

From our work, we observed the following: (1) for the DC
dataset, the highest severity detection accuracy is 88.22% using
the gradient boosting algorithm for the random search method;
(2) for the GC dataset, the highest severity detection accu-
racy is 86.00% using the DT algorithm for the random search
method; (3) for the FE dataset, the highest severity detection
accuracy is 96.00% using the DT algorithm for the random
search method; and (4) for the LM dataset, the highest severity

Table 13 SCA comparison between grid search and random search of
all machine-learning methods

Datasets Grid search SCA Random
search
SCA

LR DC 71.70 68.09
GC 70.11 67.20
FE 88.09 84.05
LM 97.34 91.42

RF DC 76.49 70.47
GC 76.98 78.06
FE 89.42 91.43
LM 97.34 96.20

KNN DC 71.62 70.82
GC 64.72 69.05
FE 68.34 71.57
LM 90.95 91.64

DT DC 73.80 75.00
GC 66.67 86.00
FE 86.90 96.00
LM 99.08 95.00

Ada Boost DC 70.37 63.09
GC 66.12 65.48
FE 91.98 92.16
LM 98.18 97.61

XGB DC 78.80 80.24
GC 78.80 80.00
FE 91.90 92.14
LM 99.12 98.89

GB DC 86.90 88.22
GC 75.00 76.89
FE 91.67 92.12
LM 98.67 98.32

Ta
bl

e
14

C

om
pa

ris
on

 a
m

on
g

al
l a

lg
or

ith
m

s

A
lg

or
ith

m
s

D
at

as
et

D
C

G
C

FE
LM

P
(%

)
T

(%
)

F
(%

)
SC

A
 (%

)
P

(%
)

T
(%

)
F

(%
)

SC
A

 (%
)

P
(%

)
T

(%
)

F
(%

)
SC

A
 (%

)
P

(%
)

T
(%

)
F

(%
)

SC
A

 (%
)

LR
54

.0
0

62
.0

0
58

.0
0

71
.7

0
73

.0
0

74
.0

0
73

.0
0

70
.1

1
69

.0
0

79
.0

0
73

.0
0

88
.0

9
96

.0
0

95
.0

0
96

.0
0

97
.3

4
R

F
65

.0
0

67
.0

0
65

.0
0

76
.4

9
86

.0
0

88
.0

0
86

.0
0

78
.0

6
92

.0
0

93
.0

0
91

.0
0

91
.4

3
98

.0
0

98
.0

0
98

.0
0

97
.3

4
K

N
N

71
.0

0
71

.0
0

70
.0

0
71

.6
2

45
.0

0
50

.0
0

45
.0

0
69

.0
5

70
.0

0
77

.0
0

73
.0

0
71

.5
7

87
.0

0
86

.0
0

83
.0

0
91

.6
4

D
T

72
.0

0
75

.0
0

71
.0

0
75

.0
0

90
.0

0
90

.0
0

90
.0

0
86

.0
0

97
.0

0
96

.0
0

96
.0

0
96

.0
0

93
.0

0
95

.0
0

94
.0

0
99

.0
8

A
B

68
.0

0
63

.0
0

64
.0

0
70

.3
7

77
.0

0
65

.0
0

70
.0

0
66

.1
2

90
.0

0
93

.0
0

91
.0

0
92

.1
6

96
.0

0
98

.0
0

97
.0

0
98

.1
8

X
G

B
70

.0
0

71
.0

0
70

.0
0

80
.2

4
77

.0
0

75
.0

0
74

.0
0

80
.0

0
85

.0
0

90
.0

0
88

.0
0

92
.1

4
10

0
10

0
10

0
99

.1
2

G
B

88
.0

0
87

.0
0

87
.0

0
88

.2
2

76
.0

0
75

.0
0

75
.0

0
76

.8
9

92
.0

0
92

.0
0

90
.0

0
92

.1
2

10
0

10
0

10
0

98
.6

7

 SN Computer Science (2023) 4:564 564 Page 14 of 20

SN Computer Science

detection accuracy is 99.12% using the XG Boost algorithm
for the grid search method.

Comparison Among All the Algorithms Used in this
Work

A comparison among all machine-learning methods are
shown in Table 14, and Fig. 2 shows the comparative
analysis among all the algorithms using a bar graph. The
following results are obtained here:

1. The gradient boosting (GB) algorithm achieved the high-
est SCA of 88.22% for the DC dataset.

2. The DT approach achieved the maximum SCA of
86.00% for GC and 96.00% for the FE dataset.

3. XGB approach achieved the highest SCA of 99.12% for
the LM dataset.

0

20

40

60

80

100

DC GC FE LM

LR

RF

KNN

DT

AB

XGB

GB

Fig. 2 Comparison bar chart of all algorithms

Table 15 Result comparison
with and without applying
feature selection technique

Datasets Algorithms Results with feature selection
technique

Results without feature selec-
tion technique

F-measure (%) SCA (%) F-measure (%) SCA (%)

DC LR 58.00 71.70 80.00 72.23
RF 65.00 76.49 90.00 75.98
K-nearest neighbor 70.00 71.62 70.00 71.12
DT 71.00 75.00 73.00 73.00
AdaBoost 64.00 70.37 69.00 70.27
XG Boost 70.00 80.24 85.00 81.00
Gradient boosting 87.00 88.22 90.00 86.67

GC LR 73.00 70.11 70.00 65.67
RF 86.00 78.06 86.00 76.76
K-nearest neighbor 45.00 69.05 52.00 61.10
DT 90.00 86.00 85.00 82.08
AdaBoost 70.00 66.12 86.00 65.78
XG Boost 74.00 80.00 77.00 79.56
Gradient boosting 75.00 76.89 82.00 75.00

FE LR 73.00 88.09 79.00 89.14
RF 91.00 91.43 92.00 93.65
K-nearest neighbor 73.00 71.57 72.00 68.78
DT 96.00 96.00 95.00 95.32
AdaBoost 91.00 92.16 90.00 90.26
XG Boost 88.00 92.14 83.00 89.78
Gradient boosting 90.00 92.12 88.00 93.65

LM LR 96.00 97.34 99.00 97.00
RF 98.00 97.34 99.00 98.14
K-nearest neighbor 83.00 91.64 97.00 95.87
DT 94.00 99.08 98.00 93.98
AdaBoost 97.00 98.18 100 98.00
XG Boost 100 99.12 100 98.74
Gradient boosting 100 98.67 100 98.82

SN Computer Science (2023) 4:564 Page 15 of 20 564

SN Computer Science

Influence of Feature Selection Technique

This section focuses on the influence of feature selection
techniques to enhance the results and identify the features
which play an essential role in code smell severity detection.
The Chi-square feature selection technique is constructed
in response to research question 2 (RQ2). The SCA (%)
and F-measure (%) of all the algorithms with and with-
out applied feature selection techniques are compared in
Table 15. For this study, ten features are selected from each
dataset shown in Table 3. This study observed that maxi-
mum algorithms show improved performance of SCA for
each dataset by applying the feature selection technique,
and only few of them did not perform well. In this study,
we observed that the highest severity was detected by the
gradient boosting model (F-measure—87.00% and accu-
racy—88.22%) from the DC dataset. The highest severity
detected by the DT model (F-measure—90.00% and accu-
racy—86.00%) from GC dataset, and (F-measure—96.00%
and accuracy—96.00%) from FE dataset. Similarly, the high-
est severity was detected by the XG Boost model (F-meas-
ure—100% and accuracy—99.12%) from the LM dataset.

Influence of Hyper‑parameter Tuning on Algorithms

In response to research question 3 (RQ3), the influence of
hyper-parameter tuning on the performance of all algorithms
is studied. Table 16 represents the various parameter groups
and obtained the highest SCA of for the DT algorithm. The
DT algorithm obtained the highest SCA of 99.08% when the
maximum level is 20, the numbers of trees are 20, and the
number of the split is 15. Similarly, Tables 17 and 18 show
the influence of parameter optimization on the SCA of all
algorithms.

Discussion

In this paper, we have used four code smell severity dataset
which includes god class, data class, feature envy and long
method. The severity composition of each dataset is given
in Table 2. In all the datasets, Severity 1 has the highest
instances, and Severity 2 has the lowest instances. We have
shown separate results for each severity of each dataset in
“Results of Proposed Model”, and we observed a significant
difference between the results of the four severities for each
dataset because the combination of the number of severities
in datasets is different. In “Results of Proposed Model”, we
found the highest accuracy for severity 1 for each dataset
because severity 1 has the highest instances and the low-
est accuracy for severity 2 for each dataset because severity
2 has the lowest instances. In this way, we found a class

Table 16 Tuning parameters applied on DT algorithm

Parameters Level

Maximum level 20
Criteria and their correspond-

ing SCA (%)
Information gain 99.08%
Accuracy 99.08%
Gini Index 98.28%
Entropy 98.34%

Minimal size of split 15
Minimal gain 0.0
BootStrap False
N_estimators 500
Apply pre-pruning True
Apply pruning False

Table 17 POT’s effect on the LR model’s SCA

Penalty Parameter ‘C’ SCA (%)

11 0.1 97.34
11 1.0 96.98
12 1.0 96.45
12 100 95.92

Table 18 POT’s effect on the RF, AdaBoost, XGBoost, and GB mod-
el’s SCA

Model name Tree’s count Maximum
level

SCA (%)

RF 10 10 95.32
15 20 96.98
20 20 98.14
30 25 97.12
50 30 97.86

AdaBoost 10 3 95.12
15 5 96.33
20 10 97.85
30 20 98.18
50 30 95.34

XG Boost 10 5 97.54
20 10 97.98
30 15 99.12
40 20 98.78
50 25 97.00

GB 10 5 93.23
20 10 93.65
30 15 92.78
40 20 92.14
50 25 92.65

 SN Computer Science (2023) 4:564 564 Page 16 of 20

SN Computer Science

imbalance problem in all the datasets, which we will be con-
sidering in our future works.

In this experiment, we solved three research questions
given in “Proposed Model and Dataset Description”. To
answer research question 1, we have applied seven machine-
learning algorithms described in “Logistic Regression” to
“Gradient Boosting (GB Algorithm)”. We found that the DT
algorithms give the best SCA of 86.00% and 96.00% for the
GC and FE datasets (Table 14). Likewise, the gradient boost
algorithm gives the best SCA of 88.22% for the DC dataset,
and the XG Boost approach gives the maximum SCA of
99.12% for the LM dataset (Table 14). To answer research
question two, we obtained the influence of the feature selec-
tion technique in Table 15, and we found that feature selec-
tion gives better performance in all the algorithms for each
dataset. We applied the POT to each algorithm to answer
research question three. The influence of the POT on each
model performance is shown in Tables 16, 17 and 18.

Result Evaluation of Our Results with Other Related
Works

In earlier literatures, many authors have applied different
algorithms in different severity datasets, which we have seen
in detail in “Related Work”. This section constructs a sum-
marized evaluation of our work in comparison with Fontana
et al. [4] and Abdou [27]. They both applied various MLAs
and implemented multinomial classification to regression
and binary classifiers for ordinal classification. A linear
correlation-based filter method was also applied to select
the best features by them. In addition, Abdou [27] applied
projective adaptive resonance theory (PART) algorithm to
learn the efficiency of software metrics to detect the code
smells and a local interpretable model agnostic explanations
(LIME) algorithm was applied to describe the ML models
and interpretability.

In our approach, we applied four MLAs and three ensem-
ble learning approaches to identify the severity of code
smells. A Chi-square-based FST is applied to select the best
metrics, and two-parameter optimization techniques (grid
search and random search) are applied to optimize the best
parameters from each model.

Table 19 compares our results with other works. In our
approach, for the DC dataset GB algorithm achieved 88.22%
SCA, while Fontana et al. [4] achieved 77.00% SCA using
the O-RF algorithm, and Abdou [27] achieved 93.00% SCA
using the O-R-SMO algorithm. Like this, the Abdou [27]
model is best for severity detection in data class dataset.

To the GC dataset, our approach achieved 86.00% SCA
using DT algorithm, while Fontana et al. [4] achieved 74.00%
SCA using the O-DT algorithm, and Abdou [27] achieved
92.00% SCA using the R-B-RF algorithm. Like this, the Abdou
[27] model is best for severity detection in God class dataset. Ta

bl
e

19

Re
su

lt
ev

al
ua

tio
n

of
 o

ur
 m

et
ho

d
w

ith
 o

th
er

 w
or

ks

Ye
ar

A
ut

ho
r n

am
e

A
pp

lie
d

al
go

rit
hm

s
A

pp
lie

d
FS

A
 a

nd

ot
he

r t
ec

hn
iq

ue
s

D
at

as
et

s

D
C

G
C

FE
LM

B
es

t a
lg

or
ith

m
SC

A
 (%

)
B

es
t a

lg
or

ith
m

SC
A

 (%
)

B
es

t a
lg

or
ith

m
SC

A
 (%

)
B

es
t a

lg
or

ith
m

SC
A

 (%
)

20
17

Fo
nt

an
a

et
 a

l.
[4

]
18

 M
ac

hi
ne

 le
ar

ni
ng

m

et
ho

ds
 fo

r b
in

ar
y

cl
as

si
fic

at
io

n,

an
d

m
ul

tin
om

ia
l

cl
as

si
fic

at
io

n
to

re

gr
es

si
on

Li
ne

ar
 c

o-
re

la
tio

n
fil

te
r m

et
ho

d
O

-R
an

do
m

 F
or

es
t

77
.0

0
O

-D
T

74
.0

0
J4

8-
Pr

un
ed

93
.0

0
B

-R
an

do
m

 F
or

es
t

92
.0

0

20
22

A
bd

ou
 [2

7]
40

 b
in

ar
y

an
d

m
ul

tin
om

ia
l c

la
s-

si
fic

at
io

n

PA
RT

 a
lg

or
ith

m
,

LI
M

E
al

go
rit

hm
,

ra
nk

in
g

co
rr

el
a-

tio
n

al
go

rit
hm

O
-R

-S
M

O
93

.0
0

R-
B

-R
F

92
.0

0
R-

B
-J

R
IP

, O
-R

-
SM

O
97

.0
0

R-
B

-J
R

IP
, O

-B
-R

F,

O
-R

-J
R

ip
97

.0
0

O
ur

 a
pp

ro
ac

h
4

M
LA

 a
nd

 3

en
se

m
bl

e
le

ar
ni

ng

m
et

ho
ds

C
hi

-s
qu

ar
e

FS
A

,
gr

id
 se

ar
ch

 a
nd

ra

nd
om

 se
ar

ch

pa
ra

m
et

er
 o

pt
im

i-
za

tio
n

G
B

88
.2

2
D

T
86

.0
0

D
T

96
.0

0
X

G
 B

oo
st

99
.1

2

SN Computer Science (2023) 4:564 Page 17 of 20 564

SN Computer Science

To the FE dataset, our approach achieved 96.00% SCA
using DT algorithm, while Fontana et al. [4] achieved
93.00% SCA using the J48-Pruned algorithm, and Abdou
[27] achieved 97.00% SCA using the R-B-JRIP and O-R-
SMO algorithm. Like this, the Abdou [27] model is best for
severity detection in FE dataset.

To the LM dataset, our approach achieved 99.12%
SCA using XG Boost algorithm, while Fontana et al. [4]
achieved 92.00% SCA using the B-Random Forest algo-
rithm, and Abdou [27] achieved 97.00% SCA using the
R-B-JRIP, O-B-RF, and O-R-JRip algorithm. Like this, our
model is best for severity detection in LM dataset.

Statistical Analysis for Comparing Machine‑Learning
Models

From Table 15, we observed that there is not much differ-
ence in the results of two best models to the same dataset.
In that case, we have used a statistical analysis method to
choose the one of best model for each dataset. We applied
a paired T test statistical analysis method on the two best
models (according to Table 15) for each datasets. For this,
we have selected two best models which are obtained best
accuracy for each dataset and then applied paired T test.

A paired T test allows data analysis to consider differ-
ent methods using the same dataset to see if the difference
is minimal [44]. This method can be used to check that
there is a statistically significant distinction between two
models, allowing you to choose only the better one. We
used mean accuracy as a measurement calculated across
tenfold cross-validation in our studies, with set the signifi-
cance level (i.e., α = 0.05).

We developed the following hypotheses (H) values for
each comparison:

Null hypothesis (H0): X and Y’s accuracy of the model
are obtained from the same sample. As a result, the dif-
ference in levels of accuracy has a predicted value of 0
(E[diff] = 0). In essence, the two models are identical [45].

Alternative hypothesis (H1): The prediction accuracy
is obtained from two separate models, E[diff] ≠ 0. Essen-
tially, the models are distinct, and one is superior to the
other [45].

• H0: ACCU RAC Yx = ACC URACY y (the detection effi-
ciency of the two models is identical).

• H1: ACC URACY x ≠ ACC URACY (the detection effi-
ciency of the two models differs significantly).

where x and y are the two models under consideration. If the
function returns a p value less than alpha, we can correctly
reject the null hypothesis.

if p > alpha:
print(“Fail to reject null hypothesis”)
else:
print(“Reject null hypothesis”)
In this study, we calculated two parameters: mean accu-

racy and p value for each dataset.
Mean accuracy: A model has higher mean accuracy that

means the model is best for dataset as compared to less mean
accuracy model. p value: If the p value is higher to alpha
(α = 0.05), the null hypothesis is assumed to be true. If the
p value is below alpha, the null hypothesis is assumed to
be incorrect. Then, we have selected to one of best model
according to mean accuracy from given to two the model.

Table 20 displays the mean accuracy and p value of each
classification model across each code smell dataset. Form
Table 20, we observed that the DC, GC, and LM dataset
has p value less than 0.05. Therefore, the accuracy of both
the models is different. In this way for DC dataset, the mean
accuracy of XGBoost model is more than gradient boosting
model so the XG Boost model is best for DC dataset. For the
GC dataset, the mean accuracy of XG model is more than DT
model so the XG Boost model is best for GC dataset. For the
LM dataset, the mean accuracy of XG model is more than DT
model so the XG Boost model is best for the LM dataset. The
FE dataset has p value greater than 0.05. Therefore, the mean
accuracy of both the models is same (Table 20).

Table 20 Statistical analysis results

Dataset name Two best ML models Mean accuracy
(%)

P value Results

DC XG Boost 82.74 0.032 Reject null hypothesis (XG Boost model is best)
Gradient boosting 80.23

GC DT 45.24 0.006 Reject null hypothesis (XG Boost model is best)
XG Boost 74.60

FE DT 91.71 0.093 Fail to reject null hypothesis
Gradient boosting 91.71

LM DT 88.89 0.005 Reject null hypothesis (XG Boost model is best)
XG Boost 96.68

 SN Computer Science (2023) 4:564 564 Page 18 of 20

SN Computer Science

Conclusion

In this research work, to analyze the code smell severi-
ties from software to decrease the maintenance work and
enhance the software quality, and also find the best algo-
rithms for detecting the code smell severities, we proposed
the severity classification of code smell framework with
multi-class classification approaches using four machine-
learning and three ensemble learning algorithms. To select
the significant features from each dataset, Chi-square feature
selection algorithm is applied. Two-parameter optimization
algorithms (grid search and random search) with fivefold
cross-validation are used to enhance the SCA.

In this study, it is found that the GB method finds the
maximum SCA of 88.22% using the feature selection algo-
rithm, while the AdaBoost algorithm obtains the lowest
result of 70.27% without using the feature selection algo-
rithm for the DC dataset.

The DT method found the maximum SCA of 86.00%
using the feature selection algorithm, while the KNN algo-
rithm obtained the lowest result of 61.10% without using the
feature selection algorithm for the GC dataset.

The DT algorithm found a maximum SCA of 96.00%
using the feature selection algorithm, while the lowest result
was 68.78% obtained by the KNN algorithm without using
the feature selection algorithm for the FE dataset.

The XG Boost algorithm found a maximum SCA of
99.12% using the feature selection algorithm, while the
lowest result was 91.64%, obtained by the KNN model by
applying the feature selection approach for the LM dataset.

This study found that the GB method is best for the DC
dataset, the XG Boost model is best for the LM dataset, and
the DT model is best for the GC and FE datasets to detect
the severity of code smells. Moreover, the Chi-square feature
selection technique is always helpful for better detecting the
severity of code smells.

The limitation of this study is that the code smell sever-
ity datasets have a class imbalance problem; therefore, in
subsequent work, we intend to enhance outcomes by utiliz-
ing class balancing techniques to address the issue of class
imbalance (present in the used dataset). In order to deter-
mine the most effective methods for code smell severity
detection, other learning algorithms and feature selection
strategies should be investigated.

Appendix

See Table 21.

Table 21 Description of all selected metrics [4]

Quality dimension Selected metric Metric name Granularity

Size LOC_project Lines of code Project, package, class
LOC_package
LOC_type
NOMNAMM_project Number of not accessor or mutator methods Project, package, and class
NOMNAMM_package
LOCNAMM_type Lines of code without accessor or mutator methods Class
NOCS_project Number of classes Project, package
NOCS_package

– Complextype – Class
Inheritance NIM_type Number of inherited methods Class
– Method – –
Complexity ATFD_type Access to foreign data Method
– Project – –
Size AMW_type Average methods weight Class
– Package – –
Complexity AMWNAMM_type Average methods weight of not accessor or Mutator methods Class
– Complex type = Method
Coupling CBO_type Coupling between objects classes Class
Size LOC_method Lines of code Method

CYCLO_method Cyclomatic complexity
Complexity NOAV_method Number of accessed variables
Coupling CINT_method Coupling intensity

SN Computer Science (2023) 4:564 Page 19 of 20 564

SN Computer Science

Author Contributions Conceptualization, MG, and RSR; data curation,
SD; formal analysis, MG, RSR; investigation, SD, and RSR; methodol-
ogy, MG, and RSR; supervision, MG, RSR; validation, RSR, SD, and
MG; visualization, SD, and RSR; writing, SD, and RSR; review and
editing, RSR, MG, and SRC.

Funding This study was not supported by any other sources.

Data availability The dataset can be found at http:// essere. disco.
unimib. it/ rever se/ MLCSD. html.

Declarations

Conflict of Interest No conflicts of interest exist, according to the au-
thors, with the publishing of this work.

References

 1. Lehman MM. Programs, life cycles, and laws of software evolu-
tion. Proc IEEE. 1980;68(9):1060–76.

 2. Wiegers K, Beatty J. Software Requirements. London: Pearson
Education; 2013.

 3. Chung L, Do PLJCS. On non-functional requirements in software
engineering. In: Borgida AT, Chaudhri V, Giorgini P, Yue ES, edi-
tors. conceptual modeling: foundations and applications (lecture
notes in computer science). Cham: Springer; 2009. p. 363–79.

 4. Fontana FA, Zanoni M. Code smell severity classification using
machine learning techniques. Knowl Based Syst. 2017. https:// doi.
org/ 10. 1016/j. knosys. 2017. 04. 014.

 5. Vidal SA, Marcos C, Dıaz-Pace JA. An approach to prioritize code
smells for refactoring. Autom Softw Eng. 2016;23(3):501–32.
https:// doi. org/ 10. 1007/ s10515- 014- 0175-x.

 6. Liu W, Wang S, Chen X, Jiang H. Predicting the severity of bug
reports based on feature selection. Int J Softw Eng Knowl Eng.
2018;28(04):537–58. https:// doi. org/ 10. 1142/ S0218 19401 85001
58.

 7. Tiwari O, Joshi R (2020) Functionality based code smell detec-
tion and severity classification. In: ISEC 2020: 13th innovations
in software engineering conference, pp 1–5. https:// doi. org/ 10.
1145/ 33850 32. 33850 48.

 8. Baarah A, Aloqaily A, Salah Z, Zamzeer M, Sallam M. Machine
learning approaches for predicting the severity level of software
bug reports in closed source projects. (IJACSA) Int J Adv Comput
Sci Appl. 2019;10(8):285–94.

 9. Fontana FA, Mäntylä MV, Zanoni M, Marino A. Comparing and
experimenting machine learning techniques for code smell detec-
tion. Empir Softw Eng. 2016;21(3):1143–91.

 10. Mhawish MY, Gupta M. Generating code-smell prediction rules
using decision tree algorithm and software metrics. Int J Comput
Sci Eng (IJCSE). 2019;7(5):41–8.

 11. Mhawish MY, Gupta M. Predicting code smells and analysis of
predictions: using machine learning techniques and software met-
rics. J Comput Sci Technol. 2020;35(6):1428–45. https:// doi. org/
10. 1007/ s11390- 020- 0323-7.

 12. Kaur I, Kaur A. A novel four-way approach designed with ensem-
ble feature selection for code smell detection. IEEE Access.
2021;9:8695–707. https:// doi. org/ 10. 1109/ ACCESS. 2021. 30498
23.

 13. Pushpalatha MN, Mrunalini M. Predicting the severity of closed
source bug reports using ensemble methods. In: Satapathy S,
Bhateja V, Das S, editors. Smart intelligent computing and appli-
cations. Smart innovation, systems and technologies, vol. 105.

Singapore: Springer; 2019. https:// doi. org/ 10. 1007/ 978- 981- 13-
1927-3_ 62.

 14. Alazba A, Aljamaan HI. Code smell detection using feature selec-
tion and stacking ensemble: an empirical investigation. Inf Softw
Technol. 2021;138: 106648.

 15. Draz MM, Farhan MS, Abdulkader SN, Gafar MG. Code smell
detection using whale optimization algorithm. Comput Mater
Continua. 2021;68(2):1919–35.

 16. Dewangan S, Rao RS, Mishra A, Gupta M. A novel approach
for code smell detection: an empirical study. IEEE Access.
2021;9:162869–83. https:// doi. org/ 10. 1109/ ACCESS. 2021. 31338
10.

 17. Reis JPD, Abreu FBE, Carneiro GDF. Crowd smelling: a pre-
liminary study on using collective knowledge in code smells
detection. Empir Softw Eng. 2022;27:69. https:// doi. org/ 10. 1007/
s10664- 021- 10110-5.

 18. van Oort B, Cruz L, Aniche M, van Deursen A. (2021) The preva-
lence of code smells in machine learning projects, IEEE/ACM
1st Workshop on AI Engineering - Software Engineering for AI
(WAIN). Madrid, Spain. p. 1–8. https:// doi. org/ 10. 1109/ WAIN5
2551. 2021. 00011.

 19. Fontana A, Mariani E, Morniroli A, Sormani R, Tonello A.
(2011). An experience report on using code smells detection
tools. In: IEEE fourth international conference on software test-
ing, verification and validation workshops, RefTest 2011. Berlin:
IEEE Computer Society; 2011. p. 450–7. https:// doi. org/ 10. 1109/
ICSTW. 2011. 12.

 20. Boutaib S, Elarbi M, Bechikh S, Palomba F, Said LB. A bi-level
evolutionary approach for the multi-label detection of smelly
classes. In: GECCO 22 companion, July 9–13, 2022, Boston, MA,
USA. ACM ISBN 978-1-4503-9268-6/22/07. (2022). https:// doi.
org/ 10. 1145/ 35203 04. 35289 46.

 21. Abdou AS, Darwish NR. Early prediction of software defect
using ensemble learning: a comparative study. Int J Comput Appl.
2018;179(46):29–40. https:// doi. org/ 10. 5120/ ijca2 01891 7185.

 22. Dewangan S, Rao RS, Mishra A, Gupta M. Code smell detec-
tion using ensemble machine learning algorithms. Appl Sci.
2022;12(20):10321. https:// doi. org/ 10. 3390/ app12 20103 21.

 23. Dewangan S, Rao RS. Code smell detection using classification
approaches. In: Udgata SK, Sethi S, Gao XZ, editors. Intelligent
systems; lecture notes in networks and systems, vol. 431. Singa-
pore: Springer; 2022. https:// doi. org/ 10. 1007/ 978- 981- 19- 0901-6_
25.

 24. Dewangan S, Rao RS, Yadav PS. Dimensionally reduction based
machine learning approaches for code smells detection. In: 2022
international conference on intelligent controller and computing
for smart power (ICICCSP); 2022. p. 1–4. https:// doi. org/ 10. 1109/
ICICC SP535 32. 2022. 98620 30. Accessed 30 Jan 2023.

 25. Fowler M. Refactoring: improving the design of existing code.
Boston: Addison-Wesley Longman Publishing Co. Inc. http://
www. refac toring. com/ (1999).

 26. Gupta A, Chauhan NK. A severity-based classification assessment
of code smells in Kotlin and Java application. Arab J Sci Eng.
2022;47:1831–48. https:// doi. org/ 10. 1007/ s13369- 021- 06077-6.

 27. Abdou A, Darwish N. Severity classification of software code
smells using machine learning techniques: a comparative study. J
Softw Evol Proc. 2022. https:// doi. org/ 10. 1002/ smr. 2454.

 28. Hejres S, Hammad M. Code smell severity detection using
machine learning. In: 4th smart cities symposium (SCS 2021);
2021. p. 89–96. https:// doi. org/ 10. 1049/ icp. 2022. 0320.

 29. Nanda J, Chhabra JK. SSHM: SMOTE-stacked hybrid model for
improving severity classification of code smell. Int J Inf Technol.
2022. https:// doi. org/ 10. 1007/ s41870- 022- 00943-8.

 30. Tempero E, Anslow C, Dietrich J, Han T, Li J, Lumpe M, Melton
H, Noble J. The qualitas corpus: a curated collection of java code
for empirical studies. In: Proceedings of the 17th Asia Pacific

http://essere.disco.unimib.it/reverse/MLCSD.html
http://essere.disco.unimib.it/reverse/MLCSD.html
https://doi.org/10.1016/j.knosys.2017.04.014
https://doi.org/10.1016/j.knosys.2017.04.014
https://doi.org/10.1007/s10515-014-0175-x
https://doi.org/10.1142/S0218194018500158
https://doi.org/10.1142/S0218194018500158
https://doi.org/10.1145/3385032.3385048
https://doi.org/10.1145/3385032.3385048
https://doi.org/10.1007/s11390-020-0323-7
https://doi.org/10.1007/s11390-020-0323-7
https://doi.org/10.1109/ACCESS.2021.3049823
https://doi.org/10.1109/ACCESS.2021.3049823
https://doi.org/10.1007/978-981-13-1927-3_62
https://doi.org/10.1007/978-981-13-1927-3_62
https://doi.org/10.1109/ACCESS.2021.3133810
https://doi.org/10.1109/ACCESS.2021.3133810
https://doi.org/10.1007/s10664-021-10110-5
https://doi.org/10.1007/s10664-021-10110-5
https://doi.org/10.1109/WAIN52551.2021.00011
https://doi.org/10.1109/WAIN52551.2021.00011
https://doi.org/10.1109/ICSTW.2011.12
https://doi.org/10.1109/ICSTW.2011.12
https://doi.org/10.1145/3520304.3528946
https://doi.org/10.1145/3520304.3528946
https://doi.org/10.5120/ijca2018917185
https://doi.org/10.3390/app122010321
https://doi.org/10.1007/978-981-19-0901-6_25
https://doi.org/10.1007/978-981-19-0901-6_25
https://doi.org/10.1109/ICICCSP53532.2022.9862030
https://doi.org/10.1109/ICICCSP53532.2022.9862030
http://www.refactoring.com/
http://www.refactoring.com/
https://doi.org/10.1007/s13369-021-06077-6
https://doi.org/10.1002/smr.2454
https://doi.org/10.1049/icp.2022.0320
https://doi.org/10.1007/s41870-022-00943-8

 SN Computer Science (2023) 4:564 564 Page 20 of 20

SN Computer Science

software engineering conference (APSEC 2010). IEEE Computer
Society; 2010. p. 336–45. https:// doi. org/ 10. 1109/ APSEC. 2010.
46.

 31. Olbrich S, Cruzes D, Sjoberg DIK. Are all code smells harmful?
A study of god classes and brain classes in the evolution of three
open source systems. In: Proceedings of the IEEE international
conference on software maintenance (ICSM 2010), Timisoara,
Romania; 2010. p. 1–10. https:// doi. org/ 10. 1109/ ICSM. 2010.
56095 64.

 32. Marinescu C, Marinescu R, Mihancea P, Ratiu D, Wettel R.
iPlasma: an integrated platform for quality assessment of object-
oriented design. In: Proceedings of the 21st IEEE international
conference on software maintenance (ICSM 2005) (industrial and
tool Proceedings), tool demonstration track. Budapest, Hungary:
IEEE; 2005. p. 77–80.

 33. Nongpong K. Integrating “code smell” detection with refactoring
tool support. Ph.D. thesis, University of Wisconsin Milwaukee
(2012).

 34. Marinescu R. Measurement and quality in object oriented design.
Ph.D. thesis, Department of Computer Science, “Polytechnic”
University of Timisoara (2002).

 35. Ali PJM, Faraj RH. Data normalization and standardization : a
technical report. Mach Learn Tech Rep. 2014;1(1):1–6.

 36. Romero E, Sopena JM. Performing feature selection with multi-
layer perceptrons. IEEE Trans Neural Netw. 2008;19(3):431–41.

 37. https:// www. geeks forge eks. org/ ml- chi- square- test- for- featu re-
selec tion. Accessed 30 Jan 2023.

 38. Hsu CW, Chang CC, Lin CJ. A practical guide to support vector
classification. Technical Report, Taiwan University; 2008. https://
www. csie. ntu. edu. tw/ cjlin/ papers/ guide/ guide. pdf (2020).

 39. Chaitra PC, Saravana Kumar R. A review of multi-class classifica-
tion algorithm. Int J Pure Appl Math. 2018;118(14):17–26.

 40. https:// www. tutor ialsp oint. com/ machi ne_ learn ing_ with_ python/
machi ne_ learn ing_ with_ python_ knn_ algor ithm_ findi ng_ neare st_
neigh bors. htm. Accessed 30 Jan 2023.

 41. https:// www. geeks forge eks. org/ boost ing- in- machi ne- learn ing-
boost ing- and- adabo ost/. (Last Updated: 11 Oct 2021). Retrieved
26 Nov 2021.

 42. https:// analy ticsi ndiam ag. com/ xgboo st- inter nal- worki ng- to- make-
decis ion- trees- and- deduce- predi ctions/. Last Updated 2 Nov 2020.
Retrieved 26 Nov 2021.

 43. https:// www. analy ticsv idhya. com/ blog/ 2021/ 04/ how- the- gradi
ent- boost ing- algor ithm- works/. (Last Updated 19 Apr 2021).
Retrieved 26 Nov 2021.

 44. https:// www. geeks forge eks. org/ paired- t- test-a- detai led- overv iew/.
(Last Updated 28 Feb 2022). Retrieved 26 Jan 2023.

 45. https:// towar dsdat ascie nce. com/ paired- t- test- to- evalu ate- machi ne-
learn ing- class ifiers- 1f395 a6c93 fa. (Last Updated 6 July 2022).
Retrieved 26 Jan 2023.

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1109/APSEC.2010.46
https://doi.org/10.1109/APSEC.2010.46
https://doi.org/10.1109/ICSM.2010.5609564
https://doi.org/10.1109/ICSM.2010.5609564
https://www.geeksforgeeks.org/ml-chi-square-test-for-feature-selection
https://www.geeksforgeeks.org/ml-chi-square-test-for-feature-selection
https://www.csie.ntu.edu.tw/cjlin/papers/guide/guide.pdf
https://www.csie.ntu.edu.tw/cjlin/papers/guide/guide.pdf
https://www.tutorialspoint.com/machine_learning_with_python/machine_learning_with_python_knn_algorithm_finding_nearest_neighbors.htm
https://www.tutorialspoint.com/machine_learning_with_python/machine_learning_with_python_knn_algorithm_finding_nearest_neighbors.htm
https://www.tutorialspoint.com/machine_learning_with_python/machine_learning_with_python_knn_algorithm_finding_nearest_neighbors.htm
https://www.geeksforgeeks.org/boosting-in-machine-learning-boosting-and-adaboost/
https://www.geeksforgeeks.org/boosting-in-machine-learning-boosting-and-adaboost/
https://analyticsindiamag.com/xgboost-internal-working-to-make-decision-trees-and-deduce-predictions/
https://analyticsindiamag.com/xgboost-internal-working-to-make-decision-trees-and-deduce-predictions/
https://www.analyticsvidhya.com/blog/2021/04/how-the-gradient-boosting-algorithm-works/
https://www.analyticsvidhya.com/blog/2021/04/how-the-gradient-boosting-algorithm-works/
https://www.geeksforgeeks.org/paired-t-test-a-detailed-overview/
https://towardsdatascience.com/paired-t-test-to-evaluate-machine-learning-classifiers-1f395a6c93fa
https://towardsdatascience.com/paired-t-test-to-evaluate-machine-learning-classifiers-1f395a6c93fa

	Severity Classification of Code Smells Using Machine-Learning Methods
	Abstract
	Introduction
	Related Work
	Machine-Learning Techniques for Code Smell Detection
	Machine-Learning Techniques for Code Smell Severity Detection

	Proposed Model and Dataset Description
	Dataset Description
	Code Smells Classification of Severity
	Dataset Composition (Structure)
	Normalization Technique
	Feature Selection Algorithm
	Hyper-parameter TuningOptimization
	Validation Methodology
	Performance Capacity

	Results of Proposed Model
	Logistic Regression
	Random Forest
	K-Nearest Neighbor
	Decision Tree
	AdaBoost (Adaptive Boosting)
	XGB Algorithm (XG Boosting)
	Gradient Boosting (GB Algorithm)
	SCA Comparison Between Grid Search and Random Search of All Machine-Learning Methods
	Comparison Among All the Algorithms Used in this Work
	Influence of Feature Selection Technique
	Influence of Hyper-parameter Tuning on Algorithms

	Discussion
	Result Evaluation of Our Results with Other Related Works
	Statistical Analysis for Comparing Machine-Learning Models

	Conclusion
	Appendix
	References

