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Abstract
Adoption of digital twin (DT) in smart factories, which simulates an actual system that is manufacturing conditions and 
updates them in real-time, increased the output and decreased the costs and energy use which were some ways that this mani-
fested. Fast-changing consumer demands have caused a sharp increase in factory transition in addition to producing fewer 
life cycles of a product. Such scenarios cannot be handled by conventional simulation and modeling techniques; we suggest 
a general framework for automating the creation of simulation models that are data-driven as the foundation for smart factory 
DTs. Our proposed framework stands out thanks to its data-driven methodology, which takes advantage of recent advances 
in machine learning and techniques for process mining, constant model validation, and updating. The framework's objective 
is to completely define and reduce the requirement for specialist knowledge to get the appropriate simulation models. A case 
study is used to demonstrate our framework.
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Introduction

Businesses today need to adapt to the easy-to-adaptable 
environment by changing the way they do business to con-
tinue competing internationally. A rise in several businesses 
is organizing themselves as project organizations in response 
to the rising demand for customization. Project management 
companies can deliver high-quality, highly customized prod-
ucts, but at the expense of added complexity. Project manag-
ers in these companies must manage the difficulties associ-
ated with project planning including scheduling, resource 
allocation, and capacity planning [1, 2]. planning capacity, 
allocating resources, and schedule to successfully satisfy 
the needs of the customer, which makes these issues even 
more difficult. There are frequent delays in the real world 
and human involvement-related deviations in project plan-
ning. Consequently, decision-making by project managers 
must take into account a variety of factors while taking into 
account the many features of different departments, such as 
the availability of resources, disruptions, repairs, mainte-
nance, and demand to meet customer demands [3]. To antici-
pate the disruptions that will occur and take preventative 
action, Project managers must track and review the devel-
opment of their projects and to meet the deadline and stay 
within budget, utilize other departments' data in real-time.
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Devices for communicating and sharing information 
recently developed new innovative technologies like cloud 
computing have also recently emerged, the fourth industrial 
revolution has been sparked by big data and the internet of 
things [4].

The concept of intelligent interactions between manufac-
turing systems and people has emerged with the advent of 
industry 4.0. The transformation of conventional resources 
into smart resources through intelligence and digitaliza-
tion is a fundamental requirement of industry 4.0, which 
can sense and act in an intelligent environment. As a result, 
a system known as a cyber-physical system that integrates 
the virtual and physical worlds is created by fusing indus-
try 4.0 enablers like artificial intelligence, the internet of 
things, big data, and cloud computing with the production 
systems[5]. As a result, the business can benefit from greater 
flexibility thanks to the smart manufacturing system and 
improved quality, shorter lead times, and productivity with 
mass customization. The project-based organizations should 
implement Industry 4.0 and smart manufacturing systems by 
giving the project manager real-time access, and can tighten 
monitoring and control over projects to make better deci-
sions, regarding the status of the projects and data about the 
customers. For smart manufacturing, we create a framework 
for data-driven DTs. Numerous benefits are offered by this 
framework to address the current issues with the manufac-
turing of smart products.

Literature Review

For various manufacturing systems, several researchers have 
proposed a framework for "smart manufacturing", by fus-
ing manufacturing and digital systems, intending to create a 
cyber-physical system [6]. For a knowledge-based diagnosis 
system in smart manufacturing, researchers have presented a 
framework. To implement the smart manufacturing system, 
researchers have provided a conceptual framework [7]. A 
DT-based framework for smart production management in 
an assembly shop was proposed by researchers[8]. Research-
ers have provided a structure for business transformation 
toward the smart service system[9]. An architecture for a 
smart manufacturing system has, however, been proposed by 
some researchers, however, a framework specifically for pro-
ject-based organizations is still required, which are capable 
of making decisions for issues like project priorities based 
on a variety of criteria, scheduling, planning, observing and 
controlling, capacity planning, allocating and transferring 
resources, estimating costs and risks, purchasing, shipping, 
and taking customer orders and suggestions for meeting 
deadlines and staying within budget [10–12].

It is possible to view the creation of DTs as a logical 
progression from conventional simulation modeling in 

combination with a result of improved connectivity, data 
availability, and changing end-user needs[11]. A DT aids in 
comprehending, monitoring, and experimenting with com-
plex physical systems, much like simulation modeling does. 
The information gleaned from the simulation is also used by 
DTs to offer feedback to physical systems to manage a por-
tion of it to achieve a set of end-user-specified goals [12]. 
The case of data-driven DT modeling for smart manufactur-
ing is taken into consideration in this study [1].

The operation, design, and control of complex systems 
have been evaluated using simulation modeling, which has 
been deemed to be an excellent tool. It has several bene-
fits, including the capacity to simulate causal relationships 
between various occurrences, the ability to validate models 
using gathered data as well as provision for the system's 
planning, controlling, and predictive capabilities. These 
models frequently base their assumptions on idealistic 
notions of the systems they represent [13]. Complex sys-
tem modeling typically involves the use of discrete event 
simulation models and experts who choose the appropriate 
abstractions manually create them to simulate the relevant 
systems and produce unique simulation models [14–16]. 
For reconfigurable manufacturing systems, this technique 
for creating simulation models is inappropriate because 
the software and physical architecture of these systems are 
constantly changing, to try and keep up with the market's 
shifting demands[17]. Therefore, after their creation, custom 
models become quickly out of date, and New models must 
be created, or existing ones must be manually updated [18]. 
In a sector that changes quickly, like manufacturing, it is 
clear that this situation is not ideal.

Proposed System

Data‑Driven Simulation Modeling

Data-driven simulation models are those that are created and 
parametrized using data. Using data-driven strategies has 
some benefits, the following are listed as alternatives to an 
intuition-driven approach or representational:

• Accuracy: in comparison to conventional methods, mod-
els that are data-driven are frequently more accurate rep-
resentations of the systems they are modeling. Data con-
tain the behaviors and traits of systems, which explains 
this, and it may represent unforeseeable phenomena.

• The capacity to benefit from advances in artificial intel-
ligence and machine learning: opportunities to apply AI 
and ML advancements are created by the use of data to 
better comprehend how systems behave and to make wise 
decisions.
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Due to the benefits listed above and several instances of 
data-driven strategies being adopted successfully, conven-
tional simulation modeling has been replaced with more 
data-driven techniques as the main focus [19]. The improve-
ments in data storage and generation are what are driving 
this shift, the ever-evolving manufacturing market's require-
ments and algorithms.

Data collection: If this task is successful, the data that 
the identified entities are continuously producing in a data-
base houses the manufacturing systems used in the factory. 
Following are the main informational sources [20]: traces 
and logs, diagnostic data market/user data, and needs, and 
end-user inputs are some of the data types that are generated.

Data validation Data-related issues mainly revolve 
around: uncertainty, various modalities, and missing values: 
huge sizes, structured text, audio, and images. A crucial task 
that must be completed to guarantee the data's validity is 
data preprocessing. Integration and imputation are a couple 
of the preprocessing activities.

Knowledge extraction Taking information from obtained 
validated data and extracting the following sub-tasks are 
taken from the previous step.

• An essential component of data-driven simulation mod-
eling is identifying the events that occur in a smart fac-
tory that is pertinent to the simulation's goals. Develop-
ing discrete-event simulation models is primarily driven 
by events, and the success of the simulation modeling is 
dependent on the simulation model's capacity. Measur-
ing devices have already been identified in prior research 
on smart manufacturing and reliability assurance in tiny 
factories is a challenging task. A crucial task is the auto-
matic detection of specific events that indicate the pres-
ence of faults that affects how accurate and responsive 
the smart model of the factory is.

A smart factory's knowledge extraction component ben-
efits from learning about the pertinent processes that take 
place there because processes are thought to convey sig-
nificant data about how the factory operates. The input for 
processing mining algorithms is the event logs that were 
gathered as part of the data collection phase which automati-
cally identifies the primary processes from the data.

Model development The next essential part of the pro-
posed plan is the creation of a comprehensive data-driven 
model. This step's inputs come from the procedures and 
events that were found. Initially, with some degree of human 
involvement, this information is used to create the simulation 
model. Then, automatically updating this initial model to 
account for adjustments made by the smart factory [21]. It 
is crucial to identify the connections between the model and 
the data streams coming from smart factories. Additionally, 
it will be necessary to create algorithms for model updates 

and model extraction to support semi-automatic and auto-
matic simulation modeling processes.

The next essential part of the proposed plan is the crea-
tion of a comprehensive data-driven model. These steps' 
identified processes and events serve as the input for this 
step [22]. For this, it is crucial to identify the connections 
between the data and model streams from smart factories. 
Model validation is utterly and heavily dependent on data, 
which requires rigorous validation done on the data itself, 
the models are derived from high-quality data, for example, 
to ensure this.

DT Data‑Driven Framework

Figure 1 illustrates the framework we suggest for a data-
driven DT for a smart factory. The modeled real-world 
entity, the smart factory, continuously generates data via 
sensors and IoT devices. The data-driven modeling meth-
odology is founded on these data. The extraction of data 
involves identifying pertinent entities and storing data in 
databases[23]. Entity identification involves specifically 
naming the pertinent entities, such as production systems 
control. The Haystack standard is a fascinating method to 
use to gather and comprehend manufacturing data. This 
standard provides common semantic data models through 
an open-source initiative, to make it simpler to collect 
information produced by various manufacturing facilities 
that include IoT devices. Data cleaning will be processed 
by general data validation, integration, and preprocessing 
is the next logical step. Implicitly recorded in the data are 
significant factory-related events.

Making these occurrences clearer will help with the 
development of the model process and make them more 
obvious, with the assistance of humans, event labeling is 
carried out semi-automatically, by hand, and stakeholders 
or experts identify and categorize several pertinent events 
with expertise in the intelligent factory. With the aid of such 
labeled data, ML models are used to automatically detect 
additional events. The produced event logs are also used for 
process discovery and putting them through mining algo-
rithms for processing. In the following, both the checked 
events and processes are utilized for the creation of a simu-
lation model for a specific intelligent factory. The model's 
ongoing validation is an essential step in the model develop-
ment process. If it turns out that the model is accurate, the 
pertinent model outer measurements are saved for later use. 
Decisions about how the smart factory will operate can then 
be knowledgeably made by stakeholders.

Case Study

The facility offers infrastructure and resources that support 
a variety of Industry 4.0-related technologies. The objective 
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is to establish a dynamic and imaginative workplace where 
representatives of production and robot companies collabo-
rate closely together with students and researchers to create 
cutting-edge and efficient manufacturing techniques [24].

A production line that puts together a portion of a quad-
copter drone is currently supported by the lab. The sub-
assembly and its three parts are depicted in Fig. 2. A rotor, 
a chassis, and a motor make up the drone component when 
it is assembled. The construction of a quadcopter drone 
requires four of these assembled components. 5 resources 

make up the production line, i.e.: (1) A storage facility that 
uses automatic order entry and picking, (2) a mobile robot 
that can move independently and has a robotic arm that can 
load, move, and unload objects, (3) A fast assembly line with 
transport attached magnetically. Two assembly cells with 
cooperative arms of robot that can perform particular tasks, 
and (5) For managing and observing the production process, 
a human–machine interface. In Fig. 3, we give a summary 
of the manufacturing process.

Results and Discussion

The Petri net illustrates how the process is strictly sequential. 
Given that the production line is currently configured with-
out a buffer or redundancy, The entire production is stopped 
when one of the assets fails [25]. Inhibitor arcs that prevent 
certain transitions from firing were used to model potential 
failures that could occur during asset runtime.

These cells might, for instance, allow humans and robots 
to collaborate, and cells that are only based on interactions 
between people. To increase the production's error rate, 
buffers and redundancy could be added. The ongoing sta-
bility of the system would also benefit from routine asset 

Fig. 1  The proposed framework 
of DT data-driven

Fig. 2  Quadcopter subassembly
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maintenance, such as that performed by. The conceptual 
framework and proposed methodology in this paper, mod-
els can be extracted, like our reliability Petri net model from 
Fig. 4 utilizing only a small amount of expert knowledge, 
from sensor data.

Simulation Modeling

The manually created Petri net in Fig. 4 serves as a standard 
for what our data-driven DT framework should be able to 
do, also the proposed approach, enabling data extraction is 
necessary. The process of automatically extracting a Petri 
net with a reliability focus using process and data mining 
techniques are described in more detail. Many hardware flex-
ibility models are data-driven rather than expert-driven, we 
investigated the data needs for each model. We discovered 
that the data generated by intelligent factories to withstand 
data-driven reliability modeling can be divided into two 
types, condition monitoring, and event data. Each record for 
all three data types contains a timestamp as well as informa-
tion specific to that data type because all three have a time 
series format. Figure 5 uses an example and a schematic 
diagram data set to show the different types of data that 
were found.

Process discovery techniques can be used to extract the 
process model out of event data that describes how the drone 
subassembly was made. The operational state changes of the 
assets can be modeled and extracted using the state data. 
In the Petri net, both modeling facets are indicated. It is 
important to use the right criteria to assess the quality of the 
reliability-focused Petri net after extraction[26]. One option 
for doing this is to use the data log, The ground truth Petri 
net served as a source for or as the foundation for the Petri 
net. The criteria for appropriateness and fitness have been 

added for the former. Recall, Precision, and F1 score, and 
these three are used. Precision is defined as the proportion of 
edges that were correctly assigned to all corners. The recall 

Fig. 3  Production process

Condi�on monitoring data

Event data

ts Sensor 1 Sensor 2 Sensor 3 
1 0.13 0.46 Image1 
2 0.98 0.48 Image 2 
3 0.10 0.44 Image 3 

ts Case asset event 
1 002 Cell1 assembly 
2 003 track transport 
3 004 Warehouse prepare 

a 

b 

State data

ts asset state 
1 Warehouse working 
2 track idle 
3 Cell 1 failed 

c 

Fig. 4  Reliability modeling of data-driven
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is the proportion of edges that were correctly identified to 
all edges in the default model. The following measures can 
be expressed mathematically:

where T
P
 represents the collection of edges that coexist in 

the original and extracted model;F
P
 is the collection of edges 

present in the extracted model but absent from the default 
model, and The group of edges in F

N
 is those that are absent 

from the extracted model but are present in the initial model.
In addition to the estimated distribution's cumulative dis-

tribution function, the reliability function also exists and 
shows the likelihood that a production asset will endure for 
longer than a specified period. Fault trees are a popular tool 
for evaluating system reliability in addition to Petri nets. 

(1)Precision =
TP

TP + FP

,

(2)Recall =
TP

TP + FN

,

(3)F1 = 2 ∗
Precision ∗ recall

Precision + recall
,

Event-driven system failure in a manufacturing setting to 
create fault trees must first be identified. When fault events 
can't be captured by the event data's current level of granu-
larity, based on production plant condition monitoring data, 
this could be accomplished using the fault classification and 
detection techniques described [27].

Demonstration

We manufactured a thousand drone parts to collect data and 
logged pertinent occurrences and adjustments to the produc-
tion assets' operational states. A portion of the event log and 
state log that were produced during this process is shown in 
Tables 1 and 2, respectively. Modern process mining algo-
rithms will be made accessible to the general public with this 
project to the encouragement of industry-university coop-
eration. Along with the execution of different conformance 
checking and process discovery algorithms, for simulating 
and modeling Petri nets, pm4py also provides a sizable code 
base. A library for survival analysis and reliability engineer-
ing is called "reliability". Using the aforementioned Python 
libraries, Fig. 5 displays the entire extracted Petri net.

Fig. 5  Extracted Petri net
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To extract the production line's material flow model from 
the event log that was generated, we first used the Alpha 
Miner algorithm. The repair and failure loops for each asset 
were then extracted from the state log and connected to the 
relevant asset operating transitions. For each asset, this was 
accomplished by first creating 2 locations and transitions 
and arcs are used to connect them. Second, an inhibitor arc 
was used to connect the newly created "failed" location to 
each transition that uses the corresponding asset. The ground 
truth model and the extracted model are identical. The sam-
ple production line's comparatively straightforward design is 
to blame for this: there are no parallel operations or reworks 
because the process is sequential, and product types are lim-
ited to one.

We then calculated the repair and failure distributions 
for each asset using the state log. Calculating the duration 
of each repair and failure was required to achieve this. Cal-
culating the interval between each succeeding failure and 
repair was done to determine the failure times, or, the time 
difference from the production line's start time in the event 
of the first failure. It was determined how long it took to 
complete each repair after a failure to determine the repair 

times. The repair and failure distributions were computed 
using the MLE method. We evaluated each asset's statisti-
cal likelihood after fitting several probability distribution 
functions that are frequently used in reliability engineering. 
The cumulative distribution function and probability density 
function are shown in Fig. 6a, b. The assembly track fail-
ures for each fitted distribution. The extracted Petri net was 
updated with the most likely candidates and their associated 
parameters after the distribution functions have been fitted. 
The reliability functions for each asset were then calculated; 
for more information, see Fig. 7a–c.

Discussions

In the field of smart manufacturing, we investigated the 
requirements for and potential applications for data-driven 
DTs. There are many benefits to creating DTs in real time 
using data from IoT devices in intelligent factories, i.e. With 
more adaptable and reconfigurable factory layouts, we'll 
have reliable models that are always current; It will also 
present a chance to incorporate ongoing model validation, 
etc. To get to data-driven DTs, though, there are still a lot of 
improvements to be made. Human intervention will always 
be required to some extent during some of the steps and 
may never be fully automated. In this way, the challenge 
is to reduce and integrate human intervention. To try and 
meet the requirements of data-driven DT development, an 
advanced conceptual framework has also been created by 
us. We predict increased interest in this data-driven simula-
tion modeling and the availability of more mechanisms for 
ensuring the quality of data. The difficulties and possibilities 
are also covered.

Several difficulties come with the proposed framework 
for data-driven DTs in smart factories, a list of which is 
provided as determining and describing in detail the proper 
level of human intervention. The use of a primarily data-
driven strategy that relies on human input to make automa-
tion possible is the challenge at hand. The data-driven simu-
lation modeling will be properly set up if there are clearly 
defined points for human input, additionally, it is effective 
and easy to understand. An aspect of an intelligent approach 
or data-driven known as interpretability offers some guiding 
principles for comprehending the choices made from the 
viewpoint of a stakeholder provided by the DT. Accuracy 
and timeliness are two components of the data-driven DT 
that are referred to as effectiveness.

Real-time decision-making: using various performance 
indicators as a guide, DTs can help stakeholders reach 
advantageous decisions. Data-driven DTs can extract rel-
evant information from all collected data, enabling this type 
of decision-support, that the stakeholder might find to be 
extremely useful. The requirements for timeliness should 
be matched to the importance and weight of the associated 

Table 1  Event of recorded data log exception

Timestamp Case Asset Event

… … … …
02/11/202109:36 694 system start_production
02/11/202109:36 694 agv transport_to_track
02/11/202109:38 694 track transport_to_cell1
02/11/2021 10:11 695 system start_production
02/11/202110:13 691 cell2 cell2_operation
02/11/202110:23 691 track transport_to_track_buffer
02/11/202110:42 696 system start_production
02/11/2021 11:19 692 cell1 cell1_operation
… … … …

Table 2  Event of recorded data log exception

Timestamp Asset State

… … …
02/11/202109:36 agv busy
02/11/202109:38 agv idle
02/11/202109:38 track busy
02/11/202109:38 track idle
02/11/202109:46 agv failure
02/11/202110:13 cell2 repaired
02/11/202110:13 cell2 busy
02/11/202110:23 cell2 idle
… … …
02/11/2021114:30 agv repaired
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decisions in terms of criticality and timeliness. The level of 
detail in the data being gathered ought to demonstrate this. 
Safety-related decisions, especially those in safety–critical 
systems, must be made more quickly than production-related 
decisions.

Stable and affordable production frequencies are the 
goals of smart manufacturing systems. The reliability of 
manufacturing systems, for example, and other character-
istics are closely related to this goal lowering of energy 
and waste material production, etc. In addition to these, 
environmental objectives, such as reducing emissions of 
greenhouse gas, a crucial factors to be taken into account 
to reflect and update, building simulation models and 
serving such a broad range of shifting goals is extremely 
difficult and complex. High-fidelity DT development is 
possible thanks to the proposed framework's data-driven 
approach, Models frequently provide accurate depictions 

of the corresponding production systems, and processes in 
smart factories that reflect current behaviors. Furthermore, 
this accuracy is continuously upheld through ongoing vali-
dation of both models and data for greater comprehen-
sion of procedures and decisions. Our proposed method 
includes process discovery as a key component.

The event logs that have been gathered are mined to 
accomplish this. In addition to improving decision-mak-
ing, this contributes to a better understanding of how the 
system's processes flow. The stakeholders can decide on 
the future of the DT and the system's future by using the 
system's process flows. In conclusion, implementing DTs 
presents several advantages for the smart factory, in addi-
tion to posing different difficulties. The adoption of data-
driven DTs in manufacturing systems can be seen as being 
motivated by these opportunities.

Fig. 6  Failure of assembly 
track distribution based on the 
histogram plot

a 

b 
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Conclusion

For Industry 4.0 adoption to be successful, data-driven DTs 
are essential. With today's manufacturing systems, manu-
ally modeling simulations is not an option that throughout 
their lifetimes experience frequent and quick reconfigura-
tions. In light of this, We looked into what would be needed 
for simulation models to be developed using data for the 
foundation of their DTs for intelligent manufacturing sys-
tems. DTs are created automatically from data collected 
from smart factories using real-time data, significant needs 
can be met by IoT devices, and models for simulation that 
are constantly updated and reflect changes in factory lay-
outs accurately. Integrated ongoing model validation will be 
enabled by data-driven DTs, which may begin once specific 

model components have been taken out. This will be possi-
ble thanks to the data's accessibility from the actual system. 
Many difficulties and requirements must also be satisfied to 
take advantage of the opportunities. Even after all tasks have 
been automated, some processes will still require human 
involvement. It will be more mainstream, though, if they 
are identified and distinguished. For example, experts will 
be required to set the simulation's goal and identify the per-
tinent events. Event of recorded data log exception.
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